vtbl.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * This file includes volume table manipulation code. The volume table is an
  23. * on-flash table containing volume meta-data like name, number of reserved
  24. * physical eraseblocks, type, etc. The volume table is stored in the so-called
  25. * "layout volume".
  26. *
  27. * The layout volume is an internal volume which is organized as follows. It
  28. * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
  29. * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
  30. * other. This redundancy guarantees robustness to unclean reboots. The volume
  31. * table is basically an array of volume table records. Each record contains
  32. * full information about the volume and protected by a CRC checksum.
  33. *
  34. * The volume table is changed, it is first changed in RAM. Then LEB 0 is
  35. * erased, and the updated volume table is written back to LEB 0. Then same for
  36. * LEB 1. This scheme guarantees recoverability from unclean reboots.
  37. *
  38. * In this UBI implementation the on-flash volume table does not contain any
  39. * information about how many data static volumes contain. This information may
  40. * be found from the scanning data.
  41. *
  42. * But it would still be beneficial to store this information in the volume
  43. * table. For example, suppose we have a static volume X, and all its physical
  44. * eraseblocks became bad for some reasons. Suppose we are attaching the
  45. * corresponding MTD device, the scanning has found no logical eraseblocks
  46. * corresponding to the volume X. According to the volume table volume X does
  47. * exist. So we don't know whether it is just empty or all its physical
  48. * eraseblocks went bad. So we cannot alarm the user about this corruption.
  49. *
  50. * The volume table also stores so-called "update marker", which is used for
  51. * volume updates. Before updating the volume, the update marker is set, and
  52. * after the update operation is finished, the update marker is cleared. So if
  53. * the update operation was interrupted (e.g. by an unclean reboot) - the
  54. * update marker is still there and we know that the volume's contents is
  55. * damaged.
  56. */
  57. #include <linux/crc32.h>
  58. #include <linux/err.h>
  59. #include <asm/div64.h>
  60. #include "ubi.h"
  61. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  62. static void paranoid_vtbl_check(const struct ubi_device *ubi);
  63. #else
  64. #define paranoid_vtbl_check(ubi)
  65. #endif
  66. /* Empty volume table record */
  67. static struct ubi_vtbl_record empty_vtbl_record;
  68. /**
  69. * ubi_change_vtbl_record - change volume table record.
  70. * @ubi: UBI device description object
  71. * @idx: table index to change
  72. * @vtbl_rec: new volume table record
  73. *
  74. * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
  75. * volume table record is written. The caller does not have to calculate CRC of
  76. * the record as it is done by this function. Returns zero in case of success
  77. * and a negative error code in case of failure.
  78. */
  79. int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
  80. struct ubi_vtbl_record *vtbl_rec)
  81. {
  82. int i, err;
  83. uint32_t crc;
  84. ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
  85. if (!vtbl_rec)
  86. vtbl_rec = &empty_vtbl_record;
  87. else {
  88. crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
  89. vtbl_rec->crc = cpu_to_be32(crc);
  90. }
  91. mutex_lock(&ubi->vtbl_mutex);
  92. memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
  93. for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
  94. err = ubi_eba_unmap_leb(ubi, UBI_LAYOUT_VOL_ID, i);
  95. if (err) {
  96. mutex_unlock(&ubi->vtbl_mutex);
  97. return err;
  98. }
  99. err = ubi_eba_write_leb(ubi, UBI_LAYOUT_VOL_ID, i, ubi->vtbl, 0,
  100. ubi->vtbl_size, UBI_LONGTERM);
  101. if (err) {
  102. mutex_unlock(&ubi->vtbl_mutex);
  103. return err;
  104. }
  105. }
  106. paranoid_vtbl_check(ubi);
  107. mutex_unlock(&ubi->vtbl_mutex);
  108. return ubi_wl_flush(ubi);
  109. }
  110. /**
  111. * vol_til_check - check if volume table is not corrupted and contains sensible
  112. * data.
  113. *
  114. * @ubi: UBI device description object
  115. * @vtbl: volume table
  116. *
  117. * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
  118. * and %-EINVAL if it contains inconsistent data.
