raid5.c 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741
  1. /*
  2. * raid5.c : Multiple Devices driver for Linux
  3. * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  4. * Copyright (C) 1999, 2000 Ingo Molnar
  5. * Copyright (C) 2002, 2003 H. Peter Anvin
  6. *
  7. * RAID-4/5/6 management functions.
  8. * Thanks to Penguin Computing for making the RAID-6 development possible
  9. * by donating a test server!
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2, or (at your option)
  14. * any later version.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * (for example /usr/src/linux/COPYING); if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. /*
  21. * BITMAP UNPLUGGING:
  22. *
  23. * The sequencing for updating the bitmap reliably is a little
  24. * subtle (and I got it wrong the first time) so it deserves some
  25. * explanation.
  26. *
  27. * We group bitmap updates into batches. Each batch has a number.
  28. * We may write out several batches at once, but that isn't very important.
  29. * conf->bm_write is the number of the last batch successfully written.
  30. * conf->bm_flush is the number of the last batch that was closed to
  31. * new additions.
  32. * When we discover that we will need to write to any block in a stripe
  33. * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  34. * the number of the batch it will be in. This is bm_flush+1.
  35. * When we are ready to do a write, if that batch hasn't been written yet,
  36. * we plug the array and queue the stripe for later.
  37. * When an unplug happens, we increment bm_flush, thus closing the current
  38. * batch.
  39. * When we notice that bm_flush > bm_write, we write out all pending updates
  40. * to the bitmap, and advance bm_write to where bm_flush was.
  41. * This may occasionally write a bit out twice, but is sure never to
  42. * miss any bits.
  43. */
  44. #include <linux/module.h>
  45. #include <linux/slab.h>
  46. #include <linux/highmem.h>
  47. #include <linux/bitops.h>
  48. #include <linux/kthread.h>
  49. #include <asm/atomic.h>
  50. #include "raid6.h"
  51. #include <linux/raid/bitmap.h>
  52. #include <linux/async_tx.h>
  53. /*
  54. * Stripe cache
  55. */
  56. #define NR_STRIPES 256
  57. #define STRIPE_SIZE PAGE_SIZE
  58. #define STRIPE_SHIFT (PAGE_SHIFT - 9)
  59. #define STRIPE_SECTORS (STRIPE_SIZE>>9)
  60. #define IO_THRESHOLD 1
  61. #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
  62. #define HASH_MASK (NR_HASH - 1)
  63. #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
  64. /* bio's attached to a stripe+device for I/O are linked together in bi_sector
  65. * order without overlap. There may be several bio's per stripe+device, and
  66. * a bio could span several devices.
  67. * When walking this list for a particular stripe+device, we must never proceed
  68. * beyond a bio that extends past this device, as the next bio might no longer
  69. * be valid.
  70. * This macro is used to determine the 'next' bio in the list, given the sector
  71. * of the current stripe+device
  72. */
  73. #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
  74. /*
  75. * The following can be used to debug the driver
  76. */
  77. #define RAID5_PARANOIA 1
  78. #if RAID5_PARANOIA && defined(CONFIG_SMP)
  79. # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
  80. #else
  81. # define CHECK_DEVLOCK()
  82. #endif
  83. #ifdef DEBUG
  84. #define inline
  85. #define __inline__
  86. #endif
  87. #if !RAID6_USE_EMPTY_ZERO_PAGE
  88. /* In .bss so it's zeroed */
  89. const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
  90. #endif
  91. static inline int raid6_next_disk(int disk, int raid_disks)
  92. {
  93. disk++;
  94. return (disk < raid_disks) ? disk : 0;
  95. }
  96. static void return_io(struct bio *return_bi)
  97. {
  98. struct bio *bi = return_bi;
  99. while (bi) {
  100. return_bi = bi->bi_next;
  101. bi->bi_next = NULL;
  102. bi->bi_size = 0;
  103. bi->bi_end_io(bi,
  104. test_bit(BIO_UPTODATE, &bi->bi_flags)
  105. ? 0 : -EIO);
  106. bi = return_bi;
  107. }
  108. }
  109. static void print_raid5_conf (raid5_conf_t *conf);
  110. static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
  111. {
  112. if (atomic_dec_and_test(&sh->count)) {
  113. BUG_ON(!list_empty(&sh->lru));
  114. BUG_ON(atomic_read(&conf->active_stripes)==0);
  115. if (test_bit(STRIPE_HANDLE, &sh->state)) {
  116. if (test_bit(STRIPE_DELAYED, &sh->state)) {
  117. list_add_tail(&sh->lru, &conf->delayed_list);
  118. blk_plug_device(conf->mddev->queue);
  119. } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
  120. sh->bm_seq - conf->seq_write > 0) {
  121. list_add_tail(&sh->lru, &conf->bitmap_list);
  122. blk_plug_device(conf->mddev->queue);
  123. } else {
  124. clear_bit(STRIPE_BIT_DELAY, &sh->state);
  125. list_add_tail(&sh->lru, &conf->handle_list);
  126. }
  127. md_wakeup_thread(conf->mddev->thread);
  128. } else {
  129. BUG_ON(sh->ops.pending);
  130. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  131. atomic_dec(&conf->preread_active_stripes);
  132. if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
  133. md_wakeup_thread(conf->mddev->thread);
  134. }
  135. atomic_dec(&conf->active_stripes);
  136. if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
  137. list_add_tail(&sh->lru, &conf->inactive_list);
  138. wake_up(&conf->wait_for_stripe);
  139. if (conf->retry_read_aligned)
  140. md_wakeup_thread(conf->mddev->thread);
  141. }
  142. }
  143. }
  144. }
  145. static void release_stripe(struct stripe_head *sh)
  146. {
  147. raid5_conf_t *conf = sh->raid_conf;
  148. unsigned long flags;
  149. spin_lock_irqsave(&conf->device_lock, flags);
  150. __release_stripe(conf, sh);
  151. spin_unlock_irqrestore(&conf->device_lock, flags);
  152. }
  153. static inline void remove_hash(struct stripe_head *sh)
  154. {
  155. pr_debug("remove_hash(), stripe %llu\n",
  156. (unsigned long long)sh->sector);
  157. hlist_del_init(&sh->hash);
  158. }
  159. static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
  160. {
  161. struct hlist_head *hp = stripe_hash(conf, sh->sector);
  162. pr_debug("insert_hash(), stripe %llu\n",
  163. (unsigned long long)sh->sector);
  164. CHECK_DEVLOCK();
  165. hlist_add_head(&sh->hash, hp);
  166. }
  167. /* find an idle stripe, make sure it is unhashed, and return it. */
  168. static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
  169. {
  170. struct stripe_head *sh = NULL;
  171. struct list_head *first;
  172. CHECK_DEVLOCK();
  173. if (list_empty(&conf->inactive_list))
  174. goto out;
  175. first = conf->inactive_list.next;
  176. sh = list_entry(first, struct stripe_head, lru);
  177. list_del_init(first);
  178. remove_hash(sh);
  179. atomic_inc(&conf->active_stripes);
  180. out:
  181. return sh;
  182. }
  183. static void shrink_buffers(struct stripe_head *sh, int num)
  184. {
  185. struct page *p;
  186. int i;
  187. for (i=0; i<num ; i++) {
  188. p = sh->dev[i].page;
  189. if (!p)
  190. continue;
  191. sh->dev[i].page = NULL;
  192. put_page(p);
  193. }
  194. }
  195. static int grow_buffers(struct stripe_head *sh, int num)
  196. {
  197. int i;
  198. for (i=0; i<num; i++) {
  199. struct page *page;
  200. if (!(page = alloc_page(GFP_KERNEL))) {
  201. return 1;
  202. }
  203. sh->dev[i].page = page;
  204. }
  205. return 0;
  206. }
  207. static void raid5_build_block (struct stripe_head *sh, int i);
  208. static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
  209. {
  210. raid5_conf_t *conf = sh->raid_conf;
  211. int i;
  212. BUG_ON(atomic_read(&sh->count) != 0);
  213. BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
  214. BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
  215. CHECK_DEVLOCK();
  216. pr_debug("init_stripe called, stripe %llu\n",
  217. (unsigned long long)sh->sector);
  218. remove_hash(sh);
  219. sh->sector = sector;
  220. sh->pd_idx = pd_idx;
  221. sh->state = 0;
  222. sh->disks = disks;
  223. for (i = sh->disks; i--; ) {
  224. struct r5dev *dev = &sh->dev[i];
  225. if (dev->toread || dev->read || dev->towrite || dev->written ||
  226. test_bit(R5_LOCKED, &dev->flags)) {
  227. printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
  228. (unsigned long long)sh->sector, i, dev->toread,
  229. dev->read, dev->towrite, dev->written,
  230. test_bit(R5_LOCKED, &dev->flags));
  231. BUG();
  232. }
  233. dev->flags = 0;
  234. raid5_build_block(sh, i);
  235. }
  236. insert_hash(conf, sh);
  237. }
  238. static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
  239. {
  240. struct stripe_head *sh;
  241. struct hlist_node *hn;
  242. CHECK_DEVLOCK();
  243. pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
  244. hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
  245. if (sh->sector == sector && sh->disks == disks)
  246. return sh;
  247. pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
  248. return NULL;
  249. }
  250. static void unplug_slaves(mddev_t *mddev);
  251. static void raid5_unplug_device(struct request_queue *q);
  252. static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
  253. int pd_idx, int noblock)
  254. {
  255. struct stripe_head *sh;
  256. pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
  257. spin_lock_irq(&conf->device_lock);
  258. do {
  259. wait_event_lock_irq(conf->wait_for_stripe,
  260. conf->quiesce == 0,
  261. conf->device_lock, /* nothing */);
  262. sh = __find_stripe(conf, sector, disks);
  263. if (!sh) {
  264. if (!conf->inactive_blocked)
  265. sh = get_free_stripe(conf);
  266. if (noblock && sh == NULL)
  267. break;
  268. if (!sh) {
  269. conf->inactive_blocked = 1;
  270. wait_event_lock_irq(conf->wait_for_stripe,
  271. !list_empty(&conf->inactive_list) &&
  272. (atomic_read(&conf->active_stripes)
  273. < (conf->max_nr_stripes *3/4)
  274. || !conf->inactive_blocked),
  275. conf->device_lock,
  276. raid5_unplug_device(conf->mddev->queue)
  277. );
  278. conf->inactive_blocked = 0;
  279. } else
  280. init_stripe(sh, sector, pd_idx, disks);
  281. } else {
  282. if (atomic_read(&sh->count)) {
  283. BUG_ON(!list_empty(&sh->lru));
  284. } else {
  285. if (!test_bit(STRIPE_HANDLE, &sh->state))
  286. atomic_inc(&conf->active_stripes);
  287. if (list_empty(&sh->lru) &&
  288. !test_bit(STRIPE_EXPANDING, &sh->state))
  289. BUG();
  290. list_del_init(&sh->lru);
  291. }
  292. }
  293. } while (sh == NULL);
  294. if (sh)
  295. atomic_inc(&sh->count);
  296. spin_unlock_irq(&conf->device_lock);
  297. return sh;
  298. }
  299. /* test_and_ack_op() ensures that we only dequeue an operation once */
  300. #define test_and_ack_op(op, pend) \
  301. do { \
  302. if (test_bit(op, &sh->ops.pending) && \
  303. !test_bit(op, &sh->ops.complete)) { \
  304. if (test_and_set_bit(op, &sh->ops.ack)) \
  305. clear_bit(op, &pend); \
  306. else \
  307. ack++; \
  308. } else \
  309. clear_bit(op, &pend); \
  310. } while (0)
  311. /* find new work to run, do not resubmit work that is already
  312. * in flight
  313. */
  314. static unsigned long get_stripe_work(struct stripe_head *sh)
  315. {
  316. unsigned long pending;
  317. int ack = 0;
  318. pending = sh->ops.pending;
  319. test_and_ack_op(STRIPE_OP_BIOFILL, pending);
  320. test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
  321. test_and_ack_op(STRIPE_OP_PREXOR, pending);
  322. test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
  323. test_and_ack_op(STRIPE_OP_POSTXOR, pending);
  324. test_and_ack_op(STRIPE_OP_CHECK, pending);
  325. if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
  326. ack++;
  327. sh->ops.count -= ack;
  328. BUG_ON(sh->ops.count < 0);
  329. return pending;
  330. }
  331. static void
  332. raid5_end_read_request(struct bio *bi, int error);
  333. static void
  334. raid5_end_write_request(struct bio *bi, int error);
  335. static void ops_run_io(struct stripe_head *sh)
  336. {
  337. raid5_conf_t *conf = sh->raid_conf;
  338. int i, disks = sh->disks;
  339. might_sleep();
  340. for (i = disks; i--; ) {
  341. int rw;
  342. struct bio *bi;
  343. mdk_rdev_t *rdev;
  344. if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
  345. rw = WRITE;
  346. else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
  347. rw = READ;
  348. else
  349. continue;
  350. bi = &sh->dev[i].req;
  351. bi->bi_rw = rw;
  352. if (rw == WRITE)
  353. bi->bi_end_io = raid5_end_write_request;
  354. else
  355. bi->bi_end_io = raid5_end_read_request;
  356. rcu_read_lock();
  357. rdev = rcu_dereference(conf->disks[i].rdev);
  358. if (rdev && test_bit(Faulty, &rdev->flags))
  359. rdev = NULL;
  360. if (rdev)
  361. atomic_inc(&rdev->nr_pending);
  362. rcu_read_unlock();
  363. if (rdev) {
  364. if (test_bit(STRIPE_SYNCING, &sh->state) ||
  365. test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
  366. test_bit(STRIPE_EXPAND_READY, &sh->state))
  367. md_sync_acct(rdev->bdev, STRIPE_SECTORS);
  368. bi->bi_bdev = rdev->bdev;
  369. pr_debug("%s: for %llu schedule op %ld on disc %d\n",
  370. __FUNCTION__, (unsigned long long)sh->sector,
  371. bi->bi_rw, i);
  372. atomic_inc(&sh->count);
  373. bi->bi_sector = sh->sector + rdev->data_offset;
  374. bi->bi_flags = 1 << BIO_UPTODATE;
  375. bi->bi_vcnt = 1;
  376. bi->bi_max_vecs = 1;
  377. bi->bi_idx = 0;
  378. bi->bi_io_vec = &sh->dev[i].vec;
  379. bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
  380. bi->bi_io_vec[0].bv_offset = 0;
  381. bi->bi_size = STRIPE_SIZE;
  382. bi->bi_next = NULL;
  383. if (rw == WRITE &&
  384. test_bit(R5_ReWrite, &sh->dev[i].flags))
  385. atomic_add(STRIPE_SECTORS,
  386. &rdev->corrected_errors);
  387. generic_make_request(bi);
  388. } else {
  389. if (rw == WRITE)
  390. set_bit(STRIPE_DEGRADED, &sh->state);
  391. pr_debug("skip op %ld on disc %d for sector %llu\n",
  392. bi->bi_rw, i, (unsigned long long)sh->sector);
  393. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  394. set_bit(STRIPE_HANDLE, &sh->state);
  395. }
  396. }
  397. }
  398. static struct dma_async_tx_descriptor *
  399. async_copy_data(int frombio, struct bio *bio, struct page *page,
  400. sector_t sector, struct dma_async_tx_descriptor *tx)
  401. {
  402. struct bio_vec *bvl;
  403. struct page *bio_page;
  404. int i;
  405. int page_offset;
  406. if (bio->bi_sector >= sector)
  407. page_offset = (signed)(bio->bi_sector - sector) * 512;
  408. else
  409. page_offset = (signed)(sector - bio->bi_sector) * -512;
  410. bio_for_each_segment(bvl, bio, i) {
  411. int len = bio_iovec_idx(bio, i)->bv_len;
  412. int clen;
  413. int b_offset = 0;
  414. if (page_offset < 0) {
  415. b_offset = -page_offset;
  416. page_offset += b_offset;
  417. len -= b_offset;
  418. }
  419. if (len > 0 && page_offset + len > STRIPE_SIZE)
  420. clen = STRIPE_SIZE - page_offset;
  421. else
  422. clen = len;
  423. if (clen > 0) {
  424. b_offset += bio_iovec_idx(bio, i)->bv_offset;
  425. bio_page = bio_iovec_idx(bio, i)->bv_page;
  426. if (frombio)
  427. tx = async_memcpy(page, bio_page, page_offset,
  428. b_offset, clen,
  429. ASYNC_TX_DEP_ACK,
  430. tx, NULL, NULL);
  431. else
  432. tx = async_memcpy(bio_page, page, b_offset,
  433. page_offset, clen,
  434. ASYNC_TX_DEP_ACK,
  435. tx, NULL, NULL);
  436. }
  437. if (clen < len) /* hit end of page */
  438. break;
  439. page_offset += len;
  440. }
  441. return tx;
  442. }
  443. static void ops_complete_biofill(void *stripe_head_ref)
  444. {
  445. struct stripe_head *sh = stripe_head_ref;
  446. struct bio *return_bi = NULL;
  447. raid5_conf_t *conf = sh->raid_conf;
  448. int i;
  449. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  450. (unsigned long long)sh->sector);
  451. /* clear completed biofills */
  452. for (i = sh->disks; i--; ) {
  453. struct r5dev *dev = &sh->dev[i];
  454. /* acknowledge completion of a biofill operation */
  455. /* and check if we need to reply to a read request,
  456. * new R5_Wantfill requests are held off until
  457. * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
  458. */
  459. if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
  460. struct bio *rbi, *rbi2;
  461. /* The access to dev->read is outside of the
  462. * spin_lock_irq(&conf->device_lock), but is protected
  463. * by the STRIPE_OP_BIOFILL pending bit
  464. */
  465. BUG_ON(!dev->read);
  466. rbi = dev->read;
  467. dev->read = NULL;
  468. while (rbi && rbi->bi_sector <
  469. dev->sector + STRIPE_SECTORS) {
  470. rbi2 = r5_next_bio(rbi, dev->sector);
  471. spin_lock_irq(&conf->device_lock);
  472. if (--rbi->bi_phys_segments == 0) {
  473. rbi->bi_next = return_bi;
  474. return_bi = rbi;
  475. }
  476. spin_unlock_irq(&conf->device_lock);
  477. rbi = rbi2;
  478. }
  479. }
  480. }
  481. clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
  482. clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
  483. return_io(return_bi);
  484. set_bit(STRIPE_HANDLE, &sh->state);
  485. release_stripe(sh);
  486. }
  487. static void ops_run_biofill(struct stripe_head *sh)
  488. {
  489. struct dma_async_tx_descriptor *tx = NULL;
  490. raid5_conf_t *conf = sh->raid_conf;
  491. int i;
  492. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  493. (unsigned long long)sh->sector);
  494. for (i = sh->disks; i--; ) {
  495. struct r5dev *dev = &sh->dev[i];
  496. if (test_bit(R5_Wantfill, &dev->flags)) {
  497. struct bio *rbi;
  498. spin_lock_irq(&conf->device_lock);
  499. dev->read = rbi = dev->toread;
  500. dev->toread = NULL;
  501. spin_unlock_irq(&conf->device_lock);
  502. while (rbi && rbi->bi_sector <
  503. dev->sector + STRIPE_SECTORS) {
  504. tx = async_copy_data(0, rbi, dev->page,
  505. dev->sector, tx);
  506. rbi = r5_next_bio(rbi, dev->sector);
  507. }
  508. }
  509. }
  510. atomic_inc(&sh->count);
  511. async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
  512. ops_complete_biofill, sh);
  513. }
  514. static void ops_complete_compute5(void *stripe_head_ref)
  515. {
  516. struct stripe_head *sh = stripe_head_ref;
  517. int target = sh->ops.target;
  518. struct r5dev *tgt = &sh->dev[target];
  519. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  520. (unsigned long long)sh->sector);
  521. set_bit(R5_UPTODATE, &tgt->flags);
  522. BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
  523. clear_bit(R5_Wantcompute, &tgt->flags);
  524. set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
  525. set_bit(STRIPE_HANDLE, &sh->state);
  526. release_stripe(sh);
  527. }
  528. static struct dma_async_tx_descriptor *
  529. ops_run_compute5(struct stripe_head *sh, unsigned long pending)
  530. {
  531. /* kernel stack size limits the total number of disks */
  532. int disks = sh->disks;
  533. struct page *xor_srcs[disks];
  534. int target = sh->ops.target;
  535. struct r5dev *tgt = &sh->dev[target];
  536. struct page *xor_dest = tgt->page;
  537. int count = 0;
  538. struct dma_async_tx_descriptor *tx;
  539. int i;
  540. pr_debug("%s: stripe %llu block: %d\n",
  541. __FUNCTION__, (unsigned long long)sh->sector, target);
  542. BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
  543. for (i = disks; i--; )
  544. if (i != target)
  545. xor_srcs[count++] = sh->dev[i].page;
  546. atomic_inc(&sh->count);
  547. if (unlikely(count == 1))
  548. tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
  549. 0, NULL, ops_complete_compute5, sh);
  550. else
  551. tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
  552. ASYNC_TX_XOR_ZERO_DST, NULL,
  553. ops_complete_compute5, sh);
  554. /* ack now if postxor is not set to be run */
  555. if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
  556. async_tx_ack(tx);
  557. return tx;
  558. }
  559. static void ops_complete_prexor(void *stripe_head_ref)
  560. {
  561. struct stripe_head *sh = stripe_head_ref;
  562. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  563. (unsigned long long)sh->sector);
  564. set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
  565. }
  566. static struct dma_async_tx_descriptor *
