process.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Licensed under the GPL
  5. */
  6. #include "linux/stddef.h"
  7. #include "linux/err.h"
  8. #include "linux/hardirq.h"
  9. #include "linux/mm.h"
  10. #include "linux/personality.h"
  11. #include "linux/proc_fs.h"
  12. #include "linux/ptrace.h"
  13. #include "linux/random.h"
  14. #include "linux/sched.h"
  15. #include "linux/tick.h"
  16. #include "linux/threads.h"
  17. #include "asm/pgtable.h"
  18. #include "asm/uaccess.h"
  19. #include "as-layout.h"
  20. #include "kern_util.h"
  21. #include "os.h"
  22. #include "skas.h"
  23. #include "tlb.h"
  24. /*
  25. * This is a per-cpu array. A processor only modifies its entry and it only
  26. * cares about its entry, so it's OK if another processor is modifying its
  27. * entry.
  28. */
  29. struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  30. static inline int external_pid(struct task_struct *task)
  31. {
  32. /* FIXME: Need to look up userspace_pid by cpu */
  33. return userspace_pid[0];
  34. }
  35. int pid_to_processor_id(int pid)
  36. {
  37. int i;
  38. for(i = 0; i < ncpus; i++) {
  39. if (cpu_tasks[i].pid == pid)
  40. return i;
  41. }
  42. return -1;
  43. }
  44. void free_stack(unsigned long stack, int order)
  45. {
  46. free_pages(stack, order);
  47. }
  48. unsigned long alloc_stack(int order, int atomic)
  49. {
  50. unsigned long page;
  51. gfp_t flags = GFP_KERNEL;
  52. if (atomic)
  53. flags = GFP_ATOMIC;
  54. page = __get_free_pages(flags, order);
  55. if (page == 0)
  56. return 0;
  57. return page;
  58. }
  59. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  60. {
  61. int pid;
  62. current->thread.request.u.thread.proc = fn;
  63. current->thread.request.u.thread.arg = arg;
  64. pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
  65. &current->thread.regs, 0, NULL, NULL);
  66. return pid;
  67. }
  68. static inline void set_current(struct task_struct *task)
  69. {
  70. cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  71. { external_pid(task), task });
  72. }
  73. extern void arch_switch_to(struct task_struct *from, struct task_struct *to);
  74. void *_switch_to(void *prev, void *next, void *last)
  75. {
  76. struct task_struct *from = prev;
  77. struct task_struct *to= next;
  78. to->thread.prev_sched = from;
  79. set_current(to);
  80. do {
  81. current->thread.saved_task = NULL;
  82. switch_threads(&from->thread.switch_buf,
  83. &to->thread.switch_buf);
  84. arch_switch_to(current->thread.prev_sched, current);
  85. if (current->thread.saved_task)
  86. show_regs(&(current->thread.regs));
  87. next= current->thread.saved_task;
  88. prev= current;
  89. } while(current->thread.saved_task);
  90. return current->thread.prev_sched;
  91. }
  92. void interrupt_end(void)
  93. {
  94. if (need_resched())
  95. schedule();
  96. if (test_tsk_thread_flag(current, TIF_SIGPENDING))
  97. do_signal();
  98. }
  99. void exit_thread(void)
  100. {
  101. }
  102. void *get_current(void)
  103. {
  104. return current;
  105. }
  106. extern void schedule_tail(struct task_struct *prev);
  107. /*
  108. * This is called magically, by its address being stuffed in a jmp_buf
  109. * and being longjmp-d to.
