core.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776
  1. /*P:400 This contains run_guest() which actually calls into the Host<->Guest
  2. * Switcher and analyzes the return, such as determining if the Guest wants the
  3. * Host to do something. This file also contains useful helper routines, and a
  4. * couple of non-obvious setup and teardown pieces which were implemented after
  5. * days of debugging pain. :*/
  6. #include <linux/module.h>
  7. #include <linux/stringify.h>
  8. #include <linux/stddef.h>
  9. #include <linux/io.h>
  10. #include <linux/mm.h>
  11. #include <linux/vmalloc.h>
  12. #include <linux/cpu.h>
  13. #include <linux/freezer.h>
  14. #include <asm/paravirt.h>
  15. #include <asm/desc.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/poll.h>
  19. #include <asm/highmem.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/i387.h>
  22. #include "lg.h"
  23. /* Found in switcher.S */
  24. extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
  25. extern unsigned long default_idt_entries[];
  26. /* Every guest maps the core switcher code. */
  27. #define SHARED_SWITCHER_PAGES \
  28. DIV_ROUND_UP(end_switcher_text - start_switcher_text, PAGE_SIZE)
  29. /* Pages for switcher itself, then two pages per cpu */
  30. #define TOTAL_SWITCHER_PAGES (SHARED_SWITCHER_PAGES + 2 * NR_CPUS)
  31. /* We map at -4M for ease of mapping into the guest (one PTE page). */
  32. #define SWITCHER_ADDR 0xFFC00000
  33. static struct vm_struct *switcher_vma;
  34. static struct page **switcher_page;
  35. static int cpu_had_pge;
  36. static struct {
  37. unsigned long offset;
  38. unsigned short segment;
  39. } lguest_entry;
  40. /* This One Big lock protects all inter-guest data structures. */
  41. DEFINE_MUTEX(lguest_lock);
  42. static DEFINE_PER_CPU(struct lguest *, last_guest);
  43. /* FIXME: Make dynamic. */
  44. #define MAX_LGUEST_GUESTS 16
  45. struct lguest lguests[MAX_LGUEST_GUESTS];
  46. /* Offset from where switcher.S was compiled to where we've copied it */
  47. static unsigned long switcher_offset(void)
  48. {
  49. return SWITCHER_ADDR - (unsigned long)start_switcher_text;
  50. }
  51. /* This cpu's struct lguest_pages. */
  52. static struct lguest_pages *lguest_pages(unsigned int cpu)
  53. {
  54. return &(((struct lguest_pages *)
  55. (SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]);
  56. }
  57. /*H:010 We need to set up the Switcher at a high virtual address. Remember the
  58. * Switcher is a few hundred bytes of assembler code which actually changes the
  59. * CPU to run the Guest, and then changes back to the Host when a trap or
  60. * interrupt happens.
  61. *
  62. * The Switcher code must be at the same virtual address in the Guest as the
  63. * Host since it will be running as the switchover occurs.
  64. *
  65. * Trying to map memory at a particular address is an unusual thing to do, so
  66. * it's not a simple one-liner. We also set up the per-cpu parts of the
  67. * Switcher here.
  68. */
  69. static __init int map_switcher(void)
  70. {
  71. int i, err;
  72. struct page **pagep;
  73. /*
  74. * Map the Switcher in to high memory.
  75. *
  76. * It turns out that if we choose the address 0xFFC00000 (4MB under the
  77. * top virtual address), it makes setting up the page tables really
  78. * easy.