  567. ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
  568. {
  569. /* kernel stack size limits the total number of disks */
  570. int disks = sh->disks;
  571. struct page *xor_srcs[disks];
  572. int count = 0, pd_idx = sh->pd_idx, i;
  573. /* existing parity data subtracted */
  574. struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
  575. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  576. (unsigned long long)sh->sector);
  577. for (i = disks; i--; ) {
  578. struct r5dev *dev = &sh->dev[i];
  579. /* Only process blocks that are known to be uptodate */
  580. if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
  581. xor_srcs[count++] = dev->page;
  582. }
  583. tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
  584. ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
  585. ops_complete_prexor, sh);
  586. return tx;
  587. }
  588. static struct dma_async_tx_descriptor *
  589. ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
  590. {
  591. int disks = sh->disks;
  592. int pd_idx = sh->pd_idx, i;
  593. /* check if prexor is active which means only process blocks
  594. * that are part of a read-modify-write (Wantprexor)
  595. */
  596. int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
  597. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  598. (unsigned long long)sh->sector);
  599. for (i = disks; i--; ) {
  600. struct r5dev *dev = &sh->dev[i];
  601. struct bio *chosen;
  602. int towrite;
  603. towrite = 0;
  604. if (prexor) { /* rmw */
  605. if (dev->towrite &&
  606. test_bit(R5_Wantprexor, &dev->flags))
  607. towrite = 1;
  608. } else { /* rcw */
  609. if (i != pd_idx && dev->towrite &&
  610. test_bit(R5_LOCKED, &dev->flags))
  611. towrite = 1;
  612. }
  613. if (towrite) {
  614. struct bio *wbi;
  615. spin_lock(&sh->lock);
  616. chosen = dev->towrite;
  617. dev->towrite = NULL;
  618. BUG_ON(dev->written);
  619. wbi = dev->written = chosen;
  620. spin_unlock(&sh->lock);
  621. while (wbi && wbi->bi_sector <
  622. dev->sector + STRIPE_SECTORS) {
  623. tx = async_copy_data(1, wbi, dev->page,
  624. dev->sector, tx);
  625. wbi = r5_next_bio(wbi, dev->sector);
  626. }
  627. }
  628. }
  629. return tx;
  630. }
  631. static void ops_complete_postxor(void *stripe_head_ref)
  632. {
  633. struct stripe_head *sh = stripe_head_ref;
  634. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  635. (unsigned long long)sh->sector);
  636. set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
  637. set_bit(STRIPE_HANDLE, &sh->state);
  638. release_stripe(sh);
  639. }
  640. static void ops_complete_write(void *stripe_head_ref)
  641. {
  642. struct stripe_head *sh = stripe_head_ref;
  643. int disks = sh->disks, i, pd_idx = sh->pd_idx;
  644. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  645. (unsigned long long)sh->sector);
  646. for (i = disks; i--; ) {
  647. struct r5dev *dev = &sh->dev[i];
  648. if (dev->written || i == pd_idx)
  649. set_bit(R5_UPTODATE, &dev->flags);
  650. }
  651. set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
  652. set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
  653. set_bit(STRIPE_HANDLE, &sh->state);
  654. release_stripe(sh);
  655. }
  656. static void
  657. ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
  658. {
  659. /* kernel stack size limits the total number of disks */
  660. int disks = sh->disks;
  661. struct page *xor_srcs[disks];
  662. int count = 0, pd_idx = sh->pd_idx, i;
  663. struct page *xor_dest;
  664. int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
  665. unsigned long flags;
  666. dma_async_tx_callback callback;
  667. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  668. (unsigned long long)sh->sector);
  669. /* check if prexor is active which means only process blocks
  670. * that are part of a read-modify-write (written)
  671. */
  672. if (prexor) {
  673. xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
  674. for (i = disks; i--; ) {
  675. struct r5dev *dev = &sh->dev[i];
  676. if (dev->written)
  677. xor_srcs[count++] = dev->page;
  678. }
  679. } else {
  680. xor_dest = sh->dev[pd_idx].page;
  681. for (i = disks; i--; ) {
  682. struct r5dev *dev = &sh->dev[i];
  683. if (i != pd_idx)
  684. xor_srcs[count++] = dev->page;
  685. }
  686. }
  687. /* check whether this postxor is part of a write */
  688. callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
  689. ops_complete_write : ops_complete_postxor;
  690. /* 1/ if we prexor'd then the dest is reused as a source
  691. * 2/ if we did not prexor then we are redoing the parity
  692. * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
  693. * for the synchronous xor case
  694. */
  695. flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
  696. (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
  697. atomic_inc(&sh->count);
  698. if (unlikely(count == 1)) {
  699. flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
  700. tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
  701. flags, tx, callback, sh);
  702. } else
  703. tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
  704. flags, tx, callback, sh);
  705. }
  706. static void ops_complete_check(void *stripe_head_ref)
  707. {
  708. struct stripe_head *sh = stripe_head_ref;
  709. int pd_idx = sh->pd_idx;
  710. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  711. (unsigned long long)sh->sector);
  712. if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
  713. sh->ops.zero_sum_result == 0)
  714. set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  715. set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
  716. set_bit(STRIPE_HANDLE, &sh->state);
  717. release_stripe(sh);
  718. }
  719. static void ops_run_check(struct stripe_head *sh)
  720. {
  721. /* kernel stack size limits the total number of disks */
  722. int disks = sh->disks;
  723. struct page *xor_srcs[disks];
  724. struct dma_async_tx_descriptor *tx;
  725. int count = 0, pd_idx = sh->pd_idx, i;
  726. struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
  727. pr_debug("%s: stripe %llu\n", __FUNCTION__,
  728. (unsigned long long)sh->sector);
  729. for (i = disks; i--; ) {
  730. struct r5dev *dev = &sh->dev[i];
  731. if (i != pd_idx)
  732. xor_srcs[count++] = dev->page;
  733. }
  734. tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
  735. &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
  736. if (tx)
  737. set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
  738. else
  739. clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
  740. atomic_inc(&sh->count);
  741. tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
  742. ops_complete_check, sh);
  743. }
  744. static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
  745. {
  746. int overlap_clear = 0, i, disks = sh->disks;
  747. struct dma_async_tx_descriptor *tx = NULL;
  748. if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
  749. ops_run_biofill(sh);
  750. overlap_clear++;
  751. }
  752. if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
  753. tx = ops_run_compute5(sh, pending);
  754. if (test_bit(STRIPE_OP_PREXOR, &pending))
  755. tx = ops_run_prexor(sh, tx);
  756. if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
  757. tx = ops_run_biodrain(sh, tx);
  758. overlap_clear++;
  759. }
  760. if (test_bit(STRIPE_OP_POSTXOR, &pending))
  761. ops_run_postxor(sh, tx);
  762. if (test_bit(STRIPE_OP_CHECK, &pending))
  763. ops_run_check(sh);
  764. if (test_bit(STRIPE_OP_IO, &pending))
  765. ops_run_io(sh);
  766. if (overlap_clear)
  767. for (i = disks; i--; ) {
  768. struct r5dev *dev = &sh->dev[i];
  769. if (test_and_clear_bit(R5_Overlap, &dev->flags))
  770. wake_up(&sh->raid_conf->wait_for_overlap);
  771. }
  772. }
  773. static int grow_one_stripe(raid5_conf_t *conf)
  774. {
  775. struct stripe_head *sh;
  776. sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
  777. if (!sh)
  778. return 0;
  779. memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
  780. sh->raid_conf = conf;
  781. spin_lock_init(&sh->lock);
  782. if (grow_buffers(sh, conf->raid_disks)) {
  783. shrink_buffers(sh, conf->raid_disks);
  784. kmem_cache_free(conf->slab_cache, sh);
  785. return 0;
  786. }
  787. sh->disks = conf->raid_disks;
  788. /* we just created an active stripe so... */
  789. atomic_set(&sh->count, 1);
  790. atomic_inc(&conf->active_stripes);
  791. INIT_LIST_HEAD(&sh->lru);
  792. release_stripe(sh);
  793. return 1;
  794. }
  795. static int grow_stripes(raid5_conf_t *conf, int num)
  796. {
  797. struct kmem_cache *sc;
  798. int devs = conf->raid_disks;
  799. sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
  800. sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
  801. conf->active_name = 0;
  802. sc = kmem_cache_create(conf->cache_name[conf->active_name],
  803. sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
  804. 0, 0, NULL);
  805. if (!sc)
  806. return 1;
  807. conf->slab_cache = sc;
  808. conf->pool_size = devs;
  809. while (num--)
  810. if (!grow_one_stripe(conf))
  811. return 1;
  812. return 0;
  813. }
  814. #ifdef CONFIG_MD_RAID5_RESHAPE
  815. static int resize_stripes(raid5_conf_t *conf, int newsize)
  816. {
  817. /* Make all the stripes able to hold 'newsize' devices.
  818. * New slots in each stripe get 'page' set to a new page.
  819. *
  820. * This happens in stages:
  821. * 1/ create a new kmem_cache and allocate the required number of
  822. * stripe_heads.
  823. * 2/ gather all the old stripe_heads and tranfer the pages across
  824. * to the new stripe_heads. This will have the side effect of
  825. * freezing the array as once all stripe_heads have been collected,
  826. * no IO will be possible. Old stripe heads are freed once their
  827. * pages have been transferred over, and the old kmem_cache is
  828. * freed when all stripes are done.
  829. * 3/ reallocate conf->disks to be suitable bigger. If this fails,
  830. * we simple return a failre status - no need to clean anything up.
  831. * 4/ allocate new pages for the new slots in the new stripe_heads.
  832. * If this fails, we don't bother trying the shrink the
  833. * stripe_heads down again, we just leave them as they are.
  834. * As each stripe_head is processed the new one is released into
  835. * active service.
  836. *
  837. * Once step2 is started, we cannot afford to wait for a write,
  838. * so we use GFP_NOIO allocations.
  839. */
  840. struct stripe_head *osh, *nsh;
  841. LIST_HEAD(newstripes);
  842. struct disk_info *ndisks;
  843. int err = 0;
  844. struct kmem_cache *sc;
  845. int i;
  846. if (newsize <= conf->pool_size)
  847. return 0; /* never bother to shrink */
  848. md_allow_write(conf->mddev);
  849. /* Step 1 */
  850. sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
  851. sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
  852. 0, 0, NULL);
  853. if (!sc)
  854. return -ENOMEM;
  855. for (i = conf->max_nr_stripes; i; i--) {
  856. nsh = kmem_cache_alloc(sc, GFP_KERNEL);
  857. if (!nsh)
  858. break;
  859. memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
  860. nsh->raid_conf = conf;
  861. spin_lock_init(&nsh->lock);
  862. list_add(&nsh->lru, &newstripes);
  863. }
  864. if (i) {
  865. /* didn't get enough, give up */
  866. while (!list_empty(&newstripes)) {
  867. nsh = list_entry(newstripes.next, struct stripe_head, lru);
  868. list_del(&nsh->lru);
  869. kmem_cache_free(sc, nsh);
  870. }
  871. kmem_cache_destroy(sc);
  872. return -ENOMEM;
  873. }
  874. /* Step 2 - Must use GFP_NOIO now.
  875. * OK, we have enough stripes, start collecting inactive
  876. * stripes and copying them over
  877. */
  878. list_for_each_entry(nsh, &newstripes, lru) {
  879. spin_lock_irq(&conf->device_lock);
  880. wait_event_lock_irq(conf->wait_for_stripe,
  881. !list_empty(&conf->inactive_list),
  882. conf->device_lock,
  883. unplug_slaves(conf->mddev)
  884. );
  885. osh = get_free_stripe(conf);
  886. spin_unlock_irq(&conf->device_lock);
  887. atomic_set(&nsh->count, 1);
  888. for(i=0; i<conf->pool_size; i++)
  889. nsh->dev[i].page = osh->dev[i].page;
  890. for( ; i<newsize; i++)
  891. nsh->dev[i].page = NULL;
  892. kmem_cache_free(conf->slab_cache, osh);
  893. }
  894. kmem_cache_destroy(conf->slab_cache);
  895. /* Step 3.
  896. * At this point, we are holding all the stripes so the array
  897. * is completely stalled, so now is a good time to resize
  898. * conf->disks.
  899. */
  900. ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
  901. if (ndisks) {
  902. for (i=0; i<conf->raid_disks; i++)
  903. ndisks[i] = conf->disks[i];
  904. kfree(conf->disks);
  905. conf->disks = ndisks;
  906. } else
  907. err = -ENOMEM;
  908. /* Step 4, return new stripes to service */
  909. while(!list_empty(&newstripes)) {
  910. nsh = list_entry(newstripes.next, struct stripe_head, lru);
  911. list_del_init(&nsh->lru);
  912. for (i=conf->raid_disks; i < newsize; i++)
  913. if (nsh->dev[i].page == NULL) {
  914. struct page *p = alloc_page(GFP_NOIO);
  915. nsh->dev[i].page = p;
  916. if (!p)
  917. err = -ENOMEM;
  918. }
  919. release_stripe(nsh);
  920. }
  921. /* critical section pass, GFP_NOIO no longer needed */
  922. conf->slab_cache = sc;
  923. conf->active_name = 1-conf->active_name;
  924. conf->pool_size = newsize;
  925. return err;
  926. }
  927. #endif
  928. static int drop_one_stripe(raid5_conf_t *conf)
  929. {
  930. struct stripe_head *sh;
  931. spin_lock_irq(&conf->device_lock);
  932. sh = get_free_stripe(conf);
  933. spin_unlock_irq(&conf->device_lock);
  934. if (!sh)
  935. return 0;
  936. BUG_ON(atomic_read(&sh->count));
  937. shrink_buffers(sh, conf->pool_size);
  938. kmem_cache_free(conf->slab_cache, sh);
  939. atomic_dec(&conf->active_stripes);
  940. return 1;
  941. }
  942. static void shrink_stripes(raid5_conf_t *conf)
  943. {
  944. while (drop_one_stripe(conf))
  945. ;
  946. if (conf->slab_cache)
  947. kmem_cache_destroy(conf->slab_cache);
  948. conf->slab_cache = NULL;
  949. }
  950. static void raid5_end_read_request(struct bio * bi, int error)
  951. {
  952. struct stripe_head *sh = bi->bi_private;
  953. raid5_conf_t *conf = sh->raid_conf;
  954. int disks = sh->disks, i;
  955. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  956. char b[BDEVNAME_SIZE];
  957. mdk_rdev_t *rdev;
  958. for (i=0 ; i<disks; i++)
  959. if (bi == &sh->dev[i].req)
  960. break;
  961. pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
  962. (unsigned long long)sh->sector, i, atomic_read(&sh->count),
  963. uptodate);
  964. if (i == disks) {
  965. BUG();
  966. return;
  967. }
  968. if (uptodate) {
  969. set_bit(R5_UPTODATE, &sh->dev[i].flags);
  970. if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
  971. rdev = conf->disks[i].rdev;
  972. printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
  973. mdname(conf->mddev), STRIPE_SECTORS,
  974. (unsigned long long)sh->sector + rdev->data_offset,
  975. bdevname(rdev->bdev, b));
  976. clear_bit(R5_ReadError, &sh->dev[i].flags);
  977. clear_bit(R5_ReWrite, &sh->dev[i].flags);
  978. }
  979. if (atomic_read(&conf->disks[i].rdev->read_errors))
  980. atomic_set(&conf->disks[i].rdev->read_errors, 0);
  981. } else {
  982. const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
  983. int retry = 0;
  984. rdev = conf->disks[i].rdev;
  985. clear_bit(R5_UPTODATE, &sh->dev[i].flags);
  986. atomic_inc(&rdev->read_errors);
  987. if (conf->mddev->degraded)
  988. printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
  989. mdname(conf->mddev),
  990. (unsigned long long)sh->sector + rdev->data_offset,
  991. bdn);
  992. else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
  993. /* Oh, no!!! */
  994. printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
  995. mdname(conf->mddev),
  996. (unsigned long long)sh->sector + rdev->data_offset,
  997. bdn);
  998. else if (atomic_read(&rdev->read_errors)
  999. > conf->max_nr_stripes)
  1000. printk(KERN_WARNING
  1001. "raid5:%s: Too many read errors, failing device %s.\n",
  1002. mdname(conf->mddev), bdn);
  1003. else
  1004. retry = 1;
  1005. if (retry)
  1006. set_bit(R5_ReadError, &sh->dev[i].flags);
  1007. else {
  1008. clear_bit(R5_ReadError, &sh->dev[i].flags);
  1009. clear_bit(R5_ReWrite, &sh->dev[i].flags);
  1010. md_error(conf->mddev, rdev);
  1011. }
  1012. }
  1013. rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
  1014. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  1015. set_bit(STRIPE_HANDLE, &sh->state);
  1016. release_stripe(sh);
  1017. }
  1018. static void raid5_end_write_request (struct bio *bi, int error)
  1019. {
  1020. struct stripe_head *sh = bi->bi_private;
  1021. raid5_conf_t *conf = sh->raid_conf;
  1022. int disks = sh->disks, i;
  1023. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  1024. for (i=0 ; i<disks; i++)
  1025. if (bi == &sh->dev[i].req)
  1026. break;
  1027. pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
  1028. (unsigned long long)sh->sector, i, atomic_read(&sh->count),
  1029. uptodate);
  1030. if (i == disks) {
  1031. BUG();
  1032. return;
  1033. }
  1034. if (!uptodate)
  1035. md_error(conf->mddev, conf->disks[i].rdev);
  1036. rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
  1037. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  1038. set_bit(STRIPE_HANDLE, &sh->state);
  1039. release_stripe(sh);
  1040. }
  1041. static sector_t compute_blocknr(struct stripe_head *sh, int i);
  1042. static void raid5_build_block (struct stripe_head *sh, int i)
  1043. {
  1044. struct r5dev *dev = &sh->dev[i];
  1045. bio_init(&dev->req);
  1046. dev->req.bi_io_vec = &dev->vec;
  1047. dev->req.bi_vcnt++;
  1048. dev->req.bi_max_vecs++;
  1049. dev->vec.bv_page = dev->page;
  1050. dev->vec.bv_len = STRIPE_SIZE;
  1051. dev->vec.bv_offset = 0;
  1052. dev->req.bi_sector = sh->sector;
  1053. dev->req.bi_private = sh;
  1054. dev->flags = 0;
  1055. dev->sector = compute_blocknr(sh, i);
  1056. }
  1057. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  1058. {
  1059. char b[BDEVNAME_SIZE];
  1060. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  1061. pr_debug("raid5: error called\n");
  1062. if (!test_bit(Faulty, &rdev->flags)) {
  1063. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1064. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1065. unsigned long flags;
  1066. spin_lock_irqsave(&conf->device_lock, flags);
  1067. mddev->degraded++;
  1068. spin_unlock_irqrestore(&conf->device_lock, flags);
  1069. /*
  1070. * if recovery was running, make sure it aborts.
  1071. */
  1072. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  1073. }
  1074. set_bit(Faulty, &rdev->flags);
  1075. printk (KERN_ALERT
  1076. "raid5: Disk failure on %s, disabling device."
  1077. " Operation continuing on %d devices\n",
  1078. bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
  1079. }
  1080. }
  1081. /*
  1082. * Input: a 'big' sector number,
  1083. * Output: index of the data and parity disk, and the sector # in them.
  1084. */
  1085. static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
  1086. unsigned int data_disks, unsigned int * dd_idx,
  1087. unsigned int * pd_idx, raid5_conf_t *conf)
  1088. {
  1089. long stripe;
  1090. unsigned long chunk_number;
  1091. unsigned int chunk_offset;
  1092. sector_t new_sector;
  1093. int sectors_per_chunk = conf->chunk_size >> 9;
  1094. /* First compute the information on this sector */
  1095. /*
  1096. * Compute the chunk number and the sector offset inside the chunk
  1097. */
  1098. chunk_offset = sector_div(r_sector, sectors_per_chunk);
  1099. chunk_number = r_sector;
  1100. BUG_ON(r_sector != chunk_number);
  1101. /*
  1102. * Compute the stripe number
  1103. */
  1104. stripe = chunk_number / data_disks;
  1105. /*
  1106. * Compute the data disk and parity disk indexes inside the stripe
  1107. */
  1108. *dd_idx = chunk_number % data_disks;
  1109. /*
  1110. * Select the parity disk based on the user selected algorithm.
