process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558
  1. /*
  2. * arch/sh/kernel/process.c
  3. *
  4. * This file handles the architecture-dependent parts of process handling..
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. *
  8. * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  9. * Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
  10. * Copyright (C) 2002 - 2007 Paul Mundt
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/pm.h>
  16. #include <linux/kallsyms.h>
  17. #include <linux/kexec.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/tick.h>
  20. #include <linux/reboot.h>
  21. #include <linux/fs.h>
  22. #include <linux/preempt.h>
  23. #include <asm/uaccess.h>
  24. #include <asm/mmu_context.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/system.h>
  27. #include <asm/ubc.h>
  28. static int hlt_counter;
  29. int ubc_usercnt = 0;
  30. void (*pm_idle)(void);
  31. void (*pm_power_off)(void);
  32. EXPORT_SYMBOL(pm_power_off);
  33. void disable_hlt(void)
  34. {
  35. hlt_counter++;
  36. }
  37. EXPORT_SYMBOL(disable_hlt);
  38. void enable_hlt(void)
  39. {
  40. hlt_counter--;
  41. }
  42. EXPORT_SYMBOL(enable_hlt);
  43. static int __init nohlt_setup(char *__unused)
  44. {
  45. hlt_counter = 1;
  46. return 1;
  47. }
  48. __setup("nohlt", nohlt_setup);
  49. static int __init hlt_setup(char *__unused)
  50. {
  51. hlt_counter = 0;
  52. return 1;
  53. }
  54. __setup("hlt", hlt_setup);
  55. void default_idle(void)
  56. {
  57. if (!hlt_counter) {
  58. clear_thread_flag(TIF_POLLING_NRFLAG);
  59. smp_mb__after_clear_bit();
  60. set_bl_bit();
  61. while (!need_resched())
  62. cpu_sleep();
  63. clear_bl_bit();
  64. set_thread_flag(TIF_POLLING_NRFLAG);
  65. } else
  66. while (!need_resched())
  67. cpu_relax();
  68. }
  69. void cpu_idle(void)
  70. {
  71. set_thread_flag(TIF_POLLING_NRFLAG);
  72. /* endless idle loop with no priority at all */
  73. while (1) {
  74. void (*idle)(void) = pm_idle;
  75. if (!idle)
  76. idle = default_idle;
  77. tick_nohz_stop_sched_tick();
  78. while (!need_resched())
  79. idle();
  80. tick_nohz_restart_sched_tick();
  81. preempt_enable_no_resched();
  82. schedule();
  83. preempt_disable();
  84. check_pgt_cache();
  85. }
  86. }
  87. void machine_restart(char * __unused)
  88. {
  89. /* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
  90. asm volatile("ldc %0, sr\n\t"
  91. "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
  92. }
  93. void machine_halt(void)
  94. {
  95. local_irq_disable();
  96. while (1)
  97. cpu_sleep();
  98. }
  99. void machine_power_off(void)
  100. {
  101. if (pm_power_off)
  102. pm_power_off();
  103. }
  104. void show_regs(struct pt_regs * regs)
  105. {
  106. printk("\n");
  107. printk("Pid : %d, Comm: %20s\n", task_pid_nr(current), current->comm);
  108. print_symbol("PC is at %s\n", instruction_pointer(regs));
  109. printk("PC : %08lx SP : %08lx SR : %08lx ",
  110. regs->pc, regs->regs[15], regs->sr);
  111. #ifdef CONFIG_MMU
  112. printk("TEA : %08x ", ctrl_inl(MMU_TEA));
  113. #else
  114. printk(" ");
  115. #endif
  116. printk("%s\n", print_tainted());
  117. printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
  118. regs->regs[0],regs->regs[1],
  119. regs->regs[2],regs->regs[3]);
  120. printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
  121. regs->regs[4],regs->regs[5],
  122. regs->regs[6],regs->regs[7]);
  123. printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
  124. regs->regs[8],regs->regs[9],
  125. regs->regs[10],regs->regs[11]);
  126. printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
  127. regs->regs[12],regs->regs[13],
  128. regs->regs[14]);
  129. printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
  130. regs->mach, regs->macl, regs->gbr, regs->pr);
  131. show_trace(NULL, (unsigned long *)regs->regs[15], regs);
  132. }
  133. /*
  134. * Create a kernel thread
  135. */
  136. /*
  137. * This is the mechanism for creating a new kernel thread.