  79. */
  80. /* We allocate an array of "struct page"s. map_vm_area() wants the
  81. * pages in this form, rather than just an array of pointers. */
  82. switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
  83. GFP_KERNEL);
  84. if (!switcher_page) {
  85. err = -ENOMEM;
  86. goto out;
  87. }
  88. /* Now we actually allocate the pages. The Guest will see these pages,
  89. * so we make sure they're zeroed. */
  90. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
  91. unsigned long addr = get_zeroed_page(GFP_KERNEL);
  92. if (!addr) {
  93. err = -ENOMEM;
  94. goto free_some_pages;
  95. }
  96. switcher_page[i] = virt_to_page(addr);
  97. }
  98. /* Now we reserve the "virtual memory area" we want: 0xFFC00000
  99. * (SWITCHER_ADDR). We might not get it in theory, but in practice
  100. * it's worked so far. */
  101. switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
  102. VM_ALLOC, SWITCHER_ADDR, VMALLOC_END);
  103. if (!switcher_vma) {
  104. err = -ENOMEM;
  105. printk("lguest: could not map switcher pages high\n");
  106. goto free_pages;
  107. }
  108. /* This code actually sets up the pages we've allocated to appear at
  109. * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
  110. * kind of pages we're mapping (kernel pages), and a pointer to our
  111. * array of struct pages. It increments that pointer, but we don't
  112. * care. */
  113. pagep = switcher_page;
  114. err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep);
  115. if (err) {
  116. printk("lguest: map_vm_area failed: %i\n", err);
  117. goto free_vma;
  118. }
  119. /* Now the switcher is mapped at the right address, we can't fail!
  120. * Copy in the compiled-in Switcher code (from switcher.S). */
  121. memcpy(switcher_vma->addr, start_switcher_text,
  122. end_switcher_text - start_switcher_text);
  123. /* Most of the switcher.S doesn't care that it's been moved; on Intel,
  124. * jumps are relative, and it doesn't access any references to external
  125. * code or data.
  126. *
  127. * The only exception is the interrupt handlers in switcher.S: their
  128. * addresses are placed in a table (default_idt_entries), so we need to
  129. * update the table with the new addresses. switcher_offset() is a
  130. * convenience function which returns the distance between the builtin
  131. * switcher code and the high-mapped copy we just made. */
  132. for (i = 0; i < IDT_ENTRIES; i++)
  133. default_idt_entries[i] += switcher_offset();
  134. /*
  135. * Set up the Switcher's per-cpu areas.
  136. *
  137. * Each CPU gets two pages of its own within the high-mapped region
  138. * (aka. "struct lguest_pages"). Much of this can be initialized now,
  139. * but some depends on what Guest we are running (which is set up in
  140. * copy_in_guest_info()).
  141. */
  142. for_each_possible_cpu(i) {
  143. /* lguest_pages() returns this CPU's two pages. */
  144. struct lguest_pages *pages = lguest_pages(i);
  145. /* This is a convenience pointer to make the code fit one
  146. * statement to a line. */
  147. struct lguest_ro_state *state = &pages->state;
  148. /* The Global Descriptor Table: the Host has a different one
  149. * for each CPU. We keep a descriptor for the GDT which says
  150. * where it is and how big it is (the size is actually the last
  151. * byte, not the size, hence the "-1"). */
  152. state->host_gdt_desc.size = GDT_SIZE-1;
  153. state->host_gdt_desc.address = (long)get_cpu_gdt_table(i);
  154. /* All CPUs on the Host use the same Interrupt Descriptor
  155. * Table, so we just use store_idt(), which gets this CPU's IDT
  156. * descriptor. */
  157. store_idt(&state->host_idt_desc);
  158. /* The descriptors for the Guest's GDT and IDT can be filled
  159. * out now, too. We copy the GDT & IDT into ->guest_gdt and
  160. * ->guest_idt before actually running the Guest. */
  161. state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
  162. state->guest_idt_desc.address = (long)&state->guest_idt;
  163. state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
  164. state->guest_gdt_desc.address = (long)&state->guest_gdt;
  165. /* We know where we want the stack to be when the Guest enters
  166. * the switcher: in pages->regs. The stack grows upwards, so
  167. * we start it at the end of that structure. */
  168. state->guest_tss.esp0 = (long)(&pages->regs + 1);
  169. /* And this is the GDT entry to use for the stack: we keep a
  170. * couple of special LGUEST entries. */
  171. state->guest_tss.ss0 = LGUEST_DS;
  172. /* x86 can have a finegrained bitmap which indicates what I/O
  173. * ports the process can use. We set it to the end of our