  1111. */
  1112. switch(conf->level) {
  1113. case 4:
  1114. *pd_idx = data_disks;
  1115. break;
  1116. case 5:
  1117. switch (conf->algorithm) {
  1118. case ALGORITHM_LEFT_ASYMMETRIC:
  1119. *pd_idx = data_disks - stripe % raid_disks;
  1120. if (*dd_idx >= *pd_idx)
  1121. (*dd_idx)++;
  1122. break;
  1123. case ALGORITHM_RIGHT_ASYMMETRIC:
  1124. *pd_idx = stripe % raid_disks;
  1125. if (*dd_idx >= *pd_idx)
  1126. (*dd_idx)++;
  1127. break;
  1128. case ALGORITHM_LEFT_SYMMETRIC:
  1129. *pd_idx = data_disks - stripe % raid_disks;
  1130. *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
  1131. break;
  1132. case ALGORITHM_RIGHT_SYMMETRIC:
  1133. *pd_idx = stripe % raid_disks;
  1134. *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
  1135. break;
  1136. default:
  1137. printk(KERN_ERR "raid5: unsupported algorithm %d\n",
  1138. conf->algorithm);
  1139. }
  1140. break;
  1141. case 6:
  1142. /**** FIX THIS ****/
  1143. switch (conf->algorithm) {
  1144. case ALGORITHM_LEFT_ASYMMETRIC:
  1145. *pd_idx = raid_disks - 1 - (stripe % raid_disks);
  1146. if (*pd_idx == raid_disks-1)
  1147. (*dd_idx)++; /* Q D D D P */
  1148. else if (*dd_idx >= *pd_idx)
  1149. (*dd_idx) += 2; /* D D P Q D */
  1150. break;
  1151. case ALGORITHM_RIGHT_ASYMMETRIC:
  1152. *pd_idx = stripe % raid_disks;
  1153. if (*pd_idx == raid_disks-1)
  1154. (*dd_idx)++; /* Q D D D P */
  1155. else if (*dd_idx >= *pd_idx)
  1156. (*dd_idx) += 2; /* D D P Q D */
  1157. break;
  1158. case ALGORITHM_LEFT_SYMMETRIC:
  1159. *pd_idx = raid_disks - 1 - (stripe % raid_disks);
  1160. *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
  1161. break;
  1162. case ALGORITHM_RIGHT_SYMMETRIC:
  1163. *pd_idx = stripe % raid_disks;
  1164. *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
  1165. break;
  1166. default:
  1167. printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
  1168. conf->algorithm);
  1169. }
  1170. break;
  1171. }
  1172. /*
  1173. * Finally, compute the new sector number
  1174. */
  1175. new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
  1176. return new_sector;
  1177. }
  1178. static sector_t compute_blocknr(struct stripe_head *sh, int i)
  1179. {
  1180. raid5_conf_t *conf = sh->raid_conf;
  1181. int raid_disks = sh->disks;
  1182. int data_disks = raid_disks - conf->max_degraded;
  1183. sector_t new_sector = sh->sector, check;
  1184. int sectors_per_chunk = conf->chunk_size >> 9;
  1185. sector_t stripe;
  1186. int chunk_offset;
  1187. int chunk_number, dummy1, dummy2, dd_idx = i;
  1188. sector_t r_sector;
  1189. chunk_offset = sector_div(new_sector, sectors_per_chunk);
  1190. stripe = new_sector;
  1191. BUG_ON(new_sector != stripe);
  1192. if (i == sh->pd_idx)
  1193. return 0;
  1194. switch(conf->level) {
  1195. case 4: break;
  1196. case 5:
  1197. switch (conf->algorithm) {
  1198. case ALGORITHM_LEFT_ASYMMETRIC:
  1199. case ALGORITHM_RIGHT_ASYMMETRIC:
  1200. if (i > sh->pd_idx)
  1201. i--;
  1202. break;
  1203. case ALGORITHM_LEFT_SYMMETRIC:
  1204. case ALGORITHM_RIGHT_SYMMETRIC:
  1205. if (i < sh->pd_idx)
  1206. i += raid_disks;
  1207. i -= (sh->pd_idx + 1);
  1208. break;
  1209. default:
  1210. printk(KERN_ERR "raid5: unsupported algorithm %d\n",
  1211. conf->algorithm);
  1212. }
  1213. break;
  1214. case 6:
  1215. if (i == raid6_next_disk(sh->pd_idx, raid_disks))
  1216. return 0; /* It is the Q disk */
  1217. switch (conf->algorithm) {
  1218. case ALGORITHM_LEFT_ASYMMETRIC:
  1219. case ALGORITHM_RIGHT_ASYMMETRIC:
  1220. if (sh->pd_idx == raid_disks-1)
  1221. i--; /* Q D D D P */
  1222. else if (i > sh->pd_idx)
  1223. i -= 2; /* D D P Q D */
  1224. break;
  1225. case ALGORITHM_LEFT_SYMMETRIC:
  1226. case ALGORITHM_RIGHT_SYMMETRIC:
  1227. if (sh->pd_idx == raid_disks-1)
  1228. i--; /* Q D D D P */
  1229. else {
  1230. /* D D P Q D */
  1231. if (i < sh->pd_idx)
  1232. i += raid_disks;
  1233. i -= (sh->pd_idx + 2);
  1234. }
  1235. break;
  1236. default:
  1237. printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
  1238. conf->algorithm);
  1239. }
  1240. break;
  1241. }
  1242. chunk_number = stripe * data_disks + i;
  1243. r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
  1244. check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
  1245. if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
  1246. printk(KERN_ERR "compute_blocknr: map not correct\n");
  1247. return 0;
  1248. }
  1249. return r_sector;
  1250. }
  1251. /*
  1252. * Copy data between a page in the stripe cache, and one or more bion
  1253. * The page could align with the middle of the bio, or there could be
  1254. * several bion, each with several bio_vecs, which cover part of the page
  1255. * Multiple bion are linked together on bi_next. There may be extras
  1256. * at the end of this list. We ignore them.
  1257. */
  1258. static void copy_data(int frombio, struct bio *bio,
  1259. struct page *page,
  1260. sector_t sector)
  1261. {
  1262. char *pa = page_address(page);
  1263. struct bio_vec *bvl;
  1264. int i;
  1265. int page_offset;
  1266. if (bio->bi_sector >= sector)
  1267. page_offset = (signed)(bio->bi_sector - sector) * 512;
  1268. else
  1269. page_offset = (signed)(sector - bio->bi_sector) * -512;
  1270. bio_for_each_segment(bvl, bio, i) {
  1271. int len = bio_iovec_idx(bio,i)->bv_len;
  1272. int clen;
  1273. int b_offset = 0;
  1274. if (page_offset < 0) {
  1275. b_offset = -page_offset;
  1276. page_offset += b_offset;
  1277. len -= b_offset;
  1278. }
  1279. if (len > 0 && page_offset + len > STRIPE_SIZE)
  1280. clen = STRIPE_SIZE - page_offset;
  1281. else clen = len;
  1282. if (clen > 0) {
  1283. char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
  1284. if (frombio)
  1285. memcpy(pa+page_offset, ba+b_offset, clen);
  1286. else
  1287. memcpy(ba+b_offset, pa+page_offset, clen);
  1288. __bio_kunmap_atomic(ba, KM_USER0);
  1289. }
  1290. if (clen < len) /* hit end of page */
  1291. break;
  1292. page_offset += len;
  1293. }
  1294. }
  1295. #define check_xor() do { \
  1296. if (count == MAX_XOR_BLOCKS) { \
  1297. xor_blocks(count, STRIPE_SIZE, dest, ptr);\
  1298. count = 0; \
  1299. } \
  1300. } while(0)
  1301. static void compute_parity6(struct stripe_head *sh, int method)
  1302. {
  1303. raid6_conf_t *conf = sh->raid_conf;
  1304. int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
  1305. struct bio *chosen;
  1306. /**** FIX THIS: This could be very bad if disks is close to 256 ****/
  1307. void *ptrs[disks];
  1308. qd_idx = raid6_next_disk(pd_idx, disks);
  1309. d0_idx = raid6_next_disk(qd_idx, disks);
  1310. pr_debug("compute_parity, stripe %llu, method %d\n",
  1311. (unsigned long long)sh->sector, method);
  1312. switch(method) {
  1313. case READ_MODIFY_WRITE:
  1314. BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
  1315. case RECONSTRUCT_WRITE:
  1316. for (i= disks; i-- ;)
  1317. if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
  1318. chosen = sh->dev[i].towrite;
  1319. sh->dev[i].towrite = NULL;
  1320. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  1321. wake_up(&conf->wait_for_overlap);
  1322. BUG_ON(sh->dev[i].written);
  1323. sh->dev[i].written = chosen;
  1324. }
  1325. break;
  1326. case CHECK_PARITY:
  1327. BUG(); /* Not implemented yet */
  1328. }
  1329. for (i = disks; i--;)
  1330. if (sh->dev[i].written) {
  1331. sector_t sector = sh->dev[i].sector;
  1332. struct bio *wbi = sh->dev[i].written;
  1333. while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
  1334. copy_data(1, wbi, sh->dev[i].page, sector);
  1335. wbi = r5_next_bio(wbi, sector);
  1336. }
  1337. set_bit(R5_LOCKED, &sh->dev[i].flags);
  1338. set_bit(R5_UPTODATE, &sh->dev[i].flags);
  1339. }
  1340. // switch(method) {
  1341. // case RECONSTRUCT_WRITE:
  1342. // case CHECK_PARITY:
  1343. // case UPDATE_PARITY:
  1344. /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
  1345. /* FIX: Is this ordering of drives even remotely optimal? */
  1346. count = 0;
  1347. i = d0_idx;
  1348. do {
  1349. ptrs[count++] = page_address(sh->dev[i].page);
  1350. if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
  1351. printk("block %d/%d not uptodate on parity calc\n", i,count);
  1352. i = raid6_next_disk(i, disks);
  1353. } while ( i != d0_idx );
  1354. // break;
  1355. // }
  1356. raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
  1357. switch(method) {
  1358. case RECONSTRUCT_WRITE:
  1359. set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  1360. set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
  1361. set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
  1362. set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
  1363. break;
  1364. case UPDATE_PARITY:
  1365. set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  1366. set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
  1367. break;
  1368. }
  1369. }
  1370. /* Compute one missing block */
  1371. static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
  1372. {
  1373. int i, count, disks = sh->disks;
  1374. void *ptr[MAX_XOR_BLOCKS], *dest, *p;
  1375. int pd_idx = sh->pd_idx;
  1376. int qd_idx = raid6_next_disk(pd_idx, disks);
  1377. pr_debug("compute_block_1, stripe %llu, idx %d\n",
  1378. (unsigned long long)sh->sector, dd_idx);
  1379. if ( dd_idx == qd_idx ) {
  1380. /* We're actually computing the Q drive */
  1381. compute_parity6(sh, UPDATE_PARITY);
  1382. } else {
  1383. dest = page_address(sh->dev[dd_idx].page);
  1384. if (!nozero) memset(dest, 0, STRIPE_SIZE);
  1385. count = 0;
  1386. for (i = disks ; i--; ) {
  1387. if (i == dd_idx || i == qd_idx)
  1388. continue;
  1389. p = page_address(sh->dev[i].page);
  1390. if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
  1391. ptr[count++] = p;
  1392. else
  1393. printk("compute_block() %d, stripe %llu, %d"
  1394. " not present\n", dd_idx,
  1395. (unsigned long long)sh->sector, i);
  1396. check_xor();
  1397. }
  1398. if (count)
  1399. xor_blocks(count, STRIPE_SIZE, dest, ptr);
  1400. if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
  1401. else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
  1402. }
  1403. }
  1404. /* Compute two missing blocks */
  1405. static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
  1406. {
  1407. int i, count, disks = sh->disks;
  1408. int pd_idx = sh->pd_idx;
  1409. int qd_idx = raid6_next_disk(pd_idx, disks);
  1410. int d0_idx = raid6_next_disk(qd_idx, disks);
  1411. int faila, failb;
  1412. /* faila and failb are disk numbers relative to d0_idx */
  1413. /* pd_idx become disks-2 and qd_idx become disks-1 */
  1414. faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
  1415. failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
  1416. BUG_ON(faila == failb);
  1417. if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
  1418. pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
  1419. (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
  1420. if ( failb == disks-1 ) {
  1421. /* Q disk is one of the missing disks */
  1422. if ( faila == disks-2 ) {
  1423. /* Missing P+Q, just recompute */
  1424. compute_parity6(sh, UPDATE_PARITY);
  1425. return;
  1426. } else {
  1427. /* We're missing D+Q; recompute D from P */
  1428. compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
  1429. compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
  1430. return;
  1431. }
  1432. }
  1433. /* We're missing D+P or D+D; build pointer table */
  1434. {
  1435. /**** FIX THIS: This could be very bad if disks is close to 256 ****/
  1436. void *ptrs[disks];
  1437. count = 0;
  1438. i = d0_idx;
  1439. do {
  1440. ptrs[count++] = page_address(sh->dev[i].page);
  1441. i = raid6_next_disk(i, disks);
  1442. if (i != dd_idx1 && i != dd_idx2 &&
  1443. !test_bit(R5_UPTODATE, &sh->dev[i].flags))
  1444. printk("compute_2 with missing block %d/%d\n", count, i);
  1445. } while ( i != d0_idx );
  1446. if ( failb == disks-2 ) {
  1447. /* We're missing D+P. */
  1448. raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
  1449. } else {
  1450. /* We're missing D+D. */
  1451. raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
  1452. }
  1453. /* Both the above update both missing blocks */
  1454. set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
  1455. set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
  1456. }
  1457. }
  1458. static int
  1459. handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
  1460. {
  1461. int i, pd_idx = sh->pd_idx, disks = sh->disks;
  1462. int locked = 0;
  1463. if (rcw) {
  1464. /* if we are not expanding this is a proper write request, and
  1465. * there will be bios with new data to be drained into the
  1466. * stripe cache
  1467. */
  1468. if (!expand) {
  1469. set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
  1470. sh->ops.count++;
  1471. }
  1472. set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
  1473. sh->ops.count++;
  1474. for (i = disks; i--; ) {
  1475. struct r5dev *dev = &sh->dev[i];
  1476. if (dev->towrite) {
  1477. set_bit(R5_LOCKED, &dev->flags);
  1478. if (!expand)
  1479. clear_bit(R5_UPTODATE, &dev->flags);
  1480. locked++;
  1481. }
  1482. }
  1483. } else {
  1484. BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
  1485. test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
  1486. set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
  1487. set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
  1488. set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
  1489. sh->ops.count += 3;
  1490. for (i = disks; i--; ) {
  1491. struct r5dev *dev = &sh->dev[i];
  1492. if (i == pd_idx)
  1493. continue;
  1494. /* For a read-modify write there may be blocks that are
  1495. * locked for reading while others are ready to be
  1496. * written so we distinguish these blocks by the
  1497. * R5_Wantprexor bit
  1498. */
  1499. if (dev->towrite &&
  1500. (test_bit(R5_UPTODATE, &dev->flags) ||
  1501. test_bit(R5_Wantcompute, &dev->flags))) {
  1502. set_bit(R5_Wantprexor, &dev->flags);
  1503. set_bit(R5_LOCKED, &dev->flags);
  1504. clear_bit(R5_UPTODATE, &dev->flags);
  1505. locked++;
  1506. }
  1507. }
  1508. }
  1509. /* keep the parity disk locked while asynchronous operations
  1510. * are in flight
  1511. */
  1512. set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
  1513. clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
  1514. locked++;
  1515. pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
  1516. __FUNCTION__, (unsigned long long)sh->sector,
  1517. locked, sh->ops.pending);
  1518. return locked;
  1519. }
  1520. /*
  1521. * Each stripe/dev can have one or more bion attached.
  1522. * toread/towrite point to the first in a chain.
  1523. * The bi_next chain must be in order.
  1524. */
  1525. static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
  1526. {
  1527. struct bio **bip;
  1528. raid5_conf_t *conf = sh->raid_conf;
  1529. int firstwrite=0;
  1530. pr_debug("adding bh b#%llu to stripe s#%llu\n",
  1531. (unsigned long long)bi->bi_sector,
  1532. (unsigned long long)sh->sector);
  1533. spin_lock(&sh->lock);
  1534. spin_lock_irq(&conf->device_lock);
  1535. if (forwrite) {
  1536. bip = &sh->dev[dd_idx].towrite;
  1537. if (*bip == NULL && sh->dev[dd_idx].written == NULL)
  1538. firstwrite = 1;
  1539. } else
  1540. bip = &sh->dev[dd_idx].toread;
  1541. while (*bip && (*bip)->bi_sector < bi->bi_sector) {
  1542. if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
  1543. goto overlap;
  1544. bip = & (*bip)->bi_next;
  1545. }
  1546. if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
  1547. goto overlap;
  1548. BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
  1549. if (*bip)
  1550. bi->bi_next = *bip;
  1551. *bip = bi;
  1552. bi->bi_phys_segments ++;
  1553. spin_unlock_irq(&conf->device_lock);
  1554. spin_unlock(&sh->lock);
  1555. pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
  1556. (unsigned long long)bi->bi_sector,
  1557. (unsigned long long)sh->sector, dd_idx);
  1558. if (conf->mddev->bitmap && firstwrite) {
  1559. bitmap_startwrite(conf->mddev->bitmap, sh->sector,
  1560. STRIPE_SECTORS, 0);
  1561. sh->bm_seq = conf->seq_flush+1;
  1562. set_bit(STRIPE_BIT_DELAY, &sh->state);
  1563. }
  1564. if (forwrite) {
  1565. /* check if page is covered */
  1566. sector_t sector = sh->dev[dd_idx].sector;
  1567. for (bi=sh->dev[dd_idx].towrite;
  1568. sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
  1569. bi && bi->bi_sector <= sector;
  1570. bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
  1571. if (bi->bi_sector + (bi->bi_size>>9) >= sector)
  1572. sector = bi->bi_sector + (bi->bi_size>>9);
  1573. }
  1574. if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
  1575. set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
  1576. }
  1577. return 1;
  1578. overlap:
  1579. set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
  1580. spin_unlock_irq(&conf->device_lock);
  1581. spin_unlock(&sh->lock);
  1582. return 0;
  1583. }
  1584. static void end_reshape(raid5_conf_t *conf);
  1585. static int page_is_zero(struct page *p)
  1586. {
  1587. char *a = page_address(p);
  1588. return ((*(u32*)a) == 0 &&
  1589. memcmp(a, a+4, STRIPE_SIZE-4)==0);
  1590. }
  1591. static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
  1592. {
  1593. int sectors_per_chunk = conf->chunk_size >> 9;
  1594. int pd_idx, dd_idx;
  1595. int chunk_offset = sector_div(stripe, sectors_per_chunk);
  1596. raid5_compute_sector(stripe * (disks - conf->max_degraded)
  1597. *sectors_per_chunk + chunk_offset,
  1598. disks, disks - conf->max_degraded,
  1599. &dd_idx, &pd_idx, conf);
  1600. return pd_idx;
  1601. }
  1602. static void
  1603. handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
  1604. struct stripe_head_state *s, int disks,
  1605. struct bio **return_bi)
  1606. {
  1607. int i;
  1608. for (i = disks; i--; ) {
  1609. struct bio *bi;
  1610. int bitmap_end = 0;
  1611. if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
  1612. mdk_rdev_t *rdev;
  1613. rcu_read_lock();
  1614. rdev = rcu_dereference(conf->disks[i].rdev);
  1615. if (rdev && test_bit(In_sync, &rdev->flags))
  1616. /* multiple read failures in one stripe */
  1617. md_error(conf->mddev, rdev);
  1618. rcu_read_unlock();
  1619. }
  1620. spin_lock_irq(&conf->device_lock);
  1621. /* fail all writes first */
  1622. bi = sh->dev[i].towrite;
  1623. sh->dev[i].towrite = NULL;
  1624. if (bi) {
  1625. s->to_write--;
  1626. bitmap_end = 1;
  1627. }
  1628. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  1629. wake_up(&conf->wait_for_overlap);
  1630. while (bi && bi->bi_sector <
  1631. sh->dev[i].sector + STRIPE_SECTORS) {
  1632. struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
  1633. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  1634. if (--bi->bi_phys_segments == 0) {
  1635. md_write_end(conf->mddev);
  1636. bi->bi_next = *return_bi;
  1637. *return_bi = bi;
  1638. }
  1639. bi = nextbi;
  1640. }
  1641. /* and fail all 'written' */
  1642. bi = sh->dev[i].written;
  1643. sh->dev[i].written = NULL;
  1644. if (bi) bitmap_end = 1;
  1645. while (bi && bi->bi_sector <
  1646. sh->dev[i].sector + STRIPE_SECTORS) {
  1647. struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
  1648. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  1649. if (--bi->bi_phys_segments == 0) {
  1650. md_write_end(conf->mddev);
  1651. bi->bi_next = *return_bi;
  1652. *return_bi = bi;
  1653. }
  1654. bi = bi2;
  1655. }
  1656. /* fail any reads if this device is non-operational and
  1657. * the data has not reached the cache yet.
