paging_tmpl.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #ifdef CONFIG_X86_64
  33. #define PT_MAX_FULL_LEVELS 4
  34. #else
  35. #define PT_MAX_FULL_LEVELS 2
  36. #endif
  37. #elif PTTYPE == 32
  38. #define pt_element_t u32
  39. #define guest_walker guest_walker32
  40. #define FNAME(name) paging##32_##name
  41. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  42. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  43. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  44. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  45. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  46. #define PT_MAX_FULL_LEVELS 2
  47. #else
  48. #error Invalid PTTYPE value
  49. #endif
  50. /*
  51. * The guest_walker structure emulates the behavior of the hardware page
  52. * table walker.
  53. */
  54. struct guest_walker {
  55. int level;
  56. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  57. pt_element_t *table;
  58. pt_element_t pte;
  59. pt_element_t *ptep;
  60. struct page *page;
  61. int index;
  62. pt_element_t inherited_ar;
  63. gfn_t gfn;
  64. u32 error_code;
  65. };
  66. /*
  67. * Fetch a guest pte for a guest virtual address
  68. */
  69. static int FNAME(walk_addr)(struct guest_walker *walker,
  70. struct kvm_vcpu *vcpu, gva_t addr,
  71. int write_fault, int user_fault, int fetch_fault)
  72. {
  73. hpa_t hpa;
  74. struct kvm_memory_slot *slot;
  75. pt_element_t *ptep;
  76. pt_element_t root;
  77. gfn_t table_gfn;
  78. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  79. walker->level = vcpu->mmu.root_level;
  80. walker->table = NULL;
  81. walker->page = NULL;
  82. walker->ptep = NULL;
  83. root = vcpu->cr3;
  84. #if PTTYPE == 64
  85. if (!is_long_mode(vcpu)) {
  86. walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
  87. root = *walker->ptep;
  88. walker->pte = root;
  89. if (!(root & PT_PRESENT_MASK))
  90. goto not_present;
  91. --walker->level;
  92. }
  93. #endif
  94. table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  95. walker->table_gfn[walker->level - 1] = table_gfn;
  96. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  97. walker->level - 1, table_gfn);
  98. slot = gfn_to_memslot(vcpu->kvm, table_gfn);
  99. hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
  100. walker->page = pfn_to_page(hpa >> PAGE_SHIFT);
  101. walker->table = kmap_atomic(walker->page, KM_USER0);
  102. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  103. (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  104. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  105. for (;;) {
  106. int index = PT_INDEX(addr, walker->level);
  107. hpa_t paddr;
  108. ptep = &walker->table[index];
  109. walker->index = index;
  110. ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
  111. ((unsigned long)ptep & PAGE_MASK));
  112. if (!is_present_pte(*ptep))
  113. goto not_present;
  114. if (write_fault && !is_writeble_pte(*ptep))
  115. if (user_fault || is_write_protection(vcpu))
  116. goto access_error;
  117. if (user_fault && !(*ptep & PT_USER_MASK))
  118. goto access_error;
  119. #if PTTYPE == 64
  120. if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
  121. goto access_error;
  122. #endif
  123. if (!(*ptep & PT_ACCESSED_MASK)) {
  124. mark_page_dirty(vcpu->kvm, table_gfn);
  125. *ptep |= PT_ACCESSED_MASK;
  126. }
  127. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  128. walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
  129. >> PAGE_SHIFT;
  130. break;
  131. }
  132. if (walker->level == PT_DIRECTORY_LEVEL
  133. && (*ptep & PT_PAGE_SIZE_MASK)
  134. && (PTTYPE == 64 || is_pse(vcpu))) {
  135. walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
  136. >> PAGE_SHIFT;
  137. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  138. break;
  139. }
  140. walker->inherited_ar &= walker->table[index];
  141. table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  142. kunmap_atomic(walker->table, KM_USER0);
  143. paddr = safe_gpa_to_hpa(vcpu, table_gfn << PAGE_SHIFT);
  144. walker->page = pfn_to_page(paddr >> PAGE_SHIFT);
  145. walker->table = kmap_atomic(walker->page, KM_USER0);
  146. --walker->level;
  147. walker->table_gfn[walker->level - 1 ] = table_gfn;
  148. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  149. walker->level - 1, table_gfn);
  150. }
  151. walker->pte = *ptep;
  152. if (walker->page)
  153. walker->ptep = NULL;
  154. if (walker->table)
  155. kunmap_atomic(walker->table, KM_USER0);
  156. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
  157. return 1;
  158. not_present:
  159. walker->error_code = 0;
  160. goto err;
  161. access_error:
