time.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <asm/io.h>
  55. #include <asm/processor.h>
  56. #include <asm/nvram.h>
  57. #include <asm/cache.h>
  58. #include <asm/machdep.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/time.h>
  61. #include <asm/prom.h>
  62. #include <asm/irq.h>
  63. #include <asm/div64.h>
  64. #include <asm/smp.h>
  65. #include <asm/vdso_datapage.h>
  66. #include <asm/firmware.h>
  67. #ifdef CONFIG_PPC_ISERIES
  68. #include <asm/iseries/it_lp_queue.h>
  69. #include <asm/iseries/hv_call_xm.h>
  70. #endif
  71. /* powerpc clocksource/clockevent code */
  72. #include <linux/clockchips.h>
  73. #include <linux/clocksource.h>
  74. static cycle_t rtc_read(void);
  75. static struct clocksource clocksource_rtc = {
  76. .name = "rtc",
  77. .rating = 400,
  78. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  79. .mask = CLOCKSOURCE_MASK(64),
  80. .shift = 22,
  81. .mult = 0, /* To be filled in */
  82. .read = rtc_read,
  83. };
  84. static cycle_t timebase_read(void);
  85. static struct clocksource clocksource_timebase = {
  86. .name = "timebase",
  87. .rating = 400,
  88. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  89. .mask = CLOCKSOURCE_MASK(64),
  90. .shift = 22,
  91. .mult = 0, /* To be filled in */
  92. .read = timebase_read,
  93. };
  94. #define DECREMENTER_MAX 0x7fffffff
  95. static int decrementer_set_next_event(unsigned long evt,
  96. struct clock_event_device *dev);
  97. static void decrementer_set_mode(enum clock_event_mode mode,
  98. struct clock_event_device *dev);
  99. static struct clock_event_device decrementer_clockevent = {
  100. .name = "decrementer",
  101. .rating = 200,
  102. .shift = 16,
  103. .mult = 0, /* To be filled in */
  104. .irq = 0,
  105. .set_next_event = decrementer_set_next_event,
  106. .set_mode = decrementer_set_mode,
  107. .features = CLOCK_EVT_FEAT_ONESHOT,
  108. };
  109. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  110. void init_decrementer_clockevent(void);
  111. static DEFINE_PER_CPU(u64, decrementer_next_tb);
  112. #ifdef CONFIG_PPC_ISERIES
  113. static unsigned long __initdata iSeries_recal_titan;
  114. static signed long __initdata iSeries_recal_tb;
  115. /* Forward declaration is only needed for iSereis compiles */
  116. void __init clocksource_init(void);
  117. #endif
  118. #define XSEC_PER_SEC (1024*1024)
  119. #ifdef CONFIG_PPC64
  120. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  121. #else
  122. /* compute ((xsec << 12) * max) >> 32 */
  123. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  124. #endif
  125. unsigned long tb_ticks_per_jiffy;
  126. unsigned long tb_ticks_per_usec = 100; /* sane default */
  127. EXPORT_SYMBOL(tb_ticks_per_usec);
  128. unsigned long tb_ticks_per_sec;
  129. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  130. u64 tb_to_xs;
  131. unsigned tb_to_us;
  132. #define TICKLEN_SCALE TICK_LENGTH_SHIFT
  133. u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  134. u64 ticklen_to_xs; /* 0.64 fraction */
  135. /* If last_tick_len corresponds to about 1/HZ seconds, then
  136. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  137. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  138. DEFINE_SPINLOCK(rtc_lock);
  139. EXPORT_SYMBOL_GPL(rtc_lock);
  140. static u64 tb_to_ns_scale __read_mostly;
  141. static unsigned tb_to_ns_shift __read_mostly;
  142. static unsigned long boot_tb __read_mostly;
  143. struct gettimeofday_struct do_gtod;
  144. extern struct timezone sys_tz;
  145. static long timezone_offset;
  146. unsigned long ppc_proc_freq;
  147. EXPORT_SYMBOL(ppc_proc_freq);
  148. unsigned long ppc_tb_freq;
  149. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  150. static DEFINE_PER_CPU(u64, last_jiffy);
  151. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  152. /*
  153. * Factors for converting from cputime_t (timebase ticks) to
  154. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  155. * These are all stored as 0.64 fixed-point binary fractions.