  119. */
  120. static int vtbl_check(const struct ubi_device *ubi,
  121. const struct ubi_vtbl_record *vtbl)
  122. {
  123. int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
  124. int upd_marker;
  125. uint32_t crc;
  126. const char *name;
  127. for (i = 0; i < ubi->vtbl_slots; i++) {
  128. cond_resched();
  129. reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
  130. alignment = be32_to_cpu(vtbl[i].alignment);
  131. data_pad = be32_to_cpu(vtbl[i].data_pad);
  132. upd_marker = vtbl[i].upd_marker;
  133. vol_type = vtbl[i].vol_type;
  134. name_len = be16_to_cpu(vtbl[i].name_len);
  135. name = &vtbl[i].name[0];
  136. crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
  137. if (be32_to_cpu(vtbl[i].crc) != crc) {
  138. ubi_err("bad CRC at record %u: %#08x, not %#08x",
  139. i, crc, be32_to_cpu(vtbl[i].crc));
  140. ubi_dbg_dump_vtbl_record(&vtbl[i], i);
  141. return 1;
  142. }
  143. if (reserved_pebs == 0) {
  144. if (memcmp(&vtbl[i], &empty_vtbl_record,
  145. UBI_VTBL_RECORD_SIZE)) {
  146. dbg_err("bad empty record");
  147. goto bad;
  148. }
  149. continue;
  150. }
  151. if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
  152. name_len < 0) {
  153. dbg_err("negative values");
  154. goto bad;
  155. }
  156. if (alignment > ubi->leb_size || alignment == 0) {
  157. dbg_err("bad alignment");
  158. goto bad;
  159. }
  160. n = alignment % ubi->min_io_size;
  161. if (alignment != 1 && n) {
  162. dbg_err("alignment is not multiple of min I/O unit");
  163. goto bad;
  164. }
  165. n = ubi->leb_size % alignment;
  166. if (data_pad != n) {
  167. dbg_err("bad data_pad, has to be %d", n);
  168. goto bad;
  169. }
  170. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  171. dbg_err("bad vol_type");
  172. goto bad;
  173. }
  174. if (upd_marker != 0 && upd_marker != 1) {
  175. dbg_err("bad upd_marker");
  176. goto bad;
  177. }
  178. if (reserved_pebs > ubi->good_peb_count) {
  179. dbg_err("too large reserved_pebs, good PEBs %d",
  180. ubi->good_peb_count);
  181. goto bad;
  182. }
  183. if (name_len > UBI_VOL_NAME_MAX) {
  184. dbg_err("too long volume name, max %d",
  185. UBI_VOL_NAME_MAX);
  186. goto bad;
  187. }
  188. if (name[0] == '\0') {
  189. dbg_err("NULL volume name");
  190. goto bad;
  191. }
  192. if (name_len != strnlen(name, name_len + 1)) {
  193. dbg_err("bad name_len");
  194. goto bad;
  195. }
  196. }
  197. /* Checks that all names are unique */
  198. for (i = 0; i < ubi->vtbl_slots - 1; i++) {
  199. for (n = i + 1; n < ubi->vtbl_slots; n++) {
  200. int len1 = be16_to_cpu(vtbl[i].name_len);
  201. int len2 = be16_to_cpu(vtbl[n].name_len);
  202. if (len1 > 0 && len1 == len2 &&
  203. !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
  204. ubi_err("volumes %d and %d have the same name"
  205. " \"%s\"", i, n, vtbl[i].name);
  206. ubi_dbg_dump_vtbl_record(&vtbl[i], i);
  207. ubi_dbg_dump_vtbl_record(&vtbl[n], n);
  208. return -EINVAL;
  209. }
  210. }
  211. }
  212. return 0;
  213. bad:
  214. ubi_err("volume table check failed, record %d", i);
  215. ubi_dbg_dump_vtbl_record(&vtbl[i], i);
  216. return -EINVAL;
  217. }
  218. /**
  219. * create_vtbl - create a copy of volume table.
  220. * @ubi: UBI device description object
  221. * @si: scanning information
  222. * @copy: number of the volume table copy
  223. * @vtbl: contents of the volume table
  224. *
  225. * This function returns zero in case of success and a negative error code in
  226. * case of failure.
