setup_64.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/acpi.h>
  32. #include <linux/kallsyms.h>
  33. #include <linux/edd.h>
  34. #include <linux/mmzone.h>
  35. #include <linux/kexec.h>
  36. #include <linux/cpufreq.h>
  37. #include <linux/dmi.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/ctype.h>
  40. #include <asm/mtrr.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/system.h>
  43. #include <asm/io.h>
  44. #include <asm/smp.h>
  45. #include <asm/msr.h>
  46. #include <asm/desc.h>
  47. #include <video/edid.h>
  48. #include <asm/e820.h>
  49. #include <asm/dma.h>
  50. #include <asm/mpspec.h>
  51. #include <asm/mmu_context.h>
  52. #include <asm/proto.h>
  53. #include <asm/setup.h>
  54. #include <asm/mach_apic.h>
  55. #include <asm/numa.h>
  56. #include <asm/sections.h>
  57. #include <asm/dmi.h>
  58. /*
  59. * Machine setup..
  60. */
  61. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  62. EXPORT_SYMBOL(boot_cpu_data);
  63. unsigned long mmu_cr4_features;
  64. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  65. int bootloader_type;
  66. unsigned long saved_video_mode;
  67. int force_mwait __cpuinitdata;
  68. /*
  69. * Early DMI memory
  70. */
  71. int dmi_alloc_index;
  72. char dmi_alloc_data[DMI_MAX_DATA];
  73. /*
  74. * Setup options
  75. */
  76. struct screen_info screen_info;
  77. EXPORT_SYMBOL(screen_info);
  78. struct sys_desc_table_struct {
  79. unsigned short length;
  80. unsigned char table[0];
  81. };
  82. struct edid_info edid_info;
  83. EXPORT_SYMBOL_GPL(edid_info);
  84. extern int root_mountflags;
  85. char __initdata command_line[COMMAND_LINE_SIZE];
  86. struct resource standard_io_resources[] = {
  87. { .name = "dma1", .start = 0x00, .end = 0x1f,
  88. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  89. { .name = "pic1", .start = 0x20, .end = 0x21,
  90. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  91. { .name = "timer0", .start = 0x40, .end = 0x43,
  92. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  93. { .name = "timer1", .start = 0x50, .end = 0x53,
  94. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  95. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  96. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  97. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  98. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  99. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  100. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  101. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "fpu", .start = 0xf0, .end = 0xff,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  105. };
  106. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  107. struct resource data_resource = {
  108. .name = "Kernel data",
  109. .start = 0,
  110. .end = 0,
  111. .flags = IORESOURCE_RAM,
  112. };
  113. struct resource code_resource = {
  114. .name = "Kernel code",
  115. .start = 0,
  116. .end = 0,
  117. .flags = IORESOURCE_RAM,
  118. };
  119. #ifdef CONFIG_PROC_VMCORE
  120. /* elfcorehdr= specifies the location of elf core header
  121. * stored by the crashed kernel. This option will be passed
  122. * by kexec loader to the capture kernel.
  123. */
  124. static int __init setup_elfcorehdr(char *arg)
  125. {
  126. char *end;
  127. if (!arg)
  128. return -EINVAL;
  129. elfcorehdr_addr = memparse(arg, &end);
  130. return end > arg ? 0 : -EINVAL;
  131. }
  132. early_param("elfcorehdr", setup_elfcorehdr);
  133. #endif
  134. #ifndef CONFIG_NUMA
  135. static void __init
  136. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  137. {
  138. unsigned long bootmap_size, bootmap;
  139. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  140. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  141. if (bootmap == -1L)
  142. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  143. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  144. e820_register_active_regions(0, start_pfn, end_pfn);
  145. free_bootmem_with_active_regions(0, end_pfn);
  146. reserve_bootmem(bootmap, bootmap_size);
  147. }
  148. #endif
  149. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  150. struct edd edd;
  151. #ifdef CONFIG_EDD_MODULE
  152. EXPORT_SYMBOL(edd);
  153. #endif
  154. /**
  155. * copy_edd() - Copy the BIOS EDD information
  156. * from boot_params into a safe place.