  156. */
  157. u64 __cputime_jiffies_factor;
  158. EXPORT_SYMBOL(__cputime_jiffies_factor);
  159. u64 __cputime_msec_factor;
  160. EXPORT_SYMBOL(__cputime_msec_factor);
  161. u64 __cputime_sec_factor;
  162. EXPORT_SYMBOL(__cputime_sec_factor);
  163. u64 __cputime_clockt_factor;
  164. EXPORT_SYMBOL(__cputime_clockt_factor);
  165. static void calc_cputime_factors(void)
  166. {
  167. struct div_result res;
  168. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  169. __cputime_jiffies_factor = res.result_low;
  170. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  171. __cputime_msec_factor = res.result_low;
  172. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  173. __cputime_sec_factor = res.result_low;
  174. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  175. __cputime_clockt_factor = res.result_low;
  176. }
  177. /*
  178. * Read the PURR on systems that have it, otherwise the timebase.
  179. */
  180. static u64 read_purr(void)
  181. {
  182. if (cpu_has_feature(CPU_FTR_PURR))
  183. return mfspr(SPRN_PURR);
  184. return mftb();
  185. }
  186. /*
  187. * Read the SPURR on systems that have it, otherwise the purr
  188. */
  189. static u64 read_spurr(u64 purr)
  190. {
  191. if (cpu_has_feature(CPU_FTR_SPURR))
  192. return mfspr(SPRN_SPURR);
  193. return purr;
  194. }
  195. /*
  196. * Account time for a transition between system, hard irq
  197. * or soft irq state.
  198. */
  199. void account_system_vtime(struct task_struct *tsk)
  200. {
  201. u64 now, nowscaled, delta, deltascaled;
  202. unsigned long flags;
  203. local_irq_save(flags);
  204. now = read_purr();
  205. delta = now - get_paca()->startpurr;
  206. get_paca()->startpurr = now;
  207. nowscaled = read_spurr(now);
  208. deltascaled = nowscaled - get_paca()->startspurr;
  209. get_paca()->startspurr = nowscaled;
  210. if (!in_interrupt()) {
  211. /* deltascaled includes both user and system time.
  212. * Hence scale it based on the purr ratio to estimate
  213. * the system time */
  214. deltascaled = deltascaled * get_paca()->system_time /
  215. (get_paca()->system_time + get_paca()->user_time);
  216. delta += get_paca()->system_time;
  217. get_paca()->system_time = 0;
  218. }
  219. account_system_time(tsk, 0, delta);
  220. get_paca()->purrdelta = delta;
  221. account_system_time_scaled(tsk, deltascaled);
  222. get_paca()->spurrdelta = deltascaled;
  223. local_irq_restore(flags);
  224. }
  225. /*
  226. * Transfer the user and system times accumulated in the paca
  227. * by the exception entry and exit code to the generic process
  228. * user and system time records.
  229. * Must be called with interrupts disabled.
  230. */
  231. void account_process_vtime(struct task_struct *tsk)
  232. {
  233. cputime_t utime, utimescaled;
  234. utime = get_paca()->user_time;
  235. get_paca()->user_time = 0;
  236. account_user_time(tsk, utime);
  237. /* Estimate the scaled utime by scaling the real utime based
  238. * on the last spurr to purr ratio */
  239. utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
  240. get_paca()->spurrdelta = get_paca()->purrdelta = 0;
  241. account_user_time_scaled(tsk, utimescaled);
  242. }
  243. static void account_process_time(struct pt_regs *regs)
  244. {
  245. int cpu = smp_processor_id();
  246. account_process_vtime(current);
  247. run_local_timers();
  248. if (rcu_pending(cpu))
  249. rcu_check_callbacks(cpu, user_mode(regs));
  250. scheduler_tick();
  251. run_posix_cpu_timers(current);
  252. }
  253. /*
  254. * Stuff for accounting stolen time.
