bnx2.c 167 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2007 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #ifdef NETIF_F_HW_VLAN_TX
  36. #include <linux/if_vlan.h>
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/zlib.h>
  47. #include "bnx2.h"
  48. #include "bnx2_fw.h"
  49. #include "bnx2_fw2.h"
  50. #define FW_BUF_SIZE 0x8000
  51. #define DRV_MODULE_NAME "bnx2"
  52. #define PFX DRV_MODULE_NAME ": "
  53. #define DRV_MODULE_VERSION "1.6.8"
  54. #define DRV_MODULE_RELDATE "October 17, 2007"
  55. #define RUN_AT(x) (jiffies + (x))
  56. /* Time in jiffies before concluding the transmitter is hung. */
  57. #define TX_TIMEOUT (5*HZ)
  58. static const char version[] __devinitdata =
  59. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  60. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  61. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
  62. MODULE_LICENSE("GPL");
  63. MODULE_VERSION(DRV_MODULE_VERSION);
  64. static int disable_msi = 0;
  65. module_param(disable_msi, int, 0);
  66. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  67. typedef enum {
  68. BCM5706 = 0,
  69. NC370T,
  70. NC370I,
  71. BCM5706S,
  72. NC370F,
  73. BCM5708,
  74. BCM5708S,
  75. BCM5709,
  76. BCM5709S,
  77. } board_t;
  78. /* indexed by board_t, above */
  79. static const struct {
  80. char *name;
  81. } board_info[] __devinitdata = {
  82. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  83. { "HP NC370T Multifunction Gigabit Server Adapter" },
  84. { "HP NC370i Multifunction Gigabit Server Adapter" },
  85. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  86. { "HP NC370F Multifunction Gigabit Server Adapter" },
  87. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  88. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  89. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  90. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  91. };
  92. static struct pci_device_id bnx2_pci_tbl[] = {
  93. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  94. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  95. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  96. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  97. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  98. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  99. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  100. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  101. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  102. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  103. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  104. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  105. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  106. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  107. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  108. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  110. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  111. { 0, }
  112. };
  113. static struct flash_spec flash_table[] =
  114. {
  115. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  116. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  117. /* Slow EEPROM */
  118. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  119. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  120. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  121. "EEPROM - slow"},
  122. /* Expansion entry 0001 */
  123. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  124. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  125. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  126. "Entry 0001"},
  127. /* Saifun SA25F010 (non-buffered flash) */
  128. /* strap, cfg1, & write1 need updates */
  129. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  130. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  131. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  132. "Non-buffered flash (128kB)"},
  133. /* Saifun SA25F020 (non-buffered flash) */
  134. /* strap, cfg1, & write1 need updates */
  135. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  136. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  137. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  138. "Non-buffered flash (256kB)"},
  139. /* Expansion entry 0100 */
  140. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  141. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  142. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  143. "Entry 0100"},
  144. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  145. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  147. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  148. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  149. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  150. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  152. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  153. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  154. /* Saifun SA25F005 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  159. "Non-buffered flash (64kB)"},
  160. /* Fast EEPROM */
  161. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  162. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  163. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  164. "EEPROM - fast"},
  165. /* Expansion entry 1001 */
  166. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  168. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  169. "Entry 1001"},
  170. /* Expansion entry 1010 */
  171. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  173. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  174. "Entry 1010"},
  175. /* ATMEL AT45DB011B (buffered flash) */
  176. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  177. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  178. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  179. "Buffered flash (128kB)"},
  180. /* Expansion entry 1100 */
  181. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  182. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  183. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  184. "Entry 1100"},
  185. /* Expansion entry 1101 */
  186. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  187. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  188. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  189. "Entry 1101"},
  190. /* Ateml Expansion entry 1110 */
  191. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  192. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  193. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  194. "Entry 1110 (Atmel)"},
  195. /* ATMEL AT45DB021B (buffered flash) */
  196. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  197. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  198. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  199. "Buffered flash (256kB)"},
  200. };
  201. static struct flash_spec flash_5709 = {
  202. .flags = BNX2_NV_BUFFERED,
  203. .page_bits = BCM5709_FLASH_PAGE_BITS,
  204. .page_size = BCM5709_FLASH_PAGE_SIZE,
  205. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  206. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  207. .name = "5709 Buffered flash (256kB)",
  208. };
  209. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  210. static inline u32 bnx2_tx_avail(struct bnx2 *bp)
  211. {
  212. u32 diff;
  213. smp_mb();
  214. /* The ring uses 256 indices for 255 entries, one of them
  215. * needs to be skipped.
  216. */
  217. diff = bp->tx_prod - bp->tx_cons;
  218. if (unlikely(diff >= TX_DESC_CNT)) {
  219. diff &= 0xffff;
  220. if (diff == TX_DESC_CNT)
  221. diff = MAX_TX_DESC_CNT;
  222. }
  223. return (bp->tx_ring_size - diff);
  224. }
  225. static u32
  226. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  227. {
  228. u32 val;
  229. spin_lock_bh(&bp->indirect_lock);
  230. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  231. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  232. spin_unlock_bh(&bp->indirect_lock);
  233. return val;
  234. }
  235. static void
  236. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  237. {
  238. spin_lock_bh(&bp->indirect_lock);
  239. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  240. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  241. spin_unlock_bh(&bp->indirect_lock);
  242. }
  243. static void
  244. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  245. {
  246. offset += cid_addr;
  247. spin_lock_bh(&bp->indirect_lock);
  248. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  249. int i;
  250. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  251. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  252. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  253. for (i = 0; i < 5; i++) {
  254. u32 val;
  255. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  256. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  257. break;
  258. udelay(5);
  259. }
  260. } else {
  261. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  262. REG_WR(bp, BNX2_CTX_DATA, val);
  263. }
  264. spin_unlock_bh(&bp->indirect_lock);
  265. }
  266. static int
  267. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  268. {
  269. u32 val1;
  270. int i, ret;
  271. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  272. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  273. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  274. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  275. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  276. udelay(40);
  277. }
  278. val1 = (bp->phy_addr << 21) | (reg << 16) |
  279. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  280. BNX2_EMAC_MDIO_COMM_START_BUSY;
  281. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  282. for (i = 0; i < 50; i++) {
  283. udelay(10);
  284. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  285. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  286. udelay(5);
  287. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  288. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  289. break;
  290. }
  291. }
  292. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  293. *val = 0x0;
  294. ret = -EBUSY;
  295. }
  296. else {
  297. *val = val1;
  298. ret = 0;
  299. }
  300. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  301. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  302. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  303. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  304. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  305. udelay(40);
  306. }
  307. return ret;
  308. }
  309. static int
  310. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  311. {
  312. u32 val1;
  313. int i, ret;
  314. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  315. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  316. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  317. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  318. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  319. udelay(40);
  320. }
  321. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  322. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  323. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  324. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  325. for (i = 0; i < 50; i++) {
  326. udelay(10);
  327. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  328. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  329. udelay(5);
  330. break;
  331. }
  332. }
  333. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  334. ret = -EBUSY;
  335. else
  336. ret = 0;
  337. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  338. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  339. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  340. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  341. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  342. udelay(40);
  343. }
  344. return ret;
  345. }
  346. static void
  347. bnx2_disable_int(struct bnx2 *bp)
  348. {
  349. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  350. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  351. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  352. }
  353. static void
  354. bnx2_enable_int(struct bnx2 *bp)
  355. {
  356. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  357. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  358. BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
  359. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  360. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
  361. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  362. }
  363. static void
  364. bnx2_disable_int_sync(struct bnx2 *bp)
  365. {
  366. atomic_inc(&bp->intr_sem);
  367. bnx2_disable_int(bp);
  368. synchronize_irq(bp->pdev->irq);
  369. }
  370. static void
  371. bnx2_netif_stop(struct bnx2 *bp)
  372. {
  373. bnx2_disable_int_sync(bp);
  374. if (netif_running(bp->dev)) {
  375. napi_disable(&bp->napi);
  376. netif_tx_disable(bp->dev);
  377. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  378. }
  379. }
  380. static void
  381. bnx2_netif_start(struct bnx2 *bp)
  382. {
  383. if (atomic_dec_and_test(&bp->intr_sem)) {
  384. if (netif_running(bp->dev)) {
  385. netif_wake_queue(bp->dev);
  386. napi_enable(&bp->napi);
  387. bnx2_enable_int(bp);
  388. }
  389. }
  390. }
  391. static void
  392. bnx2_free_mem(struct bnx2 *bp)
  393. {
  394. int i;
  395. for (i = 0; i < bp->ctx_pages; i++) {
  396. if (bp->ctx_blk[i]) {
  397. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  398. bp->ctx_blk[i],
  399. bp->ctx_blk_mapping[i]);
  400. bp->ctx_blk[i] = NULL;
  401. }
  402. }
  403. if (bp->status_blk) {
  404. pci_free_consistent(bp->pdev, bp->status_stats_size,
  405. bp->status_blk, bp->status_blk_mapping);
  406. bp->status_blk = NULL;
  407. bp->stats_blk = NULL;
  408. }
  409. if (bp->tx_desc_ring) {
  410. pci_free_consistent(bp->pdev,
  411. sizeof(struct tx_bd) * TX_DESC_CNT,
  412. bp->tx_desc_ring, bp->tx_desc_mapping);
  413. bp->tx_desc_ring = NULL;
  414. }
  415. kfree(bp->tx_buf_ring);
  416. bp->tx_buf_ring = NULL;
  417. for (i = 0; i < bp->rx_max_ring; i++) {
  418. if (bp->rx_desc_ring[i])
  419. pci_free_consistent(bp->pdev,
  420. sizeof(struct rx_bd) * RX_DESC_CNT,
  421. bp->rx_desc_ring[i],
  422. bp->rx_desc_mapping[i]);
  423. bp->rx_desc_ring[i] = NULL;
  424. }
  425. vfree(bp->rx_buf_ring);
  426. bp->rx_buf_ring = NULL;
  427. }
  428. static int
  429. bnx2_alloc_mem(struct bnx2 *bp)
  430. {
  431. int i, status_blk_size;
  432. bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
  433. GFP_KERNEL);
  434. if (bp->tx_buf_ring == NULL)
  435. return -ENOMEM;
  436. bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
  437. sizeof(struct tx_bd) *
  438. TX_DESC_CNT,
  439. &bp->tx_desc_mapping);
  440. if (bp->tx_desc_ring == NULL)
  441. goto alloc_mem_err;
  442. bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
  443. bp->rx_max_ring);
  444. if (bp->rx_buf_ring == NULL)
  445. goto alloc_mem_err;
  446. memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
  447. bp->rx_max_ring);
  448. for (i = 0; i < bp->rx_max_ring; i++) {
  449. bp->rx_desc_ring[i] =
  450. pci_alloc_consistent(bp->pdev,
  451. sizeof(struct rx_bd) * RX_DESC_CNT,
  452. &bp->rx_desc_mapping[i]);
  453. if (bp->rx_desc_ring[i] == NULL)
  454. goto alloc_mem_err;
  455. }
  456. /* Combine status and statistics blocks into one allocation. */
  457. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  458. bp->status_stats_size = status_blk_size +
  459. sizeof(struct statistics_block);
  460. bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  461. &bp->status_blk_mapping);
  462. if (bp->status_blk == NULL)
  463. goto alloc_mem_err;
  464. memset(bp->status_blk, 0, bp->status_stats_size);
  465. bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
  466. status_blk_size);
  467. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  468. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  469. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  470. if (bp->ctx_pages == 0)
  471. bp->ctx_pages = 1;
  472. for (i = 0; i < bp->ctx_pages; i++) {
  473. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  474. BCM_PAGE_SIZE,
  475. &bp->ctx_blk_mapping[i]);
  476. if (bp->ctx_blk[i] == NULL)
  477. goto alloc_mem_err;
  478. }
  479. }
  480. return 0;
  481. alloc_mem_err:
  482. bnx2_free_mem(bp);
  483. return -ENOMEM;
  484. }
  485. static void
  486. bnx2_report_fw_link(struct bnx2 *bp)
  487. {
  488. u32 fw_link_status = 0;
  489. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  490. return;
  491. if (bp->link_up) {
  492. u32 bmsr;
  493. switch (bp->line_speed) {
  494. case SPEED_10:
  495. if (bp->duplex == DUPLEX_HALF)
  496. fw_link_status = BNX2_LINK_STATUS_10HALF;
  497. else
  498. fw_link_status = BNX2_LINK_STATUS_10FULL;
  499. break;
  500. case SPEED_100:
  501. if (bp->duplex == DUPLEX_HALF)
  502. fw_link_status = BNX2_LINK_STATUS_100HALF;
  503. else
  504. fw_link_status = BNX2_LINK_STATUS_100FULL;
  505. break;
  506. case SPEED_1000:
  507. if (bp->duplex == DUPLEX_HALF)
  508. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  509. else
  510. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  511. break;
  512. case SPEED_2500:
  513. if (bp->duplex == DUPLEX_HALF)
  514. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  515. else
  516. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  517. break;
  518. }
  519. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  520. if (bp->autoneg) {
  521. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  522. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  523. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  524. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  525. bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
  526. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  527. else
  528. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  529. }
  530. }
  531. else
  532. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  533. REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
  534. }
  535. static char *
  536. bnx2_xceiver_str(struct bnx2 *bp)
  537. {
  538. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  539. ((bp->phy_flags & PHY_SERDES_FLAG) ? "Remote Copper" :
  540. "Copper"));
  541. }
  542. static void
  543. bnx2_report_link(struct bnx2 *bp)
  544. {
  545. if (bp->link_up) {
  546. netif_carrier_on(bp->dev);
  547. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  548. bnx2_xceiver_str(bp));
  549. printk("%d Mbps ", bp->line_speed);
  550. if (bp->duplex == DUPLEX_FULL)
  551. printk("full duplex");
  552. else
  553. printk("half duplex");
  554. if (bp->flow_ctrl) {
  555. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  556. printk(", receive ");
  557. if (bp->flow_ctrl & FLOW_CTRL_TX)
  558. printk("& transmit ");
  559. }
  560. else {
  561. printk(", transmit ");
  562. }
  563. printk("flow control ON");
  564. }
  565. printk("\n");
  566. }
  567. else {
  568. netif_carrier_off(bp->dev);
  569. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  570. bnx2_xceiver_str(bp));
  571. }
  572. bnx2_report_fw_link(bp);
  573. }
  574. static void
  575. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  576. {
  577. u32 local_adv, remote_adv;
  578. bp->flow_ctrl = 0;
  579. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  580. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  581. if (bp->duplex == DUPLEX_FULL) {
  582. bp->flow_ctrl = bp->req_flow_ctrl;
  583. }
  584. return;
  585. }
  586. if (bp->duplex != DUPLEX_FULL) {
  587. return;
  588. }
  589. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  590. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  591. u32 val;
  592. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  593. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  594. bp->flow_ctrl |= FLOW_CTRL_TX;
  595. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  596. bp->flow_ctrl |= FLOW_CTRL_RX;
  597. return;
  598. }
  599. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  600. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  601. if (bp->phy_flags & PHY_SERDES_FLAG) {
  602. u32 new_local_adv = 0;
  603. u32 new_remote_adv = 0;
  604. if (local_adv & ADVERTISE_1000XPAUSE)
  605. new_local_adv |= ADVERTISE_PAUSE_CAP;
  606. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  607. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  608. if (remote_adv & ADVERTISE_1000XPAUSE)
  609. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  610. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  611. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  612. local_adv = new_local_adv;
  613. remote_adv = new_remote_adv;
  614. }
  615. /* See Table 28B-3 of 802.3ab-1999 spec. */
  616. if (local_adv & ADVERTISE_PAUSE_CAP) {
  617. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  618. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  619. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  620. }
  621. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  622. bp->flow_ctrl = FLOW_CTRL_RX;
  623. }
  624. }
  625. else {
  626. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  627. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  628. }
  629. }
  630. }
  631. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  632. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  633. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  634. bp->flow_ctrl = FLOW_CTRL_TX;
  635. }
  636. }
  637. }
  638. static int
  639. bnx2_5709s_linkup(struct bnx2 *bp)
  640. {
  641. u32 val, speed;
  642. bp->link_up = 1;
  643. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  644. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  645. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  646. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  647. bp->line_speed = bp->req_line_speed;
  648. bp->duplex = bp->req_duplex;
  649. return 0;
  650. }
  651. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  652. switch (speed) {
  653. case MII_BNX2_GP_TOP_AN_SPEED_10:
  654. bp->line_speed = SPEED_10;
  655. break;
  656. case MII_BNX2_GP_TOP_AN_SPEED_100:
  657. bp->line_speed = SPEED_100;
  658. break;
  659. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  660. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  661. bp->line_speed = SPEED_1000;
  662. break;
  663. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  664. bp->line_speed = SPEED_2500;
  665. break;
  666. }
  667. if (val & MII_BNX2_GP_TOP_AN_FD)
  668. bp->duplex = DUPLEX_FULL;
  669. else
  670. bp->duplex = DUPLEX_HALF;
  671. return 0;
  672. }
  673. static int
  674. bnx2_5708s_linkup(struct bnx2 *bp)
  675. {
  676. u32 val;
  677. bp->link_up = 1;
  678. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  679. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  680. case BCM5708S_1000X_STAT1_SPEED_10:
  681. bp->line_speed = SPEED_10;
  682. break;
  683. case BCM5708S_1000X_STAT1_SPEED_100:
  684. bp->line_speed = SPEED_100;
  685. break;
  686. case BCM5708S_1000X_STAT1_SPEED_1G:
  687. bp->line_speed = SPEED_1000;
  688. break;
  689. case BCM5708S_1000X_STAT1_SPEED_2G5:
  690. bp->line_speed = SPEED_2500;
  691. break;
  692. }
  693. if (val & BCM5708S_1000X_STAT1_FD)
  694. bp->duplex = DUPLEX_FULL;
  695. else
  696. bp->duplex = DUPLEX_HALF;
  697. return 0;
  698. }
  699. static int
  700. bnx2_5706s_linkup(struct bnx2 *bp)
  701. {
  702. u32 bmcr, local_adv, remote_adv, common;
  703. bp->link_up = 1;
  704. bp->line_speed = SPEED_1000;
  705. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  706. if (bmcr & BMCR_FULLDPLX) {
  707. bp->duplex = DUPLEX_FULL;
  708. }
  709. else {
  710. bp->duplex = DUPLEX_HALF;
  711. }
  712. if (!(bmcr & BMCR_ANENABLE)) {
  713. return 0;
  714. }
  715. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  716. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  717. common = local_adv & remote_adv;
  718. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  719. if (common & ADVERTISE_1000XFULL) {
  720. bp->duplex = DUPLEX_FULL;
  721. }
  722. else {
  723. bp->duplex = DUPLEX_HALF;
  724. }
  725. }
  726. return 0;
  727. }
  728. static int
  729. bnx2_copper_linkup(struct bnx2 *bp)
  730. {
  731. u32 bmcr;
  732. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  733. if (bmcr & BMCR_ANENABLE) {
  734. u32 local_adv, remote_adv, common;
  735. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  736. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  737. common = local_adv & (remote_adv >> 2);
  738. if (common & ADVERTISE_1000FULL) {
  739. bp->line_speed = SPEED_1000;
  740. bp->duplex = DUPLEX_FULL;
  741. }
  742. else if (common & ADVERTISE_1000HALF) {
  743. bp->line_speed = SPEED_1000;
  744. bp->duplex = DUPLEX_HALF;
  745. }
  746. else {
  747. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  748. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  749. common = local_adv & remote_adv;
  750. if (common & ADVERTISE_100FULL) {
  751. bp->line_speed = SPEED_100;