  174. * structure, meaning "none". */
  175. state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
  176. /* Some GDT entries are the same across all Guests, so we can
  177. * set them up now. */
  178. setup_default_gdt_entries(state);
  179. /* Most IDT entries are the same for all Guests, too.*/
  180. setup_default_idt_entries(state, default_idt_entries);
  181. /* The Host needs to be able to use the LGUEST segments on this
  182. * CPU, too, so put them in the Host GDT. */
  183. get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
  184. get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
  185. }
  186. /* In the Switcher, we want the %cs segment register to use the
  187. * LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
  188. * it will be undisturbed when we switch. To change %cs and jump we
  189. * need this structure to feed to Intel's "lcall" instruction. */
  190. lguest_entry.offset = (long)switch_to_guest + switcher_offset();
  191. lguest_entry.segment = LGUEST_CS;
  192. printk(KERN_INFO "lguest: mapped switcher at %p\n",
  193. switcher_vma->addr);
  194. /* And we succeeded... */
  195. return 0;
  196. free_vma:
  197. vunmap(switcher_vma->addr);
  198. free_pages:
  199. i = TOTAL_SWITCHER_PAGES;
  200. free_some_pages:
  201. for (--i; i >= 0; i--)
  202. __free_pages(switcher_page[i], 0);
  203. kfree(switcher_page);
  204. out:
  205. return err;
  206. }
  207. /*:*/
  208. /* Cleaning up the mapping when the module is unloaded is almost...
  209. * too easy. */
  210. static void unmap_switcher(void)
  211. {
  212. unsigned int i;
  213. /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
  214. vunmap(switcher_vma->addr);
  215. /* Now we just need to free the pages we copied the switcher into */
  216. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
  217. __free_pages(switcher_page[i], 0);
  218. }
  219. /*H:130 Our Guest is usually so well behaved; it never tries to do things it
  220. * isn't allowed to. Unfortunately, Linux's paravirtual infrastructure isn't
  221. * quite complete, because it doesn't contain replacements for the Intel I/O
  222. * instructions. As a result, the Guest sometimes fumbles across one during
  223. * the boot process as it probes for various things which are usually attached
  224. * to a PC.
  225. *
  226. * When the Guest uses one of these instructions, we get trap #13 (General
  227. * Protection Fault) and come here. We see if it's one of those troublesome
  228. * instructions and skip over it. We return true if we did. */
  229. static int emulate_insn(struct lguest *lg)
  230. {
  231. u8 insn;
  232. unsigned int insnlen = 0, in = 0, shift = 0;
  233. /* The eip contains the *virtual* address of the Guest's instruction:
  234. * guest_pa just subtracts the Guest's page_offset. */
  235. unsigned long physaddr = guest_pa(lg, lg->regs->eip);
  236. /* The guest_pa() function only works for Guest kernel addresses, but
  237. * that's all we're trying to do anyway. */
  238. if (lg->regs->eip < lg->page_offset)
  239. return 0;
  240. /* Decoding x86 instructions is icky. */
  241. lgread(lg, &insn, physaddr, 1);
  242. /* 0x66 is an "operand prefix". It means it's using the upper 16 bits
  243. of the eax register. */
  244. if (insn == 0x66) {
  245. shift = 16;
  246. /* The instruction is 1 byte so far, read the next byte. */
  247. insnlen = 1;
  248. lgread(lg, &insn, physaddr + insnlen, 1);
  249. }
  250. /* We can ignore the lower bit for the moment and decode the 4 opcodes
  251. * we need to emulate. */
  252. switch (insn & 0xFE) {
  253. case 0xE4: /* in <next byte>,%al */
  254. insnlen += 2;
  255. in = 1;
  256. break;
  257. case 0xEC: /* in (%dx),%al */
  258. insnlen += 1;
  259. in = 1;
  260. break;
  261. case 0xE6: /* out %al,<next byte> */
  262. insnlen += 2;
  263. break;
  264. case 0xEE: /* out %al,(%dx) */
  265. insnlen += 1;
  266. break;
  267. default:
  268. /* OK, we don't know what this is, can't emulate. */
  269. return 0;
  270. }
  271. /* If it was an "IN" instruction, they expect the result to be read
  272. * into %eax, so we change %eax. We always return all-ones, which
  273. * traditionally means "there's nothing there". */
  274. if (in) {
  275. /* Lower bit tells is whether it's a 16 or 32 bit access */
  276. if (insn & 0x1)
  277. lg->regs->eax = 0xFFFFFFFF;
  278. else
  279. lg->regs->eax |= (0xFFFF << shift);
  280. }
  281. /* Finally, we've "done" the instruction, so move past it. */
  282. lg->regs->eip += insnlen;
  283. /* Success! */
  284. return 1;
  285. }
  286. /*:*/
  287. /*L:305
  288. * Dealing With Guest Memory.