  138. *
  139. */
  140. extern void kernel_thread_helper(void);
  141. __asm__(".align 5\n"
  142. "kernel_thread_helper:\n\t"
  143. "jsr @r5\n\t"
  144. " nop\n\t"
  145. "mov.l 1f, r1\n\t"
  146. "jsr @r1\n\t"
  147. " mov r0, r4\n\t"
  148. ".align 2\n\t"
  149. "1:.long do_exit");
  150. /* Don't use this in BL=1(cli). Or else, CPU resets! */
  151. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  152. {
  153. struct pt_regs regs;
  154. memset(&regs, 0, sizeof(regs));
  155. regs.regs[4] = (unsigned long)arg;
  156. regs.regs[5] = (unsigned long)fn;
  157. regs.pc = (unsigned long)kernel_thread_helper;
  158. regs.sr = (1 << 30);
  159. /* Ok, create the new process.. */
  160. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  161. &regs, 0, NULL, NULL);
  162. }
  163. /*
  164. * Free current thread data structures etc..
  165. */
  166. void exit_thread(void)
  167. {
  168. if (current->thread.ubc_pc) {
  169. current->thread.ubc_pc = 0;
  170. ubc_usercnt -= 1;
  171. }
  172. }
  173. void flush_thread(void)
  174. {
  175. #if defined(CONFIG_SH_FPU)
  176. struct task_struct *tsk = current;
  177. /* Forget lazy FPU state */
  178. clear_fpu(tsk, task_pt_regs(tsk));
  179. clear_used_math();
  180. #endif
  181. }
  182. void release_thread(struct task_struct *dead_task)
  183. {
  184. /* do nothing */
  185. }
  186. /* Fill in the fpu structure for a core dump.. */
  187. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  188. {
  189. int fpvalid = 0;
  190. #if defined(CONFIG_SH_FPU)
  191. struct task_struct *tsk = current;
  192. fpvalid = !!tsk_used_math(tsk);
  193. if (fpvalid) {
  194. unlazy_fpu(tsk, regs);
  195. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  196. }
  197. #endif
  198. return fpvalid;
  199. }
  200. /*
  201. * Capture the user space registers if the task is not running (in user space)
  202. */
  203. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  204. {
  205. struct pt_regs ptregs;
  206. ptregs = *task_pt_regs(tsk);
  207. elf_core_copy_regs(regs, &ptregs);
  208. return 1;
  209. }
  210. int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpu)
  211. {
  212. int fpvalid = 0;
  213. #if defined(CONFIG_SH_FPU)
  214. fpvalid = !!tsk_used_math(tsk);
  215. if (fpvalid) {
  216. unlazy_fpu(tsk, task_pt_regs(tsk));
  217. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  218. }
  219. #endif
  220. return fpvalid;
  221. }
  222. asmlinkage void ret_from_fork(void);
  223. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  224. unsigned long unused,
  225. struct task_struct *p, struct pt_regs *regs)
  226. {
  227. struct thread_info *ti = task_thread_info(p);
  228. struct pt_regs *childregs;
  229. #if defined(CONFIG_SH_FPU)
  230. struct task_struct *tsk = current;
  231. unlazy_fpu(tsk, regs);
  232. p->thread.fpu = tsk->thread.fpu;
  233. copy_to_stopped_child_used_math(p);
  234. #endif
  235. childregs = task_pt_regs(p);
  236. *childregs = *regs;
  237. if (user_mode(regs)) {
  238. childregs->regs[15] = usp;
  239. ti->addr_limit = USER_DS;
  240. } else {
  241. childregs->regs[15] = (unsigned long)childregs;
  242. ti->addr_limit = KERNEL_DS;
  243. }
  244. if (clone_flags & CLONE_SETTLS)
  245. childregs->gbr = childregs->regs[0];
  246. childregs->regs[0] = 0; /* Set return value for child */
  247. p->thread.sp = (unsigned long) childregs;
  248. p->thread.pc = (unsigned long) ret_from_fork;
  249. p->thread.ubc_pc = 0;
  250. return 0;
  251. }
  252. /* Tracing by user break controller. */
  253. static void ubc_set_tracing(int asid, unsigned long pc)
  254. {
  255. #if defined(CONFIG_CPU_SH4A)
  256. unsigned long val;