  227. */
  228. static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
  229. int copy, void *vtbl)
  230. {
  231. int err, tries = 0;
  232. static struct ubi_vid_hdr *vid_hdr;
  233. struct ubi_scan_volume *sv;
  234. struct ubi_scan_leb *new_seb, *old_seb = NULL;
  235. ubi_msg("create volume table (copy #%d)", copy + 1);
  236. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
  237. if (!vid_hdr)
  238. return -ENOMEM;
  239. /*
  240. * Check if there is a logical eraseblock which would have to contain
  241. * this volume table copy was found during scanning. It has to be wiped
  242. * out.
  243. */
  244. sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
  245. if (sv)
  246. old_seb = ubi_scan_find_seb(sv, copy);
  247. retry:
  248. new_seb = ubi_scan_get_free_peb(ubi, si);
  249. if (IS_ERR(new_seb)) {
  250. err = PTR_ERR(new_seb);
  251. goto out_free;
  252. }
  253. vid_hdr->vol_type = UBI_VID_DYNAMIC;
  254. vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOL_ID);
  255. vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
  256. vid_hdr->data_size = vid_hdr->used_ebs =
  257. vid_hdr->data_pad = cpu_to_be32(0);
  258. vid_hdr->lnum = cpu_to_be32(copy);
  259. vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
  260. vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);
  261. /* The EC header is already there, write the VID header */
  262. err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
  263. if (err)
  264. goto write_error;
  265. /* Write the layout volume contents */
  266. err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
  267. if (err)
  268. goto write_error;
  269. /*
  270. * And add it to the scanning information. Don't delete the old
  271. * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
  272. */
  273. err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
  274. vid_hdr, 0);
  275. kfree(new_seb);
  276. ubi_free_vid_hdr(ubi, vid_hdr);
  277. return err;
  278. write_error:
  279. if (err == -EIO && ++tries <= 5) {
  280. /*
  281. * Probably this physical eraseblock went bad, try to pick
  282. * another one.
  283. */
  284. list_add_tail(&new_seb->u.list, &si->corr);
  285. goto retry;
  286. }
  287. kfree(new_seb);
  288. out_free:
  289. ubi_free_vid_hdr(ubi, vid_hdr);
  290. return err;
  291. }
  292. /**
  293. * process_lvol - process the layout volume.
  294. * @ubi: UBI device description object
  295. * @si: scanning information
  296. * @sv: layout volume scanning information
  297. *
  298. * This function is responsible for reading the layout volume, ensuring it is
  299. * not corrupted, and recovering from corruptions if needed. Returns volume
  300. * table in case of success and a negative error code in case of failure.
  301. */
  302. static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
  303. struct ubi_scan_info *si,
  304. struct ubi_scan_volume *sv)
  305. {
  306. int err;
  307. struct rb_node *rb;
  308. struct ubi_scan_leb *seb;
  309. struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
  310. int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
  311. /*
  312. * UBI goes through the following steps when it changes the layout
  313. * volume:
  314. * a. erase LEB 0;
  315. * b. write new data to LEB 0;
  316. * c. erase LEB 1;
  317. * d. write new data to LEB 1.
  318. *
  319. * Before the change, both LEBs contain the same data.
  320. *
  321. * Due to unclean reboots, the contents of LEB 0 may be lost, but there
  322. * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
  323. * Similarly, LEB 1 may be lost, but there should be LEB 0. And
  324. * finally, unclean reboots may result in a situation when neither LEB
  325. * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
  326. * 0 contains more recent information.
  327. *
  328. * So the plan is to first check LEB 0. Then
  329. * a. if LEB 0 is OK, it must be containing the most resent data; then
  330. * we compare it with LEB 1, and if they are different, we copy LEB
  331. * 0 to LEB 1;
  332. * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
  333. * to LEB 0.