  1658. */
  1659. if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
  1660. (!test_bit(R5_Insync, &sh->dev[i].flags) ||
  1661. test_bit(R5_ReadError, &sh->dev[i].flags))) {
  1662. bi = sh->dev[i].toread;
  1663. sh->dev[i].toread = NULL;
  1664. if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
  1665. wake_up(&conf->wait_for_overlap);
  1666. if (bi) s->to_read--;
  1667. while (bi && bi->bi_sector <
  1668. sh->dev[i].sector + STRIPE_SECTORS) {
  1669. struct bio *nextbi =
  1670. r5_next_bio(bi, sh->dev[i].sector);
  1671. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  1672. if (--bi->bi_phys_segments == 0) {
  1673. bi->bi_next = *return_bi;
  1674. *return_bi = bi;
  1675. }
  1676. bi = nextbi;
  1677. }
  1678. }
  1679. spin_unlock_irq(&conf->device_lock);
  1680. if (bitmap_end)
  1681. bitmap_endwrite(conf->mddev->bitmap, sh->sector,
  1682. STRIPE_SECTORS, 0, 0);
  1683. }
  1684. }
  1685. /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
  1686. * to process
  1687. */
  1688. static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
  1689. struct stripe_head_state *s, int disk_idx, int disks)
  1690. {
  1691. struct r5dev *dev = &sh->dev[disk_idx];
  1692. struct r5dev *failed_dev = &sh->dev[s->failed_num];
  1693. /* don't schedule compute operations or reads on the parity block while
  1694. * a check is in flight
  1695. */
  1696. if ((disk_idx == sh->pd_idx) &&
  1697. test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
  1698. return ~0;
  1699. /* is the data in this block needed, and can we get it? */
  1700. if (!test_bit(R5_LOCKED, &dev->flags) &&
  1701. !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
  1702. (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
  1703. s->syncing || s->expanding || (s->failed &&
  1704. (failed_dev->toread || (failed_dev->towrite &&
  1705. !test_bit(R5_OVERWRITE, &failed_dev->flags)
  1706. ))))) {
  1707. /* 1/ We would like to get this block, possibly by computing it,
  1708. * but we might not be able to.
  1709. *
  1710. * 2/ Since parity check operations potentially make the parity
  1711. * block !uptodate it will need to be refreshed before any
  1712. * compute operations on data disks are scheduled.
  1713. *
  1714. * 3/ We hold off parity block re-reads until check operations
  1715. * have quiesced.
  1716. */
  1717. if ((s->uptodate == disks - 1) &&
  1718. !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
  1719. set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
  1720. set_bit(R5_Wantcompute, &dev->flags);
  1721. sh->ops.target = disk_idx;
  1722. s->req_compute = 1;
  1723. sh->ops.count++;
  1724. /* Careful: from this point on 'uptodate' is in the eye
  1725. * of raid5_run_ops which services 'compute' operations
  1726. * before writes. R5_Wantcompute flags a block that will
  1727. * be R5_UPTODATE by the time it is needed for a
  1728. * subsequent operation.
  1729. */
  1730. s->uptodate++;
  1731. return 0; /* uptodate + compute == disks */
  1732. } else if ((s->uptodate < disks - 1) &&
  1733. test_bit(R5_Insync, &dev->flags)) {
  1734. /* Note: we hold off compute operations while checks are
  1735. * in flight, but we still prefer 'compute' over 'read'
  1736. * hence we only read if (uptodate < * disks-1)
  1737. */
  1738. set_bit(R5_LOCKED, &dev->flags);
  1739. set_bit(R5_Wantread, &dev->flags);
  1740. if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
  1741. sh->ops.count++;
  1742. s->locked++;
  1743. pr_debug("Reading block %d (sync=%d)\n", disk_idx,
  1744. s->syncing);
  1745. }
  1746. }
  1747. return ~0;
  1748. }
  1749. static void handle_issuing_new_read_requests5(struct stripe_head *sh,
  1750. struct stripe_head_state *s, int disks)
  1751. {
  1752. int i;
  1753. /* Clear completed compute operations. Parity recovery
  1754. * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
  1755. * later on in this routine
  1756. */
  1757. if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
  1758. !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
  1759. clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
  1760. clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
  1761. clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
  1762. }
  1763. /* look for blocks to read/compute, skip this if a compute
  1764. * is already in flight, or if the stripe contents are in the
  1765. * midst of changing due to a write
  1766. */
  1767. if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
  1768. !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
  1769. !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
  1770. for (i = disks; i--; )
  1771. if (__handle_issuing_new_read_requests5(
  1772. sh, s, i, disks) == 0)
  1773. break;
  1774. }
  1775. set_bit(STRIPE_HANDLE, &sh->state);
  1776. }
  1777. static void handle_issuing_new_read_requests6(struct stripe_head *sh,
  1778. struct stripe_head_state *s, struct r6_state *r6s,
  1779. int disks)
  1780. {
  1781. int i;
  1782. for (i = disks; i--; ) {
  1783. struct r5dev *dev = &sh->dev[i];
  1784. if (!test_bit(R5_LOCKED, &dev->flags) &&
  1785. !test_bit(R5_UPTODATE, &dev->flags) &&
  1786. (dev->toread || (dev->towrite &&
  1787. !test_bit(R5_OVERWRITE, &dev->flags)) ||
  1788. s->syncing || s->expanding ||
  1789. (s->failed >= 1 &&
  1790. (sh->dev[r6s->failed_num[0]].toread ||
  1791. s->to_write)) ||
  1792. (s->failed >= 2 &&
  1793. (sh->dev[r6s->failed_num[1]].toread ||
  1794. s->to_write)))) {
  1795. /* we would like to get this block, possibly
  1796. * by computing it, but we might not be able to
  1797. */
  1798. if (s->uptodate == disks-1) {
  1799. pr_debug("Computing stripe %llu block %d\n",
  1800. (unsigned long long)sh->sector, i);
  1801. compute_block_1(sh, i, 0);
  1802. s->uptodate++;
  1803. } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
  1804. /* Computing 2-failure is *very* expensive; only
  1805. * do it if failed >= 2
  1806. */
  1807. int other;
  1808. for (other = disks; other--; ) {
  1809. if (other == i)
  1810. continue;
  1811. if (!test_bit(R5_UPTODATE,
  1812. &sh->dev[other].flags))
  1813. break;
  1814. }
  1815. BUG_ON(other < 0);
  1816. pr_debug("Computing stripe %llu blocks %d,%d\n",
  1817. (unsigned long long)sh->sector,
  1818. i, other);
  1819. compute_block_2(sh, i, other);
  1820. s->uptodate += 2;
  1821. } else if (test_bit(R5_Insync, &dev->flags)) {
  1822. set_bit(R5_LOCKED, &dev->flags);
  1823. set_bit(R5_Wantread, &dev->flags);
  1824. s->locked++;
  1825. pr_debug("Reading block %d (sync=%d)\n",
  1826. i, s->syncing);
  1827. }
  1828. }
  1829. }
  1830. set_bit(STRIPE_HANDLE, &sh->state);
  1831. }
  1832. /* handle_completed_write_requests
  1833. * any written block on an uptodate or failed drive can be returned.
  1834. * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
  1835. * never LOCKED, so we don't need to test 'failed' directly.
  1836. */
  1837. static void handle_completed_write_requests(raid5_conf_t *conf,
  1838. struct stripe_head *sh, int disks, struct bio **return_bi)
  1839. {
  1840. int i;
  1841. struct r5dev *dev;
  1842. for (i = disks; i--; )
  1843. if (sh->dev[i].written) {
  1844. dev = &sh->dev[i];
  1845. if (!test_bit(R5_LOCKED, &dev->flags) &&
  1846. test_bit(R5_UPTODATE, &dev->flags)) {
  1847. /* We can return any write requests */
  1848. struct bio *wbi, *wbi2;
  1849. int bitmap_end = 0;
  1850. pr_debug("Return write for disc %d\n", i);
  1851. spin_lock_irq(&conf->device_lock);
  1852. wbi = dev->written;
  1853. dev->written = NULL;
  1854. while (wbi && wbi->bi_sector <
  1855. dev->sector + STRIPE_SECTORS) {
  1856. wbi2 = r5_next_bio(wbi, dev->sector);
  1857. if (--wbi->bi_phys_segments == 0) {
  1858. md_write_end(conf->mddev);
  1859. wbi->bi_next = *return_bi;
  1860. *return_bi = wbi;
  1861. }
  1862. wbi = wbi2;
  1863. }
  1864. if (dev->towrite == NULL)
  1865. bitmap_end = 1;
  1866. spin_unlock_irq(&conf->device_lock);
  1867. if (bitmap_end)
  1868. bitmap_endwrite(conf->mddev->bitmap,
  1869. sh->sector,
  1870. STRIPE_SECTORS,
  1871. !test_bit(STRIPE_DEGRADED, &sh->state),
  1872. 0);
  1873. }
  1874. }
  1875. }
  1876. static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
  1877. struct stripe_head *sh, struct stripe_head_state *s, int disks)
  1878. {
  1879. int rmw = 0, rcw = 0, i;
  1880. for (i = disks; i--; ) {
  1881. /* would I have to read this buffer for read_modify_write */
  1882. struct r5dev *dev = &sh->dev[i];
  1883. if ((dev->towrite || i == sh->pd_idx) &&
  1884. !test_bit(R5_LOCKED, &dev->flags) &&
  1885. !(test_bit(R5_UPTODATE, &dev->flags) ||
  1886. test_bit(R5_Wantcompute, &dev->flags))) {
  1887. if (test_bit(R5_Insync, &dev->flags))
  1888. rmw++;
  1889. else
  1890. rmw += 2*disks; /* cannot read it */
  1891. }
  1892. /* Would I have to read this buffer for reconstruct_write */
  1893. if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
  1894. !test_bit(R5_LOCKED, &dev->flags) &&
  1895. !(test_bit(R5_UPTODATE, &dev->flags) ||
  1896. test_bit(R5_Wantcompute, &dev->flags))) {
  1897. if (test_bit(R5_Insync, &dev->flags)) rcw++;
  1898. else
  1899. rcw += 2*disks;
  1900. }
  1901. }
  1902. pr_debug("for sector %llu, rmw=%d rcw=%d\n",
  1903. (unsigned long long)sh->sector, rmw, rcw);
  1904. set_bit(STRIPE_HANDLE, &sh->state);
  1905. if (rmw < rcw && rmw > 0)
  1906. /* prefer read-modify-write, but need to get some data */
  1907. for (i = disks; i--; ) {
  1908. struct r5dev *dev = &sh->dev[i];
  1909. if ((dev->towrite || i == sh->pd_idx) &&
  1910. !test_bit(R5_LOCKED, &dev->flags) &&
  1911. !(test_bit(R5_UPTODATE, &dev->flags) ||
  1912. test_bit(R5_Wantcompute, &dev->flags)) &&
  1913. test_bit(R5_Insync, &dev->flags)) {
  1914. if (
  1915. test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  1916. pr_debug("Read_old block "
  1917. "%d for r-m-w\n", i);
  1918. set_bit(R5_LOCKED, &dev->flags);
  1919. set_bit(R5_Wantread, &dev->flags);
  1920. if (!test_and_set_bit(
  1921. STRIPE_OP_IO, &sh->ops.pending))
  1922. sh->ops.count++;
  1923. s->locked++;
  1924. } else {
  1925. set_bit(STRIPE_DELAYED, &sh->state);
  1926. set_bit(STRIPE_HANDLE, &sh->state);
  1927. }
  1928. }
  1929. }
  1930. if (rcw <= rmw && rcw > 0)
  1931. /* want reconstruct write, but need to get some data */
  1932. for (i = disks; i--; ) {
  1933. struct r5dev *dev = &sh->dev[i];
  1934. if (!test_bit(R5_OVERWRITE, &dev->flags) &&
  1935. i != sh->pd_idx &&
  1936. !test_bit(R5_LOCKED, &dev->flags) &&
  1937. !(test_bit(R5_UPTODATE, &dev->flags) ||
  1938. test_bit(R5_Wantcompute, &dev->flags)) &&
  1939. test_bit(R5_Insync, &dev->flags)) {
  1940. if (
  1941. test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  1942. pr_debug("Read_old block "
  1943. "%d for Reconstruct\n", i);
  1944. set_bit(R5_LOCKED, &dev->flags);
  1945. set_bit(R5_Wantread, &dev->flags);
  1946. if (!test_and_set_bit(
  1947. STRIPE_OP_IO, &sh->ops.pending))
  1948. sh->ops.count++;
  1949. s->locked++;
  1950. } else {
  1951. set_bit(STRIPE_DELAYED, &sh->state);
  1952. set_bit(STRIPE_HANDLE, &sh->state);
  1953. }
  1954. }
  1955. }
  1956. /* now if nothing is locked, and if we have enough data,
  1957. * we can start a write request
  1958. */
  1959. /* since handle_stripe can be called at any time we need to handle the
  1960. * case where a compute block operation has been submitted and then a
  1961. * subsequent call wants to start a write request. raid5_run_ops only
  1962. * handles the case where compute block and postxor are requested
  1963. * simultaneously. If this is not the case then new writes need to be
  1964. * held off until the compute completes.
  1965. */
  1966. if ((s->req_compute ||
  1967. !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
  1968. (s->locked == 0 && (rcw == 0 || rmw == 0) &&
  1969. !test_bit(STRIPE_BIT_DELAY, &sh->state)))
  1970. s->locked += handle_write_operations5(sh, rcw == 0, 0);
  1971. }
  1972. static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
  1973. struct stripe_head *sh, struct stripe_head_state *s,
  1974. struct r6_state *r6s, int disks)
  1975. {
  1976. int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
  1977. int qd_idx = r6s->qd_idx;
  1978. for (i = disks; i--; ) {
  1979. struct r5dev *dev = &sh->dev[i];
  1980. /* Would I have to read this buffer for reconstruct_write */
  1981. if (!test_bit(R5_OVERWRITE, &dev->flags)
  1982. && i != pd_idx && i != qd_idx
  1983. && (!test_bit(R5_LOCKED, &dev->flags)
  1984. ) &&
  1985. !test_bit(R5_UPTODATE, &dev->flags)) {
  1986. if (test_bit(R5_Insync, &dev->flags)) rcw++;
  1987. else {
  1988. pr_debug("raid6: must_compute: "
  1989. "disk %d flags=%#lx\n", i, dev->flags);
  1990. must_compute++;
  1991. }
  1992. }
  1993. }
  1994. pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
  1995. (unsigned long long)sh->sector, rcw, must_compute);
  1996. set_bit(STRIPE_HANDLE, &sh->state);
  1997. if (rcw > 0)
  1998. /* want reconstruct write, but need to get some data */
  1999. for (i = disks; i--; ) {
  2000. struct r5dev *dev = &sh->dev[i];
  2001. if (!test_bit(R5_OVERWRITE, &dev->flags)
  2002. && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
  2003. && !test_bit(R5_LOCKED, &dev->flags) &&
  2004. !test_bit(R5_UPTODATE, &dev->flags) &&
  2005. test_bit(R5_Insync, &dev->flags)) {
  2006. if (
  2007. test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  2008. pr_debug("Read_old stripe %llu "
  2009. "block %d for Reconstruct\n",
  2010. (unsigned long long)sh->sector, i);
  2011. set_bit(R5_LOCKED, &dev->flags);
  2012. set_bit(R5_Wantread, &dev->flags);
  2013. s->locked++;
  2014. } else {
  2015. pr_debug("Request delayed stripe %llu "
  2016. "block %d for Reconstruct\n",
  2017. (unsigned long long)sh->sector, i);
  2018. set_bit(STRIPE_DELAYED, &sh->state);
  2019. set_bit(STRIPE_HANDLE, &sh->state);
  2020. }
  2021. }
  2022. }
  2023. /* now if nothing is locked, and if we have enough data, we can start a
  2024. * write request
  2025. */
  2026. if (s->locked == 0 && rcw == 0 &&
  2027. !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
  2028. if (must_compute > 0) {
  2029. /* We have failed blocks and need to compute them */
  2030. switch (s->failed) {
  2031. case 0:
  2032. BUG();
  2033. case 1:
  2034. compute_block_1(sh, r6s->failed_num[0], 0);
  2035. break;
  2036. case 2:
  2037. compute_block_2(sh, r6s->failed_num[0],
  2038. r6s->failed_num[1]);
  2039. break;
  2040. default: /* This request should have been failed? */
  2041. BUG();
  2042. }
  2043. }
  2044. pr_debug("Computing parity for stripe %llu\n",
  2045. (unsigned long long)sh->sector);
  2046. compute_parity6(sh, RECONSTRUCT_WRITE);
  2047. /* now every locked buffer is ready to be written */
  2048. for (i = disks; i--; )
  2049. if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
  2050. pr_debug("Writing stripe %llu block %d\n",
  2051. (unsigned long long)sh->sector, i);
  2052. s->locked++;
  2053. set_bit(R5_Wantwrite, &sh->dev[i].flags);
  2054. }
  2055. /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
  2056. set_bit(STRIPE_INSYNC, &sh->state);
  2057. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  2058. atomic_dec(&conf->preread_active_stripes);
  2059. if (atomic_read(&conf->preread_active_stripes) <
  2060. IO_THRESHOLD)
  2061. md_wakeup_thread(conf->mddev->thread);
  2062. }
  2063. }
  2064. }
  2065. static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
  2066. struct stripe_head_state *s, int disks)
  2067. {
  2068. set_bit(STRIPE_HANDLE, &sh->state);
  2069. /* Take one of the following actions:
  2070. * 1/ start a check parity operation if (uptodate == disks)
  2071. * 2/ finish a check parity operation and act on the result
  2072. * 3/ skip to the writeback section if we previously
  2073. * initiated a recovery operation
  2074. */
  2075. if (s->failed == 0 &&
  2076. !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
  2077. if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
  2078. BUG_ON(s->uptodate != disks);
  2079. clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
  2080. sh->ops.count++;
  2081. s->uptodate--;
  2082. } else if (
  2083. test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
  2084. clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
  2085. clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
  2086. if (sh->ops.zero_sum_result == 0)
  2087. /* parity is correct (on disc,
  2088. * not in buffer any more)
  2089. */
  2090. set_bit(STRIPE_INSYNC, &sh->state);
  2091. else {
  2092. conf->mddev->resync_mismatches +=
  2093. STRIPE_SECTORS;
  2094. if (test_bit(
  2095. MD_RECOVERY_CHECK, &conf->mddev->recovery))
  2096. /* don't try to repair!! */
  2097. set_bit(STRIPE_INSYNC, &sh->state);
  2098. else {
  2099. set_bit(STRIPE_OP_COMPUTE_BLK,
  2100. &sh->ops.pending);
  2101. set_bit(STRIPE_OP_MOD_REPAIR_PD,
  2102. &sh->ops.pending);
  2103. set_bit(R5_Wantcompute,
  2104. &sh->dev[sh->pd_idx].flags);
  2105. sh->ops.target = sh->pd_idx;
  2106. sh->ops.count++;
  2107. s->uptodate++;
  2108. }
  2109. }
  2110. }
  2111. }
  2112. /* check if we can clear a parity disk reconstruct */
  2113. if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
  2114. test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
  2115. clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
  2116. clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
  2117. clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
  2118. clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
  2119. }
  2120. /* Wait for check parity and compute block operations to complete
  2121. * before write-back
  2122. */
  2123. if (!test_bit(STRIPE_INSYNC, &sh->state) &&
  2124. !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
  2125. !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
  2126. struct r5dev *dev;
  2127. /* either failed parity check, or recovery is happening */
  2128. if (s->failed == 0)
  2129. s->failed_num = sh->pd_idx;
  2130. dev = &sh->dev[s->failed_num];
  2131. BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
  2132. BUG_ON(s->uptodate != disks);
  2133. set_bit(R5_LOCKED, &dev->flags);
  2134. set_bit(R5_Wantwrite, &dev->flags);
  2135. if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
  2136. sh->ops.count++;
  2137. clear_bit(STRIPE_DEGRADED, &sh->state);
  2138. s->locked++;
  2139. set_bit(STRIPE_INSYNC, &sh->state);
  2140. }
  2141. }
  2142. static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
  2143. struct stripe_head_state *s,
  2144. struct r6_state *r6s, struct page *tmp_page,
  2145. int disks)
  2146. {
  2147. int update_p = 0, update_q = 0;
  2148. struct r5dev *dev;
  2149. int pd_idx = sh->pd_idx;
  2150. int qd_idx = r6s->qd_idx;
  2151. set_bit(STRIPE_HANDLE, &sh->state);
  2152. BUG_ON(s->failed > 2);
  2153. BUG_ON(s->uptodate < disks);
  2154. /* Want to check and possibly repair P and Q.