  157. *
  158. */
  159. static inline void copy_edd(void)
  160. {
  161. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  162. sizeof(edd.mbr_signature));
  163. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  164. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  165. edd.edd_info_nr = boot_params.eddbuf_entries;
  166. }
  167. #else
  168. static inline void copy_edd(void)
  169. {
  170. }
  171. #endif
  172. #ifdef CONFIG_KEXEC
  173. static void __init reserve_crashkernel(void)
  174. {
  175. unsigned long long free_mem;
  176. unsigned long long crash_size, crash_base;
  177. int ret;
  178. free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  179. ret = parse_crashkernel(boot_command_line, free_mem,
  180. &crash_size, &crash_base);
  181. if (ret == 0 && crash_size) {
  182. if (crash_base > 0) {
  183. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  184. "for crashkernel (System RAM: %ldMB)\n",
  185. (unsigned long)(crash_size >> 20),
  186. (unsigned long)(crash_base >> 20),
  187. (unsigned long)(free_mem >> 20));
  188. crashk_res.start = crash_base;
  189. crashk_res.end = crash_base + crash_size - 1;
  190. reserve_bootmem(crash_base, crash_size);
  191. } else
  192. printk(KERN_INFO "crashkernel reservation failed - "
  193. "you have to specify a base address\n");
  194. }
  195. }
  196. #else
  197. static inline void __init reserve_crashkernel(void)
  198. {}
  199. #endif
  200. #define EBDA_ADDR_POINTER 0x40E
  201. unsigned __initdata ebda_addr;
  202. unsigned __initdata ebda_size;
  203. static void discover_ebda(void)
  204. {
  205. /*
  206. * there is a real-mode segmented pointer pointing to the
  207. * 4K EBDA area at 0x40E
  208. */
  209. ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
  210. ebda_addr <<= 4;
  211. ebda_size = *(unsigned short *)__va(ebda_addr);
  212. /* Round EBDA up to pages */
  213. if (ebda_size == 0)
  214. ebda_size = 1;
  215. ebda_size <<= 10;
  216. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  217. if (ebda_size > 64*1024)
  218. ebda_size = 64*1024;
  219. }
  220. void __init setup_arch(char **cmdline_p)
  221. {
  222. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  223. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  224. screen_info = boot_params.screen_info;
  225. edid_info = boot_params.edid_info;
  226. saved_video_mode = boot_params.hdr.vid_mode;
  227. bootloader_type = boot_params.hdr.type_of_loader;
  228. #ifdef CONFIG_BLK_DEV_RAM
  229. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  230. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  231. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  232. #endif
  233. setup_memory_region();
  234. copy_edd();
  235. if (!boot_params.hdr.root_flags)
  236. root_mountflags &= ~MS_RDONLY;
  237. init_mm.start_code = (unsigned long) &_text;
  238. init_mm.end_code = (unsigned long) &_etext;
  239. init_mm.end_data = (unsigned long) &_edata;
  240. init_mm.brk = (unsigned long) &_end;
  241. code_resource.start = virt_to_phys(&_text);
  242. code_resource.end = virt_to_phys(&_etext)-1;
  243. data_resource.start = virt_to_phys(&_etext);
  244. data_resource.end = virt_to_phys(&_edata)-1;
  245. early_identify_cpu(&boot_cpu_data);
  246. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  247. *cmdline_p = command_line;
  248. parse_early_param();
  249. finish_e820_parsing();
  250. e820_register_active_regions(0, 0, -1UL);
  251. /*
  252. * partially used pages are not usable - thus
  253. * we are rounding upwards:
  254. */
  255. end_pfn = e820_end_of_ram();
  256. num_physpages = end_pfn;
  257. check_efer();
  258. discover_ebda();
  259. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  260. dmi_scan_machine();
  261. #ifdef CONFIG_SMP
  262. /* setup to use the static apicid table during kernel startup */
  263. x86_cpu_to_apicid_ptr = (void *)&x86_cpu_to_apicid_init;
  264. #endif
  265. #ifdef CONFIG_ACPI
  266. /*
  267. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  268. * Call this early for SRAT node setup.
  269. */
  270. acpi_boot_table_init();
  271. #endif
  272. /* How many end-of-memory variables you have, grandma! */
  273. max_low_pfn = end_pfn;
  274. max_pfn = end_pfn;
  275. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  276. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  277. remove_all_active_ranges();
  278. #ifdef CONFIG_ACPI_NUMA
  279. /*
  280. * Parse SRAT to discover nodes.
