fault_32.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654
  1. /*
  2. * linux/arch/i386/mm/fault.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. */
  6. #include <linux/signal.h>
  7. #include <linux/sched.h>
  8. #include <linux/kernel.h>
  9. #include <linux/errno.h>
  10. #include <linux/string.h>
  11. #include <linux/types.h>
  12. #include <linux/ptrace.h>
  13. #include <linux/mman.h>
  14. #include <linux/mm.h>
  15. #include <linux/smp.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/init.h>
  18. #include <linux/tty.h>
  19. #include <linux/vt_kern.h> /* For unblank_screen() */
  20. #include <linux/highmem.h>
  21. #include <linux/bootmem.h> /* for max_low_pfn */
  22. #include <linux/vmalloc.h>
  23. #include <linux/module.h>
  24. #include <linux/kprobes.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/kdebug.h>
  27. #include <linux/kprobes.h>
  28. #include <asm/system.h>
  29. #include <asm/desc.h>
  30. #include <asm/segment.h>
  31. extern void die(const char *,struct pt_regs *,long);
  32. #ifdef CONFIG_KPROBES
  33. static inline int notify_page_fault(struct pt_regs *regs)
  34. {
  35. int ret = 0;
  36. /* kprobe_running() needs smp_processor_id() */
  37. if (!user_mode_vm(regs)) {
  38. preempt_disable();
  39. if (kprobe_running() && kprobe_fault_handler(regs, 14))
  40. ret = 1;
  41. preempt_enable();
  42. }
  43. return ret;
  44. }
  45. #else
  46. static inline int notify_page_fault(struct pt_regs *regs)
  47. {
  48. return 0;
  49. }
  50. #endif
  51. /*
  52. * Return EIP plus the CS segment base. The segment limit is also
  53. * adjusted, clamped to the kernel/user address space (whichever is
  54. * appropriate), and returned in *eip_limit.
  55. *
  56. * The segment is checked, because it might have been changed by another
  57. * task between the original faulting instruction and here.
  58. *
  59. * If CS is no longer a valid code segment, or if EIP is beyond the
  60. * limit, or if it is a kernel address when CS is not a kernel segment,
  61. * then the returned value will be greater than *eip_limit.
  62. *
  63. * This is slow, but is very rarely executed.
  64. */
  65. static inline unsigned long get_segment_eip(struct pt_regs *regs,
  66. unsigned long *eip_limit)
  67. {
  68. unsigned long eip = regs->eip;
  69. unsigned seg = regs->xcs & 0xffff;
  70. u32 seg_ar, seg_limit, base, *desc;
  71. /* Unlikely, but must come before segment checks. */
  72. if (unlikely(regs->eflags & VM_MASK)) {
  73. base = seg << 4;
  74. *eip_limit = base + 0xffff;
  75. return base + (eip & 0xffff);
  76. }
  77. /* The standard kernel/user address space limit. */
  78. *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
  79. /* By far the most common cases. */
  80. if (likely(SEGMENT_IS_FLAT_CODE(seg)))
  81. return eip;
  82. /* Check the segment exists, is within the current LDT/GDT size,
  83. that kernel/user (ring 0..3) has the appropriate privilege,
  84. that it's a code segment, and get the limit. */
  85. __asm__ ("larl %3,%0; lsll %3,%1"
  86. : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
  87. if ((~seg_ar & 0x9800) || eip > seg_limit) {
  88. *eip_limit = 0;
  89. return 1; /* So that returned eip > *eip_limit. */
  90. }
  91. /* Get the GDT/LDT descriptor base.
  92. When you look for races in this code remember that
  93. LDT and other horrors are only used in user space. */
  94. if (seg & (1<<2)) {
  95. /* Must lock the LDT while reading it. */
  96. mutex_lock(&current->mm->context.lock);
  97. desc = current->mm->context.ldt;
  98. desc = (void *)desc + (seg & ~7);
  99. } else {
  100. /* Must disable preemption while reading the GDT. */
  101. desc = (u32 *)get_cpu_gdt_table(get_cpu());
  102. desc = (void *)desc + (seg & ~7);
  103. }
  104. /* Decode the code segment base from the descriptor */
  105. base = get_desc_base((unsigned long *)desc);
  106. if (seg & (1<<2)) {
  107. mutex_unlock(&current->mm->context.lock);
  108. } else
  109. put_cpu();
  110. /* Adjust EIP and segment limit, and clamp at the kernel limit.