  289. *
  290. * When the Guest gives us (what it thinks is) a physical address, we can use
  291. * the normal copy_from_user() & copy_to_user() on that address: remember,
  292. * Guest physical == Launcher virtual.
  293. *
  294. * But we can't trust the Guest: it might be trying to access the Launcher
  295. * code. We have to check that the range is below the pfn_limit the Launcher
  296. * gave us. We have to make sure that addr + len doesn't give us a false
  297. * positive by overflowing, too. */
  298. int lguest_address_ok(const struct lguest *lg,
  299. unsigned long addr, unsigned long len)
  300. {
  301. return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
  302. }
  303. /* This is a convenient routine to get a 32-bit value from the Guest (a very
  304. * common operation). Here we can see how useful the kill_lguest() routine we
  305. * met in the Launcher can be: we return a random value (0) instead of needing
  306. * to return an error. */
  307. u32 lgread_u32(struct lguest *lg, unsigned long addr)
  308. {
  309. u32 val = 0;
  310. /* Don't let them access lguest binary. */
  311. if (!lguest_address_ok(lg, addr, sizeof(val))
  312. || get_user(val, (u32 __user *)addr) != 0)
  313. kill_guest(lg, "bad read address %#lx", addr);
  314. return val;
  315. }
  316. /* Same thing for writing a value. */
  317. void lgwrite_u32(struct lguest *lg, unsigned long addr, u32 val)
  318. {
  319. if (!lguest_address_ok(lg, addr, sizeof(val))
  320. || put_user(val, (u32 __user *)addr) != 0)
  321. kill_guest(lg, "bad write address %#lx", addr);
  322. }
  323. /* This routine is more generic, and copies a range of Guest bytes into a
  324. * buffer. If the copy_from_user() fails, we fill the buffer with zeroes, so
  325. * the caller doesn't end up using uninitialized kernel memory. */
  326. void lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
  327. {
  328. if (!lguest_address_ok(lg, addr, bytes)
  329. || copy_from_user(b, (void __user *)addr, bytes) != 0) {
  330. /* copy_from_user should do this, but as we rely on it... */
  331. memset(b, 0, bytes);
  332. kill_guest(lg, "bad read address %#lx len %u", addr, bytes);
  333. }
  334. }
  335. /* Similarly, our generic routine to copy into a range of Guest bytes. */
  336. void lgwrite(struct lguest *lg, unsigned long addr, const void *b,
  337. unsigned bytes)
  338. {
  339. if (!lguest_address_ok(lg, addr, bytes)
  340. || copy_to_user((void __user *)addr, b, bytes) != 0)
  341. kill_guest(lg, "bad write address %#lx len %u", addr, bytes);
  342. }
  343. /* (end of memory access helper routines) :*/
  344. static void set_ts(void)
  345. {
  346. u32 cr0;
  347. cr0 = read_cr0();
  348. if (!(cr0 & 8))
  349. write_cr0(cr0|8);
  350. }
  351. /*S:010
  352. * We are getting close to the Switcher.