  334. */
  335. dbg_msg("check layout volume");
  336. /* Read both LEB 0 and LEB 1 into memory */
  337. ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
  338. leb[seb->lnum] = vmalloc(ubi->vtbl_size);
  339. if (!leb[seb->lnum]) {
  340. err = -ENOMEM;
  341. goto out_free;
  342. }
  343. memset(leb[seb->lnum], 0, ubi->vtbl_size);
  344. err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
  345. ubi->vtbl_size);
  346. if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
  347. /* Scrub the PEB later */
  348. seb->scrub = 1;
  349. else if (err)
  350. goto out_free;
  351. }
  352. err = -EINVAL;
  353. if (leb[0]) {
  354. leb_corrupted[0] = vtbl_check(ubi, leb[0]);
  355. if (leb_corrupted[0] < 0)
  356. goto out_free;
  357. }
  358. if (!leb_corrupted[0]) {
  359. /* LEB 0 is OK */
  360. if (leb[1])
  361. leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
  362. if (leb_corrupted[1]) {
  363. ubi_warn("volume table copy #2 is corrupted");
  364. err = create_vtbl(ubi, si, 1, leb[0]);
  365. if (err)
  366. goto out_free;
  367. ubi_msg("volume table was restored");
  368. }
  369. /* Both LEB 1 and LEB 2 are OK and consistent */
  370. vfree(leb[1]);
  371. return leb[0];
  372. } else {
  373. /* LEB 0 is corrupted or does not exist */
  374. if (leb[1]) {
  375. leb_corrupted[1] = vtbl_check(ubi, leb[1]);
  376. if (leb_corrupted[1] < 0)
  377. goto out_free;
  378. }
  379. if (leb_corrupted[1]) {
  380. /* Both LEB 0 and LEB 1 are corrupted */
  381. ubi_err("both volume tables are corrupted");
  382. goto out_free;
  383. }
  384. ubi_warn("volume table copy #1 is corrupted");
  385. err = create_vtbl(ubi, si, 0, leb[1]);
  386. if (err)
  387. goto out_free;
  388. ubi_msg("volume table was restored");
  389. vfree(leb[0]);
  390. return leb[1];
  391. }
  392. out_free:
  393. vfree(leb[0]);
  394. vfree(leb[1]);
  395. return ERR_PTR(err);
  396. }
  397. /**
  398. * create_empty_lvol - create empty layout volume.
  399. * @ubi: UBI device description object
  400. * @si: scanning information
  401. *
  402. * This function returns volume table contents in case of success and a
  403. * negative error code in case of failure.
  404. */
  405. static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
  406. struct ubi_scan_info *si)
  407. {
  408. int i;
  409. struct ubi_vtbl_record *vtbl;
  410. vtbl = vmalloc(ubi->vtbl_size);
  411. if (!vtbl)
  412. return ERR_PTR(-ENOMEM);
  413. memset(vtbl, 0, ubi->vtbl_size);
  414. for (i = 0; i < ubi->vtbl_slots; i++)
  415. memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
  416. for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
  417. int err;
  418. err = create_vtbl(ubi, si, i, vtbl);
  419. if (err) {
  420. vfree(vtbl);
  421. return ERR_PTR(err);
  422. }
  423. }
  424. return vtbl;
  425. }
  426. /**
  427. * init_volumes - initialize volume information for existing volumes.
  428. * @ubi: UBI device description object
  429. * @si: scanning information
  430. * @vtbl: volume table
  431. *
  432. * This function allocates volume description objects for existing volumes.
  433. * Returns zero in case of success and a negative error code in case of
  434. * failure.
  435. */
  436. static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
  437. const struct ubi_vtbl_record *vtbl)
  438. {
  439. int i, reserved_pebs = 0;
  440. struct ubi_scan_volume *sv;
  441. struct ubi_volume *vol;
  442. for (i = 0; i < ubi->vtbl_slots; i++) {
  443. cond_resched();
  444. if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
  445. continue; /* Empty record */
  446. vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
  447. if (!vol)
  448. return -ENOMEM;
  449. vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
  450. vol->alignment = be32_to_cpu(vtbl[i].alignment);
  451. vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
  452. vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
  453. UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
  454. vol->name_len = be16_to_cpu(vtbl[i].name_len);
  455. vol->usable_leb_size = ubi->leb_size - vol->data_pad;
  456. memcpy(vol->name, vtbl[i].name, vol->name_len);
  457. vol->name[vol->name_len] = '\0';
  458. vol->vol_id = i;
  459. ubi_assert(!ubi->volumes[i]);
  460. ubi->volumes[i] = vol;
  461. ubi->vol_count += 1;
  462. vol->ubi = ubi;
  463. reserved_pebs += vol->reserved_pebs;
  464. /*
  465. * In case of dynamic volume UBI knows nothing about how many
  466. * data is stored there. So assume the whole volume is used.