  162. walker->error_code = PFERR_PRESENT_MASK;
  163. err:
  164. if (write_fault)
  165. walker->error_code |= PFERR_WRITE_MASK;
  166. if (user_fault)
  167. walker->error_code |= PFERR_USER_MASK;
  168. if (fetch_fault)
  169. walker->error_code |= PFERR_FETCH_MASK;
  170. if (walker->table)
  171. kunmap_atomic(walker->table, KM_USER0);
  172. return 0;
  173. }
  174. static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
  175. struct guest_walker *walker)
  176. {
  177. mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
  178. }
  179. static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
  180. u64 *shadow_pte,
  181. gpa_t gaddr,
  182. pt_element_t gpte,
  183. u64 access_bits,
  184. int user_fault,
  185. int write_fault,
  186. int *ptwrite,
  187. struct guest_walker *walker,
  188. gfn_t gfn)
  189. {
  190. hpa_t paddr;
  191. int dirty = gpte & PT_DIRTY_MASK;
  192. u64 spte = *shadow_pte;
  193. int was_rmapped = is_rmap_pte(spte);
  194. pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
  195. " user_fault %d gfn %lx\n",
  196. __FUNCTION__, spte, (u64)gpte, access_bits,
  197. write_fault, user_fault, gfn);
  198. if (write_fault && !dirty) {
  199. pt_element_t *guest_ent, *tmp = NULL;
  200. if (walker->ptep)
  201. guest_ent = walker->ptep;
  202. else {
  203. tmp = kmap_atomic(walker->page, KM_USER0);
  204. guest_ent = &tmp[walker->index];
  205. }
  206. *guest_ent |= PT_DIRTY_MASK;
  207. if (!walker->ptep)
  208. kunmap_atomic(tmp, KM_USER0);
  209. dirty = 1;
  210. FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
  211. }
  212. spte |= PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK;
  213. spte |= gpte & PT64_NX_MASK;
  214. if (!dirty)
  215. access_bits &= ~PT_WRITABLE_MASK;
  216. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  217. spte |= PT_PRESENT_MASK;
  218. if (access_bits & PT_USER_MASK)
  219. spte |= PT_USER_MASK;
  220. if (is_error_hpa(paddr)) {
  221. spte |= gaddr;
  222. spte |= PT_SHADOW_IO_MARK;
  223. spte &= ~PT_PRESENT_MASK;
  224. set_shadow_pte(shadow_pte, spte);
  225. return;
  226. }
  227. spte |= paddr;
  228. if ((access_bits & PT_WRITABLE_MASK)
  229. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  230. struct kvm_mmu_page *shadow;
  231. spte |= PT_WRITABLE_MASK;
  232. if (user_fault) {
  233. mmu_unshadow(vcpu, gfn);
  234. goto unshadowed;
  235. }
  236. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  237. if (shadow) {
  238. pgprintk("%s: found shadow page for %lx, marking ro\n",
  239. __FUNCTION__, gfn);
  240. access_bits &= ~PT_WRITABLE_MASK;
  241. if (is_writeble_pte(spte)) {
  242. spte &= ~PT_WRITABLE_MASK;
  243. kvm_x86_ops->tlb_flush(vcpu);
  244. }
  245. if (write_fault)
  246. *ptwrite = 1;
  247. }
  248. }
  249. unshadowed:
  250. if (access_bits & PT_WRITABLE_MASK)
  251. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  252. set_shadow_pte(shadow_pte, spte);
  253. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  254. if (!was_rmapped)
  255. rmap_add(vcpu, shadow_pte);
  256. }
  257. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
  258. u64 *shadow_pte, u64 access_bits,
  259. int user_fault, int write_fault, int *ptwrite,
  260. struct guest_walker *walker, gfn_t gfn)
  261. {
  262. access_bits &= gpte;
  263. FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
  264. gpte, access_bits, user_fault, write_fault,
  265. ptwrite, walker, gfn);
  266. }
  267. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  268. u64 *spte, const void *pte, int bytes)
  269. {
  270. pt_element_t gpte;
  271. if (bytes < sizeof(pt_element_t))
  272. return;
  273. gpte = *(const pt_element_t *)pte;
  274. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
  275. return;
  276. pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
  277. FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
  278. 0, NULL, NULL,
  279. (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
  280. }
  281. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
  282. u64 *shadow_pte, u64 access_bits,
  283. int user_fault, int write_fault, int *ptwrite,
  284. struct guest_walker *walker, gfn_t gfn)
  285. {
  286. gpa_t gaddr;
  287. access_bits &= gpde;
  288. gaddr = (gpa_t)gfn << PAGE_SHIFT;
  289. if (PTTYPE == 32 && is_cpuid_PSE36())
  290. gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
  291. (32 - PT32_DIR_PSE36_SHIFT);
  292. FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
  293. gpde, access_bits, user_fault, write_fault,
  294. ptwrite, walker, gfn);
  295. }
  296. /*
  297. * Fetch a shadow pte for a specific level in the paging hierarchy.
