raid0.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530
  1. /*
  2. raid0.c : Multiple Devices driver for Linux
  3. Copyright (C) 1994-96 Marc ZYNGIER
  4. <zyngier@ufr-info-p7.ibp.fr> or
  5. <maz@gloups.fdn.fr>
  6. Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
  7. RAID-0 management functions.
  8. This program is free software; you can redistribute it and/or modify
  9. it under the terms of the GNU General Public License as published by
  10. the Free Software Foundation; either version 2, or (at your option)
  11. any later version.
  12. You should have received a copy of the GNU General Public License
  13. (for example /usr/src/linux/COPYING); if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/raid/raid0.h>
  18. #define MAJOR_NR MD_MAJOR
  19. #define MD_DRIVER
  20. #define MD_PERSONALITY
  21. static void raid0_unplug(struct request_queue *q)
  22. {
  23. mddev_t *mddev = q->queuedata;
  24. raid0_conf_t *conf = mddev_to_conf(mddev);
  25. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  26. int i;
  27. for (i=0; i<mddev->raid_disks; i++) {
  28. struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
  29. if (r_queue->unplug_fn)
  30. r_queue->unplug_fn(r_queue);
  31. }
  32. }
  33. static int raid0_congested(void *data, int bits)
  34. {
  35. mddev_t *mddev = data;
  36. raid0_conf_t *conf = mddev_to_conf(mddev);
  37. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  38. int i, ret = 0;
  39. for (i = 0; i < mddev->raid_disks && !ret ; i++) {
  40. struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
  41. ret |= bdi_congested(&q->backing_dev_info, bits);
  42. }
  43. return ret;
  44. }
  45. static int create_strip_zones (mddev_t *mddev)
  46. {
  47. int i, c, j;
  48. sector_t current_offset, curr_zone_offset;
  49. sector_t min_spacing;
  50. raid0_conf_t *conf = mddev_to_conf(mddev);
  51. mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
  52. struct list_head *tmp1, *tmp2;
  53. struct strip_zone *zone;
  54. int cnt;
  55. char b[BDEVNAME_SIZE];
  56. /*
  57. * The number of 'same size groups'
  58. */
  59. conf->nr_strip_zones = 0;
  60. ITERATE_RDEV(mddev,rdev1,tmp1) {
  61. printk("raid0: looking at %s\n",
  62. bdevname(rdev1->bdev,b));
  63. c = 0;
  64. ITERATE_RDEV(mddev,rdev2,tmp2) {
  65. printk("raid0: comparing %s(%llu)",
  66. bdevname(rdev1->bdev,b),
  67. (unsigned long long)rdev1->size);
  68. printk(" with %s(%llu)\n",
  69. bdevname(rdev2->bdev,b),
  70. (unsigned long long)rdev2->size);
  71. if (rdev2 == rdev1) {
  72. printk("raid0: END\n");
  73. break;
  74. }
  75. if (rdev2->size == rdev1->size)
  76. {
  77. /*
  78. * Not unique, don't count it as a new
  79. * group
  80. */
  81. printk("raid0: EQUAL\n");
  82. c = 1;
  83. break;
  84. }
  85. printk("raid0: NOT EQUAL\n");
  86. }
  87. if (!c) {
  88. printk("raid0: ==> UNIQUE\n");
  89. conf->nr_strip_zones++;
  90. printk("raid0: %d zones\n", conf->nr_strip_zones);
  91. }
  92. }
  93. printk("raid0: FINAL %d zones\n", conf->nr_strip_zones);
  94. conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
  95. conf->nr_strip_zones, GFP_KERNEL);
  96. if (!conf->strip_zone)
  97. return 1;
  98. conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
  99. conf->nr_strip_zones*mddev->raid_disks,
  100. GFP_KERNEL);
  101. if (!conf->devlist)
  102. return 1;
  103. /* The first zone must contain all devices, so here we check that
  104. * there is a proper alignment of slots to devices and find them all
  105. */
  106. zone = &conf->strip_zone[0];
  107. cnt = 0;
  108. smallest = NULL;
  109. zone->dev = conf->devlist;
  110. ITERATE_RDEV(mddev, rdev1, tmp1) {
  111. int j = rdev1->raid_disk;
  112. if (j < 0 || j >= mddev->raid_disks) {
  113. printk("raid0: bad disk number %d - aborting!\n", j);
  114. goto abort;
  115. }
  116. if (zone->dev[j]) {
  117. printk("raid0: multiple devices for %d - aborting!\n",
  118. j);
  119. goto abort;
  120. }
  121. zone->dev[j] = rdev1;
  122. blk_queue_stack_limits(mddev->queue,
  123. rdev1->bdev->bd_disk->queue);
  124. /* as we don't honour merge_bvec_fn, we must never risk
  125. * violating it, so limit ->max_sector to one PAGE, as
  126. * a one page request is never in violation.