  353. *
  354. * Remember that each CPU has two pages which are visible to the Guest when it
  355. * runs on that CPU. This has to contain the state for that Guest: we copy the
  356. * state in just before we run the Guest.
  357. *
  358. * Each Guest has "changed" flags which indicate what has changed in the Guest
  359. * since it last ran. We saw this set in interrupts_and_traps.c and
  360. * segments.c.
  361. */
  362. static void copy_in_guest_info(struct lguest *lg, struct lguest_pages *pages)
  363. {
  364. /* Copying all this data can be quite expensive. We usually run the
  365. * same Guest we ran last time (and that Guest hasn't run anywhere else
  366. * meanwhile). If that's not the case, we pretend everything in the
  367. * Guest has changed. */
  368. if (__get_cpu_var(last_guest) != lg || lg->last_pages != pages) {
  369. __get_cpu_var(last_guest) = lg;
  370. lg->last_pages = pages;
  371. lg->changed = CHANGED_ALL;
  372. }
  373. /* These copies are pretty cheap, so we do them unconditionally: */
  374. /* Save the current Host top-level page directory. */
  375. pages->state.host_cr3 = __pa(current->mm->pgd);
  376. /* Set up the Guest's page tables to see this CPU's pages (and no
  377. * other CPU's pages). */
  378. map_switcher_in_guest(lg, pages);
  379. /* Set up the two "TSS" members which tell the CPU what stack to use
  380. * for traps which do directly into the Guest (ie. traps at privilege
  381. * level 1). */
  382. pages->state.guest_tss.esp1 = lg->esp1;
  383. pages->state.guest_tss.ss1 = lg->ss1;
  384. /* Copy direct-to-Guest trap entries. */
  385. if (lg->changed & CHANGED_IDT)
  386. copy_traps(lg, pages->state.guest_idt, default_idt_entries);
  387. /* Copy all GDT entries which the Guest can change. */
  388. if (lg->changed & CHANGED_GDT)
  389. copy_gdt(lg, pages->state.guest_gdt);
  390. /* If only the TLS entries have changed, copy them. */
  391. else if (lg->changed & CHANGED_GDT_TLS)
  392. copy_gdt_tls(lg, pages->state.guest_gdt);
  393. /* Mark the Guest as unchanged for next time. */
  394. lg->changed = 0;
  395. }
  396. /* Finally: the code to actually call into the Switcher to run the Guest. */
  397. static void run_guest_once(struct lguest *lg, struct lguest_pages *pages)
  398. {
  399. /* This is a dummy value we need for GCC's sake. */
  400. unsigned int clobber;
  401. /* Copy the guest-specific information into this CPU's "struct
  402. * lguest_pages". */
  403. copy_in_guest_info(lg, pages);
  404. /* Set the trap number to 256 (impossible value). If we fault while
  405. * switching to the Guest (bad segment registers or bug), this will
  406. * cause us to abort the Guest. */
  407. lg->regs->trapnum = 256;
  408. /* Now: we push the "eflags" register on the stack, then do an "lcall".
  409. * This is how we change from using the kernel code segment to using
  410. * the dedicated lguest code segment, as well as jumping into the
  411. * Switcher.