  255. */
  256. struct cpu_purr_data {
  257. int initialized; /* thread is running */
  258. u64 tb; /* last TB value read */
  259. u64 purr; /* last PURR value read */
  260. u64 spurr; /* last SPURR value read */
  261. };
  262. /*
  263. * Each entry in the cpu_purr_data array is manipulated only by its
  264. * "owner" cpu -- usually in the timer interrupt but also occasionally
  265. * in process context for cpu online. As long as cpus do not touch
  266. * each others' cpu_purr_data, disabling local interrupts is
  267. * sufficient to serialize accesses.
  268. */
  269. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  270. static void snapshot_tb_and_purr(void *data)
  271. {
  272. unsigned long flags;
  273. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  274. local_irq_save(flags);
  275. p->tb = get_tb_or_rtc();
  276. p->purr = mfspr(SPRN_PURR);
  277. wmb();
  278. p->initialized = 1;
  279. local_irq_restore(flags);
  280. }
  281. /*
  282. * Called during boot when all cpus have come up.
  283. */
  284. void snapshot_timebases(void)
  285. {
  286. if (!cpu_has_feature(CPU_FTR_PURR))
  287. return;
  288. on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
  289. }
  290. /*
  291. * Must be called with interrupts disabled.
  292. */
  293. void calculate_steal_time(void)
  294. {
  295. u64 tb, purr;
  296. s64 stolen;
  297. struct cpu_purr_data *pme;
  298. if (!cpu_has_feature(CPU_FTR_PURR))
  299. return;
  300. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  301. if (!pme->initialized)
  302. return; /* this can happen in early boot */
  303. tb = mftb();
  304. purr = mfspr(SPRN_PURR);
  305. stolen = (tb - pme->tb) - (purr - pme->purr);
  306. if (stolen > 0)
  307. account_steal_time(current, stolen);
  308. pme->tb = tb;
  309. pme->purr = purr;
  310. }
  311. #ifdef CONFIG_PPC_SPLPAR
  312. /*
  313. * Must be called before the cpu is added to the online map when
  314. * a cpu is being brought up at runtime.
  315. */
  316. static void snapshot_purr(void)
  317. {
  318. struct cpu_purr_data *pme;
  319. unsigned long flags;
  320. if (!cpu_has_feature(CPU_FTR_PURR))
  321. return;
  322. local_irq_save(flags);
  323. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  324. pme->tb = mftb();
  325. pme->purr = mfspr(SPRN_PURR);
  326. pme->initialized = 1;
  327. local_irq_restore(flags);
  328. }
  329. #endif /* CONFIG_PPC_SPLPAR */
  330. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  331. #define calc_cputime_factors()
  332. #define account_process_time(regs) update_process_times(user_mode(regs))
  333. #define calculate_steal_time() do { } while (0)
  334. #endif
  335. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  336. #define snapshot_purr() do { } while (0)
  337. #endif
  338. /*
  339. * Called when a cpu comes up after the system has finished booting,
  340. * i.e. as a result of a hotplug cpu action.