  110. */
  111. void new_thread_handler(void)
  112. {
  113. int (*fn)(void *), n;
  114. void *arg;
  115. if (current->thread.prev_sched != NULL)
  116. schedule_tail(current->thread.prev_sched);
  117. current->thread.prev_sched = NULL;
  118. fn = current->thread.request.u.thread.proc;
  119. arg = current->thread.request.u.thread.arg;
  120. /*
  121. * The return value is 1 if the kernel thread execs a process,
  122. * 0 if it just exits
  123. */
  124. n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
  125. if (n == 1) {
  126. /* Handle any immediate reschedules or signals */
  127. interrupt_end();
  128. userspace(&current->thread.regs.regs);
  129. }
  130. else do_exit(0);
  131. }
  132. /* Called magically, see new_thread_handler above */
  133. void fork_handler(void)
  134. {
  135. force_flush_all();
  136. if (current->thread.prev_sched == NULL)
  137. panic("blech");
  138. schedule_tail(current->thread.prev_sched);
  139. /*
  140. * XXX: if interrupt_end() calls schedule, this call to
  141. * arch_switch_to isn't needed. We could want to apply this to
  142. * improve performance. -bb
  143. */
  144. arch_switch_to(current->thread.prev_sched, current);
  145. current->thread.prev_sched = NULL;
  146. /* Handle any immediate reschedules or signals */
  147. interrupt_end();
  148. userspace(&current->thread.regs.regs);
  149. }
  150. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  151. unsigned long stack_top, struct task_struct * p,
  152. struct pt_regs *regs)
  153. {
  154. void (*handler)(void);
  155. int ret = 0;
  156. p->thread = (struct thread_struct) INIT_THREAD;
  157. if (current->thread.forking) {
  158. memcpy(&p->thread.regs.regs, &regs->regs,
  159. sizeof(p->thread.regs.regs));
  160. REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
  161. if (sp != 0)
  162. REGS_SP(p->thread.regs.regs.gp) = sp;
  163. handler = fork_handler;
  164. arch_copy_thread(&current->thread.arch, &p->thread.arch);
  165. }
  166. else {
  167. init_thread_registers(&p->thread.regs.regs);
  168. p->thread.request.u.thread = current->thread.request.u.thread;
  169. handler = new_thread_handler;
  170. }
  171. new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
  172. if (current->thread.forking) {
  173. clear_flushed_tls(p);
  174. /*
  175. * Set a new TLS for the child thread?
  176. */
  177. if (clone_flags & CLONE_SETTLS)
  178. ret = arch_copy_tls(p);
  179. }
  180. return ret;
  181. }
  182. void initial_thread_cb(void (*proc)(void *), void *arg)
  183. {
  184. int save_kmalloc_ok = kmalloc_ok;
  185. kmalloc_ok = 0;
  186. initial_thread_cb_skas(proc, arg);
  187. kmalloc_ok = save_kmalloc_ok;
  188. }
  189. void default_idle(void)
  190. {
  191. unsigned long long nsecs;
  192. while(1) {
  193. /* endless idle loop with no priority at all */
  194. /*
  195. * although we are an idle CPU, we do not want to
  196. * get into the scheduler unnecessarily.
  197. */
  198. if (need_resched())
  199. schedule();
  200. tick_nohz_stop_sched_tick();
  201. nsecs = disable_timer();
  202. idle_sleep(nsecs);
  203. tick_nohz_restart_sched_tick();
  204. }
  205. }
  206. void cpu_idle(void)
  207. {
  208. cpu_tasks[current_thread->cpu].pid = os_getpid();
  209. default_idle();
  210. }
  211. void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
  212. pte_t *pte_out)
  213. {
  214. pgd_t *pgd;
  215. pud_t *pud;
  216. pmd_t *pmd;
  217. pte_t *pte;
  218. pte_t ptent;
  219. if (task->mm == NULL)
  220. return ERR_PTR(-EINVAL);
  221. pgd = pgd_offset(task->mm, addr);
  222. if (!pgd_present(*pgd))
  223. return ERR_PTR(-EINVAL);
  224. pud = pud_offset(pgd, addr);
  225. if (!pud_present(*pud))
  226. return ERR_PTR(-EINVAL);
  227. pmd = pmd_offset(pud, addr);
  228. if (!pmd_present(*pmd))
  229. return ERR_PTR(-EINVAL);
  230. pte = pte_offset_kernel(pmd, addr);
  231. ptent = *pte;
  232. if (!pte_present(ptent))
  233. return ERR_PTR(-EINVAL);
  234. if (pte_out != NULL)
  235. *pte_out = ptent;