  111. It's legitimate for segments to wrap at 0xffffffff. */
  112. seg_limit += base;
  113. if (seg_limit < *eip_limit && seg_limit >= base)
  114. *eip_limit = seg_limit;
  115. return eip + base;
  116. }
  117. /*
  118. * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  119. * Check that here and ignore it.
  120. */
  121. static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
  122. {
  123. unsigned long limit;
  124. unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
  125. int scan_more = 1;
  126. int prefetch = 0;
  127. int i;
  128. for (i = 0; scan_more && i < 15; i++) {
  129. unsigned char opcode;
  130. unsigned char instr_hi;
  131. unsigned char instr_lo;
  132. if (instr > (unsigned char *)limit)
  133. break;
  134. if (probe_kernel_address(instr, opcode))
  135. break;
  136. instr_hi = opcode & 0xf0;
  137. instr_lo = opcode & 0x0f;
  138. instr++;
  139. switch (instr_hi) {
  140. case 0x20:
  141. case 0x30:
  142. /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
  143. scan_more = ((instr_lo & 7) == 0x6);
  144. break;
  145. case 0x60:
  146. /* 0x64 thru 0x67 are valid prefixes in all modes. */
  147. scan_more = (instr_lo & 0xC) == 0x4;
  148. break;
  149. case 0xF0:
  150. /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
  151. scan_more = !instr_lo || (instr_lo>>1) == 1;
  152. break;
  153. case 0x00:
  154. /* Prefetch instruction is 0x0F0D or 0x0F18 */
  155. scan_more = 0;
  156. if (instr > (unsigned char *)limit)
  157. break;
  158. if (probe_kernel_address(instr, opcode))
  159. break;
  160. prefetch = (instr_lo == 0xF) &&
  161. (opcode == 0x0D || opcode == 0x18);
  162. break;
  163. default:
  164. scan_more = 0;
  165. break;
  166. }
  167. }
  168. return prefetch;
  169. }
  170. static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
  171. unsigned long error_code)
  172. {
  173. if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
  174. boot_cpu_data.x86 >= 6)) {
  175. /* Catch an obscure case of prefetch inside an NX page. */
  176. if (nx_enabled && (error_code & 16))
  177. return 0;
  178. return __is_prefetch(regs, addr);
  179. }
  180. return 0;
  181. }
  182. static noinline void force_sig_info_fault(int si_signo, int si_code,
  183. unsigned long address, struct task_struct *tsk)
  184. {
  185. siginfo_t info;
  186. info.si_signo = si_signo;
  187. info.si_errno = 0;
  188. info.si_code = si_code;
  189. info.si_addr = (void __user *)address;
  190. force_sig_info(si_signo, &info, tsk);
  191. }
  192. fastcall void do_invalid_op(struct pt_regs *, unsigned long);
  193. static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
  194. {
  195. unsigned index = pgd_index(address);
  196. pgd_t *pgd_k;
  197. pud_t *pud, *pud_k;
  198. pmd_t *pmd, *pmd_k;
  199. pgd += index;
  200. pgd_k = init_mm.pgd + index;
  201. if (!pgd_present(*pgd_k))
  202. return NULL;
  203. /*
  204. * set_pgd(pgd, *pgd_k); here would be useless on PAE
  205. * and redundant with the set_pmd() on non-PAE. As would
  206. * set_pud.
  207. */
  208. pud = pud_offset(pgd, address);
  209. pud_k = pud_offset(pgd_k, address);
  210. if (!pud_present(*pud_k))
  211. return NULL;
  212. pmd = pmd_offset(pud, address);
  213. pmd_k = pmd_offset(pud_k, address);
  214. if (!pmd_present(*pmd_k))
  215. return NULL;
  216. if (!pmd_present(*pmd)) {
  217. set_pmd(pmd, *pmd_k);
  218. arch_flush_lazy_mmu_mode();
  219. } else
  220. BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
  221. return pmd_k;
  222. }
  223. /*
  224. * Handle a fault on the vmalloc or module mapping area
  225. *
  226. * This assumes no large pages in there.
  227. */
  228. static inline int vmalloc_fault(unsigned long address)
  229. {
  230. unsigned long pgd_paddr;
  231. pmd_t *pmd_k;
  232. pte_t *pte_k;
  233. /*
  234. * Synchronize this task's top level page-table
  235. * with the 'reference' page table.