  412. *
  413. * The lcall also pushes the old code segment (KERNEL_CS) onto the
  414. * stack, then the address of this call. This stack layout happens to
  415. * exactly match the stack of an interrupt... */
  416. asm volatile("pushf; lcall *lguest_entry"
  417. /* This is how we tell GCC that %eax ("a") and %ebx ("b")
  418. * are changed by this routine. The "=" means output. */
  419. : "=a"(clobber), "=b"(clobber)
  420. /* %eax contains the pages pointer. ("0" refers to the
  421. * 0-th argument above, ie "a"). %ebx contains the
  422. * physical address of the Guest's top-level page
  423. * directory. */
  424. : "0"(pages), "1"(__pa(lg->pgdirs[lg->pgdidx].pgdir))
  425. /* We tell gcc that all these registers could change,
  426. * which means we don't have to save and restore them in
  427. * the Switcher. */
  428. : "memory", "%edx", "%ecx", "%edi", "%esi");
  429. }
  430. /*:*/
  431. /*H:030 Let's jump straight to the the main loop which runs the Guest.
  432. * Remember, this is called by the Launcher reading /dev/lguest, and we keep
  433. * going around and around until something interesting happens. */
  434. int run_guest(struct lguest *lg, unsigned long __user *user)
  435. {
  436. /* We stop running once the Guest is dead. */
  437. while (!lg->dead) {
  438. /* We need to initialize this, otherwise gcc complains. It's
  439. * not (yet) clever enough to see that it's initialized when we
  440. * need it. */
  441. unsigned int cr2 = 0; /* Damn gcc */
  442. /* First we run any hypercalls the Guest wants done: either in
  443. * the hypercall ring in "struct lguest_data", or directly by
  444. * using int 31 (LGUEST_TRAP_ENTRY). */
  445. do_hypercalls(lg);
  446. /* It's possible the Guest did a SEND_DMA hypercall to the
  447. * Launcher, in which case we return from the read() now. */
  448. if (lg->dma_is_pending) {
  449. if (put_user(lg->pending_dma, user) ||
  450. put_user(lg->pending_key, user+1))
  451. return -EFAULT;
  452. return sizeof(unsigned long)*2;
  453. }
  454. /* Check for signals */
  455. if (signal_pending(current))
  456. return -ERESTARTSYS;
  457. /* If Waker set break_out, return to Launcher. */
  458. if (lg->break_out)
  459. return -EAGAIN;
  460. /* Check if there are any interrupts which can be delivered
  461. * now: if so, this sets up the hander to be executed when we
  462. * next run the Guest. */
  463. maybe_do_interrupt(lg);
  464. /* All long-lived kernel loops need to check with this horrible
  465. * thing called the freezer. If the Host is trying to suspend,
  466. * it stops us. */
  467. try_to_freeze();
  468. /* Just make absolutely sure the Guest is still alive. One of
  469. * those hypercalls could have been fatal, for example. */
  470. if (lg->dead)
  471. break;
  472. /* If the Guest asked to be stopped, we sleep. The Guest's
  473. * clock timer or LHCALL_BREAK from the Waker will wake us. */
  474. if (lg->halted) {
  475. set_current_state(TASK_INTERRUPTIBLE);
  476. schedule();
  477. continue;
  478. }
  479. /* OK, now we're ready to jump into the Guest. First we put up
  480. * the "Do Not Disturb" sign: */
  481. local_irq_disable();
  482. /* Remember the awfully-named TS bit? If the Guest has asked
  483. * to set it we set it now, so we can trap and pass that trap
  484. * to the Guest if it uses the FPU. */
  485. if (lg->ts)
  486. set_ts();
  487. /* SYSENTER is an optimized way of doing system calls. We
  488. * can't allow it because it always jumps to privilege level 0.
  489. * A normal Guest won't try it because we don't advertise it in
  490. * CPUID, but a malicious Guest (or malicious Guest userspace
  491. * program) could, so we tell the CPU to disable it before
  492. * running the Guest. */
  493. if (boot_cpu_has(X86_FEATURE_SEP))
  494. wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
  495. /* Now we actually run the Guest. It will pop back out when
  496. * something interesting happens, and we can examine its
  497. * registers to see what it was doing. */
  498. run_guest_once(lg, lguest_pages(raw_smp_processor_id()));
  499. /* The "regs" pointer contains two extra entries which are not
  500. * really registers: a trap number which says what interrupt or
  501. * trap made the switcher code come back, and an error code
  502. * which some traps set. */
  503. /* If the Guest page faulted, then the cr2 register will tell
  504. * us the bad virtual address. We have to grab this now,
  505. * because once we re-enable interrupts an interrupt could
  506. * fault and thus overwrite cr2, or we could even move off to a
  507. * different CPU. */
  508. if (lg->regs->trapnum == 14)
  509. cr2 = read_cr2();
  510. /* Similarly, if we took a trap because the Guest used the FPU,
  511. * we have to restore the FPU it expects to see. */
  512. else if (lg->regs->trapnum == 7)
  513. math_state_restore();
  514. /* Restore SYSENTER if it's supposed to be on. */
  515. if (boot_cpu_has(X86_FEATURE_SEP))
  516. wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
  517. /* Now we're ready to be interrupted or moved to other CPUs */
  518. local_irq_enable();
  519. /* OK, so what happened? */
  520. switch (lg->regs->trapnum) {
  521. case 13: /* We've intercepted a GPF. */
  522. /* Check if this was one of those annoying IN or OUT
  523. * instructions which we need to emulate. If so, we
  524. * just go back into the Guest after we've done it. */
  525. if (lg->regs->errcode == 0) {
  526. if (emulate_insn(lg))
  527. continue;
  528. }
  529. break;
  530. case 14: /* We've intercepted a page fault. */
  531. /* The Guest accessed a virtual address that wasn't
  532. * mapped. This happens a lot: we don't actually set
  533. * up most of the page tables for the Guest at all when
  534. * we start: as it runs it asks for more and more, and
  535. * we set them up as required. In this case, we don't
  536. * even tell the Guest that the fault happened.
  537. *
  538. * The errcode tells whether this was a read or a
  539. * write, and whether kernel or userspace code. */
  540. if (demand_page(lg, cr2, lg->regs->errcode))
  541. continue;
  542. /* OK, it's really not there (or not OK): the Guest
  543. * needs to know. We write out the cr2 value so it
  544. * knows where the fault occurred.
  545. *
  546. * Note that if the Guest were really messed up, this
  547. * could happen before it's done the INITIALIZE
  548. * hypercall, so lg->lguest_data will be NULL, so
  549. * &lg->lguest_data->cr2 will be address 8. Writing
  550. * into that address won't hurt the Host at all,
  551. * though. */
  552. if (put_user(cr2, &lg->lguest_data->cr2))
  553. kill_guest(lg, "Writing cr2");
  554. break;
  555. case 7: /* We've intercepted a Device Not Available fault. */
  556. /* If the Guest doesn't want to know, we already
  557. * restored the Floating Point Unit, so we just
  558. * continue without telling it. */
  559. if (!lg->ts)
  560. continue;
  561. break;
  562. case 32 ... 255:
  563. /* These values mean a real interrupt occurred, in
  564. * which case the Host handler has already been run.
  565. * We just do a friendly check if another process
  566. * should now be run, then fall through to loop
  567. * around: */
  568. cond_resched();
  569. case LGUEST_TRAP_ENTRY: /* Handled at top of loop */
  570. continue;
  571. }
  572. /* If we get here, it's a trap the Guest wants to know
  573. * about. */
  574. if (deliver_trap(lg, lg->regs->trapnum))
  575. continue;
  576. /* If the Guest doesn't have a handler (either it hasn't
  577. * registered any yet, or it's one of the faults we don't let
  578. * it handle), it dies with a cryptic error message. */
  579. kill_guest(lg, "unhandled trap %li at %#lx (%#lx)",
  580. lg->regs->trapnum, lg->regs->eip,
  581. lg->regs->trapnum == 14 ? cr2 : lg->regs->errcode);
  582. }
  583. /* The Guest is dead => "No such file or directory" */
  584. return -ENOENT;
  585. }
  586. /* Now we can look at each of the routines this calls, in increasing order of
  587. * complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
  588. * deliver_trap() and demand_page(). After all those, we'll be ready to
  589. * examine the Switcher, and our philosophical understanding of the Host/Guest
  590. * duality will be complete. :*/
  591. int find_free_guest(void)
  592. {
  593. unsigned int i;
  594. for (i = 0; i < MAX_LGUEST_GUESTS; i++)
  595. if (!lguests[i].tsk)
  596. return i;
  597. return -1;
  598. }
  599. static void adjust_pge(void *on)
  600. {
  601. if (on)
  602. write_cr4(read_cr4() | X86_CR4_PGE);
  603. else
  604. write_cr4(read_cr4() & ~X86_CR4_PGE);
  605. }
  606. /*H:000
  607. * Welcome to the Host!
  608. *
  609. * By this point your brain has been tickled by the Guest code and numbed by
  610. * the Launcher code; prepare for it to be stretched by the Host code. This is
  611. * the heart. Let's begin at the initialization routine for the Host's lg
  612. * module.
  613. */
  614. static int __init init(void)
  615. {
  616. int err;
  617. /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
  618. if (paravirt_enabled()) {
  619. printk("lguest is afraid of %s\n", pv_info.name);
  620. return -EPERM;
  621. }
  622. /* First we put the Switcher up in very high virtual memory. */
  623. err = map_switcher();
  624. if (err)
  625. return err;
  626. /* Now we set up the pagetable implementation for the Guests. */
  627. err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
  628. if (err) {
  629. unmap_switcher();
  630. return err;
  631. }
  632. /* The I/O subsystem needs some things initialized. */
  633. lguest_io_init();
  634. /* /dev/lguest needs to be registered. */
  635. err = lguest_device_init();
  636. if (err) {
  637. free_pagetables();
  638. unmap_switcher();
  639. return err;
  640. }
  641. /* Finally, we need to turn off "Page Global Enable". PGE is an
  642. * optimization where page table entries are specially marked to show
  643. * they never change. The Host kernel marks all the kernel pages this
  644. * way because it's always present, even when userspace is running.
  645. *
  646. * Lguest breaks this: unbeknownst to the rest of the Host kernel, we
  647. * switch to the Guest kernel. If you don't disable this on all CPUs,
  648. * you'll get really weird bugs that you'll chase for two days.
  649. *
  650. * I used to turn PGE off every time we switched to the Guest and back
  651. * on when we return, but that slowed the Switcher down noticibly. */
  652. /* We don't need the complexity of CPUs coming and going while we're
  653. * doing this. */
  654. lock_cpu_hotplug();
  655. if (cpu_has_pge) { /* We have a broader idea of "global". */
  656. /* Remember that this was originally set (for cleanup). */
  657. cpu_had_pge = 1;
  658. /* adjust_pge is a helper function which sets or unsets the PGE
  659. * bit on its CPU, depending on the argument (0 == unset). */
  660. on_each_cpu(adjust_pge, (void *)0, 0, 1);
  661. /* Turn off the feature in the global feature set. */
  662. clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
  663. }
  664. unlock_cpu_hotplug();
  665. /* All good! */
  666. return 0;
  667. }
  668. /* Cleaning up is just the same code, backwards. With a little French. */
  669. static void __exit fini(void)
  670. {
  671. lguest_device_remove();
  672. free_pagetables();
  673. unmap_switcher();
  674. /* If we had PGE before we started, turn it back on now. */
  675. lock_cpu_hotplug();
  676. if (cpu_had_pge) {
  677. set_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
  678. /* adjust_pge's argument "1" means set PGE. */
  679. on_each_cpu(adjust_pge, (void *)1, 0, 1);
  680. }
  681. unlock_cpu_hotplug();
  682. }
  683. /* The Host side of lguest can be a module. This is a nice way for people to
  684. * play with it. */
  685. module_init(init);
  686. module_exit(fini);
  687. MODULE_LICENSE("GPL");
  688. MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");