  127. */
  128. if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
  129. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  130. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  131. if (!smallest || (rdev1->size <smallest->size))
  132. smallest = rdev1;
  133. cnt++;
  134. }
  135. if (cnt != mddev->raid_disks) {
  136. printk("raid0: too few disks (%d of %d) - aborting!\n",
  137. cnt, mddev->raid_disks);
  138. goto abort;
  139. }
  140. zone->nb_dev = cnt;
  141. zone->size = smallest->size * cnt;
  142. zone->zone_offset = 0;
  143. current_offset = smallest->size;
  144. curr_zone_offset = zone->size;
  145. /* now do the other zones */
  146. for (i = 1; i < conf->nr_strip_zones; i++)
  147. {
  148. zone = conf->strip_zone + i;
  149. zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
  150. printk("raid0: zone %d\n", i);
  151. zone->dev_offset = current_offset;
  152. smallest = NULL;
  153. c = 0;
  154. for (j=0; j<cnt; j++) {
  155. char b[BDEVNAME_SIZE];
  156. rdev = conf->strip_zone[0].dev[j];
  157. printk("raid0: checking %s ...", bdevname(rdev->bdev,b));
  158. if (rdev->size > current_offset)
  159. {
  160. printk(" contained as device %d\n", c);
  161. zone->dev[c] = rdev;
  162. c++;
  163. if (!smallest || (rdev->size <smallest->size)) {
  164. smallest = rdev;
  165. printk(" (%llu) is smallest!.\n",
  166. (unsigned long long)rdev->size);
  167. }
  168. } else
  169. printk(" nope.\n");
  170. }
  171. zone->nb_dev = c;
  172. zone->size = (smallest->size - current_offset) * c;
  173. printk("raid0: zone->nb_dev: %d, size: %llu\n",
  174. zone->nb_dev, (unsigned long long)zone->size);
  175. zone->zone_offset = curr_zone_offset;
  176. curr_zone_offset += zone->size;
  177. current_offset = smallest->size;
  178. printk("raid0: current zone offset: %llu\n",
  179. (unsigned long long)current_offset);
  180. }
  181. /* Now find appropriate hash spacing.
  182. * We want a number which causes most hash entries to cover
  183. * at most two strips, but the hash table must be at most
  184. * 1 PAGE. We choose the smallest strip, or contiguous collection
  185. * of strips, that has big enough size. We never consider the last
  186. * strip though as it's size has no bearing on the efficacy of the hash
  187. * table.
  188. */
  189. conf->hash_spacing = curr_zone_offset;
  190. min_spacing = curr_zone_offset;
  191. sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
  192. for (i=0; i < conf->nr_strip_zones-1; i++) {
  193. sector_t sz = 0;
  194. for (j=i; j<conf->nr_strip_zones-1 &&
  195. sz < min_spacing ; j++)
  196. sz += conf->strip_zone[j].size;
  197. if (sz >= min_spacing && sz < conf->hash_spacing)
  198. conf->hash_spacing = sz;
  199. }
  200. mddev->queue->unplug_fn = raid0_unplug;
  201. mddev->queue->backing_dev_info.congested_fn = raid0_congested;
  202. mddev->queue->backing_dev_info.congested_data = mddev;
  203. printk("raid0: done.\n");
  204. return 0;
  205. abort:
  206. return 1;
  207. }
  208. /**
  209. * raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
  210. * @q: request queue
  211. * @bio: the buffer head that's been built up so far
  212. * @biovec: the request that could be merged to it.