  281. */
  282. acpi_numa_init();
  283. #endif
  284. #ifdef CONFIG_NUMA
  285. numa_initmem_init(0, end_pfn);
  286. #else
  287. contig_initmem_init(0, end_pfn);
  288. #endif
  289. /* Reserve direct mapping */
  290. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  291. (table_end - table_start) << PAGE_SHIFT);
  292. /* reserve kernel */
  293. reserve_bootmem_generic(__pa_symbol(&_text),
  294. __pa_symbol(&_end) - __pa_symbol(&_text));
  295. /*
  296. * reserve physical page 0 - it's a special BIOS page on many boxes,
  297. * enabling clean reboots, SMP operation, laptop functions.
  298. */
  299. reserve_bootmem_generic(0, PAGE_SIZE);
  300. /* reserve ebda region */
  301. if (ebda_addr)
  302. reserve_bootmem_generic(ebda_addr, ebda_size);
  303. #ifdef CONFIG_NUMA
  304. /* reserve nodemap region */
  305. if (nodemap_addr)
  306. reserve_bootmem_generic(nodemap_addr, nodemap_size);
  307. #endif
  308. #ifdef CONFIG_SMP
  309. /* Reserve SMP trampoline */
  310. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
  311. #endif
  312. #ifdef CONFIG_ACPI_SLEEP
  313. /*
  314. * Reserve low memory region for sleep support.
  315. */
  316. acpi_reserve_bootmem();
  317. #endif
  318. /*
  319. * Find and reserve possible boot-time SMP configuration:
  320. */
  321. find_smp_config();
  322. #ifdef CONFIG_BLK_DEV_INITRD
  323. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  324. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  325. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  326. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  327. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  328. if (ramdisk_end <= end_of_mem) {
  329. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  330. initrd_start = ramdisk_image + PAGE_OFFSET;
  331. initrd_end = initrd_start+ramdisk_size;
  332. } else {
  333. printk(KERN_ERR "initrd extends beyond end of memory "
  334. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  335. ramdisk_end, end_of_mem);
  336. initrd_start = 0;
  337. }
  338. }
  339. #endif
  340. reserve_crashkernel();
  341. paging_init();
  342. #ifdef CONFIG_PCI
  343. early_quirks();
  344. #endif
  345. /*
  346. * set this early, so we dont allocate cpu0
  347. * if MADT list doesnt list BSP first
  348. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  349. */
  350. cpu_set(0, cpu_present_map);
  351. #ifdef CONFIG_ACPI
  352. /*
  353. * Read APIC and some other early information from ACPI tables.
  354. */
  355. acpi_boot_init();
  356. #endif
  357. init_cpu_to_node();
  358. /*
  359. * get boot-time SMP configuration:
  360. */
  361. if (smp_found_config)
  362. get_smp_config();
  363. init_apic_mappings();
  364. /*
  365. * We trust e820 completely. No explicit ROM probing in memory.
  366. */
  367. e820_reserve_resources();
  368. e820_mark_nosave_regions();
  369. {
  370. unsigned i;
  371. /* request I/O space for devices used on all i[345]86 PCs */
  372. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  373. request_resource(&ioport_resource, &standard_io_resources[i]);
  374. }
  375. e820_setup_gap();
  376. #ifdef CONFIG_VT
  377. #if defined(CONFIG_VGA_CONSOLE)
  378. conswitchp = &vga_con;
  379. #elif defined(CONFIG_DUMMY_CONSOLE)
  380. conswitchp = &dummy_con;
  381. #endif
  382. #endif
  383. }
  384. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  385. {
  386. unsigned int *v;
  387. if (c->extended_cpuid_level < 0x80000004)
  388. return 0;
  389. v = (unsigned int *) c->x86_model_id;
  390. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  391. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  392. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  393. c->x86_model_id[48] = 0;
  394. return 1;
  395. }
  396. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  397. {
  398. unsigned int n, dummy, eax, ebx, ecx, edx;
  399. n = c->extended_cpuid_level;
  400. if (n >= 0x80000005) {
  401. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  402. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  403. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  404. c->x86_cache_size=(ecx>>24)+(edx>>24);
  405. /* On K8 L1 TLB is inclusive, so don't count it */
  406. c->x86_tlbsize = 0;
  407. }
  408. if (n >= 0x80000006) {
  409. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  410. ecx = cpuid_ecx(0x80000006);
  411. c->x86_cache_size = ecx >> 16;
  412. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  413. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  414. c->x86_cache_size, ecx & 0xFF);
  415. }
  416. if (n >= 0x80000007)
  417. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  418. if (n >= 0x80000008) {
  419. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  420. c->x86_virt_bits = (eax >> 8) & 0xff;
  421. c->x86_phys_bits = eax & 0xff;
  422. }
  423. }
  424. #ifdef CONFIG_NUMA
  425. static int nearby_node(int apicid)
  426. {
  427. int i;
  428. for (i = apicid - 1; i >= 0; i--) {
  429. int node = apicid_to_node[i];
  430. if (node != NUMA_NO_NODE && node_online(node))
  431. return node;
  432. }
  433. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  434. int node = apicid_to_node[i];
  435. if (node != NUMA_NO_NODE && node_online(node))
  436. return node;
  437. }
  438. return first_node(node_online_map); /* Shouldn't happen */
  439. }
  440. #endif
  441. /*
  442. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  443. * Assumes number of cores is a power of two.