  298. */
  299. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  300. struct guest_walker *walker,
  301. int user_fault, int write_fault, int *ptwrite)
  302. {
  303. hpa_t shadow_addr;
  304. int level;
  305. u64 *shadow_ent;
  306. u64 *prev_shadow_ent = NULL;
  307. if (!is_present_pte(walker->pte))
  308. return NULL;
  309. shadow_addr = vcpu->mmu.root_hpa;
  310. level = vcpu->mmu.shadow_root_level;
  311. if (level == PT32E_ROOT_LEVEL) {
  312. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  313. shadow_addr &= PT64_BASE_ADDR_MASK;
  314. --level;
  315. }
  316. for (; ; level--) {
  317. u32 index = SHADOW_PT_INDEX(addr, level);
  318. struct kvm_mmu_page *shadow_page;
  319. u64 shadow_pte;
  320. int metaphysical;
  321. gfn_t table_gfn;
  322. unsigned hugepage_access = 0;
  323. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  324. if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
  325. if (level == PT_PAGE_TABLE_LEVEL)
  326. break;
  327. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  328. prev_shadow_ent = shadow_ent;
  329. continue;
  330. }
  331. if (level == PT_PAGE_TABLE_LEVEL)
  332. break;
  333. if (level - 1 == PT_PAGE_TABLE_LEVEL
  334. && walker->level == PT_DIRECTORY_LEVEL) {
  335. metaphysical = 1;
  336. hugepage_access = walker->pte;
  337. hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
  338. if (walker->pte & PT64_NX_MASK)
  339. hugepage_access |= (1 << 2);
  340. hugepage_access >>= PT_WRITABLE_SHIFT;
  341. table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
  342. >> PAGE_SHIFT;
  343. } else {
  344. metaphysical = 0;
  345. table_gfn = walker->table_gfn[level - 2];
  346. }
  347. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  348. metaphysical, hugepage_access,
  349. shadow_ent);
  350. shadow_addr = __pa(shadow_page->spt);
  351. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  352. | PT_WRITABLE_MASK | PT_USER_MASK;
  353. *shadow_ent = shadow_pte;
  354. prev_shadow_ent = shadow_ent;
  355. }
  356. if (walker->level == PT_DIRECTORY_LEVEL) {
  357. FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
  358. walker->inherited_ar, user_fault, write_fault,
  359. ptwrite, walker, walker->gfn);
  360. } else {
  361. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  362. FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
  363. walker->inherited_ar, user_fault, write_fault,
  364. ptwrite, walker, walker->gfn);
  365. }
  366. return shadow_ent;
  367. }
  368. /*
  369. * Page fault handler. There are several causes for a page fault:
  370. * - there is no shadow pte for the guest pte
  371. * - write access through a shadow pte marked read only so that we can set
  372. * the dirty bit
  373. * - write access to a shadow pte marked read only so we can update the page
  374. * dirty bitmap, when userspace requests it
  375. * - mmio access; in this case we will never install a present shadow pte
  376. * - normal guest page fault due to the guest pte marked not present, not
  377. * writable, or not executable
  378. *
  379. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  380. * a negative value on error.
  381. */
  382. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  383. u32 error_code)
  384. {
  385. int write_fault = error_code & PFERR_WRITE_MASK;
  386. int user_fault = error_code & PFERR_USER_MASK;
  387. int fetch_fault = error_code & PFERR_FETCH_MASK;
  388. struct guest_walker walker;
  389. u64 *shadow_pte;
  390. int write_pt = 0;
  391. int r;
  392. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  393. kvm_mmu_audit(vcpu, "pre page fault");
  394. r = mmu_topup_memory_caches(vcpu);
  395. if (r)
  396. return r;
  397. /*
  398. * Look up the shadow pte for the faulting address.
  399. */
  400. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  401. fetch_fault);
  402. /*
  403. * The page is not mapped by the guest. Let the guest handle it.
  404. */
  405. if (!r) {
  406. pgprintk("%s: guest page fault\n", __FUNCTION__);
  407. inject_page_fault(vcpu, addr, walker.error_code);
  408. vcpu->last_pt_write_count = 0; /* reset fork detector */
  409. return 0;
  410. }
  411. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  412. &write_pt);
  413. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
  414. shadow_pte, *shadow_pte, write_pt);
  415. if (!write_pt)
  416. vcpu->last_pt_write_count = 0; /* reset fork detector */
  417. /*
  418. * mmio: emulate if accessible, otherwise its a guest fault.
  419. */
  420. if (is_io_pte(*shadow_pte))
  421. return 1;
  422. ++vcpu->stat.pf_fixed;
  423. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  424. return write_pt;
  425. }
  426. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  427. {
  428. struct guest_walker walker;
  429. gpa_t gpa = UNMAPPED_GVA;
  430. int r;
  431. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  432. if (r) {
  433. gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
  434. gpa |= vaddr & ~PAGE_MASK;
  435. }
  436. return gpa;
  437. }
  438. #undef pt_element_t
  439. #undef guest_walker
  440. #undef FNAME
  441. #undef PT_BASE_ADDR_MASK
  442. #undef PT_INDEX
  443. #undef SHADOW_PT_INDEX
  444. #undef PT_LEVEL_MASK
  445. #undef PT_DIR_BASE_ADDR_MASK
  446. #undef PT_MAX_FULL_LEVELS