  213. *
  214. * Return amount of bytes we can accept at this offset
  215. */
  216. static int raid0_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
  217. {
  218. mddev_t *mddev = q->queuedata;
  219. sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
  220. int max;
  221. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  222. unsigned int bio_sectors = bio->bi_size >> 9;
  223. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  224. if (max < 0) max = 0; /* bio_add cannot handle a negative return */
  225. if (max <= biovec->bv_len && bio_sectors == 0)
  226. return biovec->bv_len;
  227. else
  228. return max;
  229. }
  230. static int raid0_run (mddev_t *mddev)
  231. {
  232. unsigned cur=0, i=0, nb_zone;
  233. s64 size;
  234. raid0_conf_t *conf;
  235. mdk_rdev_t *rdev;
  236. struct list_head *tmp;
  237. if (mddev->chunk_size == 0) {
  238. printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
  239. return -EINVAL;
  240. }
  241. printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
  242. mdname(mddev),
  243. mddev->chunk_size >> 9,
  244. (mddev->chunk_size>>1)-1);
  245. blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
  246. blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
  247. conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
  248. if (!conf)
  249. goto out;
  250. mddev->private = (void *)conf;
  251. conf->strip_zone = NULL;
  252. conf->devlist = NULL;
  253. if (create_strip_zones (mddev))
  254. goto out_free_conf;
  255. /* calculate array device size */
  256. mddev->array_size = 0;
  257. ITERATE_RDEV(mddev,rdev,tmp)
  258. mddev->array_size += rdev->size;
  259. printk("raid0 : md_size is %llu blocks.\n",
  260. (unsigned long long)mddev->array_size);
  261. printk("raid0 : conf->hash_spacing is %llu blocks.\n",
  262. (unsigned long long)conf->hash_spacing);
  263. {
  264. sector_t s = mddev->array_size;
  265. sector_t space = conf->hash_spacing;
  266. int round;
  267. conf->preshift = 0;
  268. if (sizeof(sector_t) > sizeof(u32)) {
  269. /*shift down space and s so that sector_div will work */
  270. while (space > (sector_t) (~(u32)0)) {
  271. s >>= 1;
  272. space >>= 1;
  273. s += 1; /* force round-up */
  274. conf->preshift++;
  275. }
  276. }
  277. round = sector_div(s, (u32)space) ? 1 : 0;
  278. nb_zone = s + round;
  279. }
  280. printk("raid0 : nb_zone is %d.\n", nb_zone);
  281. printk("raid0 : Allocating %Zd bytes for hash.\n",
  282. nb_zone*sizeof(struct strip_zone*));
  283. conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
  284. if (!conf->hash_table)
  285. goto out_free_conf;
  286. size = conf->strip_zone[cur].size;
  287. conf->hash_table[0] = conf->strip_zone + cur;
  288. for (i=1; i< nb_zone; i++) {
  289. while (size <= conf->hash_spacing) {
  290. cur++;
  291. size += conf->strip_zone[cur].size;
  292. }
  293. size -= conf->hash_spacing;
  294. conf->hash_table[i] = conf->strip_zone + cur;
  295. }
  296. if (conf->preshift) {
  297. conf->hash_spacing >>= conf->preshift;
  298. /* round hash_spacing up so when we divide by it, we
  299. * err on the side of too-low, which is safest
  300. */
  301. conf->hash_spacing++;
  302. }
  303. /* calculate the max read-ahead size.
  304. * For read-ahead of large files to be effective, we need to
  305. * readahead at least twice a whole stripe. i.e. number of devices
  306. * multiplied by chunk size times 2.
  307. * If an individual device has an ra_pages greater than the
  308. * chunk size, then we will not drive that device as hard as it
  309. * wants. We consider this a configuration error: a larger
  310. * chunksize should be used in that case.
  311. */
  312. {
  313. int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
  314. if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
  315. mddev->queue->backing_dev_info.ra_pages = 2* stripe;
  316. }
  317. blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
  318. return 0;
  319. out_free_conf:
  320. kfree(conf->strip_zone);
  321. kfree(conf->devlist);
  322. kfree(conf);
  323. mddev->private = NULL;
  324. out:
  325. return -ENOMEM;
  326. }
  327. static int raid0_stop (mddev_t *mddev)
  328. {
  329. raid0_conf_t *conf = mddev_to_conf(mddev);
  330. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  331. kfree(conf->hash_table);
  332. conf->hash_table = NULL;
  333. kfree(conf->strip_zone);
  334. conf->strip_zone = NULL;
  335. kfree(conf);
  336. mddev->private = NULL;
  337. return 0;
  338. }
  339. static int raid0_make_request (struct request_queue *q, struct bio *bio)
  340. {
  341. mddev_t *mddev = q->queuedata;
  342. unsigned int sect_in_chunk, chunksize_bits, chunk_size, chunk_sects;
  343. raid0_conf_t *conf = mddev_to_conf(mddev);
  344. struct strip_zone *zone;
  345. mdk_rdev_t *tmp_dev;
  346. sector_t chunk;
  347. sector_t block, rsect;
  348. const int rw = bio_data_dir(bio);
  349. if (unlikely(bio_barrier(bio))) {
  350. bio_endio(bio, -EOPNOTSUPP);
  351. return 0;
  352. }
  353. disk_stat_inc(mddev->gendisk, ios[rw]);
  354. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
  355. chunk_size = mddev->chunk_size >> 10;
  356. chunk_sects = mddev->chunk_size >> 9;
  357. chunksize_bits = ffz(~chunk_size);
  358. block = bio->bi_sector >> 1;
  359. if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
  360. struct bio_pair *bp;
  361. /* Sanity check -- queue functions should prevent this happening */
  362. if (bio->bi_vcnt != 1 ||
  363. bio->bi_idx != 0)
  364. goto bad_map;
  365. /* This is a one page bio that upper layers
  366. * refuse to split for us, so we need to split it.