  2155. * However there could be one 'failed' device, in which
  2156. * case we can only check one of them, possibly using the
  2157. * other to generate missing data
  2158. */
  2159. /* If !tmp_page, we cannot do the calculations,
  2160. * but as we have set STRIPE_HANDLE, we will soon be called
  2161. * by stripe_handle with a tmp_page - just wait until then.
  2162. */
  2163. if (tmp_page) {
  2164. if (s->failed == r6s->q_failed) {
  2165. /* The only possible failed device holds 'Q', so it
  2166. * makes sense to check P (If anything else were failed,
  2167. * we would have used P to recreate it).
  2168. */
  2169. compute_block_1(sh, pd_idx, 1);
  2170. if (!page_is_zero(sh->dev[pd_idx].page)) {
  2171. compute_block_1(sh, pd_idx, 0);
  2172. update_p = 1;
  2173. }
  2174. }
  2175. if (!r6s->q_failed && s->failed < 2) {
  2176. /* q is not failed, and we didn't use it to generate
  2177. * anything, so it makes sense to check it
  2178. */
  2179. memcpy(page_address(tmp_page),
  2180. page_address(sh->dev[qd_idx].page),
  2181. STRIPE_SIZE);
  2182. compute_parity6(sh, UPDATE_PARITY);
  2183. if (memcmp(page_address(tmp_page),
  2184. page_address(sh->dev[qd_idx].page),
  2185. STRIPE_SIZE) != 0) {
  2186. clear_bit(STRIPE_INSYNC, &sh->state);
  2187. update_q = 1;
  2188. }
  2189. }
  2190. if (update_p || update_q) {
  2191. conf->mddev->resync_mismatches += STRIPE_SECTORS;
  2192. if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
  2193. /* don't try to repair!! */
  2194. update_p = update_q = 0;
  2195. }
  2196. /* now write out any block on a failed drive,
  2197. * or P or Q if they need it
  2198. */
  2199. if (s->failed == 2) {
  2200. dev = &sh->dev[r6s->failed_num[1]];
  2201. s->locked++;
  2202. set_bit(R5_LOCKED, &dev->flags);
  2203. set_bit(R5_Wantwrite, &dev->flags);
  2204. }
  2205. if (s->failed >= 1) {
  2206. dev = &sh->dev[r6s->failed_num[0]];
  2207. s->locked++;
  2208. set_bit(R5_LOCKED, &dev->flags);
  2209. set_bit(R5_Wantwrite, &dev->flags);
  2210. }
  2211. if (update_p) {
  2212. dev = &sh->dev[pd_idx];
  2213. s->locked++;
  2214. set_bit(R5_LOCKED, &dev->flags);
  2215. set_bit(R5_Wantwrite, &dev->flags);
  2216. }
  2217. if (update_q) {
  2218. dev = &sh->dev[qd_idx];
  2219. s->locked++;
  2220. set_bit(R5_LOCKED, &dev->flags);
  2221. set_bit(R5_Wantwrite, &dev->flags);
  2222. }
  2223. clear_bit(STRIPE_DEGRADED, &sh->state);
  2224. set_bit(STRIPE_INSYNC, &sh->state);
  2225. }
  2226. }
  2227. static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
  2228. struct r6_state *r6s)
  2229. {
  2230. int i;
  2231. /* We have read all the blocks in this stripe and now we need to
  2232. * copy some of them into a target stripe for expand.
  2233. */
  2234. struct dma_async_tx_descriptor *tx = NULL;
  2235. clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  2236. for (i = 0; i < sh->disks; i++)
  2237. if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
  2238. int dd_idx, pd_idx, j;
  2239. struct stripe_head *sh2;
  2240. sector_t bn = compute_blocknr(sh, i);
  2241. sector_t s = raid5_compute_sector(bn, conf->raid_disks,
  2242. conf->raid_disks -
  2243. conf->max_degraded, &dd_idx,
  2244. &pd_idx, conf);
  2245. sh2 = get_active_stripe(conf, s, conf->raid_disks,
  2246. pd_idx, 1);
  2247. if (sh2 == NULL)
  2248. /* so far only the early blocks of this stripe
  2249. * have been requested. When later blocks
  2250. * get requested, we will try again
  2251. */
  2252. continue;
  2253. if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
  2254. test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
  2255. /* must have already done this block */
  2256. release_stripe(sh2);
  2257. continue;
  2258. }
  2259. /* place all the copies on one channel */
  2260. tx = async_memcpy(sh2->dev[dd_idx].page,
  2261. sh->dev[i].page, 0, 0, STRIPE_SIZE,
  2262. ASYNC_TX_DEP_ACK, tx, NULL, NULL);
  2263. set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
  2264. set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
  2265. for (j = 0; j < conf->raid_disks; j++)
  2266. if (j != sh2->pd_idx &&
  2267. (!r6s || j != raid6_next_disk(sh2->pd_idx,
  2268. sh2->disks)) &&
  2269. !test_bit(R5_Expanded, &sh2->dev[j].flags))
  2270. break;
  2271. if (j == conf->raid_disks) {
  2272. set_bit(STRIPE_EXPAND_READY, &sh2->state);
  2273. set_bit(STRIPE_HANDLE, &sh2->state);
  2274. }
  2275. release_stripe(sh2);
  2276. }
  2277. /* done submitting copies, wait for them to complete */
  2278. if (tx) {
  2279. async_tx_ack(tx);
  2280. dma_wait_for_async_tx(tx);
  2281. }
  2282. }
  2283. /*
  2284. * handle_stripe - do things to a stripe.
  2285. *
  2286. * We lock the stripe and then examine the state of various bits
  2287. * to see what needs to be done.
  2288. * Possible results:
  2289. * return some read request which now have data
  2290. * return some write requests which are safely on disc
  2291. * schedule a read on some buffers
  2292. * schedule a write of some buffers
  2293. * return confirmation of parity correctness
  2294. *
  2295. * buffers are taken off read_list or write_list, and bh_cache buffers
  2296. * get BH_Lock set before the stripe lock is released.
  2297. *
  2298. */
  2299. static void handle_stripe5(struct stripe_head *sh)
  2300. {
  2301. raid5_conf_t *conf = sh->raid_conf;
  2302. int disks = sh->disks, i;
  2303. struct bio *return_bi = NULL;
  2304. struct stripe_head_state s;
  2305. struct r5dev *dev;
  2306. unsigned long pending = 0;
  2307. memset(&s, 0, sizeof(s));
  2308. pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
  2309. "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
  2310. atomic_read(&sh->count), sh->pd_idx,
  2311. sh->ops.pending, sh->ops.ack, sh->ops.complete);
  2312. spin_lock(&sh->lock);
  2313. clear_bit(STRIPE_HANDLE, &sh->state);
  2314. clear_bit(STRIPE_DELAYED, &sh->state);
  2315. s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
  2316. s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  2317. s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
  2318. /* Now to look around and see what can be done */
  2319. rcu_read_lock();
  2320. for (i=disks; i--; ) {
  2321. mdk_rdev_t *rdev;
  2322. struct r5dev *dev = &sh->dev[i];
  2323. clear_bit(R5_Insync, &dev->flags);
  2324. pr_debug("check %d: state 0x%lx toread %p read %p write %p "
  2325. "written %p\n", i, dev->flags, dev->toread, dev->read,
  2326. dev->towrite, dev->written);
  2327. /* maybe we can request a biofill operation
  2328. *
  2329. * new wantfill requests are only permitted while
  2330. * STRIPE_OP_BIOFILL is clear
  2331. */
  2332. if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
  2333. !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
  2334. set_bit(R5_Wantfill, &dev->flags);
  2335. /* now count some things */
  2336. if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
  2337. if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
  2338. if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
  2339. if (test_bit(R5_Wantfill, &dev->flags))
  2340. s.to_fill++;
  2341. else if (dev->toread)
  2342. s.to_read++;
  2343. if (dev->towrite) {
  2344. s.to_write++;
  2345. if (!test_bit(R5_OVERWRITE, &dev->flags))
  2346. s.non_overwrite++;
  2347. }
  2348. if (dev->written)
  2349. s.written++;
  2350. rdev = rcu_dereference(conf->disks[i].rdev);
  2351. if (!rdev || !test_bit(In_sync, &rdev->flags)) {
  2352. /* The ReadError flag will just be confusing now */
  2353. clear_bit(R5_ReadError, &dev->flags);
  2354. clear_bit(R5_ReWrite, &dev->flags);
  2355. }
  2356. if (!rdev || !test_bit(In_sync, &rdev->flags)
  2357. || test_bit(R5_ReadError, &dev->flags)) {
  2358. s.failed++;
  2359. s.failed_num = i;
  2360. } else
  2361. set_bit(R5_Insync, &dev->flags);
  2362. }
  2363. rcu_read_unlock();
  2364. if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
  2365. sh->ops.count++;
  2366. pr_debug("locked=%d uptodate=%d to_read=%d"
  2367. " to_write=%d failed=%d failed_num=%d\n",
  2368. s.locked, s.uptodate, s.to_read, s.to_write,
  2369. s.failed, s.failed_num);
  2370. /* check if the array has lost two devices and, if so, some requests might
  2371. * need to be failed
  2372. */
  2373. if (s.failed > 1 && s.to_read+s.to_write+s.written)
  2374. handle_requests_to_failed_array(conf, sh, &s, disks,
  2375. &return_bi);
  2376. if (s.failed > 1 && s.syncing) {
  2377. md_done_sync(conf->mddev, STRIPE_SECTORS,0);
  2378. clear_bit(STRIPE_SYNCING, &sh->state);
  2379. s.syncing = 0;
  2380. }
  2381. /* might be able to return some write requests if the parity block
  2382. * is safe, or on a failed drive
  2383. */
  2384. dev = &sh->dev[sh->pd_idx];
  2385. if ( s.written &&
  2386. ((test_bit(R5_Insync, &dev->flags) &&
  2387. !test_bit(R5_LOCKED, &dev->flags) &&
  2388. test_bit(R5_UPTODATE, &dev->flags)) ||
  2389. (s.failed == 1 && s.failed_num == sh->pd_idx)))
  2390. handle_completed_write_requests(conf, sh, disks, &return_bi);
  2391. /* Now we might consider reading some blocks, either to check/generate
  2392. * parity, or to satisfy requests
  2393. * or to load a block that is being partially written.
  2394. */
  2395. if (s.to_read || s.non_overwrite ||
  2396. (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
  2397. test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
  2398. handle_issuing_new_read_requests5(sh, &s, disks);
  2399. /* Now we check to see if any write operations have recently
  2400. * completed
  2401. */
  2402. /* leave prexor set until postxor is done, allows us to distinguish
  2403. * a rmw from a rcw during biodrain
  2404. */
  2405. if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
  2406. test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
  2407. clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
  2408. clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
  2409. clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
  2410. for (i = disks; i--; )
  2411. clear_bit(R5_Wantprexor, &sh->dev[i].flags);
  2412. }
  2413. /* if only POSTXOR is set then this is an 'expand' postxor */
  2414. if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
  2415. test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
  2416. clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
  2417. clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
  2418. clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
  2419. clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
  2420. clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
  2421. clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
  2422. /* All the 'written' buffers and the parity block are ready to
  2423. * be written back to disk
  2424. */
  2425. BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
  2426. for (i = disks; i--; ) {
  2427. dev = &sh->dev[i];
  2428. if (test_bit(R5_LOCKED, &dev->flags) &&
  2429. (i == sh->pd_idx || dev->written)) {
  2430. pr_debug("Writing block %d\n", i);
  2431. set_bit(R5_Wantwrite, &dev->flags);
  2432. if (!test_and_set_bit(
  2433. STRIPE_OP_IO, &sh->ops.pending))
  2434. sh->ops.count++;
  2435. if (!test_bit(R5_Insync, &dev->flags) ||
  2436. (i == sh->pd_idx && s.failed == 0))
  2437. set_bit(STRIPE_INSYNC, &sh->state);
  2438. }
  2439. }
  2440. if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
  2441. atomic_dec(&conf->preread_active_stripes);
  2442. if (atomic_read(&conf->preread_active_stripes) <
  2443. IO_THRESHOLD)
  2444. md_wakeup_thread(conf->mddev->thread);
  2445. }
  2446. }
  2447. /* Now to consider new write requests and what else, if anything
  2448. * should be read. We do not handle new writes when:
  2449. * 1/ A 'write' operation (copy+xor) is already in flight.
  2450. * 2/ A 'check' operation is in flight, as it may clobber the parity
  2451. * block.
  2452. */
  2453. if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
  2454. !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
  2455. handle_issuing_new_write_requests5(conf, sh, &s, disks);
  2456. /* maybe we need to check and possibly fix the parity for this stripe
  2457. * Any reads will already have been scheduled, so we just see if enough
  2458. * data is available. The parity check is held off while parity
  2459. * dependent operations are in flight.
  2460. */
  2461. if ((s.syncing && s.locked == 0 &&
  2462. !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
  2463. !test_bit(STRIPE_INSYNC, &sh->state)) ||
  2464. test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
  2465. test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
  2466. handle_parity_checks5(conf, sh, &s, disks);
  2467. if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
  2468. md_done_sync(conf->mddev, STRIPE_SECTORS,1);
  2469. clear_bit(STRIPE_SYNCING, &sh->state);
  2470. }
  2471. /* If the failed drive is just a ReadError, then we might need to progress
  2472. * the repair/check process
  2473. */
  2474. if (s.failed == 1 && !conf->mddev->ro &&
  2475. test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
  2476. && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
  2477. && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
  2478. ) {
  2479. dev = &sh->dev[s.failed_num];
  2480. if (!test_bit(R5_ReWrite, &dev->flags)) {
  2481. set_bit(R5_Wantwrite, &dev->flags);
  2482. if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
  2483. sh->ops.count++;
  2484. set_bit(R5_ReWrite, &dev->flags);
  2485. set_bit(R5_LOCKED, &dev->flags);
  2486. s.locked++;
  2487. } else {
  2488. /* let's read it back */
  2489. set_bit(R5_Wantread, &dev->flags);
  2490. if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
  2491. sh->ops.count++;
  2492. set_bit(R5_LOCKED, &dev->flags);
  2493. s.locked++;
  2494. }
  2495. }
  2496. /* Finish postxor operations initiated by the expansion
  2497. * process
  2498. */
  2499. if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
  2500. !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
  2501. clear_bit(STRIPE_EXPANDING, &sh->state);
  2502. clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
  2503. clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
  2504. clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
  2505. for (i = conf->raid_disks; i--; ) {
  2506. set_bit(R5_Wantwrite, &sh->dev[i].flags);
  2507. if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
  2508. sh->ops.count++;
  2509. }
  2510. }
  2511. if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
  2512. !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
  2513. /* Need to write out all blocks after computing parity */
  2514. sh->disks = conf->raid_disks;
  2515. sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
  2516. conf->raid_disks);
  2517. s.locked += handle_write_operations5(sh, 1, 1);
  2518. } else if (s.expanded &&
  2519. !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
  2520. clear_bit(STRIPE_EXPAND_READY, &sh->state);
  2521. atomic_dec(&conf->reshape_stripes);
  2522. wake_up(&conf->wait_for_overlap);
  2523. md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
  2524. }
  2525. if (s.expanding && s.locked == 0)
  2526. handle_stripe_expansion(conf, sh, NULL);
  2527. if (sh->ops.count)
  2528. pending = get_stripe_work(sh);
  2529. spin_unlock(&sh->lock);
  2530. if (pending)
  2531. raid5_run_ops(sh, pending);
  2532. return_io(return_bi);
  2533. }
  2534. static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
  2535. {
  2536. raid6_conf_t *conf = sh->raid_conf;
  2537. int disks = sh->disks;
  2538. struct bio *return_bi = NULL;
  2539. int i, pd_idx = sh->pd_idx;
  2540. struct stripe_head_state s;
  2541. struct r6_state r6s;
  2542. struct r5dev *dev, *pdev, *qdev;
  2543. r6s.qd_idx = raid6_next_disk(pd_idx, disks);
  2544. pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
  2545. "pd_idx=%d, qd_idx=%d\n",
  2546. (unsigned long long)sh->sector, sh->state,
  2547. atomic_read(&sh->count), pd_idx, r6s.qd_idx);
  2548. memset(&s, 0, sizeof(s));
  2549. spin_lock(&sh->lock);
  2550. clear_bit(STRIPE_HANDLE, &sh->state);
  2551. clear_bit(STRIPE_DELAYED, &sh->state);
  2552. s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
  2553. s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  2554. s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
  2555. /* Now to look around and see what can be done */
  2556. rcu_read_lock();
  2557. for (i=disks; i--; ) {
  2558. mdk_rdev_t *rdev;
  2559. dev = &sh->dev[i];
  2560. clear_bit(R5_Insync, &dev->flags);
  2561. pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
  2562. i, dev->flags, dev->toread, dev->towrite, dev->written);
  2563. /* maybe we can reply to a read */
  2564. if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
  2565. struct bio *rbi, *rbi2;
  2566. pr_debug("Return read for disc %d\n", i);
  2567. spin_lock_irq(&conf->device_lock);
  2568. rbi = dev->toread;
  2569. dev->toread = NULL;
  2570. if (test_and_clear_bit(R5_Overlap, &dev->flags))
  2571. wake_up(&conf->wait_for_overlap);
  2572. spin_unlock_irq(&conf->device_lock);
  2573. while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
  2574. copy_data(0, rbi, dev->page, dev->sector);
  2575. rbi2 = r5_next_bio(rbi, dev->sector);
  2576. spin_lock_irq(&conf->device_lock);
  2577. if (--rbi->bi_phys_segments == 0) {
  2578. rbi->bi_next = return_bi;
  2579. return_bi = rbi;
  2580. }
  2581. spin_unlock_irq(&conf->device_lock);
  2582. rbi = rbi2;
  2583. }
  2584. }
  2585. /* now count some things */
  2586. if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
  2587. if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
  2588. if (dev->toread)
  2589. s.to_read++;
  2590. if (dev->towrite) {
  2591. s.to_write++;
  2592. if (!test_bit(R5_OVERWRITE, &dev->flags))
  2593. s.non_overwrite++;
  2594. }
  2595. if (dev->written)
  2596. s.written++;
  2597. rdev = rcu_dereference(conf->disks[i].rdev);
  2598. if (!rdev || !test_bit(In_sync, &rdev->flags)) {
  2599. /* The ReadError flag will just be confusing now */
  2600. clear_bit(R5_ReadError, &dev->flags);
  2601. clear_bit(R5_ReWrite, &dev->flags);
  2602. }
  2603. if (!rdev || !test_bit(In_sync, &rdev->flags)
  2604. || test_bit(R5_ReadError, &dev->flags)) {
  2605. if (s.failed < 2)
  2606. r6s.failed_num[s.failed] = i;
  2607. s.failed++;
  2608. } else
  2609. set_bit(R5_Insync, &dev->flags);
  2610. }
  2611. rcu_read_unlock();
  2612. pr_debug("locked=%d uptodate=%d to_read=%d"
  2613. " to_write=%d failed=%d failed_num=%d,%d\n",
  2614. s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
  2615. r6s.failed_num[0], r6s.failed_num[1]);
  2616. /* check if the array has lost >2 devices and, if so, some requests
  2617. * might need to be failed
  2618. */
  2619. if (s.failed > 2 && s.to_read+s.to_write+s.written)
  2620. handle_requests_to_failed_array(conf, sh, &s, disks,
  2621. &return_bi);
  2622. if (s.failed > 2 && s.syncing) {
  2623. md_done_sync(conf->mddev, STRIPE_SECTORS,0);
  2624. clear_bit(STRIPE_SYNCING, &sh->state);
  2625. s.syncing = 0;
  2626. }
  2627. /*
  2628. * might be able to return some write requests if the parity blocks
  2629. * are safe, or on a failed drive
  2630. */
  2631. pdev = &sh->dev[pd_idx];
  2632. r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
  2633. || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
  2634. qdev = &sh->dev[r6s.qd_idx];
  2635. r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
  2636. || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
  2637. if ( s.written &&
  2638. ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
  2639. && !test_bit(R5_LOCKED, &pdev->flags)
  2640. && test_bit(R5_UPTODATE, &pdev->flags)))) &&
  2641. ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
  2642. && !test_bit(R5_LOCKED, &qdev->flags)
  2643. && test_bit(R5_UPTODATE, &qdev->flags)))))
  2644. handle_completed_write_requests(conf, sh, disks, &return_bi);
  2645. /* Now we might consider reading some blocks, either to check/generate
  2646. * parity, or to satisfy requests
  2647. * or to load a block that is being partially written.