  341. */
  342. void snapshot_timebase(void)
  343. {
  344. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  345. snapshot_purr();
  346. }
  347. void __delay(unsigned long loops)
  348. {
  349. unsigned long start;
  350. int diff;
  351. if (__USE_RTC()) {
  352. start = get_rtcl();
  353. do {
  354. /* the RTCL register wraps at 1000000000 */
  355. diff = get_rtcl() - start;
  356. if (diff < 0)
  357. diff += 1000000000;
  358. } while (diff < loops);
  359. } else {
  360. start = get_tbl();
  361. while (get_tbl() - start < loops)
  362. HMT_low();
  363. HMT_medium();
  364. }
  365. }
  366. EXPORT_SYMBOL(__delay);
  367. void udelay(unsigned long usecs)
  368. {
  369. __delay(tb_ticks_per_usec * usecs);
  370. }
  371. EXPORT_SYMBOL(udelay);
  372. /*
  373. * There are two copies of tb_to_xs and stamp_xsec so that no
  374. * lock is needed to access and use these values in
  375. * do_gettimeofday. We alternate the copies and as long as a
  376. * reasonable time elapses between changes, there will never
  377. * be inconsistent values. ntpd has a minimum of one minute
  378. * between updates.
  379. */
  380. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  381. u64 new_tb_to_xs)
  382. {
  383. unsigned temp_idx;
  384. struct gettimeofday_vars *temp_varp;
  385. temp_idx = (do_gtod.var_idx == 0);
  386. temp_varp = &do_gtod.vars[temp_idx];
  387. temp_varp->tb_to_xs = new_tb_to_xs;
  388. temp_varp->tb_orig_stamp = new_tb_stamp;
  389. temp_varp->stamp_xsec = new_stamp_xsec;
  390. smp_mb();
  391. do_gtod.varp = temp_varp;
  392. do_gtod.var_idx = temp_idx;
  393. /*
  394. * tb_update_count is used to allow the userspace gettimeofday code
  395. * to assure itself that it sees a consistent view of the tb_to_xs and
  396. * stamp_xsec variables. It reads the tb_update_count, then reads
  397. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  398. * the two values of tb_update_count match and are even then the
  399. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  400. * loops back and reads them again until this criteria is met.
  401. * We expect the caller to have done the first increment of
  402. * vdso_data->tb_update_count already.
  403. */
  404. vdso_data->tb_orig_stamp = new_tb_stamp;
  405. vdso_data->stamp_xsec = new_stamp_xsec;
  406. vdso_data->tb_to_xs = new_tb_to_xs;
  407. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  408. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  409. smp_wmb();
  410. ++(vdso_data->tb_update_count);
  411. }
  412. #ifdef CONFIG_SMP
  413. unsigned long profile_pc(struct pt_regs *regs)
  414. {
  415. unsigned long pc = instruction_pointer(regs);
  416. if (in_lock_functions(pc))
  417. return regs->link;
  418. return pc;
  419. }
  420. EXPORT_SYMBOL(profile_pc);
  421. #endif
  422. #ifdef CONFIG_PPC_ISERIES
  423. /*
  424. * This function recalibrates the timebase based on the 49-bit time-of-day
  425. * value in the Titan chip. The Titan is much more accurate than the value
  426. * returned by the service processor for the timebase frequency.