  444. */
  445. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  446. {
  447. #ifdef CONFIG_SMP
  448. unsigned bits;
  449. #ifdef CONFIG_NUMA
  450. int cpu = smp_processor_id();
  451. int node = 0;
  452. unsigned apicid = hard_smp_processor_id();
  453. #endif
  454. unsigned ecx = cpuid_ecx(0x80000008);
  455. c->x86_max_cores = (ecx & 0xff) + 1;
  456. /* CPU telling us the core id bits shift? */
  457. bits = (ecx >> 12) & 0xF;
  458. /* Otherwise recompute */
  459. if (bits == 0) {
  460. while ((1 << bits) < c->x86_max_cores)
  461. bits++;
  462. }
  463. /* Low order bits define the core id (index of core in socket) */
  464. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  465. /* Convert the APIC ID into the socket ID */
  466. c->phys_proc_id = phys_pkg_id(bits);
  467. #ifdef CONFIG_NUMA
  468. node = c->phys_proc_id;
  469. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  470. node = apicid_to_node[apicid];
  471. if (!node_online(node)) {
  472. /* Two possibilities here:
  473. - The CPU is missing memory and no node was created.
  474. In that case try picking one from a nearby CPU
  475. - The APIC IDs differ from the HyperTransport node IDs
  476. which the K8 northbridge parsing fills in.
  477. Assume they are all increased by a constant offset,
  478. but in the same order as the HT nodeids.
  479. If that doesn't result in a usable node fall back to the
  480. path for the previous case. */
  481. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  482. if (ht_nodeid >= 0 &&
  483. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  484. node = apicid_to_node[ht_nodeid];
  485. /* Pick a nearby node */
  486. if (!node_online(node))
  487. node = nearby_node(apicid);
  488. }
  489. numa_set_node(cpu, node);
  490. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  491. #endif
  492. #endif
  493. }
  494. #define ENABLE_C1E_MASK 0x18000000
  495. #define CPUID_PROCESSOR_SIGNATURE 1
  496. #define CPUID_XFAM 0x0ff00000
  497. #define CPUID_XFAM_K8 0x00000000
  498. #define CPUID_XFAM_10H 0x00100000
  499. #define CPUID_XFAM_11H 0x00200000
  500. #define CPUID_XMOD 0x000f0000
  501. #define CPUID_XMOD_REV_F 0x00040000
  502. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  503. static __cpuinit int amd_apic_timer_broken(void)
  504. {
  505. u32 lo, hi;
  506. u32 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  507. switch (eax & CPUID_XFAM) {
  508. case CPUID_XFAM_K8:
  509. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  510. break;
  511. case CPUID_XFAM_10H:
  512. case CPUID_XFAM_11H:
  513. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  514. if (lo & ENABLE_C1E_MASK)
  515. return 1;
  516. break;
  517. default:
  518. /* err on the side of caution */
  519. return 1;
  520. }
  521. return 0;
  522. }
  523. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  524. {
  525. unsigned level;
  526. #ifdef CONFIG_SMP
  527. unsigned long value;
  528. /*
  529. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  530. * bit 6 of msr C001_0015
  531. *
  532. * Errata 63 for SH-B3 steppings
  533. * Errata 122 for all steppings (F+ have it disabled by default)
  534. */
  535. if (c->x86 == 15) {
  536. rdmsrl(MSR_K8_HWCR, value);
  537. value |= 1 << 6;
  538. wrmsrl(MSR_K8_HWCR, value);
  539. }
  540. #endif
  541. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  542. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  543. clear_bit(0*32+31, &c->x86_capability);
  544. /* On C+ stepping K8 rep microcode works well for copy/memset */
  545. level = cpuid_eax(1);
  546. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  547. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  548. if (c->x86 == 0x10 || c->x86 == 0x11)