  367. */
  368. bp = bio_split(bio, bio_split_pool, chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
  369. if (raid0_make_request(q, &bp->bio1))
  370. generic_make_request(&bp->bio1);
  371. if (raid0_make_request(q, &bp->bio2))
  372. generic_make_request(&bp->bio2);
  373. bio_pair_release(bp);
  374. return 0;
  375. }
  376. {
  377. sector_t x = block >> conf->preshift;
  378. sector_div(x, (u32)conf->hash_spacing);
  379. zone = conf->hash_table[x];
  380. }
  381. while (block >= (zone->zone_offset + zone->size))
  382. zone++;
  383. sect_in_chunk = bio->bi_sector & ((chunk_size<<1) -1);
  384. {
  385. sector_t x = (block - zone->zone_offset) >> chunksize_bits;
  386. sector_div(x, zone->nb_dev);
  387. chunk = x;
  388. x = block >> chunksize_bits;
  389. tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
  390. }
  391. rsect = (((chunk << chunksize_bits) + zone->dev_offset)<<1)
  392. + sect_in_chunk;
  393. bio->bi_bdev = tmp_dev->bdev;
  394. bio->bi_sector = rsect + tmp_dev->data_offset;
  395. /*
  396. * Let the main block layer submit the IO and resolve recursion:
  397. */
  398. return 1;
  399. bad_map:
  400. printk("raid0_make_request bug: can't convert block across chunks"
  401. " or bigger than %dk %llu %d\n", chunk_size,
  402. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  403. bio_io_error(bio);
  404. return 0;
  405. }
  406. static void raid0_status (struct seq_file *seq, mddev_t *mddev)
  407. {
  408. #undef MD_DEBUG
  409. #ifdef MD_DEBUG
  410. int j, k, h;
  411. char b[BDEVNAME_SIZE];
  412. raid0_conf_t *conf = mddev_to_conf(mddev);
  413. h = 0;
  414. for (j = 0; j < conf->nr_strip_zones; j++) {
  415. seq_printf(seq, " z%d", j);
  416. if (conf->hash_table[h] == conf->strip_zone+j)
  417. seq_printf(seq, "(h%d)", h++);
  418. seq_printf(seq, "=[");
  419. for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
  420. seq_printf(seq, "%s/", bdevname(
  421. conf->strip_zone[j].dev[k]->bdev,b));
  422. seq_printf(seq, "] zo=%d do=%d s=%d\n",
  423. conf->strip_zone[j].zone_offset,
  424. conf->strip_zone[j].dev_offset,
  425. conf->strip_zone[j].size);
  426. }
  427. #endif
  428. seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
  429. return;
  430. }
  431. static struct mdk_personality raid0_personality=
  432. {
  433. .name = "raid0",
  434. .level = 0,
  435. .owner = THIS_MODULE,
  436. .make_request = raid0_make_request,
  437. .run = raid0_run,
  438. .stop = raid0_stop,
  439. .status = raid0_status,
  440. };
  441. static int __init raid0_init (void)
  442. {
  443. return register_md_personality (&raid0_personality);
  444. }
  445. static void raid0_exit (void)
  446. {
  447. unregister_md_personality (&raid0_personality);
  448. }
  449. module_init(raid0_init);
  450. module_exit(raid0_exit);
  451. MODULE_LICENSE("GPL");
  452. MODULE_ALIAS("md-personality-2"); /* RAID0 */
  453. MODULE_ALIAS("md-raid0");
  454. MODULE_ALIAS("md-level-0");