  427. */
  428. static int __init iSeries_tb_recal(void)
  429. {
  430. struct div_result divres;
  431. unsigned long titan, tb;
  432. /* Make sure we only run on iSeries */
  433. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  434. return -ENODEV;
  435. tb = get_tb();
  436. titan = HvCallXm_loadTod();
  437. if ( iSeries_recal_titan ) {
  438. unsigned long tb_ticks = tb - iSeries_recal_tb;
  439. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  440. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  441. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  442. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  443. char sign = '+';
  444. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  445. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  446. if ( tick_diff < 0 ) {
  447. tick_diff = -tick_diff;
  448. sign = '-';
  449. }
  450. if ( tick_diff ) {
  451. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  452. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  453. new_tb_ticks_per_jiffy, sign, tick_diff );
  454. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  455. tb_ticks_per_sec = new_tb_ticks_per_sec;
  456. calc_cputime_factors();
  457. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  458. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  459. tb_to_xs = divres.result_low;
  460. do_gtod.varp->tb_to_xs = tb_to_xs;
  461. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  462. vdso_data->tb_to_xs = tb_to_xs;
  463. }
  464. else {
  465. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  466. " new tb_ticks_per_jiffy = %lu\n"
  467. " old tb_ticks_per_jiffy = %lu\n",
  468. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  469. }
  470. }
  471. }
  472. iSeries_recal_titan = titan;
  473. iSeries_recal_tb = tb;
  474. /* Called here as now we know accurate values for the timebase */
  475. clocksource_init();
  476. return 0;
  477. }
  478. late_initcall(iSeries_tb_recal);
  479. /* Called from platform early init */
  480. void __init iSeries_time_init_early(void)
  481. {
  482. iSeries_recal_tb = get_tb();
  483. iSeries_recal_titan = HvCallXm_loadTod();
  484. }
  485. #endif /* CONFIG_PPC_ISERIES */
  486. /*
  487. * For iSeries shared processors, we have to let the hypervisor
  488. * set the hardware decrementer. We set a virtual decrementer
  489. * in the lppaca and call the hypervisor if the virtual
  490. * decrementer is less than the current value in the hardware
  491. * decrementer. (almost always the new decrementer value will
  492. * be greater than the current hardware decementer so the hypervisor
  493. * call will not be needed)
  494. */
  495. /*
  496. * timer_interrupt - gets called when the decrementer overflows,
  497. * with interrupts disabled.
  498. */
  499. void timer_interrupt(struct pt_regs * regs)
  500. {
  501. struct pt_regs *old_regs;
  502. int cpu = smp_processor_id();
  503. struct clock_event_device *evt = &per_cpu(decrementers, cpu);
  504. u64 now;
  505. /* Ensure a positive value is written to the decrementer, or else
  506. * some CPUs will continuue to take decrementer exceptions */
  507. set_dec(DECREMENTER_MAX);
  508. #ifdef CONFIG_PPC32
  509. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  510. do_IRQ(regs);
  511. #endif
  512. now = get_tb_or_rtc();
  513. if (now < per_cpu(decrementer_next_tb, cpu)) {
  514. /* not time for this event yet */
  515. now = per_cpu(decrementer_next_tb, cpu) - now;
  516. if (now <= DECREMENTER_MAX)
  517. set_dec((unsigned int)now - 1);
  518. return;
  519. }
  520. old_regs = set_irq_regs(regs);
  521. irq_enter();
  522. calculate_steal_time();
  523. #ifdef CONFIG_PPC_ISERIES
  524. if (firmware_has_feature(FW_FEATURE_ISERIES))
  525. get_lppaca()->int_dword.fields.decr_int = 0;
  526. #endif
  527. /*
  528. * We cannot disable the decrementer, so in the period
  529. * between this cpu's being marked offline in cpu_online_map
  530. * and calling stop-self, it is taking timer interrupts.
  531. * Avoid calling into the scheduler rebalancing code if this
  532. * is the case.
  533. */
  534. if (!cpu_is_offline(cpu))
  535. account_process_time(regs);
  536. if (evt->event_handler)
  537. evt->event_handler(evt);
  538. else
  539. evt->set_next_event(DECREMENTER_MAX, evt);
  540. #ifdef CONFIG_PPC_ISERIES
  541. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  542. process_hvlpevents();
  543. #endif
  544. #ifdef CONFIG_PPC64
  545. /* collect purr register values often, for accurate calculations */
  546. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  547. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  548. cu->current_tb = mfspr(SPRN_PURR);
  549. }
  550. #endif
  551. irq_exit();
  552. set_irq_regs(old_regs);
  553. }
  554. void wakeup_decrementer(void)
  555. {
  556. unsigned long ticks;
  557. /*
  558. * The timebase gets saved on sleep and restored on wakeup,
  559. * so all we need to do is to reset the decrementer.