  549. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  550. /* Enable workaround for FXSAVE leak */
  551. if (c->x86 >= 6)
  552. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  553. level = get_model_name(c);
  554. if (!level) {
  555. switch (c->x86) {
  556. case 15:
  557. /* Should distinguish Models here, but this is only
  558. a fallback anyways. */
  559. strcpy(c->x86_model_id, "Hammer");
  560. break;
  561. }
  562. }
  563. display_cacheinfo(c);
  564. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  565. if (c->x86_power & (1<<8))
  566. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  567. /* Multi core CPU? */
  568. if (c->extended_cpuid_level >= 0x80000008)
  569. amd_detect_cmp(c);
  570. if (c->extended_cpuid_level >= 0x80000006 &&
  571. (cpuid_edx(0x80000006) & 0xf000))
  572. num_cache_leaves = 4;
  573. else
  574. num_cache_leaves = 3;
  575. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  576. set_bit(X86_FEATURE_K8, &c->x86_capability);
  577. /* RDTSC can be speculated around */
  578. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  579. /* Family 10 doesn't support C states in MWAIT so don't use it */
  580. if (c->x86 == 0x10 && !force_mwait)
  581. clear_bit(X86_FEATURE_MWAIT, &c->x86_capability);
  582. if (amd_apic_timer_broken())
  583. disable_apic_timer = 1;
  584. }
  585. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  586. {
  587. #ifdef CONFIG_SMP
  588. u32 eax, ebx, ecx, edx;
  589. int index_msb, core_bits;
  590. cpuid(1, &eax, &ebx, &ecx, &edx);
  591. if (!cpu_has(c, X86_FEATURE_HT))
  592. return;
  593. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  594. goto out;
  595. smp_num_siblings = (ebx & 0xff0000) >> 16;
  596. if (smp_num_siblings == 1) {
  597. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  598. } else if (smp_num_siblings > 1 ) {
  599. if (smp_num_siblings > NR_CPUS) {
  600. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  601. smp_num_siblings = 1;
  602. return;
  603. }
  604. index_msb = get_count_order(smp_num_siblings);
  605. c->phys_proc_id = phys_pkg_id(index_msb);
  606. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  607. index_msb = get_count_order(smp_num_siblings) ;
  608. core_bits = get_count_order(c->x86_max_cores);
  609. c->cpu_core_id = phys_pkg_id(index_msb) &
  610. ((1 << core_bits) - 1);
  611. }
  612. out:
  613. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  614. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  615. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  616. }
  617. #endif
  618. }
  619. /*
  620. * find out the number of processor cores on the die
  621. */
  622. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  623. {
  624. unsigned int eax, t;
  625. if (c->cpuid_level < 4)
  626. return 1;
  627. cpuid_count(4, 0, &eax, &t, &t, &t);
  628. if (eax & 0x1f)
  629. return ((eax >> 26) + 1);
  630. else
  631. return 1;
  632. }
  633. static void srat_detect_node(void)
  634. {
  635. #ifdef CONFIG_NUMA
  636. unsigned node;
  637. int cpu = smp_processor_id();
  638. int apicid = hard_smp_processor_id();
  639. /* Don't do the funky fallback heuristics the AMD version employs
  640. for now. */
  641. node = apicid_to_node[apicid];
  642. if (node == NUMA_NO_NODE)
  643. node = first_node(node_online_map);
  644. numa_set_node(cpu, node);
  645. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  646. #endif
  647. }
  648. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  649. {
  650. /* Cache sizes */
  651. unsigned n;
  652. init_intel_cacheinfo(c);
  653. if (c->cpuid_level > 9 ) {
  654. unsigned eax = cpuid_eax(10);
  655. /* Check for version and the number of counters */
  656. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  657. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  658. }
  659. if (cpu_has_ds) {
  660. unsigned int l1, l2;
  661. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  662. if (!(l1 & (1<<11)))
  663. set_bit(X86_FEATURE_BTS, c->x86_capability);
  664. if (!(l1 & (1<<12)))
  665. set_bit(X86_FEATURE_PEBS, c->x86_capability);
  666. }
  667. n = c->extended_cpuid_level;
  668. if (n >= 0x80000008) {
  669. unsigned eax = cpuid_eax(0x80000008);
  670. c->x86_virt_bits = (eax >> 8) & 0xff;
  671. c->x86_phys_bits = eax & 0xff;
  672. /* CPUID workaround for Intel 0F34 CPU */
  673. if (c->x86_vendor == X86_VENDOR_INTEL &&
  674. c->x86 == 0xF && c->x86_model == 0x3 &&
  675. c->x86_mask == 0x4)
  676. c->x86_phys_bits = 36;
  677. }
  678. if (c->x86 == 15)
  679. c->x86_cache_alignment = c->x86_clflush_size * 2;
  680. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  681. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  682. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  683. if (c->x86 == 6)
  684. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  685. if (c->x86 == 15)
  686. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  687. else
  688. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  689. c->x86_max_cores = intel_num_cpu_cores(c);
  690. srat_detect_node();
  691. }
  692. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  693. {
  694. char *v = c->x86_vendor_id;
  695. if (!strcmp(v, "AuthenticAMD"))
  696. c->x86_vendor = X86_VENDOR_AMD;
  697. else if (!strcmp(v, "GenuineIntel"))
  698. c->x86_vendor = X86_VENDOR_INTEL;
  699. else
  700. c->x86_vendor = X86_VENDOR_UNKNOWN;
  701. }
  702. struct cpu_model_info {
  703. int vendor;
  704. int family;
  705. char *model_names[16];
  706. };
  707. /* Do some early cpuid on the boot CPU to get some parameter that are
  708. needed before check_bugs. Everything advanced is in identify_cpu
  709. below. */
  710. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  711. {
  712. u32 tfms;
  713. c->loops_per_jiffy = loops_per_jiffy;
  714. c->x86_cache_size = -1;
  715. c->x86_vendor = X86_VENDOR_UNKNOWN;
  716. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  717. c->x86_vendor_id[0] = '\0'; /* Unset */
  718. c->x86_model_id[0] = '\0'; /* Unset */
  719. c->x86_clflush_size = 64;
  720. c->x86_cache_alignment = c->x86_clflush_size;
  721. c->x86_max_cores = 1;
  722. c->extended_cpuid_level = 0;
  723. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  724. /* Get vendor name */
  725. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  726. (unsigned int *)&c->x86_vendor_id[0],
  727. (unsigned int *)&c->x86_vendor_id[8],
  728. (unsigned int *)&c->x86_vendor_id[4]);
  729. get_cpu_vendor(c);
  730. /* Initialize the standard set of capabilities */
  731. /* Note that the vendor-specific code below might override */
  732. /* Intel-defined flags: level 0x00000001 */
  733. if (c->cpuid_level >= 0x00000001) {
  734. __u32 misc;
  735. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  736. &c->x86_capability[0]);
  737. c->x86 = (tfms >> 8) & 0xf;
  738. c->x86_model = (tfms >> 4) & 0xf;
  739. c->x86_mask = tfms & 0xf;
  740. if (c->x86 == 0xf)
  741. c->x86 += (tfms >> 20) & 0xff;
  742. if (c->x86 >= 0x6)
  743. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  744. if (c->x86_capability[0] & (1<<19))
  745. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  746. } else {
  747. /* Have CPUID level 0 only - unheard of */
  748. c->x86 = 4;
  749. }
  750. #ifdef CONFIG_SMP
  751. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  752. c->cpu_index = 0;
  753. #endif
  754. }
  755. /*
  756. * This does the hard work of actually picking apart the CPU stuff...
  757. */
  758. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  759. {
  760. int i;
  761. u32 xlvl;
  762. early_identify_cpu(c);
  763. /* AMD-defined flags: level 0x80000001 */
  764. xlvl = cpuid_eax(0x80000000);
  765. c->extended_cpuid_level = xlvl;
  766. if ((xlvl & 0xffff0000) == 0x80000000) {
  767. if (xlvl >= 0x80000001) {
  768. c->x86_capability[1] = cpuid_edx(0x80000001);
  769. c->x86_capability[6] = cpuid_ecx(0x80000001);
  770. }
  771. if (xlvl >= 0x80000004)
  772. get_model_name(c); /* Default name */
  773. }
  774. /* Transmeta-defined flags: level 0x80860001 */
  775. xlvl = cpuid_eax(0x80860000);
  776. if ((xlvl & 0xffff0000) == 0x80860000) {
  777. /* Don't set x86_cpuid_level here for now to not confuse. */
  778. if (xlvl >= 0x80860001)
  779. c->x86_capability[2] = cpuid_edx(0x80860001);
  780. }
  781. init_scattered_cpuid_features(c);
  782. c->apicid = phys_pkg_id(0);
  783. /*
  784. * Vendor-specific initialization. In this section we
  785. * canonicalize the feature flags, meaning if there are
  786. * features a certain CPU supports which CPUID doesn't
  787. * tell us, CPUID claiming incorrect flags, or other bugs,
  788. * we handle them here.
  789. *
  790. * At the end of this section, c->x86_capability better
  791. * indicate the features this CPU genuinely supports!
  792. */
  793. switch (c->x86_vendor) {
  794. case X86_VENDOR_AMD:
  795. init_amd(c);
  796. break;
  797. case X86_VENDOR_INTEL:
  798. init_intel(c);
  799. break;
  800. case X86_VENDOR_UNKNOWN:
  801. default:
  802. display_cacheinfo(c);
  803. break;
  804. }
  805. select_idle_routine(c);
  806. detect_ht(c);
  807. /*
  808. * On SMP, boot_cpu_data holds the common feature set between
  809. * all CPUs; so make sure that we indicate which features are
  810. * common between the CPUs. The first time this routine gets
  811. * executed, c == &boot_cpu_data.
  812. */
  813. if (c != &boot_cpu_data) {
  814. /* AND the already accumulated flags with these */
  815. for (i = 0 ; i < NCAPINTS ; i++)
  816. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  817. }
  818. #ifdef CONFIG_X86_MCE
  819. mcheck_init(c);
  820. #endif
  821. if (c != &boot_cpu_data)
  822. mtrr_ap_init();
  823. #ifdef CONFIG_NUMA
  824. numa_add_cpu(smp_processor_id());
  825. #endif
  826. }
  827. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  828. {
  829. if (c->x86_model_id[0])
  830. printk("%s", c->x86_model_id);
  831. if (c->x86_mask || c->cpuid_level >= 0)
  832. printk(" stepping %02x\n", c->x86_mask);
  833. else
  834. printk("\n");
  835. }
  836. /*
  837. * Get CPU information for use by the procfs.
  838. */
  839. static int show_cpuinfo(struct seq_file *m, void *v)
  840. {
  841. struct cpuinfo_x86 *c = v;
  842. int cpu = 0;
  843. /*
  844. * These flag bits must match the definitions in <asm/cpufeature.h>.
  845. * NULL means this bit is undefined or reserved; either way it doesn't
  846. * have meaning as far as Linux is concerned. Note that it's important
  847. * to realize there is a difference between this table and CPUID -- if
  848. * applications want to get the raw CPUID data, they should access
  849. * /dev/cpu/<cpu_nr>/cpuid instead.