  257. val = (UBC_CBR_ID_INST | UBC_CBR_RW_READ | UBC_CBR_CE);
  258. val |= (UBC_CBR_AIE | UBC_CBR_AIV_SET(asid));
  259. ctrl_outl(val, UBC_CBR0);
  260. ctrl_outl(pc, UBC_CAR0);
  261. ctrl_outl(0x0, UBC_CAMR0);
  262. ctrl_outl(0x0, UBC_CBCR);
  263. val = (UBC_CRR_RES | UBC_CRR_PCB | UBC_CRR_BIE);
  264. ctrl_outl(val, UBC_CRR0);
  265. /* Read UBC register that we wrote last, for checking update */
  266. val = ctrl_inl(UBC_CRR0);
  267. #else /* CONFIG_CPU_SH4A */
  268. ctrl_outl(pc, UBC_BARA);
  269. #ifdef CONFIG_MMU
  270. ctrl_outb(asid, UBC_BASRA);
  271. #endif
  272. ctrl_outl(0, UBC_BAMRA);
  273. if (current_cpu_data.type == CPU_SH7729 ||
  274. current_cpu_data.type == CPU_SH7710 ||
  275. current_cpu_data.type == CPU_SH7712) {
  276. ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
  277. ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
  278. } else {
  279. ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
  280. ctrl_outw(BRCR_PCBA, UBC_BRCR);
  281. }
  282. #endif /* CONFIG_CPU_SH4A */
  283. }
  284. /*
  285. * switch_to(x,y) should switch tasks from x to y.
  286. *
  287. */
  288. struct task_struct *__switch_to(struct task_struct *prev,
  289. struct task_struct *next)
  290. {
  291. #if defined(CONFIG_SH_FPU)
  292. unlazy_fpu(prev, task_pt_regs(prev));
  293. #endif
  294. #if defined(CONFIG_GUSA) && defined(CONFIG_PREEMPT)
  295. {
  296. struct pt_regs *regs;
  297. preempt_disable();
  298. regs = task_pt_regs(prev);
  299. if (user_mode(regs) && regs->regs[15] >= 0xc0000000) {
  300. int offset = (int)regs->regs[15];
  301. /* Reset stack pointer: clear critical region mark */
  302. regs->regs[15] = regs->regs[1];
  303. if (regs->pc < regs->regs[0])
  304. /* Go to rewind point */
  305. regs->pc = regs->regs[0] + offset;
  306. }
  307. preempt_enable_no_resched();
  308. }
  309. #endif
  310. #ifdef CONFIG_MMU
  311. /*
  312. * Restore the kernel mode register
  313. * k7 (r7_bank1)
  314. */
  315. asm volatile("ldc %0, r7_bank"
  316. : /* no output */
  317. : "r" (task_thread_info(next)));
  318. #endif
  319. /* If no tasks are using the UBC, we're done */
  320. if (ubc_usercnt == 0)
  321. /* If no tasks are using the UBC, we're done */;
  322. else if (next->thread.ubc_pc && next->mm) {
  323. int asid = 0;
  324. #ifdef CONFIG_MMU
  325. asid |= cpu_asid(smp_processor_id(), next->mm);
  326. #endif
  327. ubc_set_tracing(asid, next->thread.ubc_pc);
  328. } else {
  329. #if defined(CONFIG_CPU_SH4A)
  330. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  331. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  332. #else
  333. ctrl_outw(0, UBC_BBRA);
  334. ctrl_outw(0, UBC_BBRB);
  335. #endif
  336. }
  337. return prev;
  338. }
  339. asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
  340. unsigned long r6, unsigned long r7,
  341. struct pt_regs __regs)
  342. {
  343. #ifdef CONFIG_MMU
  344. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  345. return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
  346. #else
  347. /* fork almost works, enough to trick you into looking elsewhere :-( */
  348. return -EINVAL;
  349. #endif
  350. }
  351. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  352. unsigned long parent_tidptr,
  353. unsigned long child_tidptr,
  354. struct pt_regs __regs)
  355. {
  356. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  357. if (!newsp)
  358. newsp = regs->regs[15];
  359. return do_fork(clone_flags, newsp, regs, 0,
  360. (int __user *)parent_tidptr,
  361. (int __user *)child_tidptr);
  362. }
  363. /*
  364. * This is trivial, and on the face of it looks like it
  365. * could equally well be done in user mode.