  752. bp->duplex = DUPLEX_FULL;
  753. }
  754. else if (common & ADVERTISE_100HALF) {
  755. bp->line_speed = SPEED_100;
  756. bp->duplex = DUPLEX_HALF;
  757. }
  758. else if (common & ADVERTISE_10FULL) {
  759. bp->line_speed = SPEED_10;
  760. bp->duplex = DUPLEX_FULL;
  761. }
  762. else if (common & ADVERTISE_10HALF) {
  763. bp->line_speed = SPEED_10;
  764. bp->duplex = DUPLEX_HALF;
  765. }
  766. else {
  767. bp->line_speed = 0;
  768. bp->link_up = 0;
  769. }
  770. }
  771. }
  772. else {
  773. if (bmcr & BMCR_SPEED100) {
  774. bp->line_speed = SPEED_100;
  775. }
  776. else {
  777. bp->line_speed = SPEED_10;
  778. }
  779. if (bmcr & BMCR_FULLDPLX) {
  780. bp->duplex = DUPLEX_FULL;
  781. }
  782. else {
  783. bp->duplex = DUPLEX_HALF;
  784. }
  785. }
  786. return 0;
  787. }
  788. static int
  789. bnx2_set_mac_link(struct bnx2 *bp)
  790. {
  791. u32 val;
  792. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  793. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  794. (bp->duplex == DUPLEX_HALF)) {
  795. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  796. }
  797. /* Configure the EMAC mode register. */
  798. val = REG_RD(bp, BNX2_EMAC_MODE);
  799. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  800. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  801. BNX2_EMAC_MODE_25G_MODE);
  802. if (bp->link_up) {
  803. switch (bp->line_speed) {
  804. case SPEED_10:
  805. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  806. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  807. break;
  808. }
  809. /* fall through */
  810. case SPEED_100:
  811. val |= BNX2_EMAC_MODE_PORT_MII;
  812. break;
  813. case SPEED_2500:
  814. val |= BNX2_EMAC_MODE_25G_MODE;
  815. /* fall through */
  816. case SPEED_1000:
  817. val |= BNX2_EMAC_MODE_PORT_GMII;
  818. break;
  819. }
  820. }
  821. else {
  822. val |= BNX2_EMAC_MODE_PORT_GMII;
  823. }
  824. /* Set the MAC to operate in the appropriate duplex mode. */
  825. if (bp->duplex == DUPLEX_HALF)
  826. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  827. REG_WR(bp, BNX2_EMAC_MODE, val);
  828. /* Enable/disable rx PAUSE. */
  829. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  830. if (bp->flow_ctrl & FLOW_CTRL_RX)
  831. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  832. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  833. /* Enable/disable tx PAUSE. */
  834. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  835. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  836. if (bp->flow_ctrl & FLOW_CTRL_TX)
  837. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  838. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  839. /* Acknowledge the interrupt. */
  840. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  841. return 0;
  842. }
  843. static void
  844. bnx2_enable_bmsr1(struct bnx2 *bp)
  845. {
  846. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  847. (CHIP_NUM(bp) == CHIP_NUM_5709))
  848. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  849. MII_BNX2_BLK_ADDR_GP_STATUS);
  850. }
  851. static void
  852. bnx2_disable_bmsr1(struct bnx2 *bp)
  853. {
  854. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  855. (CHIP_NUM(bp) == CHIP_NUM_5709))
  856. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  857. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  858. }
  859. static int
  860. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  861. {
  862. u32 up1;
  863. int ret = 1;
  864. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  865. return 0;
  866. if (bp->autoneg & AUTONEG_SPEED)
  867. bp->advertising |= ADVERTISED_2500baseX_Full;
  868. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  869. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  870. bnx2_read_phy(bp, bp->mii_up1, &up1);
  871. if (!(up1 & BCM5708S_UP1_2G5)) {
  872. up1 |= BCM5708S_UP1_2G5;
  873. bnx2_write_phy(bp, bp->mii_up1, up1);
  874. ret = 0;
  875. }
  876. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  877. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  878. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  879. return ret;
  880. }
  881. static int
  882. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  883. {
  884. u32 up1;
  885. int ret = 0;
  886. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  887. return 0;
  888. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  889. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  890. bnx2_read_phy(bp, bp->mii_up1, &up1);
  891. if (up1 & BCM5708S_UP1_2G5) {
  892. up1 &= ~BCM5708S_UP1_2G5;
  893. bnx2_write_phy(bp, bp->mii_up1, up1);
  894. ret = 1;
  895. }
  896. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  897. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  898. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  899. return ret;
  900. }
  901. static void
  902. bnx2_enable_forced_2g5(struct bnx2 *bp)
  903. {
  904. u32 bmcr;
  905. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  906. return;
  907. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  908. u32 val;
  909. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  910. MII_BNX2_BLK_ADDR_SERDES_DIG);
  911. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  912. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  913. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  914. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  915. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  916. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  917. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  918. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  919. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  920. bmcr |= BCM5708S_BMCR_FORCE_2500;
  921. }
  922. if (bp->autoneg & AUTONEG_SPEED) {
  923. bmcr &= ~BMCR_ANENABLE;
  924. if (bp->req_duplex == DUPLEX_FULL)
  925. bmcr |= BMCR_FULLDPLX;
  926. }
  927. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  928. }
  929. static void
  930. bnx2_disable_forced_2g5(struct bnx2 *bp)
  931. {
  932. u32 bmcr;
  933. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  934. return;
  935. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  936. u32 val;
  937. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  938. MII_BNX2_BLK_ADDR_SERDES_DIG);
  939. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  940. val &= ~MII_BNX2_SD_MISC1_FORCE;
  941. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  942. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  943. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  944. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  945. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  946. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  947. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  948. }
  949. if (bp->autoneg & AUTONEG_SPEED)
  950. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  951. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  952. }
  953. static int
  954. bnx2_set_link(struct bnx2 *bp)
  955. {
  956. u32 bmsr;
  957. u8 link_up;
  958. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  959. bp->link_up = 1;
  960. return 0;
  961. }
  962. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  963. return 0;
  964. link_up = bp->link_up;
  965. bnx2_enable_bmsr1(bp);
  966. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  967. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  968. bnx2_disable_bmsr1(bp);
  969. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  970. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  971. u32 val;
  972. val = REG_RD(bp, BNX2_EMAC_STATUS);
  973. if (val & BNX2_EMAC_STATUS_LINK)
  974. bmsr |= BMSR_LSTATUS;
  975. else
  976. bmsr &= ~BMSR_LSTATUS;
  977. }
  978. if (bmsr & BMSR_LSTATUS) {
  979. bp->link_up = 1;
  980. if (bp->phy_flags & PHY_SERDES_FLAG) {
  981. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  982. bnx2_5706s_linkup(bp);
  983. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  984. bnx2_5708s_linkup(bp);
  985. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  986. bnx2_5709s_linkup(bp);
  987. }
  988. else {
  989. bnx2_copper_linkup(bp);
  990. }
  991. bnx2_resolve_flow_ctrl(bp);
  992. }
  993. else {
  994. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  995. (bp->autoneg & AUTONEG_SPEED))
  996. bnx2_disable_forced_2g5(bp);
  997. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  998. bp->link_up = 0;
  999. }
  1000. if (bp->link_up != link_up) {
  1001. bnx2_report_link(bp);
  1002. }
  1003. bnx2_set_mac_link(bp);
  1004. return 0;
  1005. }
  1006. static int
  1007. bnx2_reset_phy(struct bnx2 *bp)
  1008. {
  1009. int i;
  1010. u32 reg;
  1011. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1012. #define PHY_RESET_MAX_WAIT 100
  1013. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1014. udelay(10);
  1015. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1016. if (!(reg & BMCR_RESET)) {
  1017. udelay(20);
  1018. break;
  1019. }
  1020. }
  1021. if (i == PHY_RESET_MAX_WAIT) {
  1022. return -EBUSY;
  1023. }
  1024. return 0;
  1025. }
  1026. static u32
  1027. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1028. {
  1029. u32 adv = 0;
  1030. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1031. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1032. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1033. adv = ADVERTISE_1000XPAUSE;
  1034. }
  1035. else {
  1036. adv = ADVERTISE_PAUSE_CAP;
  1037. }
  1038. }
  1039. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1040. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1041. adv = ADVERTISE_1000XPSE_ASYM;
  1042. }
  1043. else {
  1044. adv = ADVERTISE_PAUSE_ASYM;
  1045. }
  1046. }
  1047. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1048. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1049. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1050. }
  1051. else {
  1052. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1053. }
  1054. }
  1055. return adv;
  1056. }
  1057. static int bnx2_fw_sync(struct bnx2 *, u32, int);
  1058. static int
  1059. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1060. {
  1061. u32 speed_arg = 0, pause_adv;
  1062. pause_adv = bnx2_phy_get_pause_adv(bp);
  1063. if (bp->autoneg & AUTONEG_SPEED) {
  1064. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1065. if (bp->advertising & ADVERTISED_10baseT_Half)
  1066. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1067. if (bp->advertising & ADVERTISED_10baseT_Full)
  1068. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1069. if (bp->advertising & ADVERTISED_100baseT_Half)
  1070. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1071. if (bp->advertising & ADVERTISED_100baseT_Full)
  1072. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1073. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1074. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1075. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1076. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1077. } else {
  1078. if (bp->req_line_speed == SPEED_2500)
  1079. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1080. else if (bp->req_line_speed == SPEED_1000)
  1081. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1082. else if (bp->req_line_speed == SPEED_100) {
  1083. if (bp->req_duplex == DUPLEX_FULL)
  1084. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1085. else
  1086. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1087. } else if (bp->req_line_speed == SPEED_10) {
  1088. if (bp->req_duplex == DUPLEX_FULL)
  1089. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1090. else
  1091. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1092. }
  1093. }
  1094. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1095. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1096. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_1000XPSE_ASYM))
  1097. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1098. if (port == PORT_TP)
  1099. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1100. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1101. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB_ARG0, speed_arg);
  1102. spin_unlock_bh(&bp->phy_lock);
  1103. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 0);
  1104. spin_lock_bh(&bp->phy_lock);
  1105. return 0;
  1106. }
  1107. static int
  1108. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1109. {
  1110. u32 adv, bmcr;
  1111. u32 new_adv = 0;
  1112. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  1113. return (bnx2_setup_remote_phy(bp, port));
  1114. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1115. u32 new_bmcr;
  1116. int force_link_down = 0;
  1117. if (bp->req_line_speed == SPEED_2500) {
  1118. if (!bnx2_test_and_enable_2g5(bp))
  1119. force_link_down = 1;
  1120. } else if (bp->req_line_speed == SPEED_1000) {
  1121. if (bnx2_test_and_disable_2g5(bp))
  1122. force_link_down = 1;
  1123. }
  1124. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1125. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1126. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1127. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1128. new_bmcr |= BMCR_SPEED1000;
  1129. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1130. if (bp->req_line_speed == SPEED_2500)
  1131. bnx2_enable_forced_2g5(bp);
  1132. else if (bp->req_line_speed == SPEED_1000) {
  1133. bnx2_disable_forced_2g5(bp);
  1134. new_bmcr &= ~0x2000;
  1135. }
  1136. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1137. if (bp->req_line_speed == SPEED_2500)
  1138. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1139. else
  1140. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1141. }
  1142. if (bp->req_duplex == DUPLEX_FULL) {
  1143. adv |= ADVERTISE_1000XFULL;
  1144. new_bmcr |= BMCR_FULLDPLX;
  1145. }
  1146. else {
  1147. adv |= ADVERTISE_1000XHALF;
  1148. new_bmcr &= ~BMCR_FULLDPLX;
  1149. }
  1150. if ((new_bmcr != bmcr) || (force_link_down)) {
  1151. /* Force a link down visible on the other side */
  1152. if (bp->link_up) {
  1153. bnx2_write_phy(bp, bp->mii_adv, adv &
  1154. ~(ADVERTISE_1000XFULL |
  1155. ADVERTISE_1000XHALF));
  1156. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1157. BMCR_ANRESTART | BMCR_ANENABLE);
  1158. bp->link_up = 0;
  1159. netif_carrier_off(bp->dev);
  1160. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1161. bnx2_report_link(bp);
  1162. }
  1163. bnx2_write_phy(bp, bp->mii_adv, adv);
  1164. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1165. } else {
  1166. bnx2_resolve_flow_ctrl(bp);
  1167. bnx2_set_mac_link(bp);
  1168. }
  1169. return 0;
  1170. }
  1171. bnx2_test_and_enable_2g5(bp);
  1172. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1173. new_adv |= ADVERTISE_1000XFULL;
  1174. new_adv |= bnx2_phy_get_pause_adv(bp);
  1175. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1176. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1177. bp->serdes_an_pending = 0;
  1178. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1179. /* Force a link down visible on the other side */
  1180. if (bp->link_up) {
  1181. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1182. spin_unlock_bh(&bp->phy_lock);
  1183. msleep(20);
  1184. spin_lock_bh(&bp->phy_lock);
  1185. }
  1186. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1187. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1188. BMCR_ANENABLE);
  1189. /* Speed up link-up time when the link partner
  1190. * does not autonegotiate which is very common
  1191. * in blade servers. Some blade servers use
  1192. * IPMI for kerboard input and it's important
  1193. * to minimize link disruptions. Autoneg. involves
  1194. * exchanging base pages plus 3 next pages and
  1195. * normally completes in about 120 msec.
  1196. */
  1197. bp->current_interval = SERDES_AN_TIMEOUT;
  1198. bp->serdes_an_pending = 1;
  1199. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1200. } else {
  1201. bnx2_resolve_flow_ctrl(bp);
  1202. bnx2_set_mac_link(bp);
  1203. }
  1204. return 0;
  1205. }
  1206. #define ETHTOOL_ALL_FIBRE_SPEED \
  1207. (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ? \
  1208. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1209. (ADVERTISED_1000baseT_Full)
  1210. #define ETHTOOL_ALL_COPPER_SPEED \
  1211. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1212. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1213. ADVERTISED_1000baseT_Full)
  1214. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1215. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1216. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1217. static void
  1218. bnx2_set_default_remote_link(struct bnx2 *bp)
  1219. {
  1220. u32 link;
  1221. if (bp->phy_port == PORT_TP)
  1222. link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_COPPER_LINK);
  1223. else
  1224. link = REG_RD_IND(bp, bp->shmem_base + BNX2_RPHY_SERDES_LINK);
  1225. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1226. bp->req_line_speed = 0;
  1227. bp->autoneg |= AUTONEG_SPEED;
  1228. bp->advertising = ADVERTISED_Autoneg;
  1229. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1230. bp->advertising |= ADVERTISED_10baseT_Half;
  1231. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1232. bp->advertising |= ADVERTISED_10baseT_Full;
  1233. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1234. bp->advertising |= ADVERTISED_100baseT_Half;
  1235. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1236. bp->advertising |= ADVERTISED_100baseT_Full;
  1237. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1238. bp->advertising |= ADVERTISED_1000baseT_Full;
  1239. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1240. bp->advertising |= ADVERTISED_2500baseX_Full;
  1241. } else {
  1242. bp->autoneg = 0;
  1243. bp->advertising = 0;
  1244. bp->req_duplex = DUPLEX_FULL;
  1245. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1246. bp->req_line_speed = SPEED_10;
  1247. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1248. bp->req_duplex = DUPLEX_HALF;
  1249. }
  1250. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1251. bp->req_line_speed = SPEED_100;
  1252. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1253. bp->req_duplex = DUPLEX_HALF;
  1254. }
  1255. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1256. bp->req_line_speed = SPEED_1000;
  1257. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1258. bp->req_line_speed = SPEED_2500;
  1259. }
  1260. }
  1261. static void
  1262. bnx2_set_default_link(struct bnx2 *bp)
  1263. {
  1264. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  1265. return bnx2_set_default_remote_link(bp);
  1266. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1267. bp->req_line_speed = 0;
  1268. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1269. u32 reg;
  1270. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1271. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
  1272. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1273. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1274. bp->autoneg = 0;
  1275. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1276. bp->req_duplex = DUPLEX_FULL;
  1277. }
  1278. } else
  1279. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1280. }
  1281. static void
  1282. bnx2_send_heart_beat(struct bnx2 *bp)
  1283. {
  1284. u32 msg;
  1285. u32 addr;
  1286. spin_lock(&bp->indirect_lock);
  1287. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1288. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1289. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1290. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1291. spin_unlock(&bp->indirect_lock);
  1292. }
  1293. static void
  1294. bnx2_remote_phy_event(struct bnx2 *bp)
  1295. {
  1296. u32 msg;
  1297. u8 link_up = bp->link_up;
  1298. u8 old_port;
  1299. msg = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
  1300. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1301. bnx2_send_heart_beat(bp);
  1302. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1303. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1304. bp->link_up = 0;
  1305. else {
  1306. u32 speed;
  1307. bp->link_up = 1;
  1308. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1309. bp->duplex = DUPLEX_FULL;
  1310. switch (speed) {
  1311. case BNX2_LINK_STATUS_10HALF:
  1312. bp->duplex = DUPLEX_HALF;
  1313. case BNX2_LINK_STATUS_10FULL:
  1314. bp->line_speed = SPEED_10;
  1315. break;
  1316. case BNX2_LINK_STATUS_100HALF:
  1317. bp->duplex = DUPLEX_HALF;
  1318. case BNX2_LINK_STATUS_100BASE_T4:
  1319. case BNX2_LINK_STATUS_100FULL:
  1320. bp->line_speed = SPEED_100;
  1321. break;
  1322. case BNX2_LINK_STATUS_1000HALF:
  1323. bp->duplex = DUPLEX_HALF;
  1324. case BNX2_LINK_STATUS_1000FULL:
  1325. bp->line_speed = SPEED_1000;
  1326. break;
  1327. case BNX2_LINK_STATUS_2500HALF:
  1328. bp->duplex = DUPLEX_HALF;
  1329. case BNX2_LINK_STATUS_2500FULL:
  1330. bp->line_speed = SPEED_2500;
  1331. break;
  1332. default:
  1333. bp->line_speed = 0;
  1334. break;
  1335. }
  1336. spin_lock(&bp->phy_lock);
  1337. bp->flow_ctrl = 0;
  1338. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1339. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1340. if (bp->duplex == DUPLEX_FULL)
  1341. bp->flow_ctrl = bp->req_flow_ctrl;
  1342. } else {
  1343. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1344. bp->flow_ctrl |= FLOW_CTRL_TX;
  1345. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1346. bp->flow_ctrl |= FLOW_CTRL_RX;
  1347. }
  1348. old_port = bp->phy_port;
  1349. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1350. bp->phy_port = PORT_FIBRE;
  1351. else
  1352. bp->phy_port = PORT_TP;
  1353. if (old_port != bp->phy_port)
  1354. bnx2_set_default_link(bp);
  1355. spin_unlock(&bp->phy_lock);
  1356. }
  1357. if (bp->link_up != link_up)
  1358. bnx2_report_link(bp);
  1359. bnx2_set_mac_link(bp);
  1360. }
  1361. static int
  1362. bnx2_set_remote_link(struct bnx2 *bp)
  1363. {
  1364. u32 evt_code;
  1365. evt_code = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_EVT_CODE_MB);
  1366. switch (evt_code) {
  1367. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1368. bnx2_remote_phy_event(bp);
  1369. break;
  1370. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1371. default:
  1372. bnx2_send_heart_beat(bp);
  1373. break;
  1374. }
  1375. return 0;
  1376. }
  1377. static int
  1378. bnx2_setup_copper_phy(struct bnx2 *bp)
  1379. {
  1380. u32 bmcr;
  1381. u32 new_bmcr;
  1382. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1383. if (bp->autoneg & AUTONEG_SPEED) {
  1384. u32 adv_reg, adv1000_reg;
  1385. u32 new_adv_reg = 0;
  1386. u32 new_adv1000_reg = 0;
  1387. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1388. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1389. ADVERTISE_PAUSE_ASYM);
  1390. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1391. adv1000_reg &= PHY_ALL_1000_SPEED;
  1392. if (bp->advertising & ADVERTISED_10baseT_Half)
  1393. new_adv_reg |= ADVERTISE_10HALF;
  1394. if (bp->advertising & ADVERTISED_10baseT_Full)
  1395. new_adv_reg |= ADVERTISE_10FULL;
  1396. if (bp->advertising & ADVERTISED_100baseT_Half)
  1397. new_adv_reg |= ADVERTISE_100HALF;
  1398. if (bp->advertising & ADVERTISED_100baseT_Full)
  1399. new_adv_reg |= ADVERTISE_100FULL;
  1400. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1401. new_adv1000_reg |= ADVERTISE_1000FULL;
  1402. new_adv_reg |= ADVERTISE_CSMA;
  1403. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1404. if ((adv1000_reg != new_adv1000_reg) ||
  1405. (adv_reg != new_adv_reg) ||
  1406. ((bmcr & BMCR_ANENABLE) == 0)) {
  1407. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1408. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1409. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1410. BMCR_ANENABLE);
  1411. }
  1412. else if (bp->link_up) {
  1413. /* Flow ctrl may have changed from auto to forced */
  1414. /* or vice-versa. */
  1415. bnx2_resolve_flow_ctrl(bp);
  1416. bnx2_set_mac_link(bp);
  1417. }
  1418. return 0;
  1419. }
  1420. new_bmcr = 0;
  1421. if (bp->req_line_speed == SPEED_100) {
  1422. new_bmcr |= BMCR_SPEED100;
  1423. }
  1424. if (bp->req_duplex == DUPLEX_FULL) {
  1425. new_bmcr |= BMCR_FULLDPLX;
  1426. }
  1427. if (new_bmcr != bmcr) {
  1428. u32 bmsr;
  1429. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1430. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1431. if (bmsr & BMSR_LSTATUS) {
  1432. /* Force link down */
  1433. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1434. spin_unlock_bh(&bp->phy_lock);
  1435. msleep(50);
  1436. spin_lock_bh(&bp->phy_lock);
  1437. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1438. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1439. }
  1440. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1441. /* Normally, the new speed is setup after the link has
  1442. * gone down and up again. In some cases, link will not go
  1443. * down so we need to set up the new speed here.