  2648. */
  2649. if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
  2650. (s.syncing && (s.uptodate < disks)) || s.expanding)
  2651. handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
  2652. /* now to consider writing and what else, if anything should be read */
  2653. if (s.to_write)
  2654. handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
  2655. /* maybe we need to check and possibly fix the parity for this stripe
  2656. * Any reads will already have been scheduled, so we just see if enough
  2657. * data is available
  2658. */
  2659. if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
  2660. handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
  2661. if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
  2662. md_done_sync(conf->mddev, STRIPE_SECTORS,1);
  2663. clear_bit(STRIPE_SYNCING, &sh->state);
  2664. }
  2665. /* If the failed drives are just a ReadError, then we might need
  2666. * to progress the repair/check process
  2667. */
  2668. if (s.failed <= 2 && !conf->mddev->ro)
  2669. for (i = 0; i < s.failed; i++) {
  2670. dev = &sh->dev[r6s.failed_num[i]];
  2671. if (test_bit(R5_ReadError, &dev->flags)
  2672. && !test_bit(R5_LOCKED, &dev->flags)
  2673. && test_bit(R5_UPTODATE, &dev->flags)
  2674. ) {
  2675. if (!test_bit(R5_ReWrite, &dev->flags)) {
  2676. set_bit(R5_Wantwrite, &dev->flags);
  2677. set_bit(R5_ReWrite, &dev->flags);
  2678. set_bit(R5_LOCKED, &dev->flags);
  2679. } else {
  2680. /* let's read it back */
  2681. set_bit(R5_Wantread, &dev->flags);
  2682. set_bit(R5_LOCKED, &dev->flags);
  2683. }
  2684. }
  2685. }
  2686. if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
  2687. /* Need to write out all blocks after computing P&Q */
  2688. sh->disks = conf->raid_disks;
  2689. sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
  2690. conf->raid_disks);
  2691. compute_parity6(sh, RECONSTRUCT_WRITE);
  2692. for (i = conf->raid_disks ; i-- ; ) {
  2693. set_bit(R5_LOCKED, &sh->dev[i].flags);
  2694. s.locked++;
  2695. set_bit(R5_Wantwrite, &sh->dev[i].flags);
  2696. }
  2697. clear_bit(STRIPE_EXPANDING, &sh->state);
  2698. } else if (s.expanded) {
  2699. clear_bit(STRIPE_EXPAND_READY, &sh->state);
  2700. atomic_dec(&conf->reshape_stripes);
  2701. wake_up(&conf->wait_for_overlap);
  2702. md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
  2703. }
  2704. if (s.expanding && s.locked == 0)
  2705. handle_stripe_expansion(conf, sh, &r6s);
  2706. spin_unlock(&sh->lock);
  2707. return_io(return_bi);
  2708. for (i=disks; i-- ;) {
  2709. int rw;
  2710. struct bio *bi;
  2711. mdk_rdev_t *rdev;
  2712. if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
  2713. rw = WRITE;
  2714. else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
  2715. rw = READ;
  2716. else
  2717. continue;
  2718. bi = &sh->dev[i].req;
  2719. bi->bi_rw = rw;
  2720. if (rw == WRITE)
  2721. bi->bi_end_io = raid5_end_write_request;
  2722. else
  2723. bi->bi_end_io = raid5_end_read_request;
  2724. rcu_read_lock();
  2725. rdev = rcu_dereference(conf->disks[i].rdev);
  2726. if (rdev && test_bit(Faulty, &rdev->flags))
  2727. rdev = NULL;
  2728. if (rdev)
  2729. atomic_inc(&rdev->nr_pending);
  2730. rcu_read_unlock();
  2731. if (rdev) {
  2732. if (s.syncing || s.expanding || s.expanded)
  2733. md_sync_acct(rdev->bdev, STRIPE_SECTORS);
  2734. bi->bi_bdev = rdev->bdev;
  2735. pr_debug("for %llu schedule op %ld on disc %d\n",
  2736. (unsigned long long)sh->sector, bi->bi_rw, i);
  2737. atomic_inc(&sh->count);
  2738. bi->bi_sector = sh->sector + rdev->data_offset;
  2739. bi->bi_flags = 1 << BIO_UPTODATE;
  2740. bi->bi_vcnt = 1;
  2741. bi->bi_max_vecs = 1;
  2742. bi->bi_idx = 0;
  2743. bi->bi_io_vec = &sh->dev[i].vec;
  2744. bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
  2745. bi->bi_io_vec[0].bv_offset = 0;
  2746. bi->bi_size = STRIPE_SIZE;
  2747. bi->bi_next = NULL;
  2748. if (rw == WRITE &&
  2749. test_bit(R5_ReWrite, &sh->dev[i].flags))
  2750. atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
  2751. generic_make_request(bi);
  2752. } else {
  2753. if (rw == WRITE)
  2754. set_bit(STRIPE_DEGRADED, &sh->state);
  2755. pr_debug("skip op %ld on disc %d for sector %llu\n",
  2756. bi->bi_rw, i, (unsigned long long)sh->sector);
  2757. clear_bit(R5_LOCKED, &sh->dev[i].flags);
  2758. set_bit(STRIPE_HANDLE, &sh->state);
  2759. }
  2760. }
  2761. }
  2762. static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
  2763. {
  2764. if (sh->raid_conf->level == 6)
  2765. handle_stripe6(sh, tmp_page);
  2766. else
  2767. handle_stripe5(sh);
  2768. }
  2769. static void raid5_activate_delayed(raid5_conf_t *conf)
  2770. {
  2771. if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
  2772. while (!list_empty(&conf->delayed_list)) {
  2773. struct list_head *l = conf->delayed_list.next;
  2774. struct stripe_head *sh;
  2775. sh = list_entry(l, struct stripe_head, lru);
  2776. list_del_init(l);
  2777. clear_bit(STRIPE_DELAYED, &sh->state);
  2778. if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
  2779. atomic_inc(&conf->preread_active_stripes);
  2780. list_add_tail(&sh->lru, &conf->handle_list);
  2781. }
  2782. }
  2783. }
  2784. static void activate_bit_delay(raid5_conf_t *conf)
  2785. {
  2786. /* device_lock is held */
  2787. struct list_head head;
  2788. list_add(&head, &conf->bitmap_list);
  2789. list_del_init(&conf->bitmap_list);
  2790. while (!list_empty(&head)) {
  2791. struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
  2792. list_del_init(&sh->lru);
  2793. atomic_inc(&sh->count);
  2794. __release_stripe(conf, sh);
  2795. }
  2796. }
  2797. static void unplug_slaves(mddev_t *mddev)
  2798. {
  2799. raid5_conf_t *conf = mddev_to_conf(mddev);
  2800. int i;
  2801. rcu_read_lock();
  2802. for (i=0; i<mddev->raid_disks; i++) {
  2803. mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
  2804. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  2805. struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
  2806. atomic_inc(&rdev->nr_pending);
  2807. rcu_read_unlock();
  2808. if (r_queue->unplug_fn)
  2809. r_queue->unplug_fn(r_queue);
  2810. rdev_dec_pending(rdev, mddev);
  2811. rcu_read_lock();
  2812. }
  2813. }
  2814. rcu_read_unlock();
  2815. }
  2816. static void raid5_unplug_device(struct request_queue *q)
  2817. {
  2818. mddev_t *mddev = q->queuedata;
  2819. raid5_conf_t *conf = mddev_to_conf(mddev);
  2820. unsigned long flags;
  2821. spin_lock_irqsave(&conf->device_lock, flags);
  2822. if (blk_remove_plug(q)) {
  2823. conf->seq_flush++;
  2824. raid5_activate_delayed(conf);
  2825. }
  2826. md_wakeup_thread(mddev->thread);
  2827. spin_unlock_irqrestore(&conf->device_lock, flags);
  2828. unplug_slaves(mddev);
  2829. }
  2830. static int raid5_congested(void *data, int bits)
  2831. {
  2832. mddev_t *mddev = data;
  2833. raid5_conf_t *conf = mddev_to_conf(mddev);
  2834. /* No difference between reads and writes. Just check
  2835. * how busy the stripe_cache is
  2836. */
  2837. if (conf->inactive_blocked)
  2838. return 1;
  2839. if (conf->quiesce)
  2840. return 1;
  2841. if (list_empty_careful(&conf->inactive_list))
  2842. return 1;
  2843. return 0;
  2844. }
  2845. /* We want read requests to align with chunks where possible,
  2846. * but write requests don't need to.
  2847. */
  2848. static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
  2849. {
  2850. mddev_t *mddev = q->queuedata;
  2851. sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
  2852. int max;
  2853. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  2854. unsigned int bio_sectors = bio->bi_size >> 9;
  2855. if (bio_data_dir(bio) == WRITE)
  2856. return biovec->bv_len; /* always allow writes to be mergeable */
  2857. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  2858. if (max < 0) max = 0;
  2859. if (max <= biovec->bv_len && bio_sectors == 0)
  2860. return biovec->bv_len;
  2861. else
  2862. return max;
  2863. }
  2864. static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
  2865. {
  2866. sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
  2867. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  2868. unsigned int bio_sectors = bio->bi_size >> 9;
  2869. return chunk_sectors >=
  2870. ((sector & (chunk_sectors - 1)) + bio_sectors);
  2871. }
  2872. /*
  2873. * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
  2874. * later sampled by raid5d.
  2875. */
  2876. static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
  2877. {
  2878. unsigned long flags;
  2879. spin_lock_irqsave(&conf->device_lock, flags);
  2880. bi->bi_next = conf->retry_read_aligned_list;
  2881. conf->retry_read_aligned_list = bi;
  2882. spin_unlock_irqrestore(&conf->device_lock, flags);
  2883. md_wakeup_thread(conf->mddev->thread);
  2884. }
  2885. static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
  2886. {
  2887. struct bio *bi;
  2888. bi = conf->retry_read_aligned;
  2889. if (bi) {
  2890. conf->retry_read_aligned = NULL;
  2891. return bi;
  2892. }
  2893. bi = conf->retry_read_aligned_list;
  2894. if(bi) {
  2895. conf->retry_read_aligned_list = bi->bi_next;
  2896. bi->bi_next = NULL;
  2897. bi->bi_phys_segments = 1; /* biased count of active stripes */
  2898. bi->bi_hw_segments = 0; /* count of processed stripes */
  2899. }
  2900. return bi;
  2901. }
  2902. /*
  2903. * The "raid5_align_endio" should check if the read succeeded and if it
  2904. * did, call bio_endio on the original bio (having bio_put the new bio
  2905. * first).
  2906. * If the read failed..
  2907. */
  2908. static void raid5_align_endio(struct bio *bi, int error)
  2909. {
  2910. struct bio* raid_bi = bi->bi_private;
  2911. mddev_t *mddev;
  2912. raid5_conf_t *conf;
  2913. int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
  2914. mdk_rdev_t *rdev;
  2915. bio_put(bi);
  2916. mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
  2917. conf = mddev_to_conf(mddev);
  2918. rdev = (void*)raid_bi->bi_next;
  2919. raid_bi->bi_next = NULL;
  2920. rdev_dec_pending(rdev, conf->mddev);
  2921. if (!error && uptodate) {
  2922. bio_endio(raid_bi, 0);
  2923. if (atomic_dec_and_test(&conf->active_aligned_reads))
  2924. wake_up(&conf->wait_for_stripe);
  2925. return;
  2926. }
  2927. pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
  2928. add_bio_to_retry(raid_bi, conf);
  2929. }
  2930. static int bio_fits_rdev(struct bio *bi)
  2931. {
  2932. struct request_queue *q = bdev_get_queue(bi->bi_bdev);
  2933. if ((bi->bi_size>>9) > q->max_sectors)
  2934. return 0;
  2935. blk_recount_segments(q, bi);
  2936. if (bi->bi_phys_segments > q->max_phys_segments ||
  2937. bi->bi_hw_segments > q->max_hw_segments)
  2938. return 0;
  2939. if (q->merge_bvec_fn)
  2940. /* it's too hard to apply the merge_bvec_fn at this stage,
  2941. * just just give up
  2942. */
  2943. return 0;
  2944. return 1;
  2945. }
  2946. static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
  2947. {
  2948. mddev_t *mddev = q->queuedata;
  2949. raid5_conf_t *conf = mddev_to_conf(mddev);
  2950. const unsigned int raid_disks = conf->raid_disks;
  2951. const unsigned int data_disks = raid_disks - conf->max_degraded;
  2952. unsigned int dd_idx, pd_idx;
  2953. struct bio* align_bi;
  2954. mdk_rdev_t *rdev;
  2955. if (!in_chunk_boundary(mddev, raid_bio)) {
  2956. pr_debug("chunk_aligned_read : non aligned\n");
  2957. return 0;
  2958. }
  2959. /*
  2960. * use bio_clone to make a copy of the bio
  2961. */
  2962. align_bi = bio_clone(raid_bio, GFP_NOIO);
  2963. if (!align_bi)
  2964. return 0;
  2965. /*
  2966. * set bi_end_io to a new function, and set bi_private to the
  2967. * original bio.
  2968. */
  2969. align_bi->bi_end_io = raid5_align_endio;
  2970. align_bi->bi_private = raid_bio;
  2971. /*
  2972. * compute position
  2973. */
  2974. align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
  2975. raid_disks,
  2976. data_disks,
  2977. &dd_idx,
  2978. &pd_idx,
  2979. conf);
  2980. rcu_read_lock();
  2981. rdev = rcu_dereference(conf->disks[dd_idx].rdev);
  2982. if (rdev && test_bit(In_sync, &rdev->flags)) {
  2983. atomic_inc(&rdev->nr_pending);
  2984. rcu_read_unlock();
  2985. raid_bio->bi_next = (void*)rdev;
  2986. align_bi->bi_bdev = rdev->bdev;
  2987. align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
  2988. align_bi->bi_sector += rdev->data_offset;
  2989. if (!bio_fits_rdev(align_bi)) {
  2990. /* too big in some way */
  2991. bio_put(align_bi);
  2992. rdev_dec_pending(rdev, mddev);
  2993. return 0;
  2994. }
  2995. spin_lock_irq(&conf->device_lock);
  2996. wait_event_lock_irq(conf->wait_for_stripe,
  2997. conf->quiesce == 0,
  2998. conf->device_lock, /* nothing */);
  2999. atomic_inc(&conf->active_aligned_reads);
  3000. spin_unlock_irq(&conf->device_lock);
  3001. generic_make_request(align_bi);
  3002. return 1;
  3003. } else {
  3004. rcu_read_unlock();
  3005. bio_put(align_bi);
  3006. return 0;
  3007. }
  3008. }
  3009. static int make_request(struct request_queue *q, struct bio * bi)
  3010. {
  3011. mddev_t *mddev = q->queuedata;
  3012. raid5_conf_t *conf = mddev_to_conf(mddev);
  3013. unsigned int dd_idx, pd_idx;
  3014. sector_t new_sector;
  3015. sector_t logical_sector, last_sector;
  3016. struct stripe_head *sh;
  3017. const int rw = bio_data_dir(bi);
  3018. int remaining;
  3019. if (unlikely(bio_barrier(bi))) {
  3020. bio_endio(bi, -EOPNOTSUPP);
  3021. return 0;
  3022. }
  3023. md_write_start(mddev, bi);
  3024. disk_stat_inc(mddev->gendisk, ios[rw]);
  3025. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
  3026. if (rw == READ &&
  3027. mddev->reshape_position == MaxSector &&
  3028. chunk_aligned_read(q,bi))
  3029. return 0;
  3030. logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
  3031. last_sector = bi->bi_sector + (bi->bi_size>>9);
  3032. bi->bi_next = NULL;
  3033. bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
  3034. for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
  3035. DEFINE_WAIT(w);
  3036. int disks, data_disks;
  3037. retry:
  3038. prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
  3039. if (likely(conf->expand_progress == MaxSector))
  3040. disks = conf->raid_disks;
  3041. else {
  3042. /* spinlock is needed as expand_progress may be
  3043. * 64bit on a 32bit platform, and so it might be
  3044. * possible to see a half-updated value
  3045. * Ofcourse expand_progress could change after
  3046. * the lock is dropped, so once we get a reference
  3047. * to the stripe that we think it is, we will have
  3048. * to check again.
  3049. */
  3050. spin_lock_irq(&conf->device_lock);
  3051. disks = conf->raid_disks;
  3052. if (logical_sector >= conf->expand_progress)
  3053. disks = conf->previous_raid_disks;
  3054. else {
  3055. if (logical_sector >= conf->expand_lo) {
  3056. spin_unlock_irq(&conf->device_lock);
  3057. schedule();
  3058. goto retry;
  3059. }
  3060. }
  3061. spin_unlock_irq(&conf->device_lock);
  3062. }
  3063. data_disks = disks - conf->max_degraded;
  3064. new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
  3065. &dd_idx, &pd_idx, conf);
  3066. pr_debug("raid5: make_request, sector %llu logical %llu\n",
  3067. (unsigned long long)new_sector,
  3068. (unsigned long long)logical_sector);
  3069. sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
  3070. if (sh) {
  3071. if (unlikely(conf->expand_progress != MaxSector)) {
  3072. /* expansion might have moved on while waiting for a
  3073. * stripe, so we must do the range check again.
  3074. * Expansion could still move past after this
  3075. * test, but as we are holding a reference to
  3076. * 'sh', we know that if that happens,
  3077. * STRIPE_EXPANDING will get set and the expansion
  3078. * won't proceed until we finish with the stripe.
  3079. */
  3080. int must_retry = 0;
  3081. spin_lock_irq(&conf->device_lock);
  3082. if (logical_sector < conf->expand_progress &&
  3083. disks == conf->previous_raid_disks)
  3084. /* mismatch, need to try again */
  3085. must_retry = 1;
  3086. spin_unlock_irq(&conf->device_lock);
  3087. if (must_retry) {
  3088. release_stripe(sh);
  3089. goto retry;
  3090. }
  3091. }
  3092. /* FIXME what if we get a false positive because these
  3093. * are being updated.
  3094. */
  3095. if (logical_sector >= mddev->suspend_lo &&
  3096. logical_sector < mddev->suspend_hi) {
  3097. release_stripe(sh);
  3098. schedule();
  3099. goto retry;
  3100. }
  3101. if (test_bit(STRIPE_EXPANDING, &sh->state) ||
  3102. !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
  3103. /* Stripe is busy expanding or
  3104. * add failed due to overlap. Flush everything
  3105. * and wait a while
  3106. */
  3107. raid5_unplug_device(mddev->queue);
  3108. release_stripe(sh);
  3109. schedule();
  3110. goto retry;
  3111. }
  3112. finish_wait(&conf->wait_for_overlap, &w);
  3113. handle_stripe(sh, NULL);
  3114. release_stripe(sh);
  3115. } else {
  3116. /* cannot get stripe for read-ahead, just give-up */
  3117. clear_bit(BIO_UPTODATE, &bi->bi_flags);
  3118. finish_wait(&conf->wait_for_overlap, &w);
  3119. break;
  3120. }
  3121. }
  3122. spin_lock_irq(&conf->device_lock);
  3123. remaining = --bi->bi_phys_segments;
  3124. spin_unlock_irq(&conf->device_lock);
  3125. if (remaining == 0) {
  3126. if ( rw == WRITE )
  3127. md_write_end(mddev);
  3128. bi->bi_end_io(bi,
  3129. test_bit(BIO_UPTODATE, &bi->bi_flags)
  3130. ? 0 : -EIO);
  3131. }
  3132. return 0;
  3133. }
  3134. static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
  3135. {
  3136. /* reshaping is quite different to recovery/resync so it is
  3137. * handled quite separately ... here.
  3138. *
  3139. * On each call to sync_request, we gather one chunk worth of
  3140. * destination stripes and flag them as expanding.
  3141. * Then we find all the source stripes and request reads.