  467. */
  468. if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
  469. vol->used_ebs = vol->reserved_pebs;
  470. vol->last_eb_bytes = vol->usable_leb_size;
  471. vol->used_bytes =
  472. (long long)vol->used_ebs * vol->usable_leb_size;
  473. continue;
  474. }
  475. /* Static volumes only */
  476. sv = ubi_scan_find_sv(si, i);
  477. if (!sv) {
  478. /*
  479. * No eraseblocks belonging to this volume found. We
  480. * don't actually know whether this static volume is
  481. * completely corrupted or just contains no data. And
  482. * we cannot know this as long as data size is not
  483. * stored on flash. So we just assume the volume is
  484. * empty. FIXME: this should be handled.
  485. */
  486. continue;
  487. }
  488. if (sv->leb_count != sv->used_ebs) {
  489. /*
  490. * We found a static volume which misses several
  491. * eraseblocks. Treat it as corrupted.
  492. */
  493. ubi_warn("static volume %d misses %d LEBs - corrupted",
  494. sv->vol_id, sv->used_ebs - sv->leb_count);
  495. vol->corrupted = 1;
  496. continue;
  497. }
  498. vol->used_ebs = sv->used_ebs;
  499. vol->used_bytes =
  500. (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
  501. vol->used_bytes += sv->last_data_size;
  502. vol->last_eb_bytes = sv->last_data_size;
  503. }
  504. vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
  505. if (!vol)
  506. return -ENOMEM;
  507. vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
  508. vol->alignment = 1;
  509. vol->vol_type = UBI_DYNAMIC_VOLUME;
  510. vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
  511. memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
  512. vol->usable_leb_size = ubi->leb_size;
  513. vol->used_ebs = vol->reserved_pebs;
  514. vol->last_eb_bytes = vol->reserved_pebs;
  515. vol->used_bytes =
  516. (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
  517. vol->vol_id = UBI_LAYOUT_VOL_ID;
  518. ubi_assert(!ubi->volumes[i]);
  519. ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
  520. reserved_pebs += vol->reserved_pebs;
  521. ubi->vol_count += 1;
  522. vol->ubi = ubi;
  523. if (reserved_pebs > ubi->avail_pebs)
  524. ubi_err("not enough PEBs, required %d, available %d",
  525. reserved_pebs, ubi->avail_pebs);
  526. ubi->rsvd_pebs += reserved_pebs;
  527. ubi->avail_pebs -= reserved_pebs;
  528. return 0;
  529. }
  530. /**
  531. * check_sv - check volume scanning information.
  532. * @vol: UBI volume description object
  533. * @sv: volume scanning information
  534. *
  535. * This function returns zero if the volume scanning information is consistent
  536. * to the data read from the volume tabla, and %-EINVAL if not.
  537. */
  538. static int check_sv(const struct ubi_volume *vol,
  539. const struct ubi_scan_volume *sv)
  540. {
  541. if (sv->highest_lnum >= vol->reserved_pebs) {
  542. dbg_err("bad highest_lnum");
  543. goto bad;
  544. }
  545. if (sv->leb_count > vol->reserved_pebs) {
  546. dbg_err("bad leb_count");
  547. goto bad;
  548. }
  549. if (sv->vol_type != vol->vol_type) {
  550. dbg_err("bad vol_type");
  551. goto bad;
  552. }
  553. if (sv->used_ebs > vol->reserved_pebs) {
  554. dbg_err("bad used_ebs");
  555. goto bad;
  556. }
  557. if (sv->data_pad != vol->data_pad) {
  558. dbg_err("bad data_pad");
  559. goto bad;
  560. }
  561. return 0;
  562. bad:
  563. ubi_err("bad scanning information");
  564. ubi_dbg_dump_sv(sv);
  565. ubi_dbg_dump_vol_info(vol);
  566. return -EINVAL;
  567. }
  568. /**
  569. * check_scanning_info - check that scanning information.
  570. * @ubi: UBI device description object
  571. * @si: scanning information
  572. *
  573. * Even though we protect on-flash data by CRC checksums, we still don't trust
  574. * the media. This function ensures that scanning information is consistent to
  575. * the information read from the volume table. Returns zero if the scanning
  576. * information is OK and %-EINVAL if it is not.