  236. *
  237. * Do _not_ use "current" here. We might be inside
  238. * an interrupt in the middle of a task switch..
  239. */
  240. pgd_paddr = read_cr3();
  241. pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
  242. if (!pmd_k)
  243. return -1;
  244. pte_k = pte_offset_kernel(pmd_k, address);
  245. if (!pte_present(*pte_k))
  246. return -1;
  247. return 0;
  248. }
  249. int show_unhandled_signals = 1;
  250. /*
  251. * This routine handles page faults. It determines the address,
  252. * and the problem, and then passes it off to one of the appropriate
  253. * routines.
  254. *
  255. * error_code:
  256. * bit 0 == 0 means no page found, 1 means protection fault
  257. * bit 1 == 0 means read, 1 means write
  258. * bit 2 == 0 means kernel, 1 means user-mode
  259. * bit 3 == 1 means use of reserved bit detected
  260. * bit 4 == 1 means fault was an instruction fetch
  261. */
  262. fastcall void __kprobes do_page_fault(struct pt_regs *regs,
  263. unsigned long error_code)
  264. {
  265. struct task_struct *tsk;
  266. struct mm_struct *mm;
  267. struct vm_area_struct * vma;
  268. unsigned long address;
  269. int write, si_code;
  270. int fault;
  271. /* get the address */
  272. address = read_cr2();
  273. tsk = current;
  274. si_code = SEGV_MAPERR;
  275. /*
  276. * We fault-in kernel-space virtual memory on-demand. The
  277. * 'reference' page table is init_mm.pgd.
  278. *
  279. * NOTE! We MUST NOT take any locks for this case. We may
  280. * be in an interrupt or a critical region, and should
  281. * only copy the information from the master page table,
  282. * nothing more.
  283. *
  284. * This verifies that the fault happens in kernel space
  285. * (error_code & 4) == 0, and that the fault was not a
  286. * protection error (error_code & 9) == 0.
  287. */
  288. if (unlikely(address >= TASK_SIZE)) {
  289. if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
  290. return;
  291. if (notify_page_fault(regs))
  292. return;
  293. /*
  294. * Don't take the mm semaphore here. If we fixup a prefetch
  295. * fault we could otherwise deadlock.
  296. */
  297. goto bad_area_nosemaphore;
  298. }
  299. if (notify_page_fault(regs))
  300. return;
  301. /* It's safe to allow irq's after cr2 has been saved and the vmalloc
  302. fault has been handled. */
  303. if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
  304. local_irq_enable();
  305. mm = tsk->mm;
  306. /*
  307. * If we're in an interrupt, have no user context or are running in an
  308. * atomic region then we must not take the fault..
  309. */
  310. if (in_atomic() || !mm)
  311. goto bad_area_nosemaphore;
  312. /* When running in the kernel we expect faults to occur only to
  313. * addresses in user space. All other faults represent errors in the
  314. * kernel and should generate an OOPS. Unfortunately, in the case of an
  315. * erroneous fault occurring in a code path which already holds mmap_sem
  316. * we will deadlock attempting to validate the fault against the
  317. * address space. Luckily the kernel only validly references user
  318. * space from well defined areas of code, which are listed in the
  319. * exceptions table.
  320. *
  321. * As the vast majority of faults will be valid we will only perform
  322. * the source reference check when there is a possibility of a deadlock.
  323. * Attempt to lock the address space, if we cannot we then validate the
  324. * source. If this is invalid we can skip the address space check,
  325. * thus avoiding the deadlock.
  326. */
  327. if (!down_read_trylock(&mm->mmap_sem)) {
  328. if ((error_code & 4) == 0 &&
  329. !search_exception_tables(regs->eip))
  330. goto bad_area_nosemaphore;
  331. down_read(&mm->mmap_sem);
  332. }
  333. vma = find_vma(mm, address);
  334. if (!vma)
  335. goto bad_area;
  336. if (vma->vm_start <= address)
  337. goto good_area;
  338. if (!(vma->vm_flags & VM_GROWSDOWN))
  339. goto bad_area;
  340. if (error_code & 4) {
  341. /*
  342. * Accessing the stack below %esp is always a bug.