  1444. */
  1445. if (bmsr & BMSR_LSTATUS) {
  1446. bp->line_speed = bp->req_line_speed;
  1447. bp->duplex = bp->req_duplex;
  1448. bnx2_resolve_flow_ctrl(bp);
  1449. bnx2_set_mac_link(bp);
  1450. }
  1451. } else {
  1452. bnx2_resolve_flow_ctrl(bp);
  1453. bnx2_set_mac_link(bp);
  1454. }
  1455. return 0;
  1456. }
  1457. static int
  1458. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1459. {
  1460. if (bp->loopback == MAC_LOOPBACK)
  1461. return 0;
  1462. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1463. return (bnx2_setup_serdes_phy(bp, port));
  1464. }
  1465. else {
  1466. return (bnx2_setup_copper_phy(bp));
  1467. }
  1468. }
  1469. static int
  1470. bnx2_init_5709s_phy(struct bnx2 *bp)
  1471. {
  1472. u32 val;
  1473. bp->mii_bmcr = MII_BMCR + 0x10;
  1474. bp->mii_bmsr = MII_BMSR + 0x10;
  1475. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1476. bp->mii_adv = MII_ADVERTISE + 0x10;
  1477. bp->mii_lpa = MII_LPA + 0x10;
  1478. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1479. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1480. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1481. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1482. bnx2_reset_phy(bp);
  1483. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1484. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1485. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1486. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1487. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1488. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1489. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1490. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
  1491. val |= BCM5708S_UP1_2G5;
  1492. else
  1493. val &= ~BCM5708S_UP1_2G5;
  1494. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1495. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1496. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1497. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1498. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1499. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1500. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1501. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1502. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1503. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1504. return 0;
  1505. }
  1506. static int
  1507. bnx2_init_5708s_phy(struct bnx2 *bp)
  1508. {
  1509. u32 val;
  1510. bnx2_reset_phy(bp);
  1511. bp->mii_up1 = BCM5708S_UP1;
  1512. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1513. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1514. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1515. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1516. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1517. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1518. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1519. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1520. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1521. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  1522. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1523. val |= BCM5708S_UP1_2G5;
  1524. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1525. }
  1526. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1527. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1528. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1529. /* increase tx signal amplitude */
  1530. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1531. BCM5708S_BLK_ADDR_TX_MISC);
  1532. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1533. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1534. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1535. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1536. }
  1537. val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
  1538. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1539. if (val) {
  1540. u32 is_backplane;
  1541. is_backplane = REG_RD_IND(bp, bp->shmem_base +
  1542. BNX2_SHARED_HW_CFG_CONFIG);
  1543. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1544. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1545. BCM5708S_BLK_ADDR_TX_MISC);
  1546. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1547. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1548. BCM5708S_BLK_ADDR_DIG);
  1549. }
  1550. }
  1551. return 0;
  1552. }
  1553. static int
  1554. bnx2_init_5706s_phy(struct bnx2 *bp)
  1555. {
  1556. bnx2_reset_phy(bp);
  1557. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  1558. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1559. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1560. if (bp->dev->mtu > 1500) {
  1561. u32 val;
  1562. /* Set extended packet length bit */
  1563. bnx2_write_phy(bp, 0x18, 0x7);
  1564. bnx2_read_phy(bp, 0x18, &val);
  1565. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1566. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1567. bnx2_read_phy(bp, 0x1c, &val);
  1568. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1569. }
  1570. else {
  1571. u32 val;
  1572. bnx2_write_phy(bp, 0x18, 0x7);
  1573. bnx2_read_phy(bp, 0x18, &val);
  1574. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1575. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1576. bnx2_read_phy(bp, 0x1c, &val);
  1577. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1578. }
  1579. return 0;
  1580. }
  1581. static int
  1582. bnx2_init_copper_phy(struct bnx2 *bp)
  1583. {
  1584. u32 val;
  1585. bnx2_reset_phy(bp);
  1586. if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
  1587. bnx2_write_phy(bp, 0x18, 0x0c00);
  1588. bnx2_write_phy(bp, 0x17, 0x000a);
  1589. bnx2_write_phy(bp, 0x15, 0x310b);
  1590. bnx2_write_phy(bp, 0x17, 0x201f);
  1591. bnx2_write_phy(bp, 0x15, 0x9506);
  1592. bnx2_write_phy(bp, 0x17, 0x401f);
  1593. bnx2_write_phy(bp, 0x15, 0x14e2);
  1594. bnx2_write_phy(bp, 0x18, 0x0400);
  1595. }
  1596. if (bp->phy_flags & PHY_DIS_EARLY_DAC_FLAG) {
  1597. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1598. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1599. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1600. val &= ~(1 << 8);
  1601. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1602. }
  1603. if (bp->dev->mtu > 1500) {
  1604. /* Set extended packet length bit */
  1605. bnx2_write_phy(bp, 0x18, 0x7);
  1606. bnx2_read_phy(bp, 0x18, &val);
  1607. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1608. bnx2_read_phy(bp, 0x10, &val);
  1609. bnx2_write_phy(bp, 0x10, val | 0x1);
  1610. }
  1611. else {
  1612. bnx2_write_phy(bp, 0x18, 0x7);
  1613. bnx2_read_phy(bp, 0x18, &val);
  1614. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1615. bnx2_read_phy(bp, 0x10, &val);
  1616. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1617. }
  1618. /* ethernet@wirespeed */
  1619. bnx2_write_phy(bp, 0x18, 0x7007);
  1620. bnx2_read_phy(bp, 0x18, &val);
  1621. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1622. return 0;
  1623. }
  1624. static int
  1625. bnx2_init_phy(struct bnx2 *bp)
  1626. {
  1627. u32 val;
  1628. int rc = 0;
  1629. bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
  1630. bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
  1631. bp->mii_bmcr = MII_BMCR;
  1632. bp->mii_bmsr = MII_BMSR;
  1633. bp->mii_bmsr1 = MII_BMSR;
  1634. bp->mii_adv = MII_ADVERTISE;
  1635. bp->mii_lpa = MII_LPA;
  1636. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1637. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  1638. goto setup_phy;
  1639. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1640. bp->phy_id = val << 16;
  1641. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1642. bp->phy_id |= val & 0xffff;
  1643. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1644. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1645. rc = bnx2_init_5706s_phy(bp);
  1646. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1647. rc = bnx2_init_5708s_phy(bp);
  1648. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1649. rc = bnx2_init_5709s_phy(bp);
  1650. }
  1651. else {
  1652. rc = bnx2_init_copper_phy(bp);
  1653. }
  1654. setup_phy:
  1655. if (!rc)
  1656. rc = bnx2_setup_phy(bp, bp->phy_port);
  1657. return rc;
  1658. }
  1659. static int
  1660. bnx2_set_mac_loopback(struct bnx2 *bp)
  1661. {
  1662. u32 mac_mode;
  1663. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1664. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1665. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1666. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1667. bp->link_up = 1;
  1668. return 0;
  1669. }
  1670. static int bnx2_test_link(struct bnx2 *);
  1671. static int
  1672. bnx2_set_phy_loopback(struct bnx2 *bp)
  1673. {
  1674. u32 mac_mode;
  1675. int rc, i;
  1676. spin_lock_bh(&bp->phy_lock);
  1677. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  1678. BMCR_SPEED1000);
  1679. spin_unlock_bh(&bp->phy_lock);
  1680. if (rc)
  1681. return rc;
  1682. for (i = 0; i < 10; i++) {
  1683. if (bnx2_test_link(bp) == 0)
  1684. break;
  1685. msleep(100);
  1686. }
  1687. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1688. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1689. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1690. BNX2_EMAC_MODE_25G_MODE);
  1691. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  1692. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1693. bp->link_up = 1;
  1694. return 0;
  1695. }
  1696. static int
  1697. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
  1698. {
  1699. int i;
  1700. u32 val;
  1701. bp->fw_wr_seq++;
  1702. msg_data |= bp->fw_wr_seq;
  1703. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1704. /* wait for an acknowledgement. */
  1705. for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
  1706. msleep(10);
  1707. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
  1708. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1709. break;
  1710. }
  1711. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  1712. return 0;
  1713. /* If we timed out, inform the firmware that this is the case. */
  1714. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  1715. if (!silent)
  1716. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  1717. "%x\n", msg_data);
  1718. msg_data &= ~BNX2_DRV_MSG_CODE;
  1719. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1720. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1721. return -EBUSY;
  1722. }
  1723. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  1724. return -EIO;
  1725. return 0;
  1726. }
  1727. static int
  1728. bnx2_init_5709_context(struct bnx2 *bp)
  1729. {
  1730. int i, ret = 0;
  1731. u32 val;
  1732. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  1733. val |= (BCM_PAGE_BITS - 8) << 16;
  1734. REG_WR(bp, BNX2_CTX_COMMAND, val);
  1735. for (i = 0; i < 10; i++) {
  1736. val = REG_RD(bp, BNX2_CTX_COMMAND);
  1737. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  1738. break;
  1739. udelay(2);
  1740. }
  1741. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  1742. return -EBUSY;
  1743. for (i = 0; i < bp->ctx_pages; i++) {
  1744. int j;
  1745. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  1746. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  1747. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  1748. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  1749. (u64) bp->ctx_blk_mapping[i] >> 32);
  1750. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  1751. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  1752. for (j = 0; j < 10; j++) {
  1753. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  1754. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  1755. break;
  1756. udelay(5);
  1757. }
  1758. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  1759. ret = -EBUSY;
  1760. break;
  1761. }
  1762. }
  1763. return ret;
  1764. }
  1765. static void
  1766. bnx2_init_context(struct bnx2 *bp)
  1767. {
  1768. u32 vcid;
  1769. vcid = 96;
  1770. while (vcid) {
  1771. u32 vcid_addr, pcid_addr, offset;
  1772. int i;
  1773. vcid--;
  1774. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  1775. u32 new_vcid;
  1776. vcid_addr = GET_PCID_ADDR(vcid);
  1777. if (vcid & 0x8) {
  1778. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  1779. }
  1780. else {
  1781. new_vcid = vcid;
  1782. }
  1783. pcid_addr = GET_PCID_ADDR(new_vcid);
  1784. }
  1785. else {
  1786. vcid_addr = GET_CID_ADDR(vcid);
  1787. pcid_addr = vcid_addr;
  1788. }
  1789. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  1790. vcid_addr += (i << PHY_CTX_SHIFT);
  1791. pcid_addr += (i << PHY_CTX_SHIFT);
  1792. REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
  1793. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1794. /* Zero out the context. */
  1795. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  1796. CTX_WR(bp, 0x00, offset, 0);
  1797. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  1798. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1799. }
  1800. }
  1801. }
  1802. static int
  1803. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  1804. {
  1805. u16 *good_mbuf;
  1806. u32 good_mbuf_cnt;
  1807. u32 val;
  1808. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  1809. if (good_mbuf == NULL) {
  1810. printk(KERN_ERR PFX "Failed to allocate memory in "
  1811. "bnx2_alloc_bad_rbuf\n");
  1812. return -ENOMEM;
  1813. }
  1814. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1815. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  1816. good_mbuf_cnt = 0;
  1817. /* Allocate a bunch of mbufs and save the good ones in an array. */
  1818. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1819. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  1820. REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
  1821. val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
  1822. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  1823. /* The addresses with Bit 9 set are bad memory blocks. */
  1824. if (!(val & (1 << 9))) {
  1825. good_mbuf[good_mbuf_cnt] = (u16) val;
  1826. good_mbuf_cnt++;
  1827. }
  1828. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1829. }
  1830. /* Free the good ones back to the mbuf pool thus discarding
  1831. * all the bad ones. */
  1832. while (good_mbuf_cnt) {
  1833. good_mbuf_cnt--;
  1834. val = good_mbuf[good_mbuf_cnt];
  1835. val = (val << 9) | val | 1;
  1836. REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
  1837. }
  1838. kfree(good_mbuf);
  1839. return 0;
  1840. }
  1841. static void
  1842. bnx2_set_mac_addr(struct bnx2 *bp)
  1843. {
  1844. u32 val;
  1845. u8 *mac_addr = bp->dev->dev_addr;
  1846. val = (mac_addr[0] << 8) | mac_addr[1];
  1847. REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
  1848. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  1849. (mac_addr[4] << 8) | mac_addr[5];
  1850. REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
  1851. }
  1852. static inline int
  1853. bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
  1854. {
  1855. struct sk_buff *skb;
  1856. struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
  1857. dma_addr_t mapping;
  1858. struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  1859. unsigned long align;
  1860. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  1861. if (skb == NULL) {
  1862. return -ENOMEM;
  1863. }
  1864. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  1865. skb_reserve(skb, BNX2_RX_ALIGN - align);
  1866. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  1867. PCI_DMA_FROMDEVICE);
  1868. rx_buf->skb = skb;
  1869. pci_unmap_addr_set(rx_buf, mapping, mapping);
  1870. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  1871. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  1872. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1873. return 0;
  1874. }
  1875. static int
  1876. bnx2_phy_event_is_set(struct bnx2 *bp, u32 event)
  1877. {
  1878. struct status_block *sblk = bp->status_blk;
  1879. u32 new_link_state, old_link_state;
  1880. int is_set = 1;
  1881. new_link_state = sblk->status_attn_bits & event;
  1882. old_link_state = sblk->status_attn_bits_ack & event;
  1883. if (new_link_state != old_link_state) {
  1884. if (new_link_state)
  1885. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  1886. else
  1887. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  1888. } else
  1889. is_set = 0;
  1890. return is_set;
  1891. }
  1892. static void
  1893. bnx2_phy_int(struct bnx2 *bp)
  1894. {
  1895. if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_LINK_STATE)) {
  1896. spin_lock(&bp->phy_lock);
  1897. bnx2_set_link(bp);
  1898. spin_unlock(&bp->phy_lock);
  1899. }
  1900. if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_TIMER_ABORT))
  1901. bnx2_set_remote_link(bp);
  1902. }
  1903. static void
  1904. bnx2_tx_int(struct bnx2 *bp)
  1905. {
  1906. struct status_block *sblk = bp->status_blk;
  1907. u16 hw_cons, sw_cons, sw_ring_cons;
  1908. int tx_free_bd = 0;
  1909. hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
  1910. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1911. hw_cons++;
  1912. }
  1913. sw_cons = bp->tx_cons;
  1914. while (sw_cons != hw_cons) {
  1915. struct sw_bd *tx_buf;
  1916. struct sk_buff *skb;
  1917. int i, last;
  1918. sw_ring_cons = TX_RING_IDX(sw_cons);
  1919. tx_buf = &bp->tx_buf_ring[sw_ring_cons];
  1920. skb = tx_buf->skb;
  1921. /* partial BD completions possible with TSO packets */
  1922. if (skb_is_gso(skb)) {
  1923. u16 last_idx, last_ring_idx;
  1924. last_idx = sw_cons +
  1925. skb_shinfo(skb)->nr_frags + 1;
  1926. last_ring_idx = sw_ring_cons +
  1927. skb_shinfo(skb)->nr_frags + 1;
  1928. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  1929. last_idx++;
  1930. }
  1931. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  1932. break;
  1933. }
  1934. }
  1935. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  1936. skb_headlen(skb), PCI_DMA_TODEVICE);
  1937. tx_buf->skb = NULL;
  1938. last = skb_shinfo(skb)->nr_frags;
  1939. for (i = 0; i < last; i++) {
  1940. sw_cons = NEXT_TX_BD(sw_cons);
  1941. pci_unmap_page(bp->pdev,
  1942. pci_unmap_addr(
  1943. &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
  1944. mapping),
  1945. skb_shinfo(skb)->frags[i].size,
  1946. PCI_DMA_TODEVICE);
  1947. }
  1948. sw_cons = NEXT_TX_BD(sw_cons);
  1949. tx_free_bd += last + 1;
  1950. dev_kfree_skb(skb);
  1951. hw_cons = bp->hw_tx_cons =
  1952. sblk->status_tx_quick_consumer_index0;
  1953. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1954. hw_cons++;
  1955. }
  1956. }
  1957. bp->tx_cons = sw_cons;
  1958. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  1959. * before checking for netif_queue_stopped(). Without the
  1960. * memory barrier, there is a small possibility that bnx2_start_xmit()
  1961. * will miss it and cause the queue to be stopped forever.
  1962. */
  1963. smp_mb();
  1964. if (unlikely(netif_queue_stopped(bp->dev)) &&
  1965. (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) {
  1966. netif_tx_lock(bp->dev);
  1967. if ((netif_queue_stopped(bp->dev)) &&
  1968. (bnx2_tx_avail(bp) > bp->tx_wake_thresh))
  1969. netif_wake_queue(bp->dev);
  1970. netif_tx_unlock(bp->dev);
  1971. }
  1972. }
  1973. static inline void
  1974. bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
  1975. u16 cons, u16 prod)
  1976. {
  1977. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  1978. struct rx_bd *cons_bd, *prod_bd;
  1979. cons_rx_buf = &bp->rx_buf_ring[cons];
  1980. prod_rx_buf = &bp->rx_buf_ring[prod];
  1981. pci_dma_sync_single_for_device(bp->pdev,
  1982. pci_unmap_addr(cons_rx_buf, mapping),
  1983. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1984. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1985. prod_rx_buf->skb = skb;
  1986. if (cons == prod)
  1987. return;
  1988. pci_unmap_addr_set(prod_rx_buf, mapping,
  1989. pci_unmap_addr(cons_rx_buf, mapping));
  1990. cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  1991. prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  1992. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  1993. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  1994. }
  1995. static int
  1996. bnx2_rx_int(struct bnx2 *bp, int budget)
  1997. {
  1998. struct status_block *sblk = bp->status_blk;
  1999. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2000. struct l2_fhdr *rx_hdr;
  2001. int rx_pkt = 0;
  2002. hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
  2003. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
  2004. hw_cons++;
  2005. }
  2006. sw_cons = bp->rx_cons;
  2007. sw_prod = bp->rx_prod;
  2008. /* Memory barrier necessary as speculative reads of the rx
  2009. * buffer can be ahead of the index in the status block
  2010. */
  2011. rmb();
  2012. while (sw_cons != hw_cons) {
  2013. unsigned int len;
  2014. u32 status;
  2015. struct sw_bd *rx_buf;
  2016. struct sk_buff *skb;
  2017. dma_addr_t dma_addr;
  2018. sw_ring_cons = RX_RING_IDX(sw_cons);
  2019. sw_ring_prod = RX_RING_IDX(sw_prod);
  2020. rx_buf = &bp->rx_buf_ring[sw_ring_cons];
  2021. skb = rx_buf->skb;
  2022. rx_buf->skb = NULL;
  2023. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2024. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2025. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2026. rx_hdr = (struct l2_fhdr *) skb->data;
  2027. len = rx_hdr->l2_fhdr_pkt_len - 4;
  2028. if ((status = rx_hdr->l2_fhdr_status) &
  2029. (L2_FHDR_ERRORS_BAD_CRC |
  2030. L2_FHDR_ERRORS_PHY_DECODE |
  2031. L2_FHDR_ERRORS_ALIGNMENT |
  2032. L2_FHDR_ERRORS_TOO_SHORT |
  2033. L2_FHDR_ERRORS_GIANT_FRAME)) {
  2034. goto reuse_rx;
  2035. }
  2036. /* Since we don't have a jumbo ring, copy small packets
  2037. * if mtu > 1500
  2038. */
  2039. if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
  2040. struct sk_buff *new_skb;
  2041. new_skb = netdev_alloc_skb(bp->dev, len + 2);
  2042. if (new_skb == NULL)
  2043. goto reuse_rx;
  2044. /* aligned copy */
  2045. skb_copy_from_linear_data_offset(skb, bp->rx_offset - 2,
  2046. new_skb->data, len + 2);
  2047. skb_reserve(new_skb, 2);
  2048. skb_put(new_skb, len);
  2049. bnx2_reuse_rx_skb(bp, skb,
  2050. sw_ring_cons, sw_ring_prod);
  2051. skb = new_skb;
  2052. }
  2053. else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
  2054. pci_unmap_single(bp->pdev, dma_addr,
  2055. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  2056. skb_reserve(skb, bp->rx_offset);
  2057. skb_put(skb, len);
  2058. }
  2059. else {
  2060. reuse_rx:
  2061. bnx2_reuse_rx_skb(bp, skb,
  2062. sw_ring_cons, sw_ring_prod);
  2063. goto next_rx;
  2064. }
  2065. skb->protocol = eth_type_trans(skb, bp->dev);
  2066. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2067. (ntohs(skb->protocol) != 0x8100)) {
  2068. dev_kfree_skb(skb);
  2069. goto next_rx;
  2070. }
  2071. skb->ip_summed = CHECKSUM_NONE;
  2072. if (bp->rx_csum &&
  2073. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2074. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2075. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2076. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2077. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2078. }
  2079. #ifdef BCM_VLAN
  2080. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
  2081. vlan_hwaccel_receive_skb(skb, bp->vlgrp,
  2082. rx_hdr->l2_fhdr_vlan_tag);
  2083. }
  2084. else
  2085. #endif
  2086. netif_receive_skb(skb);
  2087. bp->dev->last_rx = jiffies;
  2088. rx_pkt++;
  2089. next_rx:
  2090. sw_cons = NEXT_RX_BD(sw_cons);
  2091. sw_prod = NEXT_RX_BD(sw_prod);
  2092. if ((rx_pkt == budget))
  2093. break;
  2094. /* Refresh hw_cons to see if there is new work */
  2095. if (sw_cons == hw_cons) {
  2096. hw_cons = bp->hw_rx_cons =
  2097. sblk->status_rx_quick_consumer_index0;
  2098. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
  2099. hw_cons++;
  2100. rmb();
  2101. }
  2102. }
  2103. bp->rx_cons = sw_cons;
  2104. bp->rx_prod = sw_prod;
  2105. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
  2106. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  2107. mmiowb();
  2108. return rx_pkt;
  2109. }
  2110. /* MSI ISR - The only difference between this and the INTx ISR
  2111. * is that the MSI interrupt is always serviced.
  2112. */
  2113. static irqreturn_t
  2114. bnx2_msi(int irq, void *dev_instance)
  2115. {
  2116. struct net_device *dev = dev_instance;
  2117. struct bnx2 *bp = netdev_priv(dev);
  2118. prefetch(bp->status_blk);
  2119. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2120. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2121. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2122. /* Return here if interrupt is disabled. */
  2123. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2124. return IRQ_HANDLED;
  2125. netif_rx_schedule(dev, &bp->napi);
  2126. return IRQ_HANDLED;
  2127. }
  2128. static irqreturn_t
  2129. bnx2_msi_1shot(int irq, void *dev_instance)
  2130. {
  2131. struct net_device *dev = dev_instance;
  2132. struct bnx2 *bp = netdev_priv(dev);
  2133. prefetch(bp->status_blk);
  2134. /* Return here if interrupt is disabled. */
  2135. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2136. return IRQ_HANDLED;
  2137. netif_rx_schedule(dev, &bp->napi);
  2138. return IRQ_HANDLED;
  2139. }
  2140. static irqreturn_t
  2141. bnx2_interrupt(int irq, void *dev_instance)
  2142. {
  2143. struct net_device *dev = dev_instance;
  2144. struct bnx2 *bp = netdev_priv(dev);
  2145. struct status_block *sblk = bp->status_blk;
  2146. /* When using INTx, it is possible for the interrupt to arrive
  2147. * at the CPU before the status block posted prior to the
  2148. * interrupt. Reading a register will flush the status block.
  2149. * When using MSI, the MSI message will always complete after
  2150. * the status block write.
  2151. */
  2152. if ((sblk->status_idx == bp->last_status_idx) &&
  2153. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2154. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2155. return IRQ_NONE;
  2156. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2157. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2158. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2159. /* Read back to deassert IRQ immediately to avoid too many
  2160. * spurious interrupts.
  2161. */
  2162. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2163. /* Return here if interrupt is shared and is disabled. */
  2164. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2165. return IRQ_HANDLED;
  2166. if (netif_rx_schedule_prep(dev, &bp->napi)) {
  2167. bp->last_status_idx = sblk->status_idx;
  2168. __netif_rx_schedule(dev, &bp->napi);
  2169. }
  2170. return IRQ_HANDLED;
  2171. }
  2172. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2173. STATUS_ATTN_BITS_TIMER_ABORT)
  2174. static inline int
  2175. bnx2_has_work(struct bnx2 *bp)
  2176. {
  2177. struct status_block *sblk = bp->status_blk;
  2178. if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
  2179. (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
  2180. return 1;
  2181. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2182. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2183. return 1;
  2184. return 0;
  2185. }
  2186. static int bnx2_poll_work(struct bnx2 *bp, int work_done, int budget)
  2187. {
  2188. struct status_block *sblk = bp->status_blk;
  2189. u32 status_attn_bits = sblk->status_attn_bits;
  2190. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2191. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2192. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2193. bnx2_phy_int(bp);
  2194. /* This is needed to take care of transient status
  2195. * during link changes.
  2196. */
  2197. REG_WR(bp, BNX2_HC_COMMAND,
  2198. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2199. REG_RD(bp, BNX2_HC_COMMAND);
  2200. }
  2201. if (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
  2202. bnx2_tx_int(bp);
  2203. if (sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons)
  2204. work_done += bnx2_rx_int(bp, budget - work_done);
  2205. return work_done;
  2206. }
  2207. static int bnx2_poll(struct napi_struct *napi, int budget)
  2208. {
  2209. struct bnx2 *bp = container_of(napi, struct bnx2, napi);
  2210. int work_done = 0;
  2211. struct status_block *sblk = bp->status_blk;
  2212. while (1) {
  2213. work_done = bnx2_poll_work(bp, work_done, budget);
  2214. if (unlikely(work_done >= budget))
  2215. break;
  2216. /* bp->last_status_idx is used below to tell the hw how
  2217. * much work has been processed, so we must read it before
  2218. * checking for more work.
  2219. */
  2220. bp->last_status_idx = sblk->status_idx;
  2221. rmb();
  2222. if (likely(!bnx2_has_work(bp))) {
  2223. netif_rx_complete(bp->dev, napi);
  2224. if (likely(bp->flags & USING_MSI_FLAG)) {
  2225. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2226. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2227. bp->last_status_idx);
  2228. break;
  2229. }
  2230. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2231. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2232. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2233. bp->last_status_idx);
  2234. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2235. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2236. bp->last_status_idx);
  2237. break;
  2238. }
  2239. }
  2240. return work_done;
  2241. }
  2242. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2243. * from set_multicast.