  577. */
  578. static int check_scanning_info(const struct ubi_device *ubi,
  579. struct ubi_scan_info *si)
  580. {
  581. int err, i;
  582. struct ubi_scan_volume *sv;
  583. struct ubi_volume *vol;
  584. if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
  585. ubi_err("scanning found %d volumes, maximum is %d + %d",
  586. si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
  587. return -EINVAL;
  588. }
  589. if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&&
  590. si->highest_vol_id < UBI_INTERNAL_VOL_START) {
  591. ubi_err("too large volume ID %d found by scanning",
  592. si->highest_vol_id);
  593. return -EINVAL;
  594. }
  595. for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
  596. cond_resched();
  597. sv = ubi_scan_find_sv(si, i);
  598. vol = ubi->volumes[i];
  599. if (!vol) {
  600. if (sv)
  601. ubi_scan_rm_volume(si, sv);
  602. continue;
  603. }
  604. if (vol->reserved_pebs == 0) {
  605. ubi_assert(i < ubi->vtbl_slots);
  606. if (!sv)
  607. continue;
  608. /*
  609. * During scanning we found a volume which does not
  610. * exist according to the information in the volume
  611. * table. This must have happened due to an unclean
  612. * reboot while the volume was being removed. Discard
  613. * these eraseblocks.
  614. */
  615. ubi_msg("finish volume %d removal", sv->vol_id);
  616. ubi_scan_rm_volume(si, sv);
  617. } else if (sv) {
  618. err = check_sv(vol, sv);
  619. if (err)
  620. return err;
  621. }
  622. }
  623. return 0;
  624. }
  625. /**
  626. * ubi_read_volume_table - read volume table.
  627. * information.
  628. * @ubi: UBI device description object
  629. * @si: scanning information
  630. *
  631. * This function reads volume table, checks it, recover from errors if needed,
  632. * or creates it if needed. Returns zero in case of success and a negative
  633. * error code in case of failure.
  634. */
  635. int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
  636. {
  637. int i, err;
  638. struct ubi_scan_volume *sv;
  639. empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
  640. /*
  641. * The number of supported volumes is limited by the eraseblock size
  642. * and by the UBI_MAX_VOLUMES constant.
  643. */
  644. ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
  645. if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
  646. ubi->vtbl_slots = UBI_MAX_VOLUMES;
  647. ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
  648. ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
  649. sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
  650. if (!sv) {
  651. /*
  652. * No logical eraseblocks belonging to the layout volume were
  653. * found. This could mean that the flash is just empty. In
  654. * this case we create empty layout volume.
  655. *
  656. * But if flash is not empty this must be a corruption or the
  657. * MTD device just contains garbage.
  658. */
  659. if (si->is_empty) {
  660. ubi->vtbl = create_empty_lvol(ubi, si);
  661. if (IS_ERR(ubi->vtbl))
  662. return PTR_ERR(ubi->vtbl);
  663. } else {
  664. ubi_err("the layout volume was not found");
  665. return -EINVAL;
  666. }
  667. } else {
  668. if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
  669. /* This must not happen with proper UBI images */
  670. dbg_err("too many LEBs (%d) in layout volume",
  671. sv->leb_count);
  672. return -EINVAL;
  673. }
  674. ubi->vtbl = process_lvol(ubi, si, sv);
  675. if (IS_ERR(ubi->vtbl))
  676. return PTR_ERR(ubi->vtbl);
  677. }
  678. ubi->avail_pebs = ubi->good_peb_count;
  679. /*
  680. * The layout volume is OK, initialize the corresponding in-RAM data
  681. * structures.
  682. */
  683. err = init_volumes(ubi, si, ubi->vtbl);
  684. if (err)
  685. goto out_free;
  686. /*
  687. * Get sure that the scanning information is consistent to the
  688. * information stored in the volume table.
  689. */
  690. err = check_scanning_info(ubi, si);
  691. if (err)
  692. goto out_free;
  693. return 0;
  694. out_free:
  695. vfree(ubi->vtbl);
  696. for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
  697. if (ubi->volumes[i]) {
  698. kfree(ubi->volumes[i]);
  699. ubi->volumes[i] = NULL;
  700. }
  701. return err;
  702. }
  703. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  704. /**
  705. * paranoid_vtbl_check - check volume table.
  706. * @ubi: UBI device description object
  707. */
  708. static void paranoid_vtbl_check(const struct ubi_device *ubi)
  709. {
  710. if (vtbl_check(ubi, ubi->vtbl)) {
  711. ubi_err("paranoid check failed");
  712. BUG();
  713. }
  714. }
  715. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */