kprobes_64.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761
  1. /*
  2. * Kernel Probes (KProbes)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright (C) IBM Corporation, 2002, 2004
  19. *
  20. * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21. * Probes initial implementation ( includes contributions from
  22. * Rusty Russell).
  23. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24. * interface to access function arguments.
  25. * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
  26. * <prasanna@in.ibm.com> adapted for x86_64
  27. * 2005-Mar Roland McGrath <roland@redhat.com>
  28. * Fixed to handle %rip-relative addressing mode correctly.
  29. * 2005-May Rusty Lynch <rusty.lynch@intel.com>
  30. * Added function return probes functionality
  31. */
  32. #include <linux/kprobes.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/string.h>
  35. #include <linux/slab.h>
  36. #include <linux/preempt.h>
  37. #include <linux/module.h>
  38. #include <linux/kdebug.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/uaccess.h>
  41. #include <asm/alternative.h>
  42. void jprobe_return_end(void);
  43. static void __kprobes arch_copy_kprobe(struct kprobe *p);
  44. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  45. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  46. struct kretprobe_blackpoint kretprobe_blacklist[] = {
  47. {"__switch_to", }, /* This function switches only current task, but
  48. doesn't switch kernel stack.*/
  49. {NULL, NULL} /* Terminator */
  50. };
  51. const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
  52. /*
  53. * returns non-zero if opcode modifies the interrupt flag.
  54. */
  55. static __always_inline int is_IF_modifier(kprobe_opcode_t *insn)
  56. {
  57. switch (*insn) {
  58. case 0xfa: /* cli */
  59. case 0xfb: /* sti */
  60. case 0xcf: /* iret/iretd */
  61. case 0x9d: /* popf/popfd */
  62. return 1;
  63. }
  64. if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
  65. return 1;
  66. return 0;
  67. }
  68. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  69. {
  70. /* insn: must be on special executable page on x86_64. */
  71. p->ainsn.insn = get_insn_slot();
  72. if (!p->ainsn.insn) {
  73. return -ENOMEM;
  74. }
  75. arch_copy_kprobe(p);
  76. return 0;
  77. }
  78. /*
  79. * Determine if the instruction uses the %rip-relative addressing mode.
  80. * If it does, return the address of the 32-bit displacement word.
  81. * If not, return null.
  82. */
  83. static s32 __kprobes *is_riprel(u8 *insn)
  84. {
  85. #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
  86. (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
  87. (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
  88. (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
  89. (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
  90. << (row % 64))
  91. static const u64 onebyte_has_modrm[256 / 64] = {
  92. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  93. /* ------------------------------- */
  94. W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
  95. W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
  96. W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
  97. W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
  98. W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
  99. W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
  100. W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
  101. W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
  102. W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
  103. W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
  104. W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
  105. W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
  106. W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
  107. W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
  108. W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
  109. W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
  110. /* ------------------------------- */
  111. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  112. };
  113. static const u64 twobyte_has_modrm[256 / 64] = {
  114. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  115. /* ------------------------------- */
  116. W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
  117. W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
  118. W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
  119. W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
  120. W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
  121. W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
  122. W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
  123. W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
  124. W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
  125. W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
  126. W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
  127. W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
  128. W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
  129. W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
  130. W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
  131. W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
  132. /* ------------------------------- */
  133. /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
  134. };
  135. #undef W
  136. int need_modrm;
  137. /* Skip legacy instruction prefixes. */
  138. while (1) {
  139. switch (*insn) {
  140. case 0x66:
  141. case 0x67:
  142. case 0x2e:
  143. case 0x3e:
  144. case 0x26:
  145. case 0x64:
  146. case 0x65:
  147. case 0x36:
  148. case 0xf0:
  149. case 0xf3:
  150. case 0xf2:
  151. ++insn;
  152. continue;
  153. }
  154. break;
  155. }
  156. /* Skip REX instruction prefix. */
  157. if ((*insn & 0xf0) == 0x40)
  158. ++insn;
  159. if (*insn == 0x0f) { /* Two-byte opcode. */
  160. ++insn;
  161. need_modrm = test_bit(*insn, twobyte_has_modrm);
  162. } else { /* One-byte opcode. */
  163. need_modrm = test_bit(*insn, onebyte_has_modrm);
  164. }
  165. if (need_modrm) {
  166. u8 modrm = *++insn;
  167. if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
  168. /* Displacement follows ModRM byte. */
  169. return (s32 *) ++insn;
  170. }
  171. }
  172. /* No %rip-relative addressing mode here. */
  173. return NULL;
  174. }
  175. static void __kprobes arch_copy_kprobe(struct kprobe *p)
  176. {
  177. s32 *ripdisp;
  178. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
  179. ripdisp = is_riprel(p->ainsn.insn);
  180. if (ripdisp) {
  181. /*
  182. * The copied instruction uses the %rip-relative
  183. * addressing mode. Adjust the displacement for the
  184. * difference between the original location of this
  185. * instruction and the location of the copy that will
  186. * actually be run. The tricky bit here is making sure
  187. * that the sign extension happens correctly in this
  188. * calculation, since we need a signed 32-bit result to
  189. * be sign-extended to 64 bits when it's added to the
  190. * %rip value and yield the same 64-bit result that the
  191. * sign-extension of the original signed 32-bit
  192. * displacement would have given.
  193. */
  194. s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
  195. BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
  196. *ripdisp = disp;
  197. }
  198. p->opcode = *p->addr;
  199. }
  200. void __kprobes arch_arm_kprobe(struct kprobe *p)
  201. {
  202. text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
  203. }
  204. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  205. {
  206. text_poke(p->addr, &p->opcode, 1);
  207. }
  208. void __kprobes arch_remove_kprobe(struct kprobe *p)
  209. {
  210. mutex_lock(&kprobe_mutex);
  211. free_insn_slot(p->ainsn.insn, 0);
  212. mutex_unlock(&kprobe_mutex);
  213. }
  214. static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  215. {
  216. kcb->prev_kprobe.kp = kprobe_running();
  217. kcb->prev_kprobe.status = kcb->kprobe_status;
  218. kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
  219. kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
  220. }
  221. static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  222. {
  223. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  224. kcb->kprobe_status = kcb->prev_kprobe.status;
  225. kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
  226. kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
  227. }
  228. static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  229. struct kprobe_ctlblk *kcb)
  230. {
  231. __get_cpu_var(current_kprobe) = p;
  232. kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
  233. = (regs->eflags & (TF_MASK | IF_MASK));
  234. if (is_IF_modifier(p->ainsn.insn))
  235. kcb->kprobe_saved_rflags &= ~IF_MASK;
  236. }
  237. static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  238. {
  239. regs->eflags |= TF_MASK;
  240. regs->eflags &= ~IF_MASK;
  241. /*single step inline if the instruction is an int3*/
  242. if (p->opcode == BREAKPOINT_INSTRUCTION)
  243. regs->rip = (unsigned long)p->addr;
  244. else
  245. regs->rip = (unsigned long)p->ainsn.insn;
  246. }
  247. /* Called with kretprobe_lock held */
  248. void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
  249. struct pt_regs *regs)
  250. {
  251. unsigned long *sara = (unsigned long *)regs->rsp;
  252. ri->ret_addr = (kprobe_opcode_t *) *sara;
  253. /* Replace the return addr with trampoline addr */
  254. *sara = (unsigned long) &kretprobe_trampoline;
  255. }
  256. int __kprobes kprobe_handler(struct pt_regs *regs)
  257. {
  258. struct kprobe *p;
  259. int ret = 0;
  260. kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
  261. struct kprobe_ctlblk *kcb;
  262. /*
  263. * We don't want to be preempted for the entire
  264. * duration of kprobe processing
  265. */
  266. preempt_disable();
  267. kcb = get_kprobe_ctlblk();
  268. /* Check we're not actually recursing */
  269. if (kprobe_running()) {
  270. p = get_kprobe(addr);
  271. if (p) {
  272. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  273. *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
  274. regs->eflags &= ~TF_MASK;
  275. regs->eflags |= kcb->kprobe_saved_rflags;
  276. goto no_kprobe;
  277. } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
  278. /* TODO: Provide re-entrancy from
  279. * post_kprobes_handler() and avoid exception
  280. * stack corruption while single-stepping on
  281. * the instruction of the new probe.
  282. */
  283. arch_disarm_kprobe(p);
  284. regs->rip = (unsigned long)p->addr;
  285. reset_current_kprobe();
  286. ret = 1;
  287. } else {
  288. /* We have reentered the kprobe_handler(), since
  289. * another probe was hit while within the
  290. * handler. We here save the original kprobe
  291. * variables and just single step on instruction
  292. * of the new probe without calling any user
  293. * handlers.
  294. */
  295. save_previous_kprobe(kcb);
  296. set_current_kprobe(p, regs, kcb);
  297. kprobes_inc_nmissed_count(p);
  298. prepare_singlestep(p, regs);
  299. kcb->kprobe_status = KPROBE_REENTER;
  300. return 1;
  301. }
  302. } else {
  303. if (*addr != BREAKPOINT_INSTRUCTION) {
  304. /* The breakpoint instruction was removed by
  305. * another cpu right after we hit, no further
  306. * handling of this interrupt is appropriate
  307. */
  308. regs->rip = (unsigned long)addr;
  309. ret = 1;
  310. goto no_kprobe;
  311. }
  312. p = __get_cpu_var(current_kprobe);
  313. if (p->break_handler && p->break_handler(p, regs)) {
  314. goto ss_probe;
  315. }
  316. }
  317. goto no_kprobe;
  318. }
  319. p = get_kprobe(addr);
  320. if (!p) {
  321. if (*addr != BREAKPOINT_INSTRUCTION) {
  322. /*
  323. * The breakpoint instruction was removed right
  324. * after we hit it. Another cpu has removed
  325. * either a probepoint or a debugger breakpoint
  326. * at this address. In either case, no further
  327. * handling of this interrupt is appropriate.
  328. * Back up over the (now missing) int3 and run
  329. * the original instruction.
  330. */
  331. regs->rip = (unsigned long)addr;
  332. ret = 1;
  333. }
  334. /* Not one of ours: let kernel handle it */
  335. goto no_kprobe;
  336. }
  337. set_current_kprobe(p, regs, kcb);
  338. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  339. if (p->pre_handler && p->pre_handler(p, regs))
  340. /* handler has already set things up, so skip ss setup */
  341. return 1;
  342. ss_probe:
  343. prepare_singlestep(p, regs);
  344. kcb->kprobe_status = KPROBE_HIT_SS;
  345. return 1;
  346. no_kprobe:
  347. preempt_enable_no_resched();
  348. return ret;
  349. }
  350. /*
  351. * For function-return probes, init_kprobes() establishes a probepoint
  352. * here. When a retprobed function returns, this probe is hit and
  353. * trampoline_probe_handler() runs, calling the kretprobe's handler.
  354. */
  355. void kretprobe_trampoline_holder(void)
  356. {
  357. asm volatile ( ".global kretprobe_trampoline\n"
  358. "kretprobe_trampoline: \n"
  359. "nop\n");
  360. }
  361. /*
  362. * Called when we hit the probe point at kretprobe_trampoline
  363. */
  364. int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
  365. {
  366. struct kretprobe_instance *ri = NULL;
  367. struct hlist_head *head, empty_rp;
  368. struct hlist_node *node, *tmp;
  369. unsigned long flags, orig_ret_address = 0;
  370. unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
  371. INIT_HLIST_HEAD(&empty_rp);
  372. spin_lock_irqsave(&kretprobe_lock, flags);
  373. head = kretprobe_inst_table_head(current);
  374. /*
  375. * It is possible to have multiple instances associated with a given
  376. * task either because an multiple functions in the call path
  377. * have a return probe installed on them, and/or more then one return
  378. * return probe was registered for a target function.
  379. *
  380. * We can handle this because:
  381. * - instances are always inserted at the head of the list
  382. * - when multiple return probes are registered for the same
  383. * function, the first instance's ret_addr will point to the
  384. * real return address, and all the rest will point to
  385. * kretprobe_trampoline
  386. */
  387. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  388. if (ri->task != current)
  389. /* another task is sharing our hash bucket */
  390. continue;
  391. if (ri->rp && ri->rp->handler)
  392. ri->rp->handler(ri, regs);
  393. orig_ret_address = (unsigned long)ri->ret_addr;
  394. recycle_rp_inst(ri, &empty_rp);
  395. if (orig_ret_address != trampoline_address)
  396. /*
  397. * This is the real return address. Any other
  398. * instances associated with this task are for
  399. * other calls deeper on the call stack
  400. */
  401. break;
  402. }
  403. kretprobe_assert(ri, orig_ret_address, trampoline_address);
  404. regs->rip = orig_ret_address;
  405. reset_current_kprobe();
  406. spin_unlock_irqrestore(&kretprobe_lock, flags);
  407. preempt_enable_no_resched();
  408. hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
  409. hlist_del(&ri->hlist);
  410. kfree(ri);
  411. }
  412. /*
  413. * By returning a non-zero value, we are telling
  414. * kprobe_handler() that we don't want the post_handler
  415. * to run (and have re-enabled preemption)
  416. */
  417. return 1;
  418. }
  419. /*
  420. * Called after single-stepping. p->addr is the address of the
  421. * instruction whose first byte has been replaced by the "int 3"
  422. * instruction. To avoid the SMP problems that can occur when we
  423. * temporarily put back the original opcode to single-step, we
  424. * single-stepped a copy of the instruction. The address of this
  425. * copy is p->ainsn.insn.
  426. *
  427. * This function prepares to return from the post-single-step
  428. * interrupt. We have to fix up the stack as follows:
  429. *
  430. * 0) Except in the case of absolute or indirect jump or call instructions,
  431. * the new rip is relative to the copied instruction. We need to make
  432. * it relative to the original instruction.
  433. *
  434. * 1) If the single-stepped instruction was pushfl, then the TF and IF
  435. * flags are set in the just-pushed eflags, and may need to be cleared.
  436. *
  437. * 2) If the single-stepped instruction was a call, the return address
  438. * that is atop the stack is the address following the copied instruction.
  439. * We need to make it the address following the original instruction.
  440. */
  441. static void __kprobes resume_execution(struct kprobe *p,
  442. struct pt_regs *regs, struct kprobe_ctlblk *kcb)
  443. {
  444. unsigned long *tos = (unsigned long *)regs->rsp;
  445. unsigned long next_rip = 0;
  446. unsigned long copy_rip = (unsigned long)p->ainsn.insn;
  447. unsigned long orig_rip = (unsigned long)p->addr;
  448. kprobe_opcode_t *insn = p->ainsn.insn;
  449. /*skip the REX prefix*/
  450. if (*insn >= 0x40 && *insn <= 0x4f)
  451. insn++;
  452. switch (*insn) {
  453. case 0x9c: /* pushfl */
  454. *tos &= ~(TF_MASK | IF_MASK);
  455. *tos |= kcb->kprobe_old_rflags;
  456. break;
  457. case 0xc3: /* ret/lret */
  458. case 0xcb:
  459. case 0xc2:
  460. case 0xca:
  461. regs->eflags &= ~TF_MASK;
  462. /* rip is already adjusted, no more changes required*/
  463. return;
  464. case 0xe8: /* call relative - Fix return addr */
  465. *tos = orig_rip + (*tos - copy_rip);
  466. break;
  467. case 0xff:
  468. if ((insn[1] & 0x30) == 0x10) {
  469. /* call absolute, indirect */
  470. /* Fix return addr; rip is correct. */
  471. next_rip = regs->rip;
  472. *tos = orig_rip + (*tos - copy_rip);
  473. } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
  474. ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
  475. /* rip is correct. */
  476. next_rip = regs->rip;
  477. }
  478. break;
  479. case 0xea: /* jmp absolute -- rip is correct */
  480. next_rip = regs->rip;
  481. break;
  482. default:
  483. break;
  484. }
  485. regs->eflags &= ~TF_MASK;
  486. if (next_rip) {
  487. regs->rip = next_rip;
  488. } else {
  489. regs->rip = orig_rip + (regs->rip - copy_rip);
  490. }
  491. }
  492. int __kprobes post_kprobe_handler(struct pt_regs *regs)
  493. {
  494. struct kprobe *cur = kprobe_running();
  495. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  496. if (!cur)
  497. return 0;
  498. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  499. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  500. cur->post_handler(cur, regs, 0);
  501. }
  502. resume_execution(cur, regs, kcb);
  503. regs->eflags |= kcb->kprobe_saved_rflags;
  504. #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT
  505. if (raw_irqs_disabled_flags(regs->eflags))
  506. trace_hardirqs_off();
  507. else
  508. trace_hardirqs_on();
  509. #endif
  510. /* Restore the original saved kprobes variables and continue. */
  511. if (kcb->kprobe_status == KPROBE_REENTER) {
  512. restore_previous_kprobe(kcb);
  513. goto out;
  514. }
  515. reset_current_kprobe();
  516. out:
  517. preempt_enable_no_resched();
  518. /*
  519. * if somebody else is singlestepping across a probe point, eflags
  520. * will have TF set, in which case, continue the remaining processing
  521. * of do_debug, as if this is not a probe hit.
  522. */
  523. if (regs->eflags & TF_MASK)
  524. return 0;
  525. return 1;
  526. }
  527. int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  528. {
  529. struct kprobe *cur = kprobe_running();
  530. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  531. const struct exception_table_entry *fixup;
  532. switch(kcb->kprobe_status) {
  533. case KPROBE_HIT_SS:
  534. case KPROBE_REENTER:
  535. /*
  536. * We are here because the instruction being single
  537. * stepped caused a page fault. We reset the current
  538. * kprobe and the rip points back to the probe address
  539. * and allow the page fault handler to continue as a
  540. * normal page fault.
  541. */
  542. regs->rip = (unsigned long)cur->addr;
  543. regs->eflags |= kcb->kprobe_old_rflags;
  544. if (kcb->kprobe_status == KPROBE_REENTER)
  545. restore_previous_kprobe(kcb);
  546. else
  547. reset_current_kprobe();
  548. preempt_enable_no_resched();
  549. break;
  550. case KPROBE_HIT_ACTIVE:
  551. case KPROBE_HIT_SSDONE:
  552. /*
  553. * We increment the nmissed count for accounting,
  554. * we can also use npre/npostfault count for accouting
  555. * these specific fault cases.
  556. */
  557. kprobes_inc_nmissed_count(cur);
  558. /*
  559. * We come here because instructions in the pre/post
  560. * handler caused the page_fault, this could happen
  561. * if handler tries to access user space by
  562. * copy_from_user(), get_user() etc. Let the
  563. * user-specified handler try to fix it first.
  564. */
  565. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  566. return 1;
  567. /*
  568. * In case the user-specified fault handler returned
  569. * zero, try to fix up.
  570. */
  571. fixup = search_exception_tables(regs->rip);
  572. if (fixup) {
  573. regs->rip = fixup->fixup;
  574. return 1;
  575. }
  576. /*
  577. * fixup() could not handle it,
  578. * Let do_page_fault() fix it.
  579. */
  580. break;
  581. default:
  582. break;
  583. }
  584. return 0;
  585. }
  586. /*
  587. * Wrapper routine for handling exceptions.
  588. */
  589. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  590. unsigned long val, void *data)
  591. {
  592. struct die_args *args = (struct die_args *)data;
  593. int ret = NOTIFY_DONE;
  594. if (args->regs && user_mode(args->regs))
  595. return ret;
  596. switch (val) {
  597. case DIE_INT3:
  598. if (kprobe_handler(args->regs))
  599. ret = NOTIFY_STOP;
  600. break;
  601. case DIE_DEBUG:
  602. if (post_kprobe_handler(args->regs))
  603. ret = NOTIFY_STOP;
  604. break;
  605. case DIE_GPF:
  606. /* kprobe_running() needs smp_processor_id() */
  607. preempt_disable();
  608. if (kprobe_running() &&
  609. kprobe_fault_handler(args->regs, args->trapnr))
  610. ret = NOTIFY_STOP;
  611. preempt_enable();
  612. break;
  613. default:
  614. break;
  615. }
  616. return ret;
  617. }
  618. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  619. {
  620. struct jprobe *jp = container_of(p, struct jprobe, kp);
  621. unsigned long addr;
  622. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  623. kcb->jprobe_saved_regs = *regs;
  624. kcb->jprobe_saved_rsp = (long *) regs->rsp;
  625. addr = (unsigned long)(kcb->jprobe_saved_rsp);
  626. /*
  627. * As Linus pointed out, gcc assumes that the callee
  628. * owns the argument space and could overwrite it, e.g.
  629. * tailcall optimization. So, to be absolutely safe
  630. * we also save and restore enough stack bytes to cover
  631. * the argument area.
  632. */
  633. memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
  634. MIN_STACK_SIZE(addr));
  635. regs->eflags &= ~IF_MASK;
  636. trace_hardirqs_off();
  637. regs->rip = (unsigned long)(jp->entry);
  638. return 1;
  639. }
  640. void __kprobes jprobe_return(void)
  641. {
  642. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  643. asm volatile (" xchg %%rbx,%%rsp \n"
  644. " int3 \n"
  645. " .globl jprobe_return_end \n"
  646. " jprobe_return_end: \n"
  647. " nop \n"::"b"
  648. (kcb->jprobe_saved_rsp):"memory");
  649. }
  650. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  651. {
  652. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  653. u8 *addr = (u8 *) (regs->rip - 1);
  654. unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
  655. struct jprobe *jp = container_of(p, struct jprobe, kp);
  656. if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
  657. if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
  658. struct pt_regs *saved_regs =
  659. container_of(kcb->jprobe_saved_rsp,
  660. struct pt_regs, rsp);
  661. printk("current rsp %p does not match saved rsp %p\n",
  662. (long *)regs->rsp, kcb->jprobe_saved_rsp);
  663. printk("Saved registers for jprobe %p\n", jp);
  664. show_registers(saved_regs);
  665. printk("Current registers\n");
  666. show_registers(regs);
  667. BUG();
  668. }
  669. *regs = kcb->jprobe_saved_regs;
  670. memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
  671. MIN_STACK_SIZE(stack_addr));
  672. preempt_enable_no_resched();
  673. return 1;
  674. }
  675. return 0;
  676. }
  677. static struct kprobe trampoline_p = {
  678. .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
  679. .pre_handler = trampoline_probe_handler
  680. };
  681. int __init arch_init_kprobes(void)
  682. {
  683. return register_kprobe(&trampoline_p);
  684. }
  685. int __kprobes arch_trampoline_kprobe(struct kprobe *p)
  686. {
  687. if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
  688. return 1;
  689. return 0;
  690. }