  2244. */
  2245. static void
  2246. bnx2_set_rx_mode(struct net_device *dev)
  2247. {
  2248. struct bnx2 *bp = netdev_priv(dev);
  2249. u32 rx_mode, sort_mode;
  2250. int i;
  2251. spin_lock_bh(&bp->phy_lock);
  2252. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2253. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2254. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2255. #ifdef BCM_VLAN
  2256. if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
  2257. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2258. #else
  2259. if (!(bp->flags & ASF_ENABLE_FLAG))
  2260. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2261. #endif
  2262. if (dev->flags & IFF_PROMISC) {
  2263. /* Promiscuous mode. */
  2264. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2265. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2266. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2267. }
  2268. else if (dev->flags & IFF_ALLMULTI) {
  2269. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2270. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2271. 0xffffffff);
  2272. }
  2273. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2274. }
  2275. else {
  2276. /* Accept one or more multicast(s). */
  2277. struct dev_mc_list *mclist;
  2278. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2279. u32 regidx;
  2280. u32 bit;
  2281. u32 crc;
  2282. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2283. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2284. i++, mclist = mclist->next) {
  2285. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2286. bit = crc & 0xff;
  2287. regidx = (bit & 0xe0) >> 5;
  2288. bit &= 0x1f;
  2289. mc_filter[regidx] |= (1 << bit);
  2290. }
  2291. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2292. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2293. mc_filter[i]);
  2294. }
  2295. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2296. }
  2297. if (rx_mode != bp->rx_mode) {
  2298. bp->rx_mode = rx_mode;
  2299. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2300. }
  2301. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2302. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2303. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2304. spin_unlock_bh(&bp->phy_lock);
  2305. }
  2306. static void
  2307. load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
  2308. u32 rv2p_proc)
  2309. {
  2310. int i;
  2311. u32 val;
  2312. for (i = 0; i < rv2p_code_len; i += 8) {
  2313. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
  2314. rv2p_code++;
  2315. REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
  2316. rv2p_code++;
  2317. if (rv2p_proc == RV2P_PROC1) {
  2318. val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  2319. REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
  2320. }
  2321. else {
  2322. val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  2323. REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
  2324. }
  2325. }
  2326. /* Reset the processor, un-stall is done later. */
  2327. if (rv2p_proc == RV2P_PROC1) {
  2328. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  2329. }
  2330. else {
  2331. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  2332. }
  2333. }
  2334. static int
  2335. load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
  2336. {
  2337. u32 offset;
  2338. u32 val;
  2339. int rc;
  2340. /* Halt the CPU. */
  2341. val = REG_RD_IND(bp, cpu_reg->mode);
  2342. val |= cpu_reg->mode_value_halt;
  2343. REG_WR_IND(bp, cpu_reg->mode, val);
  2344. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2345. /* Load the Text area. */
  2346. offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
  2347. if (fw->gz_text) {
  2348. int j;
  2349. rc = zlib_inflate_blob(fw->text, FW_BUF_SIZE, fw->gz_text,
  2350. fw->gz_text_len);
  2351. if (rc < 0)
  2352. return rc;
  2353. for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
  2354. REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
  2355. }
  2356. }
  2357. /* Load the Data area. */
  2358. offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
  2359. if (fw->data) {
  2360. int j;
  2361. for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
  2362. REG_WR_IND(bp, offset, fw->data[j]);
  2363. }
  2364. }
  2365. /* Load the SBSS area. */
  2366. offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
  2367. if (fw->sbss_len) {
  2368. int j;
  2369. for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
  2370. REG_WR_IND(bp, offset, 0);
  2371. }
  2372. }
  2373. /* Load the BSS area. */
  2374. offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
  2375. if (fw->bss_len) {
  2376. int j;
  2377. for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
  2378. REG_WR_IND(bp, offset, 0);
  2379. }
  2380. }
  2381. /* Load the Read-Only area. */
  2382. offset = cpu_reg->spad_base +
  2383. (fw->rodata_addr - cpu_reg->mips_view_base);
  2384. if (fw->rodata) {
  2385. int j;
  2386. for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
  2387. REG_WR_IND(bp, offset, fw->rodata[j]);
  2388. }
  2389. }
  2390. /* Clear the pre-fetch instruction. */
  2391. REG_WR_IND(bp, cpu_reg->inst, 0);
  2392. REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
  2393. /* Start the CPU. */
  2394. val = REG_RD_IND(bp, cpu_reg->mode);
  2395. val &= ~cpu_reg->mode_value_halt;
  2396. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2397. REG_WR_IND(bp, cpu_reg->mode, val);
  2398. return 0;
  2399. }
  2400. static int
  2401. bnx2_init_cpus(struct bnx2 *bp)
  2402. {
  2403. struct cpu_reg cpu_reg;
  2404. struct fw_info *fw;
  2405. int rc;
  2406. void *text;
  2407. /* Initialize the RV2P processor. */
  2408. text = vmalloc(FW_BUF_SIZE);
  2409. if (!text)
  2410. return -ENOMEM;
  2411. rc = zlib_inflate_blob(text, FW_BUF_SIZE, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1));
  2412. if (rc < 0)
  2413. goto init_cpu_err;
  2414. load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC1);
  2415. rc = zlib_inflate_blob(text, FW_BUF_SIZE, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2));
  2416. if (rc < 0)
  2417. goto init_cpu_err;
  2418. load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC2);
  2419. /* Initialize the RX Processor. */
  2420. cpu_reg.mode = BNX2_RXP_CPU_MODE;
  2421. cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
  2422. cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
  2423. cpu_reg.state = BNX2_RXP_CPU_STATE;
  2424. cpu_reg.state_value_clear = 0xffffff;
  2425. cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
  2426. cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
  2427. cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
  2428. cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
  2429. cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
  2430. cpu_reg.spad_base = BNX2_RXP_SCRATCH;
  2431. cpu_reg.mips_view_base = 0x8000000;
  2432. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2433. fw = &bnx2_rxp_fw_09;
  2434. else
  2435. fw = &bnx2_rxp_fw_06;
  2436. fw->text = text;
  2437. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2438. if (rc)
  2439. goto init_cpu_err;
  2440. /* Initialize the TX Processor. */
  2441. cpu_reg.mode = BNX2_TXP_CPU_MODE;
  2442. cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
  2443. cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
  2444. cpu_reg.state = BNX2_TXP_CPU_STATE;
  2445. cpu_reg.state_value_clear = 0xffffff;
  2446. cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
  2447. cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
  2448. cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
  2449. cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
  2450. cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
  2451. cpu_reg.spad_base = BNX2_TXP_SCRATCH;
  2452. cpu_reg.mips_view_base = 0x8000000;
  2453. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2454. fw = &bnx2_txp_fw_09;
  2455. else
  2456. fw = &bnx2_txp_fw_06;
  2457. fw->text = text;
  2458. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2459. if (rc)
  2460. goto init_cpu_err;
  2461. /* Initialize the TX Patch-up Processor. */
  2462. cpu_reg.mode = BNX2_TPAT_CPU_MODE;
  2463. cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
  2464. cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
  2465. cpu_reg.state = BNX2_TPAT_CPU_STATE;
  2466. cpu_reg.state_value_clear = 0xffffff;
  2467. cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
  2468. cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
  2469. cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
  2470. cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
  2471. cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
  2472. cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
  2473. cpu_reg.mips_view_base = 0x8000000;
  2474. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2475. fw = &bnx2_tpat_fw_09;
  2476. else
  2477. fw = &bnx2_tpat_fw_06;
  2478. fw->text = text;
  2479. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2480. if (rc)
  2481. goto init_cpu_err;
  2482. /* Initialize the Completion Processor. */
  2483. cpu_reg.mode = BNX2_COM_CPU_MODE;
  2484. cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
  2485. cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
  2486. cpu_reg.state = BNX2_COM_CPU_STATE;
  2487. cpu_reg.state_value_clear = 0xffffff;
  2488. cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
  2489. cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
  2490. cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
  2491. cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
  2492. cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
  2493. cpu_reg.spad_base = BNX2_COM_SCRATCH;
  2494. cpu_reg.mips_view_base = 0x8000000;
  2495. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2496. fw = &bnx2_com_fw_09;
  2497. else
  2498. fw = &bnx2_com_fw_06;
  2499. fw->text = text;
  2500. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2501. if (rc)
  2502. goto init_cpu_err;
  2503. /* Initialize the Command Processor. */
  2504. cpu_reg.mode = BNX2_CP_CPU_MODE;
  2505. cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
  2506. cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
  2507. cpu_reg.state = BNX2_CP_CPU_STATE;
  2508. cpu_reg.state_value_clear = 0xffffff;
  2509. cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
  2510. cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
  2511. cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
  2512. cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
  2513. cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
  2514. cpu_reg.spad_base = BNX2_CP_SCRATCH;
  2515. cpu_reg.mips_view_base = 0x8000000;
  2516. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2517. fw = &bnx2_cp_fw_09;
  2518. fw->text = text;
  2519. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2520. if (rc)
  2521. goto init_cpu_err;
  2522. }
  2523. init_cpu_err:
  2524. vfree(text);
  2525. return rc;
  2526. }
  2527. static int
  2528. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  2529. {
  2530. u16 pmcsr;
  2531. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  2532. switch (state) {
  2533. case PCI_D0: {
  2534. u32 val;
  2535. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2536. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  2537. PCI_PM_CTRL_PME_STATUS);
  2538. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  2539. /* delay required during transition out of D3hot */
  2540. msleep(20);
  2541. val = REG_RD(bp, BNX2_EMAC_MODE);
  2542. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  2543. val &= ~BNX2_EMAC_MODE_MPKT;
  2544. REG_WR(bp, BNX2_EMAC_MODE, val);
  2545. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2546. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2547. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2548. break;
  2549. }
  2550. case PCI_D3hot: {
  2551. int i;
  2552. u32 val, wol_msg;
  2553. if (bp->wol) {
  2554. u32 advertising;
  2555. u8 autoneg;
  2556. autoneg = bp->autoneg;
  2557. advertising = bp->advertising;
  2558. if (bp->phy_port == PORT_TP) {
  2559. bp->autoneg = AUTONEG_SPEED;
  2560. bp->advertising = ADVERTISED_10baseT_Half |
  2561. ADVERTISED_10baseT_Full |
  2562. ADVERTISED_100baseT_Half |
  2563. ADVERTISED_100baseT_Full |
  2564. ADVERTISED_Autoneg;
  2565. }
  2566. spin_lock_bh(&bp->phy_lock);
  2567. bnx2_setup_phy(bp, bp->phy_port);
  2568. spin_unlock_bh(&bp->phy_lock);
  2569. bp->autoneg = autoneg;
  2570. bp->advertising = advertising;
  2571. bnx2_set_mac_addr(bp);
  2572. val = REG_RD(bp, BNX2_EMAC_MODE);
  2573. /* Enable port mode. */
  2574. val &= ~BNX2_EMAC_MODE_PORT;
  2575. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  2576. BNX2_EMAC_MODE_ACPI_RCVD |
  2577. BNX2_EMAC_MODE_MPKT;
  2578. if (bp->phy_port == PORT_TP)
  2579. val |= BNX2_EMAC_MODE_PORT_MII;
  2580. else {
  2581. val |= BNX2_EMAC_MODE_PORT_GMII;
  2582. if (bp->line_speed == SPEED_2500)
  2583. val |= BNX2_EMAC_MODE_25G_MODE;
  2584. }
  2585. REG_WR(bp, BNX2_EMAC_MODE, val);
  2586. /* receive all multicast */
  2587. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2588. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2589. 0xffffffff);
  2590. }
  2591. REG_WR(bp, BNX2_EMAC_RX_MODE,
  2592. BNX2_EMAC_RX_MODE_SORT_MODE);
  2593. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  2594. BNX2_RPM_SORT_USER0_MC_EN;
  2595. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2596. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  2597. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  2598. BNX2_RPM_SORT_USER0_ENA);
  2599. /* Need to enable EMAC and RPM for WOL. */
  2600. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2601. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  2602. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  2603. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  2604. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2605. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2606. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2607. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  2608. }
  2609. else {
  2610. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  2611. }
  2612. if (!(bp->flags & NO_WOL_FLAG))
  2613. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
  2614. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  2615. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2616. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  2617. if (bp->wol)
  2618. pmcsr |= 3;
  2619. }
  2620. else {
  2621. pmcsr |= 3;
  2622. }
  2623. if (bp->wol) {
  2624. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  2625. }
  2626. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2627. pmcsr);
  2628. /* No more memory access after this point until
  2629. * device is brought back to D0.
  2630. */
  2631. udelay(50);
  2632. break;
  2633. }
  2634. default:
  2635. return -EINVAL;
  2636. }
  2637. return 0;
  2638. }
  2639. static int
  2640. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  2641. {
  2642. u32 val;
  2643. int j;
  2644. /* Request access to the flash interface. */
  2645. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  2646. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2647. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2648. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  2649. break;
  2650. udelay(5);
  2651. }
  2652. if (j >= NVRAM_TIMEOUT_COUNT)
  2653. return -EBUSY;
  2654. return 0;
  2655. }
  2656. static int
  2657. bnx2_release_nvram_lock(struct bnx2 *bp)
  2658. {
  2659. int j;
  2660. u32 val;
  2661. /* Relinquish nvram interface. */
  2662. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  2663. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2664. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2665. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  2666. break;
  2667. udelay(5);
  2668. }
  2669. if (j >= NVRAM_TIMEOUT_COUNT)
  2670. return -EBUSY;
  2671. return 0;
  2672. }
  2673. static int
  2674. bnx2_enable_nvram_write(struct bnx2 *bp)
  2675. {
  2676. u32 val;
  2677. val = REG_RD(bp, BNX2_MISC_CFG);
  2678. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  2679. if (bp->flash_info->flags & BNX2_NV_WREN) {
  2680. int j;
  2681. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2682. REG_WR(bp, BNX2_NVM_COMMAND,
  2683. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  2684. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2685. udelay(5);
  2686. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2687. if (val & BNX2_NVM_COMMAND_DONE)
  2688. break;
  2689. }
  2690. if (j >= NVRAM_TIMEOUT_COUNT)
  2691. return -EBUSY;
  2692. }
  2693. return 0;
  2694. }
  2695. static void
  2696. bnx2_disable_nvram_write(struct bnx2 *bp)
  2697. {
  2698. u32 val;
  2699. val = REG_RD(bp, BNX2_MISC_CFG);
  2700. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  2701. }
  2702. static void
  2703. bnx2_enable_nvram_access(struct bnx2 *bp)
  2704. {
  2705. u32 val;
  2706. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2707. /* Enable both bits, even on read. */
  2708. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2709. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  2710. }
  2711. static void
  2712. bnx2_disable_nvram_access(struct bnx2 *bp)
  2713. {
  2714. u32 val;
  2715. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2716. /* Disable both bits, even after read. */
  2717. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2718. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  2719. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  2720. }
  2721. static int
  2722. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  2723. {
  2724. u32 cmd;
  2725. int j;
  2726. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  2727. /* Buffered flash, no erase needed */
  2728. return 0;
  2729. /* Build an erase command */
  2730. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  2731. BNX2_NVM_COMMAND_DOIT;
  2732. /* Need to clear DONE bit separately. */
  2733. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2734. /* Address of the NVRAM to read from. */
  2735. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2736. /* Issue an erase command. */
  2737. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2738. /* Wait for completion. */
  2739. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2740. u32 val;
  2741. udelay(5);
  2742. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2743. if (val & BNX2_NVM_COMMAND_DONE)
  2744. break;
  2745. }
  2746. if (j >= NVRAM_TIMEOUT_COUNT)
  2747. return -EBUSY;
  2748. return 0;
  2749. }
  2750. static int
  2751. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  2752. {
  2753. u32 cmd;
  2754. int j;
  2755. /* Build the command word. */
  2756. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  2757. /* Calculate an offset of a buffered flash, not needed for 5709. */
  2758. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  2759. offset = ((offset / bp->flash_info->page_size) <<
  2760. bp->flash_info->page_bits) +
  2761. (offset % bp->flash_info->page_size);
  2762. }
  2763. /* Need to clear DONE bit separately. */
  2764. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2765. /* Address of the NVRAM to read from. */
  2766. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2767. /* Issue a read command. */
  2768. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2769. /* Wait for completion. */
  2770. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2771. u32 val;
  2772. udelay(5);
  2773. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2774. if (val & BNX2_NVM_COMMAND_DONE) {
  2775. val = REG_RD(bp, BNX2_NVM_READ);
  2776. val = be32_to_cpu(val);
  2777. memcpy(ret_val, &val, 4);
  2778. break;
  2779. }
  2780. }
  2781. if (j >= NVRAM_TIMEOUT_COUNT)
  2782. return -EBUSY;
  2783. return 0;
  2784. }
  2785. static int
  2786. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  2787. {
  2788. u32 cmd, val32;
  2789. int j;
  2790. /* Build the command word. */
  2791. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  2792. /* Calculate an offset of a buffered flash, not needed for 5709. */
  2793. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  2794. offset = ((offset / bp->flash_info->page_size) <<
  2795. bp->flash_info->page_bits) +
  2796. (offset % bp->flash_info->page_size);
  2797. }
  2798. /* Need to clear DONE bit separately. */
  2799. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2800. memcpy(&val32, val, 4);
  2801. val32 = cpu_to_be32(val32);
  2802. /* Write the data. */
  2803. REG_WR(bp, BNX2_NVM_WRITE, val32);
  2804. /* Address of the NVRAM to write to. */
  2805. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2806. /* Issue the write command. */
  2807. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2808. /* Wait for completion. */
  2809. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2810. udelay(5);
  2811. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  2812. break;
  2813. }
  2814. if (j >= NVRAM_TIMEOUT_COUNT)
  2815. return -EBUSY;
  2816. return 0;
  2817. }
  2818. static int
  2819. bnx2_init_nvram(struct bnx2 *bp)
  2820. {
  2821. u32 val;
  2822. int j, entry_count, rc = 0;
  2823. struct flash_spec *flash;
  2824. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2825. bp->flash_info = &flash_5709;
  2826. goto get_flash_size;
  2827. }
  2828. /* Determine the selected interface. */
  2829. val = REG_RD(bp, BNX2_NVM_CFG1);
  2830. entry_count = ARRAY_SIZE(flash_table);
  2831. if (val & 0x40000000) {
  2832. /* Flash interface has been reconfigured */
  2833. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2834. j++, flash++) {
  2835. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  2836. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  2837. bp->flash_info = flash;
  2838. break;
  2839. }
  2840. }
  2841. }
  2842. else {
  2843. u32 mask;
  2844. /* Not yet been reconfigured */
  2845. if (val & (1 << 23))
  2846. mask = FLASH_BACKUP_STRAP_MASK;
  2847. else
  2848. mask = FLASH_STRAP_MASK;
  2849. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2850. j++, flash++) {
  2851. if ((val & mask) == (flash->strapping & mask)) {
  2852. bp->flash_info = flash;
  2853. /* Request access to the flash interface. */
  2854. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2855. return rc;
  2856. /* Enable access to flash interface */
  2857. bnx2_enable_nvram_access(bp);
  2858. /* Reconfigure the flash interface */
  2859. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  2860. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  2861. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  2862. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  2863. /* Disable access to flash interface */
  2864. bnx2_disable_nvram_access(bp);
  2865. bnx2_release_nvram_lock(bp);
  2866. break;
  2867. }
  2868. }
  2869. } /* if (val & 0x40000000) */
  2870. if (j == entry_count) {
  2871. bp->flash_info = NULL;
  2872. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  2873. return -ENODEV;
  2874. }
  2875. get_flash_size:
  2876. val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
  2877. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  2878. if (val)
  2879. bp->flash_size = val;
  2880. else
  2881. bp->flash_size = bp->flash_info->total_size;
  2882. return rc;
  2883. }
  2884. static int
  2885. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  2886. int buf_size)
  2887. {
  2888. int rc = 0;
  2889. u32 cmd_flags, offset32, len32, extra;
  2890. if (buf_size == 0)
  2891. return 0;
  2892. /* Request access to the flash interface. */
  2893. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2894. return rc;
  2895. /* Enable access to flash interface */
  2896. bnx2_enable_nvram_access(bp);
  2897. len32 = buf_size;
  2898. offset32 = offset;
  2899. extra = 0;
  2900. cmd_flags = 0;
  2901. if (offset32 & 3) {
  2902. u8 buf[4];
  2903. u32 pre_len;
  2904. offset32 &= ~3;
  2905. pre_len = 4 - (offset & 3);
  2906. if (pre_len >= len32) {
  2907. pre_len = len32;
  2908. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2909. BNX2_NVM_COMMAND_LAST;
  2910. }
  2911. else {
  2912. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2913. }
  2914. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2915. if (rc)
  2916. return rc;
  2917. memcpy(ret_buf, buf + (offset & 3), pre_len);
  2918. offset32 += 4;
  2919. ret_buf += pre_len;
  2920. len32 -= pre_len;
  2921. }
  2922. if (len32 & 3) {
  2923. extra = 4 - (len32 & 3);
  2924. len32 = (len32 + 4) & ~3;
  2925. }
  2926. if (len32 == 4) {
  2927. u8 buf[4];
  2928. if (cmd_flags)
  2929. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2930. else
  2931. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2932. BNX2_NVM_COMMAND_LAST;
  2933. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2934. memcpy(ret_buf, buf, 4 - extra);
  2935. }
  2936. else if (len32 > 0) {
  2937. u8 buf[4];
  2938. /* Read the first word. */
  2939. if (cmd_flags)
  2940. cmd_flags = 0;
  2941. else
  2942. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2943. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  2944. /* Advance to the next dword. */
  2945. offset32 += 4;
  2946. ret_buf += 4;
  2947. len32 -= 4;
  2948. while (len32 > 4 && rc == 0) {
  2949. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  2950. /* Advance to the next dword. */
  2951. offset32 += 4;
  2952. ret_buf += 4;
  2953. len32 -= 4;
  2954. }
  2955. if (rc)
  2956. return rc;
  2957. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2958. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2959. memcpy(ret_buf, buf, 4 - extra);
  2960. }
  2961. /* Disable access to flash interface */
  2962. bnx2_disable_nvram_access(bp);
  2963. bnx2_release_nvram_lock(bp);
  2964. return rc;
  2965. }
  2966. static int
  2967. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  2968. int buf_size)
  2969. {
  2970. u32 written, offset32, len32;
  2971. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  2972. int rc = 0;
  2973. int align_start, align_end;
  2974. buf = data_buf;
  2975. offset32 = offset;
  2976. len32 = buf_size;
  2977. align_start = align_end = 0;
  2978. if ((align_start = (offset32 & 3))) {
  2979. offset32 &= ~3;
  2980. len32 += align_start;
  2981. if (len32 < 4)
  2982. len32 = 4;
  2983. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  2984. return rc;
  2985. }
  2986. if (len32 & 3) {
  2987. align_end = 4 - (len32 & 3);
  2988. len32 += align_end;
  2989. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  2990. return rc;
  2991. }
  2992. if (align_start || align_end) {
  2993. align_buf = kmalloc(len32, GFP_KERNEL);
  2994. if (align_buf == NULL)
  2995. return -ENOMEM;
  2996. if (align_start) {
  2997. memcpy(align_buf, start, 4);
  2998. }
  2999. if (align_end) {
  3000. memcpy(align_buf + len32 - 4, end, 4);
  3001. }
  3002. memcpy(align_buf + align_start, data_buf, buf_size);
  3003. buf = align_buf;
  3004. }
  3005. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3006. flash_buffer = kmalloc(264, GFP_KERNEL);
  3007. if (flash_buffer == NULL) {
  3008. rc = -ENOMEM;
  3009. goto nvram_write_end;
  3010. }
  3011. }
  3012. written = 0;
  3013. while ((written < len32) && (rc == 0)) {
  3014. u32 page_start, page_end, data_start, data_end;
  3015. u32 addr, cmd_flags;
  3016. int i;
  3017. /* Find the page_start addr */
  3018. page_start = offset32 + written;
  3019. page_start -= (page_start % bp->flash_info->page_size);
  3020. /* Find the page_end addr */
  3021. page_end = page_start + bp->flash_info->page_size;
  3022. /* Find the data_start addr */
  3023. data_start = (written == 0) ? offset32 : page_start;
  3024. /* Find the data_end addr */
  3025. data_end = (page_end > offset32 + len32) ?