  3142. * As the reads complete, handle_stripe will copy the data
  3143. * into the destination stripe and release that stripe.
  3144. */
  3145. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  3146. struct stripe_head *sh;
  3147. int pd_idx;
  3148. sector_t first_sector, last_sector;
  3149. int raid_disks = conf->previous_raid_disks;
  3150. int data_disks = raid_disks - conf->max_degraded;
  3151. int new_data_disks = conf->raid_disks - conf->max_degraded;
  3152. int i;
  3153. int dd_idx;
  3154. sector_t writepos, safepos, gap;
  3155. if (sector_nr == 0 &&
  3156. conf->expand_progress != 0) {
  3157. /* restarting in the middle, skip the initial sectors */
  3158. sector_nr = conf->expand_progress;
  3159. sector_div(sector_nr, new_data_disks);
  3160. *skipped = 1;
  3161. return sector_nr;
  3162. }
  3163. /* we update the metadata when there is more than 3Meg
  3164. * in the block range (that is rather arbitrary, should
  3165. * probably be time based) or when the data about to be
  3166. * copied would over-write the source of the data at
  3167. * the front of the range.
  3168. * i.e. one new_stripe forward from expand_progress new_maps
  3169. * to after where expand_lo old_maps to
  3170. */
  3171. writepos = conf->expand_progress +
  3172. conf->chunk_size/512*(new_data_disks);
  3173. sector_div(writepos, new_data_disks);
  3174. safepos = conf->expand_lo;
  3175. sector_div(safepos, data_disks);
  3176. gap = conf->expand_progress - conf->expand_lo;
  3177. if (writepos >= safepos ||
  3178. gap > (new_data_disks)*3000*2 /*3Meg*/) {
  3179. /* Cannot proceed until we've updated the superblock... */
  3180. wait_event(conf->wait_for_overlap,
  3181. atomic_read(&conf->reshape_stripes)==0);
  3182. mddev->reshape_position = conf->expand_progress;
  3183. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3184. md_wakeup_thread(mddev->thread);
  3185. wait_event(mddev->sb_wait, mddev->flags == 0 ||
  3186. kthread_should_stop());
  3187. spin_lock_irq(&conf->device_lock);
  3188. conf->expand_lo = mddev->reshape_position;
  3189. spin_unlock_irq(&conf->device_lock);
  3190. wake_up(&conf->wait_for_overlap);
  3191. }
  3192. for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
  3193. int j;
  3194. int skipped = 0;
  3195. pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
  3196. sh = get_active_stripe(conf, sector_nr+i,
  3197. conf->raid_disks, pd_idx, 0);
  3198. set_bit(STRIPE_EXPANDING, &sh->state);
  3199. atomic_inc(&conf->reshape_stripes);
  3200. /* If any of this stripe is beyond the end of the old
  3201. * array, then we need to zero those blocks
  3202. */
  3203. for (j=sh->disks; j--;) {
  3204. sector_t s;
  3205. if (j == sh->pd_idx)
  3206. continue;
  3207. if (conf->level == 6 &&
  3208. j == raid6_next_disk(sh->pd_idx, sh->disks))
  3209. continue;
  3210. s = compute_blocknr(sh, j);
  3211. if (s < (mddev->array_size<<1)) {
  3212. skipped = 1;
  3213. continue;
  3214. }
  3215. memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
  3216. set_bit(R5_Expanded, &sh->dev[j].flags);
  3217. set_bit(R5_UPTODATE, &sh->dev[j].flags);
  3218. }
  3219. if (!skipped) {
  3220. set_bit(STRIPE_EXPAND_READY, &sh->state);
  3221. set_bit(STRIPE_HANDLE, &sh->state);
  3222. }
  3223. release_stripe(sh);
  3224. }
  3225. spin_lock_irq(&conf->device_lock);
  3226. conf->expand_progress = (sector_nr + i) * new_data_disks;
  3227. spin_unlock_irq(&conf->device_lock);
  3228. /* Ok, those stripe are ready. We can start scheduling
  3229. * reads on the source stripes.
  3230. * The source stripes are determined by mapping the first and last
  3231. * block on the destination stripes.
  3232. */
  3233. first_sector =
  3234. raid5_compute_sector(sector_nr*(new_data_disks),
  3235. raid_disks, data_disks,
  3236. &dd_idx, &pd_idx, conf);
  3237. last_sector =
  3238. raid5_compute_sector((sector_nr+conf->chunk_size/512)
  3239. *(new_data_disks) -1,
  3240. raid_disks, data_disks,
  3241. &dd_idx, &pd_idx, conf);
  3242. if (last_sector >= (mddev->size<<1))
  3243. last_sector = (mddev->size<<1)-1;
  3244. while (first_sector <= last_sector) {
  3245. pd_idx = stripe_to_pdidx(first_sector, conf,
  3246. conf->previous_raid_disks);
  3247. sh = get_active_stripe(conf, first_sector,
  3248. conf->previous_raid_disks, pd_idx, 0);
  3249. set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
  3250. set_bit(STRIPE_HANDLE, &sh->state);
  3251. release_stripe(sh);
  3252. first_sector += STRIPE_SECTORS;
  3253. }
  3254. return conf->chunk_size>>9;
  3255. }
  3256. /* FIXME go_faster isn't used */
  3257. static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  3258. {
  3259. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  3260. struct stripe_head *sh;
  3261. int pd_idx;
  3262. int raid_disks = conf->raid_disks;
  3263. sector_t max_sector = mddev->size << 1;
  3264. int sync_blocks;
  3265. int still_degraded = 0;
  3266. int i;
  3267. if (sector_nr >= max_sector) {
  3268. /* just being told to finish up .. nothing much to do */
  3269. unplug_slaves(mddev);
  3270. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
  3271. end_reshape(conf);
  3272. return 0;
  3273. }
  3274. if (mddev->curr_resync < max_sector) /* aborted */
  3275. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  3276. &sync_blocks, 1);
  3277. else /* completed sync */
  3278. conf->fullsync = 0;
  3279. bitmap_close_sync(mddev->bitmap);
  3280. return 0;
  3281. }
  3282. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3283. return reshape_request(mddev, sector_nr, skipped);
  3284. /* if there is too many failed drives and we are trying
  3285. * to resync, then assert that we are finished, because there is
  3286. * nothing we can do.
  3287. */
  3288. if (mddev->degraded >= conf->max_degraded &&
  3289. test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3290. sector_t rv = (mddev->size << 1) - sector_nr;
  3291. *skipped = 1;
  3292. return rv;
  3293. }
  3294. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  3295. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  3296. !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
  3297. /* we can skip this block, and probably more */
  3298. sync_blocks /= STRIPE_SECTORS;
  3299. *skipped = 1;
  3300. return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
  3301. }
  3302. pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
  3303. sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
  3304. if (sh == NULL) {
  3305. sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
  3306. /* make sure we don't swamp the stripe cache if someone else
  3307. * is trying to get access
  3308. */
  3309. schedule_timeout_uninterruptible(1);
  3310. }
  3311. /* Need to check if array will still be degraded after recovery/resync
  3312. * We don't need to check the 'failed' flag as when that gets set,
  3313. * recovery aborts.
  3314. */
  3315. for (i=0; i<mddev->raid_disks; i++)
  3316. if (conf->disks[i].rdev == NULL)
  3317. still_degraded = 1;
  3318. bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
  3319. spin_lock(&sh->lock);
  3320. set_bit(STRIPE_SYNCING, &sh->state);
  3321. clear_bit(STRIPE_INSYNC, &sh->state);
  3322. spin_unlock(&sh->lock);
  3323. handle_stripe(sh, NULL);
  3324. release_stripe(sh);
  3325. return STRIPE_SECTORS;
  3326. }
  3327. static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
  3328. {
  3329. /* We may not be able to submit a whole bio at once as there
  3330. * may not be enough stripe_heads available.
  3331. * We cannot pre-allocate enough stripe_heads as we may need
  3332. * more than exist in the cache (if we allow ever large chunks).
  3333. * So we do one stripe head at a time and record in
  3334. * ->bi_hw_segments how many have been done.
  3335. *
  3336. * We *know* that this entire raid_bio is in one chunk, so
  3337. * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
  3338. */
  3339. struct stripe_head *sh;
  3340. int dd_idx, pd_idx;
  3341. sector_t sector, logical_sector, last_sector;
  3342. int scnt = 0;
  3343. int remaining;
  3344. int handled = 0;
  3345. logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
  3346. sector = raid5_compute_sector( logical_sector,
  3347. conf->raid_disks,
  3348. conf->raid_disks - conf->max_degraded,
  3349. &dd_idx,
  3350. &pd_idx,
  3351. conf);
  3352. last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
  3353. for (; logical_sector < last_sector;
  3354. logical_sector += STRIPE_SECTORS,
  3355. sector += STRIPE_SECTORS,
  3356. scnt++) {
  3357. if (scnt < raid_bio->bi_hw_segments)
  3358. /* already done this stripe */
  3359. continue;
  3360. sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
  3361. if (!sh) {
  3362. /* failed to get a stripe - must wait */
  3363. raid_bio->bi_hw_segments = scnt;
  3364. conf->retry_read_aligned = raid_bio;
  3365. return handled;
  3366. }
  3367. set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
  3368. if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
  3369. release_stripe(sh);
  3370. raid_bio->bi_hw_segments = scnt;
  3371. conf->retry_read_aligned = raid_bio;
  3372. return handled;
  3373. }
  3374. handle_stripe(sh, NULL);
  3375. release_stripe(sh);
  3376. handled++;
  3377. }
  3378. spin_lock_irq(&conf->device_lock);
  3379. remaining = --raid_bio->bi_phys_segments;
  3380. spin_unlock_irq(&conf->device_lock);
  3381. if (remaining == 0) {
  3382. raid_bio->bi_end_io(raid_bio,
  3383. test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
  3384. ? 0 : -EIO);
  3385. }
  3386. if (atomic_dec_and_test(&conf->active_aligned_reads))
  3387. wake_up(&conf->wait_for_stripe);
  3388. return handled;
  3389. }
  3390. /*
  3391. * This is our raid5 kernel thread.
  3392. *
  3393. * We scan the hash table for stripes which can be handled now.
  3394. * During the scan, completed stripes are saved for us by the interrupt
  3395. * handler, so that they will not have to wait for our next wakeup.
  3396. */
  3397. static void raid5d (mddev_t *mddev)
  3398. {
  3399. struct stripe_head *sh;
  3400. raid5_conf_t *conf = mddev_to_conf(mddev);
  3401. int handled;
  3402. pr_debug("+++ raid5d active\n");
  3403. md_check_recovery(mddev);
  3404. handled = 0;
  3405. spin_lock_irq(&conf->device_lock);
  3406. while (1) {
  3407. struct list_head *first;
  3408. struct bio *bio;
  3409. if (conf->seq_flush != conf->seq_write) {
  3410. int seq = conf->seq_flush;
  3411. spin_unlock_irq(&conf->device_lock);
  3412. bitmap_unplug(mddev->bitmap);
  3413. spin_lock_irq(&conf->device_lock);
  3414. conf->seq_write = seq;
  3415. activate_bit_delay(conf);
  3416. }
  3417. if (list_empty(&conf->handle_list) &&
  3418. atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
  3419. !blk_queue_plugged(mddev->queue) &&
  3420. !list_empty(&conf->delayed_list))
  3421. raid5_activate_delayed(conf);
  3422. while ((bio = remove_bio_from_retry(conf))) {
  3423. int ok;
  3424. spin_unlock_irq(&conf->device_lock);
  3425. ok = retry_aligned_read(conf, bio);
  3426. spin_lock_irq(&conf->device_lock);
  3427. if (!ok)
  3428. break;
  3429. handled++;
  3430. }
  3431. if (list_empty(&conf->handle_list)) {
  3432. async_tx_issue_pending_all();
  3433. break;
  3434. }
  3435. first = conf->handle_list.next;
  3436. sh = list_entry(first, struct stripe_head, lru);
  3437. list_del_init(first);
  3438. atomic_inc(&sh->count);
  3439. BUG_ON(atomic_read(&sh->count)!= 1);
  3440. spin_unlock_irq(&conf->device_lock);
  3441. handled++;
  3442. handle_stripe(sh, conf->spare_page);
  3443. release_stripe(sh);
  3444. spin_lock_irq(&conf->device_lock);
  3445. }
  3446. pr_debug("%d stripes handled\n", handled);
  3447. spin_unlock_irq(&conf->device_lock);
  3448. unplug_slaves(mddev);
  3449. pr_debug("--- raid5d inactive\n");
  3450. }
  3451. static ssize_t
  3452. raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
  3453. {
  3454. raid5_conf_t *conf = mddev_to_conf(mddev);
  3455. if (conf)
  3456. return sprintf(page, "%d\n", conf->max_nr_stripes);
  3457. else
  3458. return 0;
  3459. }
  3460. static ssize_t
  3461. raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
  3462. {
  3463. raid5_conf_t *conf = mddev_to_conf(mddev);
  3464. char *end;
  3465. int new;
  3466. if (len >= PAGE_SIZE)
  3467. return -EINVAL;
  3468. if (!conf)
  3469. return -ENODEV;
  3470. new = simple_strtoul(page, &end, 10);
  3471. if (!*page || (*end && *end != '\n') )
  3472. return -EINVAL;
  3473. if (new <= 16 || new > 32768)
  3474. return -EINVAL;
  3475. while (new < conf->max_nr_stripes) {
  3476. if (drop_one_stripe(conf))
  3477. conf->max_nr_stripes--;
  3478. else
  3479. break;
  3480. }
  3481. md_allow_write(mddev);
  3482. while (new > conf->max_nr_stripes) {
  3483. if (grow_one_stripe(conf))
  3484. conf->max_nr_stripes++;
  3485. else break;
  3486. }
  3487. return len;
  3488. }
  3489. static struct md_sysfs_entry
  3490. raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
  3491. raid5_show_stripe_cache_size,
  3492. raid5_store_stripe_cache_size);
  3493. static ssize_t
  3494. stripe_cache_active_show(mddev_t *mddev, char *page)
  3495. {
  3496. raid5_conf_t *conf = mddev_to_conf(mddev);
  3497. if (conf)
  3498. return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
  3499. else
  3500. return 0;
  3501. }
  3502. static struct md_sysfs_entry
  3503. raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
  3504. static struct attribute *raid5_attrs[] = {
  3505. &raid5_stripecache_size.attr,
  3506. &raid5_stripecache_active.attr,
  3507. NULL,
  3508. };
  3509. static struct attribute_group raid5_attrs_group = {
  3510. .name = NULL,
  3511. .attrs = raid5_attrs,
  3512. };
  3513. static int run(mddev_t *mddev)
  3514. {
  3515. raid5_conf_t *conf;
  3516. int raid_disk, memory;
  3517. mdk_rdev_t *rdev;
  3518. struct disk_info *disk;
  3519. struct list_head *tmp;
  3520. int working_disks = 0;
  3521. if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
  3522. printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
  3523. mdname(mddev), mddev->level);
  3524. return -EIO;
  3525. }
  3526. if (mddev->reshape_position != MaxSector) {
  3527. /* Check that we can continue the reshape.
  3528. * Currently only disks can change, it must
  3529. * increase, and we must be past the point where
  3530. * a stripe over-writes itself
  3531. */
  3532. sector_t here_new, here_old;
  3533. int old_disks;
  3534. int max_degraded = (mddev->level == 5 ? 1 : 2);
  3535. if (mddev->new_level != mddev->level ||
  3536. mddev->new_layout != mddev->layout ||
  3537. mddev->new_chunk != mddev->chunk_size) {
  3538. printk(KERN_ERR "raid5: %s: unsupported reshape "
  3539. "required - aborting.\n",
  3540. mdname(mddev));
  3541. return -EINVAL;
  3542. }
  3543. if (mddev->delta_disks <= 0) {
  3544. printk(KERN_ERR "raid5: %s: unsupported reshape "
  3545. "(reduce disks) required - aborting.\n",
  3546. mdname(mddev));
  3547. return -EINVAL;
  3548. }
  3549. old_disks = mddev->raid_disks - mddev->delta_disks;
  3550. /* reshape_position must be on a new-stripe boundary, and one
  3551. * further up in new geometry must map after here in old
  3552. * geometry.
  3553. */
  3554. here_new = mddev->reshape_position;
  3555. if (sector_div(here_new, (mddev->chunk_size>>9)*
  3556. (mddev->raid_disks - max_degraded))) {
  3557. printk(KERN_ERR "raid5: reshape_position not "
  3558. "on a stripe boundary\n");
  3559. return -EINVAL;
  3560. }
  3561. /* here_new is the stripe we will write to */
  3562. here_old = mddev->reshape_position;
  3563. sector_div(here_old, (mddev->chunk_size>>9)*
  3564. (old_disks-max_degraded));
  3565. /* here_old is the first stripe that we might need to read
  3566. * from */
  3567. if (here_new >= here_old) {
  3568. /* Reading from the same stripe as writing to - bad */
  3569. printk(KERN_ERR "raid5: reshape_position too early for "
  3570. "auto-recovery - aborting.\n");
  3571. return -EINVAL;
  3572. }
  3573. printk(KERN_INFO "raid5: reshape will continue\n");
  3574. /* OK, we should be able to continue; */
  3575. }
  3576. mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
  3577. if ((conf = mddev->private) == NULL)
  3578. goto abort;
  3579. if (mddev->reshape_position == MaxSector) {
  3580. conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
  3581. } else {
  3582. conf->raid_disks = mddev->raid_disks;
  3583. conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
  3584. }
  3585. conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
  3586. GFP_KERNEL);
  3587. if (!conf->disks)
  3588. goto abort;
  3589. conf->mddev = mddev;
  3590. if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
  3591. goto abort;
  3592. if (mddev->level == 6) {
  3593. conf->spare_page = alloc_page(GFP_KERNEL);
  3594. if (!conf->spare_page)
  3595. goto abort;
  3596. }
  3597. spin_lock_init(&conf->device_lock);
  3598. init_waitqueue_head(&conf->wait_for_stripe);
  3599. init_waitqueue_head(&conf->wait_for_overlap);
  3600. INIT_LIST_HEAD(&conf->handle_list);
  3601. INIT_LIST_HEAD(&conf->delayed_list);
  3602. INIT_LIST_HEAD(&conf->bitmap_list);
  3603. INIT_LIST_HEAD(&conf->inactive_list);
  3604. atomic_set(&conf->active_stripes, 0);
  3605. atomic_set(&conf->preread_active_stripes, 0);
  3606. atomic_set(&conf->active_aligned_reads, 0);
  3607. pr_debug("raid5: run(%s) called.\n", mdname(mddev));
  3608. ITERATE_RDEV(mddev,rdev,tmp) {
  3609. raid_disk = rdev->raid_disk;
  3610. if (raid_disk >= conf->raid_disks
  3611. || raid_disk < 0)
  3612. continue;
  3613. disk = conf->disks + raid_disk;
  3614. disk->rdev = rdev;
  3615. if (test_bit(In_sync, &rdev->flags)) {
  3616. char b[BDEVNAME_SIZE];
  3617. printk(KERN_INFO "raid5: device %s operational as raid"
  3618. " disk %d\n", bdevname(rdev->bdev,b),
  3619. raid_disk);
  3620. working_disks++;
  3621. }
  3622. }
  3623. /*
  3624. * 0 for a fully functional array, 1 or 2 for a degraded array.