  366. *
  367. * Not so, for quite unobvious reasons - register pressure.
  368. * In user mode vfork() cannot have a stack frame, and if
  369. * done by calling the "clone()" system call directly, you
  370. * do not have enough call-clobbered registers to hold all
  371. * the information you need.
  372. */
  373. asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
  374. unsigned long r6, unsigned long r7,
  375. struct pt_regs __regs)
  376. {
  377. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  378. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
  379. 0, NULL, NULL);
  380. }
  381. /*
  382. * sys_execve() executes a new program.
  383. */
  384. asmlinkage int sys_execve(char __user *ufilename, char __user * __user *uargv,
  385. char __user * __user *uenvp, unsigned long r7,
  386. struct pt_regs __regs)
  387. {
  388. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  389. int error;
  390. char *filename;
  391. filename = getname(ufilename);
  392. error = PTR_ERR(filename);
  393. if (IS_ERR(filename))
  394. goto out;
  395. error = do_execve(filename, uargv, uenvp, regs);
  396. if (error == 0) {
  397. task_lock(current);
  398. current->ptrace &= ~PT_DTRACE;
  399. task_unlock(current);
  400. }
  401. putname(filename);
  402. out:
  403. return error;
  404. }
  405. unsigned long get_wchan(struct task_struct *p)
  406. {
  407. unsigned long pc;
  408. if (!p || p == current || p->state == TASK_RUNNING)
  409. return 0;
  410. /*
  411. * The same comment as on the Alpha applies here, too ...
  412. */
  413. pc = thread_saved_pc(p);
  414. #ifdef CONFIG_FRAME_POINTER
  415. if (in_sched_functions(pc)) {
  416. unsigned long schedule_frame = (unsigned long)p->thread.sp;
  417. return ((unsigned long *)schedule_frame)[21];
  418. }
  419. #endif
  420. return pc;
  421. }
  422. asmlinkage void break_point_trap(void)
  423. {
  424. /* Clear tracing. */
  425. #if defined(CONFIG_CPU_SH4A)
  426. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  427. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  428. #else
  429. ctrl_outw(0, UBC_BBRA);
  430. ctrl_outw(0, UBC_BBRB);
  431. #endif
  432. current->thread.ubc_pc = 0;
  433. ubc_usercnt -= 1;
  434. force_sig(SIGTRAP, current);
  435. }
  436. /*
  437. * Generic trap handler.
  438. */
  439. asmlinkage void debug_trap_handler(unsigned long r4, unsigned long r5,
  440. unsigned long r6, unsigned long r7,
  441. struct pt_regs __regs)
  442. {
  443. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  444. /* Rewind */
  445. regs->pc -= instruction_size(ctrl_inw(regs->pc - 4));
  446. if (notify_die(DIE_TRAP, "debug trap", regs, 0, regs->tra & 0xff,
  447. SIGTRAP) == NOTIFY_STOP)
  448. return;
  449. force_sig(SIGTRAP, current);
  450. }
  451. /*
  452. * Special handler for BUG() traps.
  453. */
  454. asmlinkage void bug_trap_handler(unsigned long r4, unsigned long r5,
  455. unsigned long r6, unsigned long r7,
  456. struct pt_regs __regs)
  457. {
  458. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  459. /* Rewind */
  460. regs->pc -= instruction_size(ctrl_inw(regs->pc - 4));
  461. if (notify_die(DIE_TRAP, "bug trap", regs, 0, TRAPA_BUG_OPCODE & 0xff,
  462. SIGTRAP) == NOTIFY_STOP)
  463. return;
  464. #ifdef CONFIG_BUG
  465. if (__kernel_text_address(instruction_pointer(regs))) {
  466. u16 insn = *(u16 *)instruction_pointer(regs);
  467. if (insn == TRAPA_BUG_OPCODE)
  468. handle_BUG(regs);
  469. }
  470. #endif
  471. force_sig(SIGTRAP, current);
  472. }