  3026. (offset32 + len32) : page_end;
  3027. /* Request access to the flash interface. */
  3028. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3029. goto nvram_write_end;
  3030. /* Enable access to flash interface */
  3031. bnx2_enable_nvram_access(bp);
  3032. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3033. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3034. int j;
  3035. /* Read the whole page into the buffer
  3036. * (non-buffer flash only) */
  3037. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3038. if (j == (bp->flash_info->page_size - 4)) {
  3039. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3040. }
  3041. rc = bnx2_nvram_read_dword(bp,
  3042. page_start + j,
  3043. &flash_buffer[j],
  3044. cmd_flags);
  3045. if (rc)
  3046. goto nvram_write_end;
  3047. cmd_flags = 0;
  3048. }
  3049. }
  3050. /* Enable writes to flash interface (unlock write-protect) */
  3051. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3052. goto nvram_write_end;
  3053. /* Loop to write back the buffer data from page_start to
  3054. * data_start */
  3055. i = 0;
  3056. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3057. /* Erase the page */
  3058. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3059. goto nvram_write_end;
  3060. /* Re-enable the write again for the actual write */
  3061. bnx2_enable_nvram_write(bp);
  3062. for (addr = page_start; addr < data_start;
  3063. addr += 4, i += 4) {
  3064. rc = bnx2_nvram_write_dword(bp, addr,
  3065. &flash_buffer[i], cmd_flags);
  3066. if (rc != 0)
  3067. goto nvram_write_end;
  3068. cmd_flags = 0;
  3069. }
  3070. }
  3071. /* Loop to write the new data from data_start to data_end */
  3072. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3073. if ((addr == page_end - 4) ||
  3074. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3075. (addr == data_end - 4))) {
  3076. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3077. }
  3078. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3079. cmd_flags);
  3080. if (rc != 0)
  3081. goto nvram_write_end;
  3082. cmd_flags = 0;
  3083. buf += 4;
  3084. }
  3085. /* Loop to write back the buffer data from data_end
  3086. * to page_end */
  3087. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3088. for (addr = data_end; addr < page_end;
  3089. addr += 4, i += 4) {
  3090. if (addr == page_end-4) {
  3091. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3092. }
  3093. rc = bnx2_nvram_write_dword(bp, addr,
  3094. &flash_buffer[i], cmd_flags);
  3095. if (rc != 0)
  3096. goto nvram_write_end;
  3097. cmd_flags = 0;
  3098. }
  3099. }
  3100. /* Disable writes to flash interface (lock write-protect) */
  3101. bnx2_disable_nvram_write(bp);
  3102. /* Disable access to flash interface */
  3103. bnx2_disable_nvram_access(bp);
  3104. bnx2_release_nvram_lock(bp);
  3105. /* Increment written */
  3106. written += data_end - data_start;
  3107. }
  3108. nvram_write_end:
  3109. kfree(flash_buffer);
  3110. kfree(align_buf);
  3111. return rc;
  3112. }
  3113. static void
  3114. bnx2_init_remote_phy(struct bnx2 *bp)
  3115. {
  3116. u32 val;
  3117. bp->phy_flags &= ~REMOTE_PHY_CAP_FLAG;
  3118. if (!(bp->phy_flags & PHY_SERDES_FLAG))
  3119. return;
  3120. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_CAP_MB);
  3121. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3122. return;
  3123. if (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE) {
  3124. bp->phy_flags |= REMOTE_PHY_CAP_FLAG;
  3125. val = REG_RD_IND(bp, bp->shmem_base + BNX2_LINK_STATUS);
  3126. if (val & BNX2_LINK_STATUS_SERDES_LINK)
  3127. bp->phy_port = PORT_FIBRE;
  3128. else
  3129. bp->phy_port = PORT_TP;
  3130. if (netif_running(bp->dev)) {
  3131. u32 sig;
  3132. if (val & BNX2_LINK_STATUS_LINK_UP) {
  3133. bp->link_up = 1;
  3134. netif_carrier_on(bp->dev);
  3135. } else {
  3136. bp->link_up = 0;
  3137. netif_carrier_off(bp->dev);
  3138. }
  3139. sig = BNX2_DRV_ACK_CAP_SIGNATURE |
  3140. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3141. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_ACK_CAP_MB,
  3142. sig);
  3143. }
  3144. }
  3145. }
  3146. static int
  3147. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3148. {
  3149. u32 val;
  3150. int i, rc = 0;
  3151. u8 old_port;
  3152. /* Wait for the current PCI transaction to complete before
  3153. * issuing a reset. */
  3154. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3155. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3156. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3157. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3158. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3159. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3160. udelay(5);
  3161. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3162. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
  3163. /* Deposit a driver reset signature so the firmware knows that
  3164. * this is a soft reset. */
  3165. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
  3166. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3167. /* Do a dummy read to force the chip to complete all current transaction
  3168. * before we issue a reset. */
  3169. val = REG_RD(bp, BNX2_MISC_ID);
  3170. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3171. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3172. REG_RD(bp, BNX2_MISC_COMMAND);
  3173. udelay(5);
  3174. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3175. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3176. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3177. } else {
  3178. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3179. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3180. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3181. /* Chip reset. */
  3182. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3183. /* Reading back any register after chip reset will hang the
  3184. * bus on 5706 A0 and A1. The msleep below provides plenty
  3185. * of margin for write posting.
  3186. */
  3187. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3188. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3189. msleep(20);
  3190. /* Reset takes approximate 30 usec */
  3191. for (i = 0; i < 10; i++) {
  3192. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3193. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3194. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3195. break;
  3196. udelay(10);
  3197. }
  3198. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3199. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3200. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3201. return -EBUSY;
  3202. }
  3203. }
  3204. /* Make sure byte swapping is properly configured. */
  3205. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3206. if (val != 0x01020304) {
  3207. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3208. return -ENODEV;
  3209. }
  3210. /* Wait for the firmware to finish its initialization. */
  3211. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
  3212. if (rc)
  3213. return rc;
  3214. spin_lock_bh(&bp->phy_lock);
  3215. old_port = bp->phy_port;
  3216. bnx2_init_remote_phy(bp);
  3217. if ((bp->phy_flags & REMOTE_PHY_CAP_FLAG) && old_port != bp->phy_port)
  3218. bnx2_set_default_remote_link(bp);
  3219. spin_unlock_bh(&bp->phy_lock);
  3220. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3221. /* Adjust the voltage regular to two steps lower. The default
  3222. * of this register is 0x0000000e. */
  3223. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3224. /* Remove bad rbuf memory from the free pool. */
  3225. rc = bnx2_alloc_bad_rbuf(bp);
  3226. }
  3227. return rc;
  3228. }
  3229. static int
  3230. bnx2_init_chip(struct bnx2 *bp)
  3231. {
  3232. u32 val;
  3233. int rc;
  3234. /* Make sure the interrupt is not active. */
  3235. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3236. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3237. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3238. #ifdef __BIG_ENDIAN
  3239. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3240. #endif
  3241. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3242. DMA_READ_CHANS << 12 |
  3243. DMA_WRITE_CHANS << 16;
  3244. val |= (0x2 << 20) | (1 << 11);
  3245. if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
  3246. val |= (1 << 23);
  3247. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3248. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
  3249. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3250. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3251. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3252. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3253. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3254. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3255. }
  3256. if (bp->flags & PCIX_FLAG) {
  3257. u16 val16;
  3258. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3259. &val16);
  3260. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3261. val16 & ~PCI_X_CMD_ERO);
  3262. }
  3263. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3264. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3265. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3266. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3267. /* Initialize context mapping and zero out the quick contexts. The
  3268. * context block must have already been enabled. */
  3269. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3270. rc = bnx2_init_5709_context(bp);
  3271. if (rc)
  3272. return rc;
  3273. } else
  3274. bnx2_init_context(bp);
  3275. if ((rc = bnx2_init_cpus(bp)) != 0)
  3276. return rc;
  3277. bnx2_init_nvram(bp);
  3278. bnx2_set_mac_addr(bp);
  3279. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3280. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3281. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3282. if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
  3283. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3284. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3285. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3286. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3287. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3288. val = (BCM_PAGE_BITS - 8) << 24;
  3289. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3290. /* Configure page size. */
  3291. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3292. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3293. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3294. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3295. val = bp->mac_addr[0] +
  3296. (bp->mac_addr[1] << 8) +
  3297. (bp->mac_addr[2] << 16) +
  3298. bp->mac_addr[3] +
  3299. (bp->mac_addr[4] << 8) +
  3300. (bp->mac_addr[5] << 16);
  3301. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3302. /* Program the MTU. Also include 4 bytes for CRC32. */
  3303. val = bp->dev->mtu + ETH_HLEN + 4;
  3304. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3305. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3306. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3307. bp->last_status_idx = 0;
  3308. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3309. /* Set up how to generate a link change interrupt. */
  3310. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  3311. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  3312. (u64) bp->status_blk_mapping & 0xffffffff);
  3313. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  3314. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  3315. (u64) bp->stats_blk_mapping & 0xffffffff);
  3316. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  3317. (u64) bp->stats_blk_mapping >> 32);
  3318. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  3319. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  3320. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  3321. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  3322. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  3323. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  3324. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  3325. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  3326. REG_WR(bp, BNX2_HC_COM_TICKS,
  3327. (bp->com_ticks_int << 16) | bp->com_ticks);
  3328. REG_WR(bp, BNX2_HC_CMD_TICKS,
  3329. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  3330. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  3331. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  3332. else
  3333. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  3334. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  3335. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  3336. val = BNX2_HC_CONFIG_COLLECT_STATS;
  3337. else {
  3338. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  3339. BNX2_HC_CONFIG_COLLECT_STATS;
  3340. }
  3341. if (bp->flags & ONE_SHOT_MSI_FLAG)
  3342. val |= BNX2_HC_CONFIG_ONE_SHOT;
  3343. REG_WR(bp, BNX2_HC_CONFIG, val);
  3344. /* Clear internal stats counters. */
  3345. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  3346. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  3347. /* Initialize the receive filter. */
  3348. bnx2_set_rx_mode(bp->dev);
  3349. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3350. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3351. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3352. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3353. }
  3354. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  3355. 0);
  3356. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  3357. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  3358. udelay(20);
  3359. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  3360. return rc;
  3361. }
  3362. static void
  3363. bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
  3364. {
  3365. u32 val, offset0, offset1, offset2, offset3;
  3366. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3367. offset0 = BNX2_L2CTX_TYPE_XI;
  3368. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  3369. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  3370. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  3371. } else {
  3372. offset0 = BNX2_L2CTX_TYPE;
  3373. offset1 = BNX2_L2CTX_CMD_TYPE;
  3374. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  3375. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  3376. }
  3377. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  3378. CTX_WR(bp, GET_CID_ADDR(cid), offset0, val);
  3379. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  3380. CTX_WR(bp, GET_CID_ADDR(cid), offset1, val);
  3381. val = (u64) bp->tx_desc_mapping >> 32;
  3382. CTX_WR(bp, GET_CID_ADDR(cid), offset2, val);
  3383. val = (u64) bp->tx_desc_mapping & 0xffffffff;
  3384. CTX_WR(bp, GET_CID_ADDR(cid), offset3, val);
  3385. }
  3386. static void
  3387. bnx2_init_tx_ring(struct bnx2 *bp)
  3388. {
  3389. struct tx_bd *txbd;
  3390. u32 cid;
  3391. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  3392. txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
  3393. txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
  3394. txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
  3395. bp->tx_prod = 0;
  3396. bp->tx_cons = 0;
  3397. bp->hw_tx_cons = 0;
  3398. bp->tx_prod_bseq = 0;
  3399. cid = TX_CID;
  3400. bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  3401. bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  3402. bnx2_init_tx_context(bp, cid);
  3403. }
  3404. static void
  3405. bnx2_init_rx_ring(struct bnx2 *bp)
  3406. {
  3407. struct rx_bd *rxbd;
  3408. int i;
  3409. u16 prod, ring_prod;
  3410. u32 val;
  3411. /* 8 for CRC and VLAN */
  3412. bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
  3413. /* hw alignment */
  3414. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  3415. ring_prod = prod = bp->rx_prod = 0;
  3416. bp->rx_cons = 0;
  3417. bp->hw_rx_cons = 0;
  3418. bp->rx_prod_bseq = 0;
  3419. for (i = 0; i < bp->rx_max_ring; i++) {
  3420. int j;
  3421. rxbd = &bp->rx_desc_ring[i][0];
  3422. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  3423. rxbd->rx_bd_len = bp->rx_buf_use_size;
  3424. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  3425. }
  3426. if (i == (bp->rx_max_ring - 1))
  3427. j = 0;
  3428. else
  3429. j = i + 1;
  3430. rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
  3431. rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
  3432. 0xffffffff;
  3433. }
  3434. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  3435. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  3436. val |= 0x02 << 8;
  3437. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
  3438. val = (u64) bp->rx_desc_mapping[0] >> 32;
  3439. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
  3440. val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
  3441. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
  3442. for (i = 0; i < bp->rx_ring_size; i++) {
  3443. if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
  3444. break;
  3445. }
  3446. prod = NEXT_RX_BD(prod);
  3447. ring_prod = RX_RING_IDX(prod);
  3448. }
  3449. bp->rx_prod = prod;
  3450. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
  3451. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  3452. }
  3453. static void
  3454. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  3455. {
  3456. u32 num_rings, max;
  3457. bp->rx_ring_size = size;
  3458. num_rings = 1;
  3459. while (size > MAX_RX_DESC_CNT) {
  3460. size -= MAX_RX_DESC_CNT;
  3461. num_rings++;
  3462. }
  3463. /* round to next power of 2 */
  3464. max = MAX_RX_RINGS;
  3465. while ((max & num_rings) == 0)
  3466. max >>= 1;
  3467. if (num_rings != max)
  3468. max <<= 1;
  3469. bp->rx_max_ring = max;
  3470. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  3471. }
  3472. static void
  3473. bnx2_free_tx_skbs(struct bnx2 *bp)
  3474. {
  3475. int i;
  3476. if (bp->tx_buf_ring == NULL)
  3477. return;
  3478. for (i = 0; i < TX_DESC_CNT; ) {
  3479. struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
  3480. struct sk_buff *skb = tx_buf->skb;
  3481. int j, last;
  3482. if (skb == NULL) {
  3483. i++;
  3484. continue;
  3485. }
  3486. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  3487. skb_headlen(skb), PCI_DMA_TODEVICE);
  3488. tx_buf->skb = NULL;
  3489. last = skb_shinfo(skb)->nr_frags;
  3490. for (j = 0; j < last; j++) {
  3491. tx_buf = &bp->tx_buf_ring[i + j + 1];
  3492. pci_unmap_page(bp->pdev,
  3493. pci_unmap_addr(tx_buf, mapping),
  3494. skb_shinfo(skb)->frags[j].size,
  3495. PCI_DMA_TODEVICE);
  3496. }
  3497. dev_kfree_skb(skb);
  3498. i += j + 1;
  3499. }
  3500. }
  3501. static void
  3502. bnx2_free_rx_skbs(struct bnx2 *bp)
  3503. {
  3504. int i;
  3505. if (bp->rx_buf_ring == NULL)
  3506. return;
  3507. for (i = 0; i < bp->rx_max_ring_idx; i++) {
  3508. struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
  3509. struct sk_buff *skb = rx_buf->skb;
  3510. if (skb == NULL)
  3511. continue;
  3512. pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
  3513. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  3514. rx_buf->skb = NULL;
  3515. dev_kfree_skb(skb);
  3516. }
  3517. }
  3518. static void
  3519. bnx2_free_skbs(struct bnx2 *bp)
  3520. {
  3521. bnx2_free_tx_skbs(bp);
  3522. bnx2_free_rx_skbs(bp);
  3523. }
  3524. static int
  3525. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  3526. {
  3527. int rc;
  3528. rc = bnx2_reset_chip(bp, reset_code);
  3529. bnx2_free_skbs(bp);
  3530. if (rc)
  3531. return rc;
  3532. if ((rc = bnx2_init_chip(bp)) != 0)
  3533. return rc;
  3534. bnx2_init_tx_ring(bp);
  3535. bnx2_init_rx_ring(bp);
  3536. return 0;
  3537. }
  3538. static int
  3539. bnx2_init_nic(struct bnx2 *bp)
  3540. {
  3541. int rc;
  3542. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  3543. return rc;
  3544. spin_lock_bh(&bp->phy_lock);
  3545. bnx2_init_phy(bp);
  3546. bnx2_set_link(bp);
  3547. spin_unlock_bh(&bp->phy_lock);
  3548. return 0;
  3549. }
  3550. static int
  3551. bnx2_test_registers(struct bnx2 *bp)
  3552. {
  3553. int ret;
  3554. int i, is_5709;
  3555. static const struct {
  3556. u16 offset;
  3557. u16 flags;
  3558. #define BNX2_FL_NOT_5709 1
  3559. u32 rw_mask;
  3560. u32 ro_mask;
  3561. } reg_tbl[] = {
  3562. { 0x006c, 0, 0x00000000, 0x0000003f },
  3563. { 0x0090, 0, 0xffffffff, 0x00000000 },
  3564. { 0x0094, 0, 0x00000000, 0x00000000 },
  3565. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  3566. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3567. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3568. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  3569. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  3570. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  3571. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  3572. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3573. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3574. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3575. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3576. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3577. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3578. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3579. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3580. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  3581. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  3582. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  3583. { 0x1000, 0, 0x00000000, 0x00000001 },
  3584. { 0x1004, 0, 0x00000000, 0x000f0001 },
  3585. { 0x1408, 0, 0x01c00800, 0x00000000 },
  3586. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  3587. { 0x14a8, 0, 0x00000000, 0x000001ff },
  3588. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  3589. { 0x14b0, 0, 0x00000002, 0x00000001 },
  3590. { 0x14b8, 0, 0x00000000, 0x00000000 },
  3591. { 0x14c0, 0, 0x00000000, 0x00000009 },
  3592. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  3593. { 0x14cc, 0, 0x00000000, 0x00000001 },
  3594. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  3595. { 0x1800, 0, 0x00000000, 0x00000001 },
  3596. { 0x1804, 0, 0x00000000, 0x00000003 },
  3597. { 0x2800, 0, 0x00000000, 0x00000001 },
  3598. { 0x2804, 0, 0x00000000, 0x00003f01 },
  3599. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  3600. { 0x2810, 0, 0xffff0000, 0x00000000 },
  3601. { 0x2814, 0, 0xffff0000, 0x00000000 },
  3602. { 0x2818, 0, 0xffff0000, 0x00000000 },
  3603. { 0x281c, 0, 0xffff0000, 0x00000000 },
  3604. { 0x2834, 0, 0xffffffff, 0x00000000 },
  3605. { 0x2840, 0, 0x00000000, 0xffffffff },
  3606. { 0x2844, 0, 0x00000000, 0xffffffff },
  3607. { 0x2848, 0, 0xffffffff, 0x00000000 },
  3608. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  3609. { 0x2c00, 0, 0x00000000, 0x00000011 },
  3610. { 0x2c04, 0, 0x00000000, 0x00030007 },
  3611. { 0x3c00, 0, 0x00000000, 0x00000001 },
  3612. { 0x3c04, 0, 0x00000000, 0x00070000 },
  3613. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  3614. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  3615. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  3616. { 0x3c14, 0, 0x00000000, 0xffffffff },
  3617. { 0x3c18, 0, 0x00000000, 0xffffffff },
  3618. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  3619. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  3620. { 0x5004, 0, 0x00000000, 0x0000007f },
  3621. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  3622. { 0x5c00, 0, 0x00000000, 0x00000001 },
  3623. { 0x5c04, 0, 0x00000000, 0x0003000f },
  3624. { 0x5c08, 0, 0x00000003, 0x00000000 },
  3625. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  3626. { 0x5c10, 0, 0x00000000, 0xffffffff },
  3627. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  3628. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  3629. { 0x5c88, 0, 0x00000000, 0x00077373 },
  3630. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  3631. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  3632. { 0x680c, 0, 0xffffffff, 0x00000000 },
  3633. { 0x6810, 0, 0xffffffff, 0x00000000 },
  3634. { 0x6814, 0, 0xffffffff, 0x00000000 },
  3635. { 0x6818, 0, 0xffffffff, 0x00000000 },
  3636. { 0x681c, 0, 0xffffffff, 0x00000000 },
  3637. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  3638. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  3639. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  3640. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  3641. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  3642. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  3643. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  3644. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  3645. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  3646. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  3647. { 0x684c, 0, 0xffffffff, 0x00000000 },
  3648. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  3649. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  3650. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  3651. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  3652. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  3653. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  3654. { 0xffff, 0, 0x00000000, 0x00000000 },
  3655. };
  3656. ret = 0;
  3657. is_5709 = 0;
  3658. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3659. is_5709 = 1;
  3660. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  3661. u32 offset, rw_mask, ro_mask, save_val, val;
  3662. u16 flags = reg_tbl[i].flags;
  3663. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  3664. continue;
  3665. offset = (u32) reg_tbl[i].offset;
  3666. rw_mask = reg_tbl[i].rw_mask;
  3667. ro_mask = reg_tbl[i].ro_mask;
  3668. save_val = readl(bp->regview + offset);
  3669. writel(0, bp->regview + offset);
  3670. val = readl(bp->regview + offset);
  3671. if ((val & rw_mask) != 0) {
  3672. goto reg_test_err;
  3673. }
  3674. if ((val & ro_mask) != (save_val & ro_mask)) {
  3675. goto reg_test_err;
  3676. }
  3677. writel(0xffffffff, bp->regview + offset);
  3678. val = readl(bp->regview + offset);
  3679. if ((val & rw_mask) != rw_mask) {
  3680. goto reg_test_err;
  3681. }
  3682. if ((val & ro_mask) != (save_val & ro_mask)) {
  3683. goto reg_test_err;
  3684. }
  3685. writel(save_val, bp->regview + offset);
  3686. continue;
  3687. reg_test_err:
  3688. writel(save_val, bp->regview + offset);
  3689. ret = -ENODEV;
  3690. break;
  3691. }
  3692. return ret;
  3693. }
  3694. static int
  3695. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  3696. {
  3697. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  3698. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  3699. int i;
  3700. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  3701. u32 offset;
  3702. for (offset = 0; offset < size; offset += 4) {
  3703. REG_WR_IND(bp, start + offset, test_pattern[i]);
  3704. if (REG_RD_IND(bp, start + offset) !=
  3705. test_pattern[i]) {
  3706. return -ENODEV;
  3707. }
  3708. }
  3709. }
  3710. return 0;
  3711. }
  3712. static int
  3713. bnx2_test_memory(struct bnx2 *bp)
  3714. {
  3715. int ret = 0;
  3716. int i;
  3717. static struct mem_entry {
  3718. u32 offset;
  3719. u32 len;
  3720. } mem_tbl_5706[] = {
  3721. { 0x60000, 0x4000 },
  3722. { 0xa0000, 0x3000 },
  3723. { 0xe0000, 0x4000 },
  3724. { 0x120000, 0x4000 },
  3725. { 0x1a0000, 0x4000 },
  3726. { 0x160000, 0x4000 },
  3727. { 0xffffffff, 0 },
  3728. },
  3729. mem_tbl_5709[] = {
  3730. { 0x60000, 0x4000 },
  3731. { 0xa0000, 0x3000 },
  3732. { 0xe0000, 0x4000 },
  3733. { 0x120000, 0x4000 },
  3734. { 0x1a0000, 0x4000 },
  3735. { 0xffffffff, 0 },
  3736. };
  3737. struct mem_entry *mem_tbl;
  3738. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3739. mem_tbl = mem_tbl_5709;
  3740. else
  3741. mem_tbl = mem_tbl_5706;
  3742. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  3743. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  3744. mem_tbl[i].len)) != 0) {
  3745. return ret;
  3746. }
  3747. }
  3748. return ret;
  3749. }
  3750. #define BNX2_MAC_LOOPBACK 0
  3751. #define BNX2_PHY_LOOPBACK 1
  3752. static int
  3753. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  3754. {
  3755. unsigned int pkt_size, num_pkts, i;
  3756. struct sk_buff *skb, *rx_skb;
  3757. unsigned char *packet;
  3758. u16 rx_start_idx, rx_idx;
  3759. dma_addr_t map;
  3760. struct tx_bd *txbd;
  3761. struct sw_bd *rx_buf;
  3762. struct l2_fhdr *rx_hdr;
  3763. int ret = -ENODEV;
  3764. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  3765. bp->loopback = MAC_LOOPBACK;
  3766. bnx2_set_mac_loopback(bp);
  3767. }
  3768. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  3769. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  3770. return 0;
  3771. bp->loopback = PHY_LOOPBACK;
  3772. bnx2_set_phy_loopback(bp);
  3773. }
  3774. else
  3775. return -EINVAL;
  3776. pkt_size = 1514;
  3777. skb = netdev_alloc_skb(bp->dev, pkt_size);
  3778. if (!skb)
  3779. return -ENOMEM;
  3780. packet = skb_put(skb, pkt_size);
  3781. memcpy(packet, bp->dev->dev_addr, 6);
  3782. memset(packet + 6, 0x0, 8);
  3783. for (i = 14; i < pkt_size; i++)
  3784. packet[i] = (unsigned char) (i & 0xff);
  3785. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  3786. PCI_DMA_TODEVICE);
  3787. REG_WR(bp, BNX2_HC_COMMAND,
  3788. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3789. REG_RD(bp, BNX2_HC_COMMAND);
  3790. udelay(5);
  3791. rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3792. num_pkts = 0;
  3793. txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
  3794. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  3795. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  3796. txbd->tx_bd_mss_nbytes = pkt_size;
  3797. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  3798. num_pkts++;
  3799. bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
  3800. bp->tx_prod_bseq += pkt_size;
  3801. REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
  3802. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  3803. udelay(100);
  3804. REG_WR(bp, BNX2_HC_COMMAND,
  3805. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3806. REG_RD(bp, BNX2_HC_COMMAND);
  3807. udelay(5);
  3808. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  3809. dev_kfree_skb(skb);
  3810. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
  3811. goto loopback_test_done;
  3812. }
  3813. rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3814. if (rx_idx != rx_start_idx + num_pkts) {
  3815. goto loopback_test_done;
  3816. }
  3817. rx_buf = &bp->rx_buf_ring[rx_start_idx];
  3818. rx_skb = rx_buf->skb;
  3819. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  3820. skb_reserve(rx_skb, bp->rx_offset);
  3821. pci_dma_sync_single_for_cpu(bp->pdev,
  3822. pci_unmap_addr(rx_buf, mapping),
  3823. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  3824. if (rx_hdr->l2_fhdr_status &
  3825. (L2_FHDR_ERRORS_BAD_CRC |
  3826. L2_FHDR_ERRORS_PHY_DECODE |
  3827. L2_FHDR_ERRORS_ALIGNMENT |
  3828. L2_FHDR_ERRORS_TOO_SHORT |
  3829. L2_FHDR_ERRORS_GIANT_FRAME)) {
  3830. goto loopback_test_done;
  3831. }
  3832. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  3833. goto loopback_test_done;
  3834. }
  3835. for (i = 14; i < pkt_size; i++) {
  3836. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  3837. goto loopback_test_done;
  3838. }
  3839. }
  3840. ret = 0;
  3841. loopback_test_done:
  3842. bp->loopback = 0;
  3843. return ret;
  3844. }
  3845. #define BNX2_MAC_LOOPBACK_FAILED 1
  3846. #define BNX2_PHY_LOOPBACK_FAILED 2
  3847. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  3848. BNX2_PHY_LOOPBACK_FAILED)
  3849. static int
  3850. bnx2_test_loopback(struct bnx2 *bp)
  3851. {
  3852. int rc = 0;
  3853. if (!netif_running(bp->dev))
  3854. return BNX2_LOOPBACK_FAILED;
  3855. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  3856. spin_lock_bh(&bp->phy_lock);
  3857. bnx2_init_phy(bp);
  3858. spin_unlock_bh(&bp->phy_lock);
  3859. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  3860. rc |= BNX2_MAC_LOOPBACK_FAILED;
  3861. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  3862. rc |= BNX2_PHY_LOOPBACK_FAILED;
  3863. return rc;
  3864. }
  3865. #define NVRAM_SIZE 0x200
  3866. #define CRC32_RESIDUAL 0xdebb20e3
  3867. static int
  3868. bnx2_test_nvram(struct bnx2 *bp)
  3869. {
  3870. u32 buf[NVRAM_SIZE / 4];
  3871. u8 *data = (u8 *) buf;
  3872. int rc = 0;
  3873. u32 magic, csum;
  3874. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  3875. goto test_nvram_done;
  3876. magic = be32_to_cpu(buf[0]);
  3877. if (magic != 0x669955aa) {
  3878. rc = -ENODEV;
  3879. goto test_nvram_done;
  3880. }
  3881. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  3882. goto test_nvram_done;
  3883. csum = ether_crc_le(0x100, data);
  3884. if (csum != CRC32_RESIDUAL) {
  3885. rc = -ENODEV;
  3886. goto test_nvram_done;
  3887. }
  3888. csum = ether_crc_le(0x100, data + 0x100);
  3889. if (csum != CRC32_RESIDUAL) {
  3890. rc = -ENODEV;
  3891. }
  3892. test_nvram_done:
  3893. return rc;
  3894. }
  3895. static int
  3896. bnx2_test_link(struct bnx2 *bp)
  3897. {
  3898. u32 bmsr;
  3899. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
  3900. if (bp->link_up)
  3901. return 0;
  3902. return -ENODEV;
  3903. }
  3904. spin_lock_bh(&bp->phy_lock);
  3905. bnx2_enable_bmsr1(bp);
  3906. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  3907. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  3908. bnx2_disable_bmsr1(bp);
  3909. spin_unlock_bh(&bp->phy_lock);
  3910. if (bmsr & BMSR_LSTATUS) {
  3911. return 0;
  3912. }
  3913. return -ENODEV;
  3914. }
  3915. static int
  3916. bnx2_test_intr(struct bnx2 *bp)
  3917. {
  3918. int i;
  3919. u16 status_idx;
  3920. if (!netif_running(bp->dev))
  3921. return -ENODEV;
  3922. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  3923. /* This register is not touched during run-time. */
  3924. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  3925. REG_RD(bp, BNX2_HC_COMMAND);
  3926. for (i = 0; i < 10; i++) {
  3927. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  3928. status_idx) {
  3929. break;
  3930. }
  3931. msleep_interruptible(10);
  3932. }
  3933. if (i < 10)
  3934. return 0;
  3935. return -ENODEV;
  3936. }
  3937. static void
  3938. bnx2_5706_serdes_timer(struct bnx2 *bp)
  3939. {
  3940. spin_lock(&bp->phy_lock);
  3941. if (bp->serdes_an_pending)
  3942. bp->serdes_an_pending--;
  3943. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3944. u32 bmcr;
  3945. bp->current_interval = bp->timer_interval;
  3946. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3947. if (bmcr & BMCR_ANENABLE) {
  3948. u32 phy1, phy2;
  3949. bnx2_write_phy(bp, 0x1c, 0x7c00);
  3950. bnx2_read_phy(bp, 0x1c, &phy1);
  3951. bnx2_write_phy(bp, 0x17, 0x0f01);
  3952. bnx2_read_phy(bp, 0x15, &phy2);
  3953. bnx2_write_phy(bp, 0x17, 0x0f01);
  3954. bnx2_read_phy(bp, 0x15, &phy2);
  3955. if ((phy1 & 0x10) && /* SIGNAL DETECT */
  3956. !(phy2 & 0x20)) { /* no CONFIG */
  3957. bmcr &= ~BMCR_ANENABLE;
  3958. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  3959. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  3960. bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG;
  3961. }
  3962. }
  3963. }
  3964. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  3965. (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
  3966. u32 phy2;
  3967. bnx2_write_phy(bp, 0x17, 0x0f01);
  3968. bnx2_read_phy(bp, 0x15, &phy2);
  3969. if (phy2 & 0x20) {
  3970. u32 bmcr;
  3971. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3972. bmcr |= BMCR_ANENABLE;
  3973. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  3974. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  3975. }
  3976. } else
  3977. bp->current_interval = bp->timer_interval;
  3978. spin_unlock(&bp->phy_lock);
  3979. }
  3980. static void
  3981. bnx2_5708_serdes_timer(struct bnx2 *bp)
  3982. {
  3983. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  3984. return;
  3985. if ((bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) == 0) {
  3986. bp->serdes_an_pending = 0;
  3987. return;
  3988. }
  3989. spin_lock(&bp->phy_lock);
  3990. if (bp->serdes_an_pending)
  3991. bp->serdes_an_pending--;
  3992. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3993. u32 bmcr;
  3994. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3995. if (bmcr & BMCR_ANENABLE) {
  3996. bnx2_enable_forced_2g5(bp);
  3997. bp->current_interval = SERDES_FORCED_TIMEOUT;
  3998. } else {
  3999. bnx2_disable_forced_2g5(bp);
  4000. bp->serdes_an_pending = 2;
  4001. bp->current_interval = bp->timer_interval;
  4002. }
  4003. } else
  4004. bp->current_interval = bp->timer_interval;
  4005. spin_unlock(&bp->phy_lock);
  4006. }
  4007. static void
  4008. bnx2_timer(unsigned long data)
  4009. {
  4010. struct bnx2 *bp = (struct bnx2 *) data;
  4011. if (!netif_running(bp->dev))
  4012. return;
  4013. if (atomic_read(&bp->intr_sem) != 0)
  4014. goto bnx2_restart_timer;
  4015. bnx2_send_heart_beat(bp);
  4016. bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
  4017. /* workaround occasional corrupted counters */
  4018. if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
  4019. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4020. BNX2_HC_COMMAND_STATS_NOW);
  4021. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4022. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4023. bnx2_5706_serdes_timer(bp);
  4024. else
  4025. bnx2_5708_serdes_timer(bp);
  4026. }
  4027. bnx2_restart_timer:
  4028. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4029. }
  4030. static int
  4031. bnx2_request_irq(struct bnx2 *bp)
  4032. {
  4033. struct net_device *dev = bp->dev;
  4034. int rc = 0;
  4035. if (bp->flags & USING_MSI_FLAG) {
  4036. irq_handler_t fn = bnx2_msi;
  4037. if (bp->flags & ONE_SHOT_MSI_FLAG)
  4038. fn = bnx2_msi_1shot;
  4039. rc = request_irq(bp->pdev->irq, fn, 0, dev->name, dev);
  4040. } else
  4041. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  4042. IRQF_SHARED, dev->name, dev);
  4043. return rc;
  4044. }
  4045. static void
  4046. bnx2_free_irq(struct bnx2 *bp)
  4047. {
  4048. struct net_device *dev = bp->dev;
  4049. if (bp->flags & USING_MSI_FLAG) {
  4050. free_irq(bp->pdev->irq, dev);
  4051. pci_disable_msi(bp->pdev);
  4052. bp->flags &= ~(USING_MSI_FLAG | ONE_SHOT_MSI_FLAG);
  4053. } else
  4054. free_irq(bp->pdev->irq, dev);
  4055. }
  4056. /* Called with rtnl_lock */
  4057. static int
  4058. bnx2_open(struct net_device *dev)
  4059. {
  4060. struct bnx2 *bp = netdev_priv(dev);
  4061. int rc;
  4062. netif_carrier_off(dev);
  4063. bnx2_set_power_state(bp, PCI_D0);
  4064. bnx2_disable_int(bp);
  4065. rc = bnx2_alloc_mem(bp);
  4066. if (rc)
  4067. return rc;
  4068. napi_enable(&bp->napi);
  4069. if ((bp->flags & MSI_CAP_FLAG) && !disable_msi) {
  4070. if (pci_enable_msi(bp->pdev) == 0) {
  4071. bp->flags |= USING_MSI_FLAG;
  4072. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4073. bp->flags |= ONE_SHOT_MSI_FLAG;
  4074. }
  4075. }
  4076. rc = bnx2_request_irq(bp);
  4077. if (rc) {
  4078. napi_disable(&bp->napi);
  4079. bnx2_free_mem(bp);
  4080. return rc;
  4081. }
  4082. rc = bnx2_init_nic(bp);
  4083. if (rc) {
  4084. napi_disable(&bp->napi);
  4085. bnx2_free_irq(bp);
  4086. bnx2_free_skbs(bp);
  4087. bnx2_free_mem(bp);
  4088. return rc;
  4089. }
  4090. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4091. atomic_set(&bp->intr_sem, 0);
  4092. bnx2_enable_int(bp);
  4093. if (bp->flags & USING_MSI_FLAG) {
  4094. /* Test MSI to make sure it is working
  4095. * If MSI test fails, go back to INTx mode
  4096. */
  4097. if (bnx2_test_intr(bp) != 0) {
  4098. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  4099. " using MSI, switching to INTx mode. Please"
  4100. " report this failure to the PCI maintainer"
  4101. " and include system chipset information.\n",
  4102. bp->dev->name);
  4103. bnx2_disable_int(bp);
  4104. bnx2_free_irq(bp);
  4105. rc = bnx2_init_nic(bp);
  4106. if (!rc)
  4107. rc = bnx2_request_irq(bp);
  4108. if (rc) {
  4109. napi_disable(&bp->napi);
  4110. bnx2_free_skbs(bp);
  4111. bnx2_free_mem(bp);
  4112. del_timer_sync(&bp->timer);
  4113. return rc;
  4114. }
  4115. bnx2_enable_int(bp);
  4116. }
  4117. }
  4118. if (bp->flags & USING_MSI_FLAG) {
  4119. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  4120. }
  4121. netif_start_queue(dev);
  4122. return 0;
  4123. }
  4124. static void
  4125. bnx2_reset_task(struct work_struct *work)
  4126. {
  4127. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  4128. if (!netif_running(bp->dev))
  4129. return;
  4130. bp->in_reset_task = 1;
  4131. bnx2_netif_stop(bp);
  4132. bnx2_init_nic(bp);
  4133. atomic_set(&bp->intr_sem, 1);
  4134. bnx2_netif_start(bp);
  4135. bp->in_reset_task = 0;
  4136. }
  4137. static void
  4138. bnx2_tx_timeout(struct net_device *dev)
  4139. {
  4140. struct bnx2 *bp = netdev_priv(dev);
  4141. /* This allows the netif to be shutdown gracefully before resetting */
  4142. schedule_work(&bp->reset_task);
  4143. }
  4144. #ifdef BCM_VLAN
  4145. /* Called with rtnl_lock */
  4146. static void
  4147. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  4148. {
  4149. struct bnx2 *bp = netdev_priv(dev);
  4150. bnx2_netif_stop(bp);
  4151. bp->vlgrp = vlgrp;
  4152. bnx2_set_rx_mode(dev);
  4153. bnx2_netif_start(bp);
  4154. }
  4155. #endif
  4156. /* Called with netif_tx_lock.
  4157. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  4158. * netif_wake_queue().
  4159. */
  4160. static int
  4161. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4162. {
  4163. struct bnx2 *bp = netdev_priv(dev);
  4164. dma_addr_t mapping;
  4165. struct tx_bd *txbd;
  4166. struct sw_bd *tx_buf;
  4167. u32 len, vlan_tag_flags, last_frag, mss;
  4168. u16 prod, ring_prod;
  4169. int i;
  4170. if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
  4171. netif_stop_queue(dev);
  4172. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  4173. dev->name);
  4174. return NETDEV_TX_BUSY;
  4175. }
  4176. len = skb_headlen(skb);
  4177. prod = bp->tx_prod;
  4178. ring_prod = TX_RING_IDX(prod);
  4179. vlan_tag_flags = 0;
  4180. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4181. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  4182. }
  4183. if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
  4184. vlan_tag_flags |=
  4185. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  4186. }
  4187. if ((mss = skb_shinfo(skb)->gso_size)) {
  4188. u32 tcp_opt_len, ip_tcp_len;
  4189. struct iphdr *iph;
  4190. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  4191. tcp_opt_len = tcp_optlen(skb);
  4192. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  4193. u32 tcp_off = skb_transport_offset(skb) -
  4194. sizeof(struct ipv6hdr) - ETH_HLEN;
  4195. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  4196. TX_BD_FLAGS_SW_FLAGS;
  4197. if (likely(tcp_off == 0))
  4198. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  4199. else {
  4200. tcp_off >>= 3;
  4201. vlan_tag_flags |= ((tcp_off & 0x3) <<
  4202. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  4203. ((tcp_off & 0x10) <<
  4204. TX_BD_FLAGS_TCP6_OFF4_SHL);
  4205. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  4206. }
  4207. } else {
  4208. if (skb_header_cloned(skb) &&
  4209. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  4210. dev_kfree_skb(skb);
  4211. return NETDEV_TX_OK;
  4212. }
  4213. ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
  4214. iph = ip_hdr(skb);
  4215. iph->check = 0;
  4216. iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
  4217. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  4218. iph->daddr, 0,
  4219. IPPROTO_TCP,
  4220. 0);
  4221. if (tcp_opt_len || (iph->ihl > 5)) {
  4222. vlan_tag_flags |= ((iph->ihl - 5) +
  4223. (tcp_opt_len >> 2)) << 8;
  4224. }
  4225. }
  4226. } else
  4227. mss = 0;
  4228. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  4229. tx_buf = &bp->tx_buf_ring[ring_prod];
  4230. tx_buf->skb = skb;
  4231. pci_unmap_addr_set(tx_buf, mapping, mapping);
  4232. txbd = &bp->tx_desc_ring[ring_prod];
  4233. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  4234. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  4235. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  4236. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  4237. last_frag = skb_shinfo(skb)->nr_frags;
  4238. for (i = 0; i < last_frag; i++) {
  4239. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4240. prod = NEXT_TX_BD(prod);
  4241. ring_prod = TX_RING_IDX(prod);
  4242. txbd = &bp->tx_desc_ring[ring_prod];
  4243. len = frag->size;
  4244. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  4245. len, PCI_DMA_TODEVICE);
  4246. pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
  4247. mapping, mapping);
  4248. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  4249. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  4250. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  4251. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  4252. }
  4253. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  4254. prod = NEXT_TX_BD(prod);
  4255. bp->tx_prod_bseq += skb->len;
  4256. REG_WR16(bp, bp->tx_bidx_addr, prod);
  4257. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  4258. mmiowb();
  4259. bp->tx_prod = prod;
  4260. dev->trans_start = jiffies;
  4261. if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
  4262. netif_stop_queue(dev);
  4263. if (bnx2_tx_avail(bp) > bp->tx_wake_thresh)
  4264. netif_wake_queue(dev);
  4265. }
  4266. return NETDEV_TX_OK;
  4267. }
  4268. /* Called with rtnl_lock */
  4269. static int
  4270. bnx2_close(struct net_device *dev)
  4271. {
  4272. struct bnx2 *bp = netdev_priv(dev);
  4273. u32 reset_code;
  4274. /* Calling flush_scheduled_work() may deadlock because
  4275. * linkwatch_event() may be on the workqueue and it will try to get
  4276. * the rtnl_lock which we are holding.
  4277. */
  4278. while (bp->in_reset_task)
  4279. msleep(1);
  4280. bnx2_disable_int_sync(bp);
  4281. napi_disable(&bp->napi);
  4282. del_timer_sync(&bp->timer);
  4283. if (bp->flags & NO_WOL_FLAG)
  4284. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4285. else if (bp->wol)
  4286. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4287. else
  4288. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4289. bnx2_reset_chip(bp, reset_code);
  4290. bnx2_free_irq(bp);
  4291. bnx2_free_skbs(bp);
  4292. bnx2_free_mem(bp);
  4293. bp->link_up = 0;
  4294. netif_carrier_off(bp->dev);
  4295. bnx2_set_power_state(bp, PCI_D3hot);
  4296. return 0;
  4297. }
  4298. #define GET_NET_STATS64(ctr) \
  4299. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  4300. (unsigned long) (ctr##_lo)
  4301. #define GET_NET_STATS32(ctr) \
  4302. (ctr##_lo)
  4303. #if (BITS_PER_LONG == 64)
  4304. #define GET_NET_STATS GET_NET_STATS64
  4305. #else
  4306. #define GET_NET_STATS GET_NET_STATS32
  4307. #endif
  4308. static struct net_device_stats *
  4309. bnx2_get_stats(struct net_device *dev)
  4310. {
  4311. struct bnx2 *bp = netdev_priv(dev);
  4312. struct statistics_block *stats_blk = bp->stats_blk;
  4313. struct net_device_stats *net_stats = &bp->net_stats;
  4314. if (bp->stats_blk == NULL) {
  4315. return net_stats;
  4316. }
  4317. net_stats->rx_packets =
  4318. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  4319. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  4320. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  4321. net_stats->tx_packets =
  4322. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  4323. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  4324. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  4325. net_stats->rx_bytes =
  4326. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  4327. net_stats->tx_bytes =
  4328. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  4329. net_stats->multicast =
  4330. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  4331. net_stats->collisions =
  4332. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  4333. net_stats->rx_length_errors =
  4334. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  4335. stats_blk->stat_EtherStatsOverrsizePkts);
  4336. net_stats->rx_over_errors =
  4337. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  4338. net_stats->rx_frame_errors =
  4339. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  4340. net_stats->rx_crc_errors =
  4341. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  4342. net_stats->rx_errors = net_stats->rx_length_errors +
  4343. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  4344. net_stats->rx_crc_errors;
  4345. net_stats->tx_aborted_errors =
  4346. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  4347. stats_blk->stat_Dot3StatsLateCollisions);
  4348. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  4349. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4350. net_stats->tx_carrier_errors = 0;
  4351. else {
  4352. net_stats->tx_carrier_errors =
  4353. (unsigned long)
  4354. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  4355. }
  4356. net_stats->tx_errors =
  4357. (unsigned long)
  4358. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  4359. +
  4360. net_stats->tx_aborted_errors +
  4361. net_stats->tx_carrier_errors;
  4362. net_stats->rx_missed_errors =
  4363. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  4364. stats_blk->stat_FwRxDrop);
  4365. return net_stats;
  4366. }
  4367. /* All ethtool functions called with rtnl_lock */
  4368. static int
  4369. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4370. {
  4371. struct bnx2 *bp = netdev_priv(dev);
  4372. int support_serdes = 0, support_copper = 0;
  4373. cmd->supported = SUPPORTED_Autoneg;
  4374. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
  4375. support_serdes = 1;
  4376. support_copper = 1;
  4377. } else if (bp->phy_port == PORT_FIBRE)
  4378. support_serdes = 1;
  4379. else
  4380. support_copper = 1;
  4381. if (support_serdes) {
  4382. cmd->supported |= SUPPORTED_1000baseT_Full |
  4383. SUPPORTED_FIBRE;
  4384. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
  4385. cmd->supported |= SUPPORTED_2500baseX_Full;
  4386. }
  4387. if (support_copper) {
  4388. cmd->supported |= SUPPORTED_10baseT_Half |
  4389. SUPPORTED_10baseT_Full |
  4390. SUPPORTED_100baseT_Half |
  4391. SUPPORTED_100baseT_Full |
  4392. SUPPORTED_1000baseT_Full |
  4393. SUPPORTED_TP;
  4394. }
  4395. spin_lock_bh(&bp->phy_lock);
  4396. cmd->port = bp->phy_port;
  4397. cmd->advertising = bp->advertising;
  4398. if (bp->autoneg & AUTONEG_SPEED) {
  4399. cmd->autoneg = AUTONEG_ENABLE;
  4400. }
  4401. else {
  4402. cmd->autoneg = AUTONEG_DISABLE;
  4403. }
  4404. if (netif_carrier_ok(dev)) {
  4405. cmd->speed = bp->line_speed;
  4406. cmd->duplex = bp->duplex;
  4407. }
  4408. else {
  4409. cmd->speed = -1;
  4410. cmd->duplex = -1;
  4411. }
  4412. spin_unlock_bh(&bp->phy_lock);
  4413. cmd->transceiver = XCVR_INTERNAL;
  4414. cmd->phy_address = bp->phy_addr;
  4415. return 0;
  4416. }
  4417. static int
  4418. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4419. {
  4420. struct bnx2 *bp = netdev_priv(dev);
  4421. u8 autoneg = bp->autoneg;
  4422. u8 req_duplex = bp->req_duplex;
  4423. u16 req_line_speed = bp->req_line_speed;
  4424. u32 advertising = bp->advertising;
  4425. int err = -EINVAL;
  4426. spin_lock_bh(&bp->phy_lock);
  4427. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  4428. goto err_out_unlock;
  4429. if (cmd->port != bp->phy_port && !(bp->phy_flags & REMOTE_PHY_CAP_FLAG))
  4430. goto err_out_unlock;
  4431. if (cmd->autoneg == AUTONEG_ENABLE) {
  4432. autoneg |= AUTONEG_SPEED;
  4433. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  4434. /* allow advertising 1 speed */
  4435. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  4436. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  4437. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  4438. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  4439. if (cmd->port == PORT_FIBRE)
  4440. goto err_out_unlock;
  4441. advertising = cmd->advertising;
  4442. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  4443. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) ||
  4444. (cmd->port == PORT_TP))
  4445. goto err_out_unlock;
  4446. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  4447. advertising = cmd->advertising;
  4448. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  4449. goto err_out_unlock;
  4450. else {
  4451. if (cmd->port == PORT_FIBRE)
  4452. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  4453. else
  4454. advertising = ETHTOOL_ALL_COPPER_SPEED;
  4455. }
  4456. advertising |= ADVERTISED_Autoneg;
  4457. }
  4458. else {
  4459. if (cmd->port == PORT_FIBRE) {
  4460. if ((cmd->speed != SPEED_1000 &&
  4461. cmd->speed != SPEED_2500) ||
  4462. (cmd->duplex != DUPLEX_FULL))
  4463. goto err_out_unlock;
  4464. if (cmd->speed == SPEED_2500 &&
  4465. !(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  4466. goto err_out_unlock;
  4467. }
  4468. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  4469. goto err_out_unlock;
  4470. autoneg &= ~AUTONEG_SPEED;
  4471. req_line_speed = cmd->speed;
  4472. req_duplex = cmd->duplex;
  4473. advertising = 0;
  4474. }
  4475. bp->autoneg = autoneg;
  4476. bp->advertising = advertising;
  4477. bp->req_line_speed = req_line_speed;
  4478. bp->req_duplex = req_duplex;
  4479. err = bnx2_setup_phy(bp, cmd->port);
  4480. err_out_unlock:
  4481. spin_unlock_bh(&bp->phy_lock);
  4482. return err;
  4483. }
  4484. static void
  4485. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  4486. {
  4487. struct bnx2 *bp = netdev_priv(dev);
  4488. strcpy(info->driver, DRV_MODULE_NAME);
  4489. strcpy(info->version, DRV_MODULE_VERSION);
  4490. strcpy(info->bus_info, pci_name(bp->pdev));
  4491. strcpy(info->fw_version, bp->fw_version);
  4492. }
  4493. #define BNX2_REGDUMP_LEN (32 * 1024)
  4494. static int
  4495. bnx2_get_regs_len(struct net_device *dev)
  4496. {
  4497. return BNX2_REGDUMP_LEN;
  4498. }
  4499. static void
  4500. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  4501. {
  4502. u32 *p = _p, i, offset;
  4503. u8 *orig_p = _p;
  4504. struct bnx2 *bp = netdev_priv(dev);
  4505. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  4506. 0x0800, 0x0880, 0x0c00, 0x0c10,
  4507. 0x0c30, 0x0d08, 0x1000, 0x101c,
  4508. 0x1040, 0x1048, 0x1080, 0x10a4,
  4509. 0x1400, 0x1490, 0x1498, 0x14f0,
  4510. 0x1500, 0x155c, 0x1580, 0x15dc,
  4511. 0x1600, 0x1658, 0x1680, 0x16d8,
  4512. 0x1800, 0x1820, 0x1840, 0x1854,
  4513. 0x1880, 0x1894, 0x1900, 0x1984,
  4514. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  4515. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  4516. 0x2000, 0x2030, 0x23c0, 0x2400,
  4517. 0x2800, 0x2820, 0x2830, 0x2850,
  4518. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  4519. 0x3c00, 0x3c94, 0x4000, 0x4010,
  4520. 0x4080, 0x4090, 0x43c0, 0x4458,
  4521. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  4522. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  4523. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  4524. 0x5fc0, 0x6000, 0x6400, 0x6428,
  4525. 0x6800, 0x6848, 0x684c, 0x6860,
  4526. 0x6888, 0x6910, 0x8000 };
  4527. regs->version = 0;
  4528. memset(p, 0, BNX2_REGDUMP_LEN);
  4529. if (!netif_running(bp->dev))
  4530. return;
  4531. i = 0;
  4532. offset = reg_boundaries[0];
  4533. p += offset;
  4534. while (offset < BNX2_REGDUMP_LEN) {
  4535. *p++ = REG_RD(bp, offset);
  4536. offset += 4;
  4537. if (offset == reg_boundaries[i + 1]) {
  4538. offset = reg_boundaries[i + 2];
  4539. p = (u32 *) (orig_p + offset);
  4540. i += 2;
  4541. }
  4542. }
  4543. }
  4544. static void
  4545. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  4546. {
  4547. struct bnx2 *bp = netdev_priv(dev);
  4548. if (bp->flags & NO_WOL_FLAG) {
  4549. wol->supported = 0;
  4550. wol->wolopts = 0;
  4551. }
  4552. else {
  4553. wol->supported = WAKE_MAGIC;
  4554. if (bp->wol)
  4555. wol->wolopts = WAKE_MAGIC;
  4556. else
  4557. wol->wolopts = 0;
  4558. }
  4559. memset(&wol->sopass, 0, sizeof(wol->sopass));
  4560. }
  4561. static int
  4562. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  4563. {
  4564. struct bnx2 *bp = netdev_priv(dev);
  4565. if (wol->wolopts & ~WAKE_MAGIC)
  4566. return -EINVAL;
  4567. if (wol->wolopts & WAKE_MAGIC) {
  4568. if (bp->flags & NO_WOL_FLAG)
  4569. return -EINVAL;
  4570. bp->wol = 1;
  4571. }
  4572. else {
  4573. bp->wol = 0;
  4574. }
  4575. return 0;
  4576. }
  4577. static int
  4578. bnx2_nway_reset(struct net_device *dev)
  4579. {
  4580. struct bnx2 *bp = netdev_priv(dev);
  4581. u32 bmcr;
  4582. if (!(bp->autoneg & AUTONEG_SPEED)) {
  4583. return -EINVAL;
  4584. }
  4585. spin_lock_bh(&bp->phy_lock);
  4586. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG) {
  4587. int rc;
  4588. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  4589. spin_unlock_bh(&bp->phy_lock);
  4590. return rc;
  4591. }
  4592. /* Force a link down visible on the other side */
  4593. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4594. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  4595. spin_unlock_bh(&bp->phy_lock);
  4596. msleep(20);
  4597. spin_lock_bh(&bp->phy_lock);
  4598. bp->current_interval = SERDES_AN_TIMEOUT;
  4599. bp->serdes_an_pending = 1;
  4600. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4601. }
  4602. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4603. bmcr &= ~BMCR_LOOPBACK;
  4604. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  4605. spin_unlock_bh(&bp->phy_lock);
  4606. return 0;
  4607. }
  4608. static int
  4609. bnx2_get_eeprom_len(struct net_device *dev)
  4610. {
  4611. struct bnx2 *bp = netdev_priv(dev);
  4612. if (bp->flash_info == NULL)
  4613. return 0;
  4614. return (int) bp->flash_size;
  4615. }
  4616. static int
  4617. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4618. u8 *eebuf)
  4619. {
  4620. struct bnx2 *bp = netdev_priv(dev);
  4621. int rc;
  4622. /* parameters already validated in ethtool_get_eeprom */
  4623. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  4624. return rc;
  4625. }
  4626. static int
  4627. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4628. u8 *eebuf)
  4629. {
  4630. struct bnx2 *bp = netdev_priv(dev);
  4631. int rc;
  4632. /* parameters already validated in ethtool_set_eeprom */
  4633. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  4634. return rc;
  4635. }
  4636. static int
  4637. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4638. {
  4639. struct bnx2 *bp = netdev_priv(dev);
  4640. memset(coal, 0, sizeof(struct ethtool_coalesce));
  4641. coal->rx_coalesce_usecs = bp->rx_ticks;
  4642. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  4643. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  4644. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  4645. coal->tx_coalesce_usecs = bp->tx_ticks;
  4646. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  4647. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  4648. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  4649. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  4650. return 0;
  4651. }
  4652. static int
  4653. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4654. {
  4655. struct bnx2 *bp = netdev_priv(dev);
  4656. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  4657. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  4658. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  4659. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  4660. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  4661. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  4662. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  4663. if (bp->rx_quick_cons_trip_int > 0xff)
  4664. bp->rx_quick_cons_trip_int = 0xff;
  4665. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  4666. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  4667. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  4668. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  4669. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  4670. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  4671. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  4672. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  4673. 0xff;
  4674. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  4675. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  4676. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  4677. bp->stats_ticks = USEC_PER_SEC;
  4678. }
  4679. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  4680. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  4681. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  4682. if (netif_running(bp->dev)) {
  4683. bnx2_netif_stop(bp);
  4684. bnx2_init_nic(bp);
  4685. bnx2_netif_start(bp);
  4686. }
  4687. return 0;
  4688. }
  4689. static void
  4690. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4691. {
  4692. struct bnx2 *bp = netdev_priv(dev);
  4693. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  4694. ering->rx_mini_max_pending = 0;
  4695. ering->rx_jumbo_max_pending = 0;
  4696. ering->rx_pending = bp->rx_ring_size;
  4697. ering->rx_mini_pending = 0;
  4698. ering->rx_jumbo_pending = 0;
  4699. ering->tx_max_pending = MAX_TX_DESC_CNT;
  4700. ering->tx_pending = bp->tx_ring_size;
  4701. }
  4702. static int
  4703. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4704. {
  4705. struct bnx2 *bp = netdev_priv(dev);
  4706. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  4707. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  4708. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  4709. return -EINVAL;
  4710. }
  4711. if (netif_running(bp->dev)) {
  4712. bnx2_netif_stop(bp);
  4713. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4714. bnx2_free_skbs(bp);
  4715. bnx2_free_mem(bp);
  4716. }
  4717. bnx2_set_rx_ring_size(bp, ering->rx_pending);
  4718. bp->tx_ring_size = ering->tx_pending;
  4719. if (netif_running(bp->dev)) {
  4720. int rc;
  4721. rc = bnx2_alloc_mem(bp);
  4722. if (rc)
  4723. return rc;
  4724. bnx2_init_nic(bp);
  4725. bnx2_netif_start(bp);
  4726. }
  4727. return 0;
  4728. }
  4729. static void
  4730. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4731. {
  4732. struct bnx2 *bp = netdev_priv(dev);
  4733. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  4734. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  4735. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  4736. }
  4737. static int
  4738. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4739. {
  4740. struct bnx2 *bp = netdev_priv(dev);
  4741. bp->req_flow_ctrl = 0;
  4742. if (epause->rx_pause)
  4743. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  4744. if (epause->tx_pause)
  4745. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  4746. if (epause->autoneg) {
  4747. bp->autoneg |= AUTONEG_FLOW_CTRL;
  4748. }
  4749. else {
  4750. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  4751. }
  4752. spin_lock_bh(&bp->phy_lock);
  4753. bnx2_setup_phy(bp, bp->phy_port);
  4754. spin_unlock_bh(&bp->phy_lock);
  4755. return 0;
  4756. }
  4757. static u32
  4758. bnx2_get_rx_csum(struct net_device *dev)
  4759. {
  4760. struct bnx2 *bp = netdev_priv(dev);
  4761. return bp->rx_csum;
  4762. }
  4763. static int
  4764. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  4765. {
  4766. struct bnx2 *bp = netdev_priv(dev);
  4767. bp->rx_csum = data;
  4768. return 0;
  4769. }
  4770. static int
  4771. bnx2_set_tso(struct net_device *dev, u32 data)
  4772. {
  4773. struct bnx2 *bp = netdev_priv(dev);
  4774. if (data) {
  4775. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  4776. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4777. dev->features |= NETIF_F_TSO6;
  4778. } else
  4779. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  4780. NETIF_F_TSO_ECN);
  4781. return 0;
  4782. }
  4783. #define BNX2_NUM_STATS 46
  4784. static struct {
  4785. char string[ETH_GSTRING_LEN];
  4786. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  4787. { "rx_bytes" },
  4788. { "rx_error_bytes" },
  4789. { "tx_bytes" },
  4790. { "tx_error_bytes" },
  4791. { "rx_ucast_packets" },
  4792. { "rx_mcast_packets" },
  4793. { "rx_bcast_packets" },
  4794. { "tx_ucast_packets" },
  4795. { "tx_mcast_packets" },
  4796. { "tx_bcast_packets" },
  4797. { "tx_mac_errors" },
  4798. { "tx_carrier_errors" },
  4799. { "rx_crc_errors" },
  4800. { "rx_align_errors" },
  4801. { "tx_single_collisions" },
  4802. { "tx_multi_collisions" },
  4803. { "tx_deferred" },
  4804. { "tx_excess_collisions" },
  4805. { "tx_late_collisions" },
  4806. { "tx_total_collisions" },
  4807. { "rx_fragments" },
  4808. { "rx_jabbers" },
  4809. { "rx_undersize_packets" },
  4810. { "rx_oversize_packets" },
  4811. { "rx_64_byte_packets" },
  4812. { "rx_65_to_127_byte_packets" },
  4813. { "rx_128_to_255_byte_packets" },
  4814. { "rx_256_to_511_byte_packets" },
  4815. { "rx_512_to_1023_byte_packets" },
  4816. { "rx_1024_to_1522_byte_packets" },
  4817. { "rx_1523_to_9022_byte_packets" },
  4818. { "tx_64_byte_packets" },
  4819. { "tx_65_to_127_byte_packets" },
  4820. { "tx_128_to_255_byte_packets" },
  4821. { "tx_256_to_511_byte_packets" },
  4822. { "tx_512_to_1023_byte_packets" },
  4823. { "tx_1024_to_1522_byte_packets" },
  4824. { "tx_1523_to_9022_byte_packets" },
  4825. { "rx_xon_frames" },
  4826. { "rx_xoff_frames" },
  4827. { "tx_xon_frames" },
  4828. { "tx_xoff_frames" },
  4829. { "rx_mac_ctrl_frames" },
  4830. { "rx_filtered_packets" },
  4831. { "rx_discards" },
  4832. { "rx_fw_discards" },
  4833. };
  4834. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  4835. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  4836. STATS_OFFSET32(stat_IfHCInOctets_hi),
  4837. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  4838. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  4839. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  4840. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  4841. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  4842. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  4843. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  4844. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  4845. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  4846. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  4847. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  4848. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  4849. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  4850. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  4851. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  4852. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  4853. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  4854. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  4855. STATS_OFFSET32(stat_EtherStatsCollisions),
  4856. STATS_OFFSET32(stat_EtherStatsFragments),
  4857. STATS_OFFSET32(stat_EtherStatsJabbers),
  4858. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  4859. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  4860. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  4861. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  4862. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  4863. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  4864. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  4865. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  4866. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  4867. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  4868. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  4869. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  4870. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  4871. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  4872. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  4873. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  4874. STATS_OFFSET32(stat_XonPauseFramesReceived),
  4875. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  4876. STATS_OFFSET32(stat_OutXonSent),
  4877. STATS_OFFSET32(stat_OutXoffSent),
  4878. STATS_OFFSET32(stat_MacControlFramesReceived),
  4879. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  4880. STATS_OFFSET32(stat_IfInMBUFDiscards),
  4881. STATS_OFFSET32(stat_FwRxDrop),
  4882. };
  4883. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  4884. * skipped because of errata.