  343. * The large cushion allows instructions like enter
  344. * and pusha to work. ("enter $65535,$31" pushes
  345. * 32 pointers and then decrements %esp by 65535.)
  346. */
  347. if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
  348. goto bad_area;
  349. }
  350. if (expand_stack(vma, address))
  351. goto bad_area;
  352. /*
  353. * Ok, we have a good vm_area for this memory access, so
  354. * we can handle it..
  355. */
  356. good_area:
  357. si_code = SEGV_ACCERR;
  358. write = 0;
  359. switch (error_code & 3) {
  360. default: /* 3: write, present */
  361. /* fall through */
  362. case 2: /* write, not present */
  363. if (!(vma->vm_flags & VM_WRITE))
  364. goto bad_area;
  365. write++;
  366. break;
  367. case 1: /* read, present */
  368. goto bad_area;
  369. case 0: /* read, not present */
  370. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  371. goto bad_area;
  372. }
  373. survive:
  374. /*
  375. * If for any reason at all we couldn't handle the fault,
  376. * make sure we exit gracefully rather than endlessly redo
  377. * the fault.
  378. */
  379. fault = handle_mm_fault(mm, vma, address, write);
  380. if (unlikely(fault & VM_FAULT_ERROR)) {
  381. if (fault & VM_FAULT_OOM)
  382. goto out_of_memory;
  383. else if (fault & VM_FAULT_SIGBUS)
  384. goto do_sigbus;
  385. BUG();
  386. }
  387. if (fault & VM_FAULT_MAJOR)
  388. tsk->maj_flt++;
  389. else
  390. tsk->min_flt++;
  391. /*
  392. * Did it hit the DOS screen memory VA from vm86 mode?
  393. */
  394. if (regs->eflags & VM_MASK) {
  395. unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
  396. if (bit < 32)
  397. tsk->thread.screen_bitmap |= 1 << bit;
  398. }
  399. up_read(&mm->mmap_sem);
  400. return;
  401. /*
  402. * Something tried to access memory that isn't in our memory map..
  403. * Fix it, but check if it's kernel or user first..
  404. */
  405. bad_area:
  406. up_read(&mm->mmap_sem);
  407. bad_area_nosemaphore:
  408. /* User mode accesses just cause a SIGSEGV */
  409. if (error_code & 4) {
  410. /*
  411. * It's possible to have interrupts off here.
  412. */
  413. local_irq_enable();
  414. /*
  415. * Valid to do another page fault here because this one came
  416. * from user space.
  417. */
  418. if (is_prefetch(regs, address, error_code))
  419. return;
  420. if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
  421. printk_ratelimit()) {
  422. printk("%s%s[%d]: segfault at %08lx eip %08lx "
  423. "esp %08lx error %lx\n",
  424. task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
  425. tsk->comm, task_pid_nr(tsk), address, regs->eip,
  426. regs->esp, error_code);
  427. }
  428. tsk->thread.cr2 = address;
  429. /* Kernel addresses are always protection faults */
  430. tsk->thread.error_code = error_code | (address >= TASK_SIZE);
  431. tsk->thread.trap_no = 14;
  432. force_sig_info_fault(SIGSEGV, si_code, address, tsk);
  433. return;
  434. }
  435. #ifdef CONFIG_X86_F00F_BUG
  436. /*
  437. * Pentium F0 0F C7 C8 bug workaround.
  438. */
  439. if (boot_cpu_data.f00f_bug) {
  440. unsigned long nr;
  441. nr = (address - idt_descr.address) >> 3;
  442. if (nr == 6) {
  443. do_invalid_op(regs, 0);
  444. return;
  445. }
  446. }
  447. #endif
  448. no_context:
  449. /* Are we prepared to handle this kernel fault? */
  450. if (fixup_exception(regs))
  451. return;
  452. /*
  453. * Valid to do another page fault here, because if this fault
  454. * had been triggered by is_prefetch fixup_exception would have
  455. * handled it.
  456. */
  457. if (is_prefetch(regs, address, error_code))
  458. return;
  459. /*
  460. * Oops. The kernel tried to access some bad page. We'll have to
  461. * terminate things with extreme prejudice.
  462. */
  463. bust_spinlocks(1);
  464. if (oops_may_print()) {
  465. __typeof__(pte_val(__pte(0))) page;
  466. #ifdef CONFIG_X86_PAE
  467. if (error_code & 16) {
  468. pte_t *pte = lookup_address(address);
  469. if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
  470. printk(KERN_CRIT "kernel tried to execute "
  471. "NX-protected page - exploit attempt? "
  472. "(uid: %d)\n", current->uid);
  473. }
  474. #endif
  475. if (address < PAGE_SIZE)
  476. printk(KERN_ALERT "BUG: unable to handle kernel NULL "
  477. "pointer dereference");
  478. else
  479. printk(KERN_ALERT "BUG: unable to handle kernel paging"
  480. " request");
  481. printk(" at virtual address %08lx\n",address);
  482. printk(KERN_ALERT "printing eip: %08lx ", regs->eip);
  483. page = read_cr3();
  484. page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
  485. #ifdef CONFIG_X86_PAE
  486. printk("*pdpt = %016Lx ", page);
  487. if ((page >> PAGE_SHIFT) < max_low_pfn
  488. && page & _PAGE_PRESENT) {
  489. page &= PAGE_MASK;
  490. page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
  491. & (PTRS_PER_PMD - 1)];
  492. printk(KERN_ALERT "*pde = %016Lx ", page);
  493. page &= ~_PAGE_NX;
  494. }
  495. #else
  496. printk("*pde = %08lx ", page);
  497. #endif
  498. /*
  499. * We must not directly access the pte in the highpte
  500. * case if the page table is located in highmem.
  501. * And let's rather not kmap-atomic the pte, just in case
  502. * it's allocated already.
  503. */
  504. if ((page >> PAGE_SHIFT) < max_low_pfn
  505. && (page & _PAGE_PRESENT)
  506. && !(page & _PAGE_PSE)) {
  507. page &= PAGE_MASK;
  508. page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
  509. & (PTRS_PER_PTE - 1)];
  510. printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
  511. }
  512. printk("\n");
  513. }
  514. tsk->thread.cr2 = address;
  515. tsk->thread.trap_no = 14;
  516. tsk->thread.error_code = error_code;
  517. die("Oops", regs, error_code);
  518. bust_spinlocks(0);
  519. do_exit(SIGKILL);
  520. /*
  521. * We ran out of memory, or some other thing happened to us that made
  522. * us unable to handle the page fault gracefully.
  523. */
  524. out_of_memory:
  525. up_read(&mm->mmap_sem);
  526. if (is_global_init(tsk)) {
  527. yield();
  528. down_read(&mm->mmap_sem);
  529. goto survive;
  530. }
  531. printk("VM: killing process %s\n", tsk->comm);
  532. if (error_code & 4)
  533. do_group_exit(SIGKILL);
  534. goto no_context;
  535. do_sigbus:
  536. up_read(&mm->mmap_sem);
  537. /* Kernel mode? Handle exceptions or die */
  538. if (!(error_code & 4))
  539. goto no_context;
  540. /* User space => ok to do another page fault */
  541. if (is_prefetch(regs, address, error_code))
  542. return;
  543. tsk->thread.cr2 = address;
  544. tsk->thread.error_code = error_code;
  545. tsk->thread.trap_no = 14;
  546. force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
  547. }
  548. void vmalloc_sync_all(void)
  549. {
  550. /*
  551. * Note that races in the updates of insync and start aren't
  552. * problematic: insync can only get set bits added, and updates to
  553. * start are only improving performance (without affecting correctness
  554. * if undone).
  555. */
  556. static DECLARE_BITMAP(insync, PTRS_PER_PGD);
  557. static unsigned long start = TASK_SIZE;
  558. unsigned long address;
  559. if (SHARED_KERNEL_PMD)
  560. return;
  561. BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
  562. for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
  563. if (!test_bit(pgd_index(address), insync)) {
  564. unsigned long flags;
  565. struct page *page;
  566. spin_lock_irqsave(&pgd_lock, flags);
  567. for (page = pgd_list; page; page =
  568. (struct page *)page->index)
  569. if (!vmalloc_sync_one(page_address(page),
  570. address)) {
  571. BUG_ON(page != pgd_list);
  572. break;
  573. }
  574. spin_unlock_irqrestore(&pgd_lock, flags);
  575. if (!page)
  576. set_bit(pgd_index(address), insync);
  577. }
  578. if (address == start && test_bit(pgd_index(address), insync))
  579. start = address + PGDIR_SIZE;
  580. }
  581. }