  3625. */
  3626. mddev->degraded = conf->raid_disks - working_disks;
  3627. conf->mddev = mddev;
  3628. conf->chunk_size = mddev->chunk_size;
  3629. conf->level = mddev->level;
  3630. if (conf->level == 6)
  3631. conf->max_degraded = 2;
  3632. else
  3633. conf->max_degraded = 1;
  3634. conf->algorithm = mddev->layout;
  3635. conf->max_nr_stripes = NR_STRIPES;
  3636. conf->expand_progress = mddev->reshape_position;
  3637. /* device size must be a multiple of chunk size */
  3638. mddev->size &= ~(mddev->chunk_size/1024 -1);
  3639. mddev->resync_max_sectors = mddev->size << 1;
  3640. if (conf->level == 6 && conf->raid_disks < 4) {
  3641. printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
  3642. mdname(mddev), conf->raid_disks);
  3643. goto abort;
  3644. }
  3645. if (!conf->chunk_size || conf->chunk_size % 4) {
  3646. printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
  3647. conf->chunk_size, mdname(mddev));
  3648. goto abort;
  3649. }
  3650. if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
  3651. printk(KERN_ERR
  3652. "raid5: unsupported parity algorithm %d for %s\n",
  3653. conf->algorithm, mdname(mddev));
  3654. goto abort;
  3655. }
  3656. if (mddev->degraded > conf->max_degraded) {
  3657. printk(KERN_ERR "raid5: not enough operational devices for %s"
  3658. " (%d/%d failed)\n",
  3659. mdname(mddev), mddev->degraded, conf->raid_disks);
  3660. goto abort;
  3661. }
  3662. if (mddev->degraded > 0 &&
  3663. mddev->recovery_cp != MaxSector) {
  3664. if (mddev->ok_start_degraded)
  3665. printk(KERN_WARNING
  3666. "raid5: starting dirty degraded array: %s"
  3667. "- data corruption possible.\n",
  3668. mdname(mddev));
  3669. else {
  3670. printk(KERN_ERR
  3671. "raid5: cannot start dirty degraded array for %s\n",
  3672. mdname(mddev));
  3673. goto abort;
  3674. }
  3675. }
  3676. {
  3677. mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
  3678. if (!mddev->thread) {
  3679. printk(KERN_ERR
  3680. "raid5: couldn't allocate thread for %s\n",
  3681. mdname(mddev));
  3682. goto abort;
  3683. }
  3684. }
  3685. memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
  3686. conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
  3687. if (grow_stripes(conf, conf->max_nr_stripes)) {
  3688. printk(KERN_ERR
  3689. "raid5: couldn't allocate %dkB for buffers\n", memory);
  3690. shrink_stripes(conf);
  3691. md_unregister_thread(mddev->thread);
  3692. goto abort;
  3693. } else
  3694. printk(KERN_INFO "raid5: allocated %dkB for %s\n",
  3695. memory, mdname(mddev));
  3696. if (mddev->degraded == 0)
  3697. printk("raid5: raid level %d set %s active with %d out of %d"
  3698. " devices, algorithm %d\n", conf->level, mdname(mddev),
  3699. mddev->raid_disks-mddev->degraded, mddev->raid_disks,
  3700. conf->algorithm);
  3701. else
  3702. printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
  3703. " out of %d devices, algorithm %d\n", conf->level,
  3704. mdname(mddev), mddev->raid_disks - mddev->degraded,
  3705. mddev->raid_disks, conf->algorithm);
  3706. print_raid5_conf(conf);
  3707. if (conf->expand_progress != MaxSector) {
  3708. printk("...ok start reshape thread\n");
  3709. conf->expand_lo = conf->expand_progress;
  3710. atomic_set(&conf->reshape_stripes, 0);
  3711. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3712. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3713. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  3714. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3715. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  3716. "%s_reshape");
  3717. }
  3718. /* read-ahead size must cover two whole stripes, which is
  3719. * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
  3720. */
  3721. {
  3722. int data_disks = conf->previous_raid_disks - conf->max_degraded;
  3723. int stripe = data_disks *
  3724. (mddev->chunk_size / PAGE_SIZE);
  3725. if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  3726. mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  3727. }
  3728. /* Ok, everything is just fine now */
  3729. if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
  3730. printk(KERN_WARNING
  3731. "raid5: failed to create sysfs attributes for %s\n",
  3732. mdname(mddev));
  3733. mddev->queue->unplug_fn = raid5_unplug_device;
  3734. mddev->queue->backing_dev_info.congested_data = mddev;
  3735. mddev->queue->backing_dev_info.congested_fn = raid5_congested;
  3736. mddev->array_size = mddev->size * (conf->previous_raid_disks -
  3737. conf->max_degraded);
  3738. blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
  3739. return 0;
  3740. abort:
  3741. if (conf) {
  3742. print_raid5_conf(conf);
  3743. safe_put_page(conf->spare_page);
  3744. kfree(conf->disks);
  3745. kfree(conf->stripe_hashtbl);
  3746. kfree(conf);
  3747. }
  3748. mddev->private = NULL;
  3749. printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
  3750. return -EIO;
  3751. }
  3752. static int stop(mddev_t *mddev)
  3753. {
  3754. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  3755. md_unregister_thread(mddev->thread);
  3756. mddev->thread = NULL;
  3757. shrink_stripes(conf);
  3758. kfree(conf->stripe_hashtbl);
  3759. mddev->queue->backing_dev_info.congested_fn = NULL;
  3760. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  3761. sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
  3762. kfree(conf->disks);
  3763. kfree(conf);
  3764. mddev->private = NULL;
  3765. return 0;
  3766. }
  3767. #ifdef DEBUG
  3768. static void print_sh (struct seq_file *seq, struct stripe_head *sh)
  3769. {
  3770. int i;
  3771. seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
  3772. (unsigned long long)sh->sector, sh->pd_idx, sh->state);
  3773. seq_printf(seq, "sh %llu, count %d.\n",
  3774. (unsigned long long)sh->sector, atomic_read(&sh->count));
  3775. seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
  3776. for (i = 0; i < sh->disks; i++) {
  3777. seq_printf(seq, "(cache%d: %p %ld) ",
  3778. i, sh->dev[i].page, sh->dev[i].flags);
  3779. }
  3780. seq_printf(seq, "\n");
  3781. }
  3782. static void printall (struct seq_file *seq, raid5_conf_t *conf)
  3783. {
  3784. struct stripe_head *sh;
  3785. struct hlist_node *hn;
  3786. int i;
  3787. spin_lock_irq(&conf->device_lock);
  3788. for (i = 0; i < NR_HASH; i++) {
  3789. hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
  3790. if (sh->raid_conf != conf)
  3791. continue;
  3792. print_sh(seq, sh);
  3793. }
  3794. }
  3795. spin_unlock_irq(&conf->device_lock);
  3796. }
  3797. #endif
  3798. static void status (struct seq_file *seq, mddev_t *mddev)
  3799. {
  3800. raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
  3801. int i;
  3802. seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
  3803. seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
  3804. for (i = 0; i < conf->raid_disks; i++)
  3805. seq_printf (seq, "%s",
  3806. conf->disks[i].rdev &&
  3807. test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
  3808. seq_printf (seq, "]");
  3809. #ifdef DEBUG
  3810. seq_printf (seq, "\n");
  3811. printall(seq, conf);
  3812. #endif
  3813. }
  3814. static void print_raid5_conf (raid5_conf_t *conf)
  3815. {
  3816. int i;
  3817. struct disk_info *tmp;
  3818. printk("RAID5 conf printout:\n");
  3819. if (!conf) {
  3820. printk("(conf==NULL)\n");
  3821. return;
  3822. }
  3823. printk(" --- rd:%d wd:%d\n", conf->raid_disks,
  3824. conf->raid_disks - conf->mddev->degraded);
  3825. for (i = 0; i < conf->raid_disks; i++) {
  3826. char b[BDEVNAME_SIZE];
  3827. tmp = conf->disks + i;
  3828. if (tmp->rdev)
  3829. printk(" disk %d, o:%d, dev:%s\n",
  3830. i, !test_bit(Faulty, &tmp->rdev->flags),
  3831. bdevname(tmp->rdev->bdev,b));
  3832. }
  3833. }
  3834. static int raid5_spare_active(mddev_t *mddev)
  3835. {
  3836. int i;
  3837. raid5_conf_t *conf = mddev->private;
  3838. struct disk_info *tmp;
  3839. for (i = 0; i < conf->raid_disks; i++) {
  3840. tmp = conf->disks + i;
  3841. if (tmp->rdev
  3842. && !test_bit(Faulty, &tmp->rdev->flags)
  3843. && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
  3844. unsigned long flags;
  3845. spin_lock_irqsave(&conf->device_lock, flags);
  3846. mddev->degraded--;
  3847. spin_unlock_irqrestore(&conf->device_lock, flags);
  3848. }
  3849. }
  3850. print_raid5_conf(conf);
  3851. return 0;
  3852. }
  3853. static int raid5_remove_disk(mddev_t *mddev, int number)
  3854. {
  3855. raid5_conf_t *conf = mddev->private;
  3856. int err = 0;
  3857. mdk_rdev_t *rdev;
  3858. struct disk_info *p = conf->disks + number;
  3859. print_raid5_conf(conf);
  3860. rdev = p->rdev;
  3861. if (rdev) {
  3862. if (test_bit(In_sync, &rdev->flags) ||
  3863. atomic_read(&rdev->nr_pending)) {
  3864. err = -EBUSY;
  3865. goto abort;
  3866. }
  3867. p->rdev = NULL;
  3868. synchronize_rcu();
  3869. if (atomic_read(&rdev->nr_pending)) {
  3870. /* lost the race, try later */
  3871. err = -EBUSY;
  3872. p->rdev = rdev;
  3873. }
  3874. }
  3875. abort:
  3876. print_raid5_conf(conf);
  3877. return err;
  3878. }
  3879. static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  3880. {
  3881. raid5_conf_t *conf = mddev->private;
  3882. int found = 0;
  3883. int disk;
  3884. struct disk_info *p;
  3885. if (mddev->degraded > conf->max_degraded)
  3886. /* no point adding a device */
  3887. return 0;
  3888. /*
  3889. * find the disk ... but prefer rdev->saved_raid_disk
  3890. * if possible.
  3891. */
  3892. if (rdev->saved_raid_disk >= 0 &&
  3893. conf->disks[rdev->saved_raid_disk].rdev == NULL)
  3894. disk = rdev->saved_raid_disk;
  3895. else
  3896. disk = 0;
  3897. for ( ; disk < conf->raid_disks; disk++)
  3898. if ((p=conf->disks + disk)->rdev == NULL) {
  3899. clear_bit(In_sync, &rdev->flags);
  3900. rdev->raid_disk = disk;
  3901. found = 1;
  3902. if (rdev->saved_raid_disk != disk)
  3903. conf->fullsync = 1;
  3904. rcu_assign_pointer(p->rdev, rdev);
  3905. break;
  3906. }
  3907. print_raid5_conf(conf);
  3908. return found;
  3909. }
  3910. static int raid5_resize(mddev_t *mddev, sector_t sectors)
  3911. {
  3912. /* no resync is happening, and there is enough space
  3913. * on all devices, so we can resize.
  3914. * We need to make sure resync covers any new space.
  3915. * If the array is shrinking we should possibly wait until
  3916. * any io in the removed space completes, but it hardly seems
  3917. * worth it.
  3918. */
  3919. raid5_conf_t *conf = mddev_to_conf(mddev);
  3920. sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
  3921. mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
  3922. set_capacity(mddev->gendisk, mddev->array_size << 1);
  3923. mddev->changed = 1;
  3924. if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
  3925. mddev->recovery_cp = mddev->size << 1;
  3926. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3927. }
  3928. mddev->size = sectors /2;
  3929. mddev->resync_max_sectors = sectors;
  3930. return 0;
  3931. }
  3932. #ifdef CONFIG_MD_RAID5_RESHAPE
  3933. static int raid5_check_reshape(mddev_t *mddev)
  3934. {
  3935. raid5_conf_t *conf = mddev_to_conf(mddev);
  3936. int err;
  3937. if (mddev->delta_disks < 0 ||
  3938. mddev->new_level != mddev->level)
  3939. return -EINVAL; /* Cannot shrink array or change level yet */
  3940. if (mddev->delta_disks == 0)
  3941. return 0; /* nothing to do */
  3942. /* Can only proceed if there are plenty of stripe_heads.
  3943. * We need a minimum of one full stripe,, and for sensible progress
  3944. * it is best to have about 4 times that.
  3945. * If we require 4 times, then the default 256 4K stripe_heads will
  3946. * allow for chunk sizes up to 256K, which is probably OK.
  3947. * If the chunk size is greater, user-space should request more
  3948. * stripe_heads first.
  3949. */
  3950. if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
  3951. (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
  3952. printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
  3953. (mddev->chunk_size / STRIPE_SIZE)*4);
  3954. return -ENOSPC;
  3955. }
  3956. err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
  3957. if (err)
  3958. return err;
  3959. if (mddev->degraded > conf->max_degraded)
  3960. return -EINVAL;
  3961. /* looks like we might be able to manage this */
  3962. return 0;
  3963. }
  3964. static int raid5_start_reshape(mddev_t *mddev)
  3965. {
  3966. raid5_conf_t *conf = mddev_to_conf(mddev);
  3967. mdk_rdev_t *rdev;
  3968. struct list_head *rtmp;
  3969. int spares = 0;
  3970. int added_devices = 0;
  3971. unsigned long flags;
  3972. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3973. return -EBUSY;
  3974. ITERATE_RDEV(mddev, rdev, rtmp)
  3975. if (rdev->raid_disk < 0 &&
  3976. !test_bit(Faulty, &rdev->flags))
  3977. spares++;
  3978. if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
  3979. /* Not enough devices even to make a degraded array
  3980. * of that size
  3981. */
  3982. return -EINVAL;
  3983. atomic_set(&conf->reshape_stripes, 0);
  3984. spin_lock_irq(&conf->device_lock);
  3985. conf->previous_raid_disks = conf->raid_disks;
  3986. conf->raid_disks += mddev->delta_disks;
  3987. conf->expand_progress = 0;
  3988. conf->expand_lo = 0;
  3989. spin_unlock_irq(&conf->device_lock);
  3990. /* Add some new drives, as many as will fit.
  3991. * We know there are enough to make the newly sized array work.
  3992. */
  3993. ITERATE_RDEV(mddev, rdev, rtmp)
  3994. if (rdev->raid_disk < 0 &&
  3995. !test_bit(Faulty, &rdev->flags)) {
  3996. if (raid5_add_disk(mddev, rdev)) {
  3997. char nm[20];
  3998. set_bit(In_sync, &rdev->flags);
  3999. added_devices++;
  4000. rdev->recovery_offset = 0;
  4001. sprintf(nm, "rd%d", rdev->raid_disk);
  4002. if (sysfs_create_link(&mddev->kobj,
  4003. &rdev->kobj, nm))
  4004. printk(KERN_WARNING
  4005. "raid5: failed to create "
  4006. " link %s for %s\n",
  4007. nm, mdname(mddev));
  4008. } else
  4009. break;
  4010. }
  4011. spin_lock_irqsave(&conf->device_lock, flags);
  4012. mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
  4013. spin_unlock_irqrestore(&conf->device_lock, flags);
  4014. mddev->raid_disks = conf->raid_disks;
  4015. mddev->reshape_position = 0;
  4016. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4017. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4018. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4019. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  4020. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4021. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  4022. "%s_reshape");
  4023. if (!mddev->sync_thread) {
  4024. mddev->recovery = 0;
  4025. spin_lock_irq(&conf->device_lock);
  4026. mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
  4027. conf->expand_progress = MaxSector;
  4028. spin_unlock_irq(&conf->device_lock);
  4029. return -EAGAIN;
  4030. }
  4031. md_wakeup_thread(mddev->sync_thread);
  4032. md_new_event(mddev);
  4033. return 0;
  4034. }
  4035. #endif
  4036. static void end_reshape(raid5_conf_t *conf)
  4037. {
  4038. struct block_device *bdev;
  4039. if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
  4040. conf->mddev->array_size = conf->mddev->size *
  4041. (conf->raid_disks - conf->max_degraded);
  4042. set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
  4043. conf->mddev->changed = 1;
  4044. bdev = bdget_disk(conf->mddev->gendisk, 0);
  4045. if (bdev) {
  4046. mutex_lock(&bdev->bd_inode->i_mutex);
  4047. i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
  4048. mutex_unlock(&bdev->bd_inode->i_mutex);
  4049. bdput(bdev);
  4050. }
  4051. spin_lock_irq(&conf->device_lock);
  4052. conf->expand_progress = MaxSector;
  4053. spin_unlock_irq(&conf->device_lock);
  4054. conf->mddev->reshape_position = MaxSector;
  4055. /* read-ahead size must cover two whole stripes, which is
  4056. * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
  4057. */
  4058. {
  4059. int data_disks = conf->previous_raid_disks - conf->max_degraded;
  4060. int stripe = data_disks *
  4061. (conf->mddev->chunk_size / PAGE_SIZE);
  4062. if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  4063. conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  4064. }
  4065. }
  4066. }
  4067. static void raid5_quiesce(mddev_t *mddev, int state)
  4068. {
  4069. raid5_conf_t *conf = mddev_to_conf(mddev);
  4070. switch(state) {
  4071. case 2: /* resume for a suspend */
  4072. wake_up(&conf->wait_for_overlap);
  4073. break;
  4074. case 1: /* stop all writes */
  4075. spin_lock_irq(&conf->device_lock);
  4076. conf->quiesce = 1;
  4077. wait_event_lock_irq(conf->wait_for_stripe,
  4078. atomic_read(&conf->active_stripes) == 0 &&
  4079. atomic_read(&conf->active_aligned_reads) == 0,
  4080. conf->device_lock, /* nothing */);
  4081. spin_unlock_irq(&conf->device_lock);
  4082. break;
  4083. case 0: /* re-enable writes */
  4084. spin_lock_irq(&conf->device_lock);
  4085. conf->quiesce = 0;
  4086. wake_up(&conf->wait_for_stripe);
  4087. wake_up(&conf->wait_for_overlap);
  4088. spin_unlock_irq(&conf->device_lock);
  4089. break;
  4090. }
  4091. }
  4092. static struct mdk_personality raid6_personality =
  4093. {
  4094. .name = "raid6",
  4095. .level = 6,
  4096. .owner = THIS_MODULE,
  4097. .make_request = make_request,
  4098. .run = run,
  4099. .stop = stop,
  4100. .status = status,
  4101. .error_handler = error,
  4102. .hot_add_disk = raid5_add_disk,
  4103. .hot_remove_disk= raid5_remove_disk,
  4104. .spare_active = raid5_spare_active,
  4105. .sync_request = sync_request,
  4106. .resize = raid5_resize,
  4107. #ifdef CONFIG_MD_RAID5_RESHAPE
  4108. .check_reshape = raid5_check_reshape,
  4109. .start_reshape = raid5_start_reshape,
  4110. #endif
  4111. .quiesce = raid5_quiesce,
  4112. };
  4113. static struct mdk_personality raid5_personality =
  4114. {
  4115. .name = "raid5",
  4116. .level = 5,
  4117. .owner = THIS_MODULE,
  4118. .make_request = make_request,
  4119. .run = run,
  4120. .stop = stop,
  4121. .status = status,
  4122. .error_handler = error,
  4123. .hot_add_disk = raid5_add_disk,
  4124. .hot_remove_disk= raid5_remove_disk,
  4125. .spare_active = raid5_spare_active,
  4126. .sync_request = sync_request,
  4127. .resize = raid5_resize,
  4128. #ifdef CONFIG_MD_RAID5_RESHAPE
  4129. .check_reshape = raid5_check_reshape,
  4130. .start_reshape = raid5_start_reshape,
  4131. #endif
  4132. .quiesce = raid5_quiesce,
  4133. };
  4134. static struct mdk_personality raid4_personality =
  4135. {
  4136. .name = "raid4",
  4137. .level = 4,
  4138. .owner = THIS_MODULE,
  4139. .make_request = make_request,
  4140. .run = run,
  4141. .stop = stop,
  4142. .status = status,
  4143. .error_handler = error,
  4144. .hot_add_disk = raid5_add_disk,
  4145. .hot_remove_disk= raid5_remove_disk,
  4146. .spare_active = raid5_spare_active,
  4147. .sync_request = sync_request,
  4148. .resize = raid5_resize,
  4149. #ifdef CONFIG_MD_RAID5_RESHAPE
  4150. .check_reshape = raid5_check_reshape,
  4151. .start_reshape = raid5_start_reshape,
  4152. #endif
  4153. .quiesce = raid5_quiesce,
  4154. };
  4155. static int __init raid5_init(void)
  4156. {
  4157. int e;
  4158. e = raid6_select_algo();
  4159. if ( e )
  4160. return e;
  4161. register_md_personality(&raid6_personality);
  4162. register_md_personality(&raid5_personality);
  4163. register_md_personality(&raid4_personality);
  4164. return 0;
  4165. }
  4166. static void raid5_exit(void)
  4167. {
  4168. unregister_md_personality(&raid6_personality);
  4169. unregister_md_personality(&raid5_personality);
  4170. unregister_md_personality(&raid4_personality);
  4171. }
  4172. module_init(raid5_init);
  4173. module_exit(raid5_exit);
  4174. MODULE_LICENSE("GPL");
  4175. MODULE_ALIAS("md-personality-4"); /* RAID5 */
  4176. MODULE_ALIAS("md-raid5");
  4177. MODULE_ALIAS("md-raid4");
  4178. MODULE_ALIAS("md-level-5");
  4179. MODULE_ALIAS("md-level-4");
  4180. MODULE_ALIAS("md-personality-8"); /* RAID6 */
  4181. MODULE_ALIAS("md-raid6");
  4182. MODULE_ALIAS("md-level-6");
  4183. /* This used to be two separate modules, they were: */
  4184. MODULE_ALIAS("raid5");
  4185. MODULE_ALIAS("raid6");