  4885. */
  4886. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  4887. 8,0,8,8,8,8,8,8,8,8,
  4888. 4,0,4,4,4,4,4,4,4,4,
  4889. 4,4,4,4,4,4,4,4,4,4,
  4890. 4,4,4,4,4,4,4,4,4,4,
  4891. 4,4,4,4,4,4,
  4892. };
  4893. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  4894. 8,0,8,8,8,8,8,8,8,8,
  4895. 4,4,4,4,4,4,4,4,4,4,
  4896. 4,4,4,4,4,4,4,4,4,4,
  4897. 4,4,4,4,4,4,4,4,4,4,
  4898. 4,4,4,4,4,4,
  4899. };
  4900. #define BNX2_NUM_TESTS 6
  4901. static struct {
  4902. char string[ETH_GSTRING_LEN];
  4903. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  4904. { "register_test (offline)" },
  4905. { "memory_test (offline)" },
  4906. { "loopback_test (offline)" },
  4907. { "nvram_test (online)" },
  4908. { "interrupt_test (online)" },
  4909. { "link_test (online)" },
  4910. };
  4911. static int
  4912. bnx2_get_sset_count(struct net_device *dev, int sset)
  4913. {
  4914. switch (sset) {
  4915. case ETH_SS_TEST:
  4916. return BNX2_NUM_TESTS;
  4917. case ETH_SS_STATS:
  4918. return BNX2_NUM_STATS;
  4919. default:
  4920. return -EOPNOTSUPP;
  4921. }
  4922. }
  4923. static void
  4924. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  4925. {
  4926. struct bnx2 *bp = netdev_priv(dev);
  4927. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  4928. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  4929. int i;
  4930. bnx2_netif_stop(bp);
  4931. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  4932. bnx2_free_skbs(bp);
  4933. if (bnx2_test_registers(bp) != 0) {
  4934. buf[0] = 1;
  4935. etest->flags |= ETH_TEST_FL_FAILED;
  4936. }
  4937. if (bnx2_test_memory(bp) != 0) {
  4938. buf[1] = 1;
  4939. etest->flags |= ETH_TEST_FL_FAILED;
  4940. }
  4941. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  4942. etest->flags |= ETH_TEST_FL_FAILED;
  4943. if (!netif_running(bp->dev)) {
  4944. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4945. }
  4946. else {
  4947. bnx2_init_nic(bp);
  4948. bnx2_netif_start(bp);
  4949. }
  4950. /* wait for link up */
  4951. for (i = 0; i < 7; i++) {
  4952. if (bp->link_up)
  4953. break;
  4954. msleep_interruptible(1000);
  4955. }
  4956. }
  4957. if (bnx2_test_nvram(bp) != 0) {
  4958. buf[3] = 1;
  4959. etest->flags |= ETH_TEST_FL_FAILED;
  4960. }
  4961. if (bnx2_test_intr(bp) != 0) {
  4962. buf[4] = 1;
  4963. etest->flags |= ETH_TEST_FL_FAILED;
  4964. }
  4965. if (bnx2_test_link(bp) != 0) {
  4966. buf[5] = 1;
  4967. etest->flags |= ETH_TEST_FL_FAILED;
  4968. }
  4969. }
  4970. static void
  4971. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  4972. {
  4973. switch (stringset) {
  4974. case ETH_SS_STATS:
  4975. memcpy(buf, bnx2_stats_str_arr,
  4976. sizeof(bnx2_stats_str_arr));
  4977. break;
  4978. case ETH_SS_TEST:
  4979. memcpy(buf, bnx2_tests_str_arr,
  4980. sizeof(bnx2_tests_str_arr));
  4981. break;
  4982. }
  4983. }
  4984. static void
  4985. bnx2_get_ethtool_stats(struct net_device *dev,
  4986. struct ethtool_stats *stats, u64 *buf)
  4987. {
  4988. struct bnx2 *bp = netdev_priv(dev);
  4989. int i;
  4990. u32 *hw_stats = (u32 *) bp->stats_blk;
  4991. u8 *stats_len_arr = NULL;
  4992. if (hw_stats == NULL) {
  4993. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  4994. return;
  4995. }
  4996. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  4997. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  4998. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  4999. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5000. stats_len_arr = bnx2_5706_stats_len_arr;
  5001. else
  5002. stats_len_arr = bnx2_5708_stats_len_arr;
  5003. for (i = 0; i < BNX2_NUM_STATS; i++) {
  5004. if (stats_len_arr[i] == 0) {
  5005. /* skip this counter */
  5006. buf[i] = 0;
  5007. continue;
  5008. }
  5009. if (stats_len_arr[i] == 4) {
  5010. /* 4-byte counter */
  5011. buf[i] = (u64)
  5012. *(hw_stats + bnx2_stats_offset_arr[i]);
  5013. continue;
  5014. }
  5015. /* 8-byte counter */
  5016. buf[i] = (((u64) *(hw_stats +
  5017. bnx2_stats_offset_arr[i])) << 32) +
  5018. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  5019. }
  5020. }
  5021. static int
  5022. bnx2_phys_id(struct net_device *dev, u32 data)
  5023. {
  5024. struct bnx2 *bp = netdev_priv(dev);
  5025. int i;
  5026. u32 save;
  5027. if (data == 0)
  5028. data = 2;
  5029. save = REG_RD(bp, BNX2_MISC_CFG);
  5030. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  5031. for (i = 0; i < (data * 2); i++) {
  5032. if ((i % 2) == 0) {
  5033. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  5034. }
  5035. else {
  5036. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  5037. BNX2_EMAC_LED_1000MB_OVERRIDE |
  5038. BNX2_EMAC_LED_100MB_OVERRIDE |
  5039. BNX2_EMAC_LED_10MB_OVERRIDE |
  5040. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  5041. BNX2_EMAC_LED_TRAFFIC);
  5042. }
  5043. msleep_interruptible(500);
  5044. if (signal_pending(current))
  5045. break;
  5046. }
  5047. REG_WR(bp, BNX2_EMAC_LED, 0);
  5048. REG_WR(bp, BNX2_MISC_CFG, save);
  5049. return 0;
  5050. }
  5051. static int
  5052. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  5053. {
  5054. struct bnx2 *bp = netdev_priv(dev);
  5055. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5056. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  5057. else
  5058. return (ethtool_op_set_tx_csum(dev, data));
  5059. }
  5060. static const struct ethtool_ops bnx2_ethtool_ops = {
  5061. .get_settings = bnx2_get_settings,
  5062. .set_settings = bnx2_set_settings,
  5063. .get_drvinfo = bnx2_get_drvinfo,
  5064. .get_regs_len = bnx2_get_regs_len,
  5065. .get_regs = bnx2_get_regs,
  5066. .get_wol = bnx2_get_wol,
  5067. .set_wol = bnx2_set_wol,
  5068. .nway_reset = bnx2_nway_reset,
  5069. .get_link = ethtool_op_get_link,
  5070. .get_eeprom_len = bnx2_get_eeprom_len,
  5071. .get_eeprom = bnx2_get_eeprom,
  5072. .set_eeprom = bnx2_set_eeprom,
  5073. .get_coalesce = bnx2_get_coalesce,
  5074. .set_coalesce = bnx2_set_coalesce,
  5075. .get_ringparam = bnx2_get_ringparam,
  5076. .set_ringparam = bnx2_set_ringparam,
  5077. .get_pauseparam = bnx2_get_pauseparam,
  5078. .set_pauseparam = bnx2_set_pauseparam,
  5079. .get_rx_csum = bnx2_get_rx_csum,
  5080. .set_rx_csum = bnx2_set_rx_csum,
  5081. .set_tx_csum = bnx2_set_tx_csum,
  5082. .set_sg = ethtool_op_set_sg,
  5083. .set_tso = bnx2_set_tso,
  5084. .self_test = bnx2_self_test,
  5085. .get_strings = bnx2_get_strings,
  5086. .phys_id = bnx2_phys_id,
  5087. .get_ethtool_stats = bnx2_get_ethtool_stats,
  5088. .get_sset_count = bnx2_get_sset_count,
  5089. };
  5090. /* Called with rtnl_lock */
  5091. static int
  5092. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5093. {
  5094. struct mii_ioctl_data *data = if_mii(ifr);
  5095. struct bnx2 *bp = netdev_priv(dev);
  5096. int err;
  5097. switch(cmd) {
  5098. case SIOCGMIIPHY:
  5099. data->phy_id = bp->phy_addr;
  5100. /* fallthru */
  5101. case SIOCGMIIREG: {
  5102. u32 mii_regval;
  5103. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  5104. return -EOPNOTSUPP;
  5105. if (!netif_running(dev))
  5106. return -EAGAIN;
  5107. spin_lock_bh(&bp->phy_lock);
  5108. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  5109. spin_unlock_bh(&bp->phy_lock);
  5110. data->val_out = mii_regval;
  5111. return err;
  5112. }
  5113. case SIOCSMIIREG:
  5114. if (!capable(CAP_NET_ADMIN))
  5115. return -EPERM;
  5116. if (bp->phy_flags & REMOTE_PHY_CAP_FLAG)
  5117. return -EOPNOTSUPP;
  5118. if (!netif_running(dev))
  5119. return -EAGAIN;
  5120. spin_lock_bh(&bp->phy_lock);
  5121. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  5122. spin_unlock_bh(&bp->phy_lock);
  5123. return err;
  5124. default:
  5125. /* do nothing */
  5126. break;
  5127. }
  5128. return -EOPNOTSUPP;
  5129. }
  5130. /* Called with rtnl_lock */
  5131. static int
  5132. bnx2_change_mac_addr(struct net_device *dev, void *p)
  5133. {
  5134. struct sockaddr *addr = p;
  5135. struct bnx2 *bp = netdev_priv(dev);
  5136. if (!is_valid_ether_addr(addr->sa_data))
  5137. return -EINVAL;
  5138. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  5139. if (netif_running(dev))
  5140. bnx2_set_mac_addr(bp);
  5141. return 0;
  5142. }
  5143. /* Called with rtnl_lock */
  5144. static int
  5145. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  5146. {
  5147. struct bnx2 *bp = netdev_priv(dev);
  5148. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  5149. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  5150. return -EINVAL;
  5151. dev->mtu = new_mtu;
  5152. if (netif_running(dev)) {
  5153. bnx2_netif_stop(bp);
  5154. bnx2_init_nic(bp);
  5155. bnx2_netif_start(bp);
  5156. }
  5157. return 0;
  5158. }
  5159. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  5160. static void
  5161. poll_bnx2(struct net_device *dev)
  5162. {
  5163. struct bnx2 *bp = netdev_priv(dev);
  5164. disable_irq(bp->pdev->irq);
  5165. bnx2_interrupt(bp->pdev->irq, dev);
  5166. enable_irq(bp->pdev->irq);
  5167. }
  5168. #endif
  5169. static void __devinit
  5170. bnx2_get_5709_media(struct bnx2 *bp)
  5171. {
  5172. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  5173. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  5174. u32 strap;
  5175. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  5176. return;
  5177. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  5178. bp->phy_flags |= PHY_SERDES_FLAG;
  5179. return;
  5180. }
  5181. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  5182. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  5183. else
  5184. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  5185. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  5186. switch (strap) {
  5187. case 0x4:
  5188. case 0x5:
  5189. case 0x6:
  5190. bp->phy_flags |= PHY_SERDES_FLAG;
  5191. return;
  5192. }
  5193. } else {
  5194. switch (strap) {
  5195. case 0x1:
  5196. case 0x2:
  5197. case 0x4:
  5198. bp->phy_flags |= PHY_SERDES_FLAG;
  5199. return;
  5200. }
  5201. }
  5202. }
  5203. static void __devinit
  5204. bnx2_get_pci_speed(struct bnx2 *bp)
  5205. {
  5206. u32 reg;
  5207. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  5208. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  5209. u32 clkreg;
  5210. bp->flags |= PCIX_FLAG;
  5211. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  5212. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  5213. switch (clkreg) {
  5214. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  5215. bp->bus_speed_mhz = 133;
  5216. break;
  5217. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  5218. bp->bus_speed_mhz = 100;
  5219. break;
  5220. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  5221. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  5222. bp->bus_speed_mhz = 66;
  5223. break;
  5224. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  5225. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  5226. bp->bus_speed_mhz = 50;
  5227. break;
  5228. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  5229. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  5230. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  5231. bp->bus_speed_mhz = 33;
  5232. break;
  5233. }
  5234. }
  5235. else {
  5236. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  5237. bp->bus_speed_mhz = 66;
  5238. else
  5239. bp->bus_speed_mhz = 33;
  5240. }
  5241. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  5242. bp->flags |= PCI_32BIT_FLAG;
  5243. }
  5244. static int __devinit
  5245. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  5246. {
  5247. struct bnx2 *bp;
  5248. unsigned long mem_len;
  5249. int rc, i, j;
  5250. u32 reg;
  5251. u64 dma_mask, persist_dma_mask;
  5252. SET_NETDEV_DEV(dev, &pdev->dev);
  5253. bp = netdev_priv(dev);
  5254. bp->flags = 0;
  5255. bp->phy_flags = 0;
  5256. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  5257. rc = pci_enable_device(pdev);
  5258. if (rc) {
  5259. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  5260. goto err_out;
  5261. }
  5262. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  5263. dev_err(&pdev->dev,
  5264. "Cannot find PCI device base address, aborting.\n");
  5265. rc = -ENODEV;
  5266. goto err_out_disable;
  5267. }
  5268. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  5269. if (rc) {
  5270. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  5271. goto err_out_disable;
  5272. }
  5273. pci_set_master(pdev);
  5274. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  5275. if (bp->pm_cap == 0) {
  5276. dev_err(&pdev->dev,
  5277. "Cannot find power management capability, aborting.\n");
  5278. rc = -EIO;
  5279. goto err_out_release;
  5280. }
  5281. bp->dev = dev;
  5282. bp->pdev = pdev;
  5283. spin_lock_init(&bp->phy_lock);
  5284. spin_lock_init(&bp->indirect_lock);
  5285. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  5286. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  5287. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
  5288. dev->mem_end = dev->mem_start + mem_len;
  5289. dev->irq = pdev->irq;
  5290. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  5291. if (!bp->regview) {
  5292. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  5293. rc = -ENOMEM;
  5294. goto err_out_release;
  5295. }
  5296. /* Configure byte swap and enable write to the reg_window registers.
  5297. * Rely on CPU to do target byte swapping on big endian systems
  5298. * The chip's target access swapping will not swap all accesses
  5299. */
  5300. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  5301. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  5302. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  5303. bnx2_set_power_state(bp, PCI_D0);
  5304. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  5305. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5306. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  5307. dev_err(&pdev->dev,
  5308. "Cannot find PCIE capability, aborting.\n");
  5309. rc = -EIO;
  5310. goto err_out_unmap;
  5311. }
  5312. bp->flags |= PCIE_FLAG;
  5313. } else {
  5314. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  5315. if (bp->pcix_cap == 0) {
  5316. dev_err(&pdev->dev,
  5317. "Cannot find PCIX capability, aborting.\n");
  5318. rc = -EIO;
  5319. goto err_out_unmap;
  5320. }
  5321. }
  5322. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  5323. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  5324. bp->flags |= MSI_CAP_FLAG;
  5325. }
  5326. /* 5708 cannot support DMA addresses > 40-bit. */
  5327. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  5328. persist_dma_mask = dma_mask = DMA_40BIT_MASK;
  5329. else
  5330. persist_dma_mask = dma_mask = DMA_64BIT_MASK;
  5331. /* Configure DMA attributes. */
  5332. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  5333. dev->features |= NETIF_F_HIGHDMA;
  5334. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  5335. if (rc) {
  5336. dev_err(&pdev->dev,
  5337. "pci_set_consistent_dma_mask failed, aborting.\n");
  5338. goto err_out_unmap;
  5339. }
  5340. } else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
  5341. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  5342. goto err_out_unmap;
  5343. }
  5344. if (!(bp->flags & PCIE_FLAG))
  5345. bnx2_get_pci_speed(bp);
  5346. /* 5706A0 may falsely detect SERR and PERR. */
  5347. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  5348. reg = REG_RD(bp, PCI_COMMAND);
  5349. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  5350. REG_WR(bp, PCI_COMMAND, reg);
  5351. }
  5352. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  5353. !(bp->flags & PCIX_FLAG)) {
  5354. dev_err(&pdev->dev,
  5355. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  5356. goto err_out_unmap;
  5357. }
  5358. bnx2_init_nvram(bp);
  5359. reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
  5360. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  5361. BNX2_SHM_HDR_SIGNATURE_SIG) {
  5362. u32 off = PCI_FUNC(pdev->devfn) << 2;
  5363. bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0 + off);
  5364. } else
  5365. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  5366. /* Get the permanent MAC address. First we need to make sure the
  5367. * firmware is actually running.
  5368. */
  5369. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
  5370. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  5371. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  5372. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  5373. rc = -ENODEV;
  5374. goto err_out_unmap;
  5375. }
  5376. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
  5377. for (i = 0, j = 0; i < 3; i++) {
  5378. u8 num, k, skip0;
  5379. num = (u8) (reg >> (24 - (i * 8)));
  5380. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  5381. if (num >= k || !skip0 || k == 1) {
  5382. bp->fw_version[j++] = (num / k) + '0';
  5383. skip0 = 0;
  5384. }
  5385. }
  5386. if (i != 2)
  5387. bp->fw_version[j++] = '.';
  5388. }
  5389. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE);
  5390. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  5391. bp->wol = 1;
  5392. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  5393. bp->flags |= ASF_ENABLE_FLAG;
  5394. for (i = 0; i < 30; i++) {
  5395. reg = REG_RD_IND(bp, bp->shmem_base +
  5396. BNX2_BC_STATE_CONDITION);
  5397. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  5398. break;
  5399. msleep(10);
  5400. }
  5401. }
  5402. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_BC_STATE_CONDITION);
  5403. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  5404. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  5405. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  5406. int i;
  5407. u32 addr = REG_RD_IND(bp, bp->shmem_base + BNX2_MFW_VER_PTR);
  5408. bp->fw_version[j++] = ' ';
  5409. for (i = 0; i < 3; i++) {
  5410. reg = REG_RD_IND(bp, addr + i * 4);
  5411. reg = swab32(reg);
  5412. memcpy(&bp->fw_version[j], &reg, 4);
  5413. j += 4;
  5414. }
  5415. }
  5416. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
  5417. bp->mac_addr[0] = (u8) (reg >> 8);
  5418. bp->mac_addr[1] = (u8) reg;
  5419. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
  5420. bp->mac_addr[2] = (u8) (reg >> 24);
  5421. bp->mac_addr[3] = (u8) (reg >> 16);
  5422. bp->mac_addr[4] = (u8) (reg >> 8);
  5423. bp->mac_addr[5] = (u8) reg;
  5424. bp->tx_ring_size = MAX_TX_DESC_CNT;
  5425. bnx2_set_rx_ring_size(bp, 255);
  5426. bp->rx_csum = 1;
  5427. bp->rx_offset = sizeof(struct l2_fhdr) + 2;
  5428. bp->tx_quick_cons_trip_int = 20;
  5429. bp->tx_quick_cons_trip = 20;
  5430. bp->tx_ticks_int = 80;
  5431. bp->tx_ticks = 80;
  5432. bp->rx_quick_cons_trip_int = 6;
  5433. bp->rx_quick_cons_trip = 6;
  5434. bp->rx_ticks_int = 18;
  5435. bp->rx_ticks = 18;
  5436. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5437. bp->timer_interval = HZ;
  5438. bp->current_interval = HZ;
  5439. bp->phy_addr = 1;
  5440. /* Disable WOL support if we are running on a SERDES chip. */
  5441. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5442. bnx2_get_5709_media(bp);
  5443. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  5444. bp->phy_flags |= PHY_SERDES_FLAG;
  5445. bp->phy_port = PORT_TP;
  5446. if (bp->phy_flags & PHY_SERDES_FLAG) {
  5447. bp->phy_port = PORT_FIBRE;
  5448. reg = REG_RD_IND(bp, bp->shmem_base +
  5449. BNX2_SHARED_HW_CFG_CONFIG);
  5450. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  5451. bp->flags |= NO_WOL_FLAG;
  5452. bp->wol = 0;
  5453. }
  5454. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  5455. bp->phy_addr = 2;
  5456. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  5457. bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
  5458. }
  5459. bnx2_init_remote_phy(bp);
  5460. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  5461. CHIP_NUM(bp) == CHIP_NUM_5708)
  5462. bp->phy_flags |= PHY_CRC_FIX_FLAG;
  5463. else if (CHIP_ID(bp) == CHIP_ID_5709_A0 ||
  5464. CHIP_ID(bp) == CHIP_ID_5709_A1)
  5465. bp->phy_flags |= PHY_DIS_EARLY_DAC_FLAG;
  5466. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  5467. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  5468. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  5469. bp->flags |= NO_WOL_FLAG;
  5470. bp->wol = 0;
  5471. }
  5472. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  5473. bp->tx_quick_cons_trip_int =
  5474. bp->tx_quick_cons_trip;
  5475. bp->tx_ticks_int = bp->tx_ticks;
  5476. bp->rx_quick_cons_trip_int =
  5477. bp->rx_quick_cons_trip;
  5478. bp->rx_ticks_int = bp->rx_ticks;
  5479. bp->comp_prod_trip_int = bp->comp_prod_trip;
  5480. bp->com_ticks_int = bp->com_ticks;
  5481. bp->cmd_ticks_int = bp->cmd_ticks;
  5482. }
  5483. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  5484. *
  5485. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  5486. * with byte enables disabled on the unused 32-bit word. This is legal
  5487. * but causes problems on the AMD 8132 which will eventually stop
  5488. * responding after a while.
  5489. *
  5490. * AMD believes this incompatibility is unique to the 5706, and
  5491. * prefers to locally disable MSI rather than globally disabling it.
  5492. */
  5493. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  5494. struct pci_dev *amd_8132 = NULL;
  5495. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  5496. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  5497. amd_8132))) {
  5498. if (amd_8132->revision >= 0x10 &&
  5499. amd_8132->revision <= 0x13) {
  5500. disable_msi = 1;
  5501. pci_dev_put(amd_8132);
  5502. break;
  5503. }
  5504. }
  5505. }
  5506. bnx2_set_default_link(bp);
  5507. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  5508. init_timer(&bp->timer);
  5509. bp->timer.expires = RUN_AT(bp->timer_interval);
  5510. bp->timer.data = (unsigned long) bp;
  5511. bp->timer.function = bnx2_timer;
  5512. return 0;
  5513. err_out_unmap:
  5514. if (bp->regview) {
  5515. iounmap(bp->regview);
  5516. bp->regview = NULL;
  5517. }
  5518. err_out_release:
  5519. pci_release_regions(pdev);
  5520. err_out_disable:
  5521. pci_disable_device(pdev);
  5522. pci_set_drvdata(pdev, NULL);
  5523. err_out:
  5524. return rc;
  5525. }
  5526. static char * __devinit
  5527. bnx2_bus_string(struct bnx2 *bp, char *str)
  5528. {
  5529. char *s = str;
  5530. if (bp->flags & PCIE_FLAG) {
  5531. s += sprintf(s, "PCI Express");
  5532. } else {
  5533. s += sprintf(s, "PCI");
  5534. if (bp->flags & PCIX_FLAG)
  5535. s += sprintf(s, "-X");
  5536. if (bp->flags & PCI_32BIT_FLAG)
  5537. s += sprintf(s, " 32-bit");
  5538. else
  5539. s += sprintf(s, " 64-bit");
  5540. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  5541. }
  5542. return str;
  5543. }
  5544. static int __devinit
  5545. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  5546. {
  5547. static int version_printed = 0;
  5548. struct net_device *dev = NULL;
  5549. struct bnx2 *bp;
  5550. int rc;
  5551. char str[40];
  5552. DECLARE_MAC_BUF(mac);
  5553. if (version_printed++ == 0)
  5554. printk(KERN_INFO "%s", version);
  5555. /* dev zeroed in init_etherdev */
  5556. dev = alloc_etherdev(sizeof(*bp));
  5557. if (!dev)
  5558. return -ENOMEM;
  5559. rc = bnx2_init_board(pdev, dev);
  5560. if (rc < 0) {
  5561. free_netdev(dev);
  5562. return rc;
  5563. }
  5564. dev->open = bnx2_open;
  5565. dev->hard_start_xmit = bnx2_start_xmit;
  5566. dev->stop = bnx2_close;
  5567. dev->get_stats = bnx2_get_stats;
  5568. dev->set_multicast_list = bnx2_set_rx_mode;
  5569. dev->do_ioctl = bnx2_ioctl;
  5570. dev->set_mac_address = bnx2_change_mac_addr;
  5571. dev->change_mtu = bnx2_change_mtu;
  5572. dev->tx_timeout = bnx2_tx_timeout;
  5573. dev->watchdog_timeo = TX_TIMEOUT;
  5574. #ifdef BCM_VLAN
  5575. dev->vlan_rx_register = bnx2_vlan_rx_register;
  5576. #endif
  5577. dev->ethtool_ops = &bnx2_ethtool_ops;
  5578. bp = netdev_priv(dev);
  5579. netif_napi_add(dev, &bp->napi, bnx2_poll, 64);
  5580. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  5581. dev->poll_controller = poll_bnx2;
  5582. #endif
  5583. pci_set_drvdata(pdev, dev);
  5584. memcpy(dev->dev_addr, bp->mac_addr, 6);
  5585. memcpy(dev->perm_addr, bp->mac_addr, 6);
  5586. bp->name = board_info[ent->driver_data].name;
  5587. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5588. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5589. dev->features |= NETIF_F_IPV6_CSUM;
  5590. #ifdef BCM_VLAN
  5591. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  5592. #endif
  5593. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5594. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5595. dev->features |= NETIF_F_TSO6;
  5596. if ((rc = register_netdev(dev))) {
  5597. dev_err(&pdev->dev, "Cannot register net device\n");
  5598. if (bp->regview)
  5599. iounmap(bp->regview);
  5600. pci_release_regions(pdev);
  5601. pci_disable_device(pdev);
  5602. pci_set_drvdata(pdev, NULL);
  5603. free_netdev(dev);
  5604. return rc;
  5605. }
  5606. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  5607. "IRQ %d, node addr %s\n",
  5608. dev->name,
  5609. bp->name,
  5610. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  5611. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  5612. bnx2_bus_string(bp, str),
  5613. dev->base_addr,
  5614. bp->pdev->irq, print_mac(mac, dev->dev_addr));
  5615. return 0;
  5616. }
  5617. static void __devexit
  5618. bnx2_remove_one(struct pci_dev *pdev)
  5619. {
  5620. struct net_device *dev = pci_get_drvdata(pdev);
  5621. struct bnx2 *bp = netdev_priv(dev);
  5622. flush_scheduled_work();
  5623. unregister_netdev(dev);
  5624. if (bp->regview)
  5625. iounmap(bp->regview);
  5626. free_netdev(dev);
  5627. pci_release_regions(pdev);
  5628. pci_disable_device(pdev);
  5629. pci_set_drvdata(pdev, NULL);
  5630. }
  5631. static int
  5632. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  5633. {
  5634. struct net_device *dev = pci_get_drvdata(pdev);
  5635. struct bnx2 *bp = netdev_priv(dev);
  5636. u32 reset_code;
  5637. /* PCI register 4 needs to be saved whether netif_running() or not.
  5638. * MSI address and data need to be saved if using MSI and
  5639. * netif_running().
  5640. */
  5641. pci_save_state(pdev);
  5642. if (!netif_running(dev))
  5643. return 0;
  5644. flush_scheduled_work();
  5645. bnx2_netif_stop(bp);
  5646. netif_device_detach(dev);
  5647. del_timer_sync(&bp->timer);
  5648. if (bp->flags & NO_WOL_FLAG)
  5649. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  5650. else if (bp->wol)
  5651. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  5652. else
  5653. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  5654. bnx2_reset_chip(bp, reset_code);
  5655. bnx2_free_skbs(bp);
  5656. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  5657. return 0;
  5658. }
  5659. static int
  5660. bnx2_resume(struct pci_dev *pdev)
  5661. {
  5662. struct net_device *dev = pci_get_drvdata(pdev);
  5663. struct bnx2 *bp = netdev_priv(dev);
  5664. pci_restore_state(pdev);
  5665. if (!netif_running(dev))
  5666. return 0;
  5667. bnx2_set_power_state(bp, PCI_D0);
  5668. netif_device_attach(dev);
  5669. bnx2_init_nic(bp);
  5670. bnx2_netif_start(bp);
  5671. return 0;
  5672. }
  5673. static struct pci_driver bnx2_pci_driver = {
  5674. .name = DRV_MODULE_NAME,
  5675. .id_table = bnx2_pci_tbl,
  5676. .probe = bnx2_init_one,
  5677. .remove = __devexit_p(bnx2_remove_one),
  5678. .suspend = bnx2_suspend,
  5679. .resume = bnx2_resume,
  5680. };
  5681. static int __init bnx2_init(void)
  5682. {
  5683. return pci_register_driver(&bnx2_pci_driver);
  5684. }
  5685. static void __exit bnx2_cleanup(void)
  5686. {
  5687. pci_unregister_driver(&bnx2_pci_driver);
  5688. }
  5689. module_init(bnx2_init);
  5690. module_exit(bnx2_cleanup);