  850. */
  851. static const char *const x86_cap_flags[] = {
  852. /* Intel-defined */
  853. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  854. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  855. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  856. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
  857. /* AMD-defined */
  858. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  859. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  860. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  861. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  862. "3dnowext", "3dnow",
  863. /* Transmeta-defined */
  864. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  865. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  866. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  867. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  868. /* Other (Linux-defined) */
  869. "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
  870. NULL, NULL, NULL, NULL,
  871. "constant_tsc", "up", NULL, "arch_perfmon",
  872. "pebs", "bts", NULL, "sync_rdtsc",
  873. "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  874. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  875. /* Intel-defined (#2) */
  876. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  877. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  878. NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
  879. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  880. /* VIA/Cyrix/Centaur-defined */
  881. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  882. "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
  883. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  884. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  885. /* AMD-defined (#2) */
  886. "lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy",
  887. "altmovcr8", "abm", "sse4a",
  888. "misalignsse", "3dnowprefetch",
  889. "osvw", "ibs", NULL, NULL, NULL, NULL,
  890. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  891. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  892. /* Auxiliary (Linux-defined) */
  893. "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  894. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  895. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  896. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  897. };
  898. static const char *const x86_power_flags[] = {
  899. "ts", /* temperature sensor */
  900. "fid", /* frequency id control */
  901. "vid", /* voltage id control */
  902. "ttp", /* thermal trip */
  903. "tm",
  904. "stc",
  905. "100mhzsteps",
  906. "hwpstate",
  907. "", /* tsc invariant mapped to constant_tsc */
  908. /* nothing */
  909. };
  910. #ifdef CONFIG_SMP
  911. if (!cpu_online(c->cpu_index))
  912. return 0;
  913. cpu = c->cpu_index;
  914. #endif
  915. seq_printf(m,"processor\t: %u\n"
  916. "vendor_id\t: %s\n"
  917. "cpu family\t: %d\n"
  918. "model\t\t: %d\n"
  919. "model name\t: %s\n",
  920. (unsigned)cpu,
  921. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  922. c->x86,
  923. (int)c->x86_model,
  924. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  925. if (c->x86_mask || c->cpuid_level >= 0)
  926. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  927. else
  928. seq_printf(m, "stepping\t: unknown\n");
  929. if (cpu_has(c,X86_FEATURE_TSC)) {
  930. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  931. if (!freq)
  932. freq = cpu_khz;
  933. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  934. freq / 1000, (freq % 1000));
  935. }
  936. /* Cache size */
  937. if (c->x86_cache_size >= 0)
  938. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  939. #ifdef CONFIG_SMP
  940. if (smp_num_siblings * c->x86_max_cores > 1) {
  941. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  942. seq_printf(m, "siblings\t: %d\n",
  943. cpus_weight(per_cpu(cpu_core_map, cpu)));
  944. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  945. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  946. }
  947. #endif
  948. seq_printf(m,
  949. "fpu\t\t: yes\n"
  950. "fpu_exception\t: yes\n"
  951. "cpuid level\t: %d\n"
  952. "wp\t\t: yes\n"
  953. "flags\t\t:",
  954. c->cpuid_level);
  955. {
  956. int i;
  957. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  958. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  959. seq_printf(m, " %s", x86_cap_flags[i]);
  960. }
  961. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  962. c->loops_per_jiffy/(500000/HZ),
  963. (c->loops_per_jiffy/(5000/HZ)) % 100);
  964. if (c->x86_tlbsize > 0)
  965. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  966. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  967. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  968. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  969. c->x86_phys_bits, c->x86_virt_bits);
  970. seq_printf(m, "power management:");
  971. {
  972. unsigned i;
  973. for (i = 0; i < 32; i++)
  974. if (c->x86_power & (1 << i)) {
  975. if (i < ARRAY_SIZE(x86_power_flags) &&
  976. x86_power_flags[i])
  977. seq_printf(m, "%s%s",
  978. x86_power_flags[i][0]?" ":"",
  979. x86_power_flags[i]);
  980. else
  981. seq_printf(m, " [%d]", i);
  982. }
  983. }
  984. seq_printf(m, "\n\n");
  985. return 0;
  986. }
  987. static void *c_start(struct seq_file *m, loff_t *pos)
  988. {
  989. if (*pos == 0) /* just in case, cpu 0 is not the first */
  990. *pos = first_cpu(cpu_possible_map);
  991. if ((*pos) < NR_CPUS && cpu_possible(*pos))
  992. return &cpu_data(*pos);
  993. return NULL;
  994. }
  995. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  996. {
  997. *pos = next_cpu(*pos, cpu_possible_map);
  998. return c_start(m, pos);
  999. }
  1000. static void c_stop(struct seq_file *m, void *v)
  1001. {
  1002. }
  1003. struct seq_operations cpuinfo_op = {
  1004. .start =c_start,
  1005. .next = c_next,
  1006. .stop = c_stop,
  1007. .show = show_cpuinfo,
  1008. };