  236. return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK);
  237. }
  238. char *current_cmd(void)
  239. {
  240. #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
  241. return "(Unknown)";
  242. #else
  243. void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
  244. return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
  245. #endif
  246. }
  247. void dump_thread(struct pt_regs *regs, struct user *u)
  248. {
  249. }
  250. int __cant_sleep(void) {
  251. return in_atomic() || irqs_disabled() || in_interrupt();
  252. /* Is in_interrupt() really needed? */
  253. }
  254. int user_context(unsigned long sp)
  255. {
  256. unsigned long stack;
  257. stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
  258. return stack != (unsigned long) current_thread;
  259. }
  260. extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
  261. void do_uml_exitcalls(void)
  262. {
  263. exitcall_t *call;
  264. call = &__uml_exitcall_end;
  265. while (--call >= &__uml_exitcall_begin)
  266. (*call)();
  267. }
  268. char *uml_strdup(char *string)
  269. {
  270. return kstrdup(string, GFP_KERNEL);
  271. }
  272. int copy_to_user_proc(void __user *to, void *from, int size)
  273. {
  274. return copy_to_user(to, from, size);
  275. }
  276. int copy_from_user_proc(void *to, void __user *from, int size)
  277. {
  278. return copy_from_user(to, from, size);
  279. }
  280. int clear_user_proc(void __user *buf, int size)
  281. {
  282. return clear_user(buf, size);
  283. }
  284. int strlen_user_proc(char __user *str)
  285. {
  286. return strlen_user(str);
  287. }
  288. int smp_sigio_handler(void)
  289. {
  290. #ifdef CONFIG_SMP
  291. int cpu = current_thread->cpu;
  292. IPI_handler(cpu);
  293. if (cpu != 0)
  294. return 1;
  295. #endif
  296. return 0;
  297. }
  298. int cpu(void)
  299. {
  300. return current_thread->cpu;
  301. }
  302. static atomic_t using_sysemu = ATOMIC_INIT(0);
  303. int sysemu_supported;
  304. void set_using_sysemu(int value)
  305. {
  306. if (value > sysemu_supported)
  307. return;
  308. atomic_set(&using_sysemu, value);
  309. }
  310. int get_using_sysemu(void)
  311. {
  312. return atomic_read(&using_sysemu);
  313. }
  314. static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
  315. {
  316. if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size)
  317. /* No overflow */
  318. *eof = 1;
  319. return strlen(buf);
  320. }
  321. static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
  322. {
  323. char tmp[2];
  324. if (copy_from_user(tmp, buf, 1))
  325. return -EFAULT;
  326. if (tmp[0] >= '0' && tmp[0] <= '2')
  327. set_using_sysemu(tmp[0] - '0');
  328. /* We use the first char, but pretend to write everything */
  329. return count;
  330. }
  331. int __init make_proc_sysemu(void)
  332. {
  333. struct proc_dir_entry *ent;
  334. if (!sysemu_supported)
  335. return 0;
  336. ent = create_proc_entry("sysemu", 0600, &proc_root);
  337. if (ent == NULL)
  338. {
  339. printk(KERN_WARNING "Failed to register /proc/sysemu\n");
  340. return 0;
  341. }
  342. ent->read_proc = proc_read_sysemu;
  343. ent->write_proc = proc_write_sysemu;
  344. return 0;
  345. }
  346. late_initcall(make_proc_sysemu);
  347. int singlestepping(void * t)
  348. {
  349. struct task_struct *task = t ? t : current;
  350. if ( ! (task->ptrace & PT_DTRACE) )
  351. return 0;
  352. if (task->thread.singlestep_syscall)
  353. return 1;
  354. return 2;
  355. }
  356. /*
  357. * Only x86 and x86_64 have an arch_align_stack().
  358. * All other arches have "#define arch_align_stack(x) (x)"
  359. * in their asm/system.h
  360. * As this is included in UML from asm-um/system-generic.h,
  361. * we can use it to behave as the subarch does.
  362. */
  363. #ifndef arch_align_stack
  364. unsigned long arch_align_stack(unsigned long sp)
  365. {
  366. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  367. sp -= get_random_int() % 8192;
  368. return sp & ~0xf;
  369. }
  370. #endif