  560. */
  561. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  562. if (ticks < tb_ticks_per_jiffy)
  563. ticks = tb_ticks_per_jiffy - ticks;
  564. else
  565. ticks = 1;
  566. set_dec(ticks);
  567. }
  568. #ifdef CONFIG_SMP
  569. void __init smp_space_timers(unsigned int max_cpus)
  570. {
  571. int i;
  572. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  573. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  574. previous_tb -= tb_ticks_per_jiffy;
  575. for_each_possible_cpu(i) {
  576. if (i == boot_cpuid)
  577. continue;
  578. per_cpu(last_jiffy, i) = previous_tb;
  579. }
  580. }
  581. #endif
  582. /*
  583. * Scheduler clock - returns current time in nanosec units.
  584. *
  585. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  586. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  587. * are 64-bit unsigned numbers.
  588. */
  589. unsigned long long sched_clock(void)
  590. {
  591. if (__USE_RTC())
  592. return get_rtc();
  593. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  594. }
  595. static int __init get_freq(char *name, int cells, unsigned long *val)
  596. {
  597. struct device_node *cpu;
  598. const unsigned int *fp;
  599. int found = 0;
  600. /* The cpu node should have timebase and clock frequency properties */
  601. cpu = of_find_node_by_type(NULL, "cpu");
  602. if (cpu) {
  603. fp = of_get_property(cpu, name, NULL);
  604. if (fp) {
  605. found = 1;
  606. *val = of_read_ulong(fp, cells);
  607. }
  608. of_node_put(cpu);
  609. }
  610. return found;
  611. }
  612. void __init generic_calibrate_decr(void)
  613. {
  614. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  615. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  616. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  617. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  618. "(not found)\n");
  619. }
  620. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  621. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  622. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  623. printk(KERN_ERR "WARNING: Estimating processor frequency "
  624. "(not found)\n");
  625. }
  626. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  627. /* Set the time base to zero */
  628. mtspr(SPRN_TBWL, 0);
  629. mtspr(SPRN_TBWU, 0);
  630. /* Clear any pending timer interrupts */
  631. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  632. /* Enable decrementer interrupt */
  633. mtspr(SPRN_TCR, TCR_DIE);
  634. #endif
  635. }
  636. int update_persistent_clock(struct timespec now)
  637. {
  638. struct rtc_time tm;
  639. if (!ppc_md.set_rtc_time)
  640. return 0;
  641. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  642. tm.tm_year -= 1900;
  643. tm.tm_mon -= 1;
  644. return ppc_md.set_rtc_time(&tm);
  645. }
  646. unsigned long read_persistent_clock(void)
  647. {
  648. struct rtc_time tm;
  649. static int first = 1;
  650. /* XXX this is a litle fragile but will work okay in the short term */
  651. if (first) {
  652. first = 0;
  653. if (ppc_md.time_init)
  654. timezone_offset = ppc_md.time_init();
  655. /* get_boot_time() isn't guaranteed to be safe to call late */
  656. if (ppc_md.get_boot_time)
  657. return ppc_md.get_boot_time() -timezone_offset;
  658. }
  659. if (!ppc_md.get_rtc_time)
  660. return 0;
  661. ppc_md.get_rtc_time(&tm);
  662. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  663. tm.tm_hour, tm.tm_min, tm.tm_sec);
  664. }
  665. /* clocksource code */
  666. static cycle_t rtc_read(void)
  667. {
  668. return (cycle_t)get_rtc();
  669. }
  670. static cycle_t timebase_read(void)
  671. {
  672. return (cycle_t)get_tb();
  673. }
  674. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
  675. {
  676. u64 t2x, stamp_xsec;
  677. if (clock != &clocksource_timebase)
  678. return;
  679. /* Make userspace gettimeofday spin until we're done. */
  680. ++vdso_data->tb_update_count;
  681. smp_mb();
  682. /* XXX this assumes clock->shift == 22 */
  683. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  684. t2x = (u64) clock->mult * 4611686018ULL;
  685. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  686. do_div(stamp_xsec, 1000000000);
  687. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  688. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  689. }
  690. void update_vsyscall_tz(void)
  691. {
  692. /* Make userspace gettimeofday spin until we're done. */
  693. ++vdso_data->tb_update_count;
  694. smp_mb();
  695. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  696. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  697. smp_mb();
  698. ++vdso_data->tb_update_count;
  699. }
  700. void __init clocksource_init(void)
  701. {
  702. struct clocksource *clock;
  703. if (__USE_RTC())
  704. clock = &clocksource_rtc;
  705. else
  706. clock = &clocksource_timebase;
  707. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  708. if (clocksource_register(clock)) {
  709. printk(KERN_ERR "clocksource: %s is already registered\n",
  710. clock->name);
  711. return;
  712. }
  713. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  714. clock->name, clock->mult, clock->shift);
  715. }
  716. static int decrementer_set_next_event(unsigned long evt,
  717. struct clock_event_device *dev)
  718. {
  719. __get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
  720. /* The decrementer interrupts on the 0 -> -1 transition */
  721. if (evt)
  722. --evt;
  723. set_dec(evt);
  724. return 0;
  725. }
  726. static void decrementer_set_mode(enum clock_event_mode mode,
  727. struct clock_event_device *dev)
  728. {
  729. if (mode != CLOCK_EVT_MODE_ONESHOT)
  730. decrementer_set_next_event(DECREMENTER_MAX, dev);
  731. }
  732. static void register_decrementer_clockevent(int cpu)
  733. {
  734. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  735. *dec = decrementer_clockevent;
  736. dec->cpumask = cpumask_of_cpu(cpu);
  737. printk(KERN_INFO "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
  738. dec->name, dec->mult, dec->shift, cpu);
  739. clockevents_register_device(dec);
  740. }
  741. void init_decrementer_clockevent(void)
  742. {
  743. int cpu = smp_processor_id();
  744. decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
  745. decrementer_clockevent.shift);
  746. decrementer_clockevent.max_delta_ns =
  747. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  748. decrementer_clockevent.min_delta_ns = 1000;
  749. register_decrementer_clockevent(cpu);
  750. }
  751. void secondary_cpu_time_init(void)
  752. {
  753. /* FIME: Should make unrelatred change to move snapshot_timebase
  754. * call here ! */
  755. register_decrementer_clockevent(smp_processor_id());
  756. }
  757. /* This function is only called on the boot processor */
  758. void __init time_init(void)
  759. {
  760. unsigned long flags;
  761. struct div_result res;
  762. u64 scale, x;
  763. unsigned shift;
  764. if (__USE_RTC()) {
  765. /* 601 processor: dec counts down by 128 every 128ns */
  766. ppc_tb_freq = 1000000000;
  767. tb_last_jiffy = get_rtcl();
  768. } else {
  769. /* Normal PowerPC with timebase register */
  770. ppc_md.calibrate_decr();
  771. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  772. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  773. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  774. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  775. tb_last_jiffy = get_tb();
  776. }
  777. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  778. tb_ticks_per_sec = ppc_tb_freq;
  779. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  780. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  781. calc_cputime_factors();
  782. /*
  783. * Calculate the length of each tick in ns. It will not be
  784. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  785. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  786. * rounded up.
  787. */
  788. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  789. do_div(x, ppc_tb_freq);
  790. tick_nsec = x;
  791. last_tick_len = x << TICKLEN_SCALE;
  792. /*
  793. * Compute ticklen_to_xs, which is a factor which gets multiplied
  794. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  795. * It is computed as:
  796. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  797. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  798. * which turns out to be N = 51 - SHIFT_HZ.
  799. * This gives the result as a 0.64 fixed-point fraction.
  800. * That value is reduced by an offset amounting to 1 xsec per
  801. * 2^31 timebase ticks to avoid problems with time going backwards
  802. * by 1 xsec when we do timer_recalc_offset due to losing the
  803. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  804. * since there are 2^20 xsec in a second.
  805. */
  806. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  807. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  808. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  809. ticklen_to_xs = res.result_low;
  810. /* Compute tb_to_xs from tick_nsec */
  811. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  812. /*
  813. * Compute scale factor for sched_clock.
  814. * The calibrate_decr() function has set tb_ticks_per_sec,
  815. * which is the timebase frequency.
  816. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  817. * the 128-bit result as a 64.64 fixed-point number.
  818. * We then shift that number right until it is less than 1.0,
  819. * giving us the scale factor and shift count to use in
  820. * sched_clock().
  821. */
  822. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  823. scale = res.result_low;
  824. for (shift = 0; res.result_high != 0; ++shift) {
  825. scale = (scale >> 1) | (res.result_high << 63);
  826. res.result_high >>= 1;
  827. }
  828. tb_to_ns_scale = scale;
  829. tb_to_ns_shift = shift;
  830. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  831. boot_tb = get_tb_or_rtc();
  832. write_seqlock_irqsave(&xtime_lock, flags);
  833. /* If platform provided a timezone (pmac), we correct the time */
  834. if (timezone_offset) {
  835. sys_tz.tz_minuteswest = -timezone_offset / 60;
  836. sys_tz.tz_dsttime = 0;
  837. }
  838. do_gtod.varp = &do_gtod.vars[0];
  839. do_gtod.var_idx = 0;
  840. do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
  841. __get_cpu_var(last_jiffy) = tb_last_jiffy;
  842. do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  843. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  844. do_gtod.varp->tb_to_xs = tb_to_xs;
  845. do_gtod.tb_to_us = tb_to_us;
  846. vdso_data->tb_orig_stamp = tb_last_jiffy;
  847. vdso_data->tb_update_count = 0;
  848. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  849. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  850. vdso_data->tb_to_xs = tb_to_xs;
  851. time_freq = 0;
  852. write_sequnlock_irqrestore(&xtime_lock, flags);
  853. /* Register the clocksource, if we're not running on iSeries */
  854. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  855. clocksource_init();
  856. init_decrementer_clockevent();
  857. }
  858. #define FEBRUARY 2
  859. #define STARTOFTIME 1970
  860. #define SECDAY 86400L
  861. #define SECYR (SECDAY * 365)
  862. #define leapyear(year) ((year) % 4 == 0 && \
  863. ((year) % 100 != 0 || (year) % 400 == 0))
  864. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  865. #define days_in_month(a) (month_days[(a) - 1])
  866. static int month_days[12] = {
  867. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  868. };
  869. /*
  870. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  871. */
  872. void GregorianDay(struct rtc_time * tm)
  873. {
  874. int leapsToDate;
  875. int lastYear;
  876. int day;
  877. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  878. lastYear = tm->tm_year - 1;
  879. /*
  880. * Number of leap corrections to apply up to end of last year
  881. */
  882. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  883. /*
  884. * This year is a leap year if it is divisible by 4 except when it is
  885. * divisible by 100 unless it is divisible by 400
  886. *
  887. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  888. */
  889. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  890. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  891. tm->tm_mday;
  892. tm->tm_wday = day % 7;
  893. }
  894. void to_tm(int tim, struct rtc_time * tm)
  895. {
  896. register int i;
  897. register long hms, day;
  898. day = tim / SECDAY;
  899. hms = tim % SECDAY;
  900. /* Hours, minutes, seconds are easy */
  901. tm->tm_hour = hms / 3600;
  902. tm->tm_min = (hms % 3600) / 60;
  903. tm->tm_sec = (hms % 3600) % 60;
  904. /* Number of years in days */
  905. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  906. day -= days_in_year(i);
  907. tm->tm_year = i;
  908. /* Number of months in days left */
  909. if (leapyear(tm->tm_year))
  910. days_in_month(FEBRUARY) = 29;
  911. for (i = 1; day >= days_in_month(i); i++)
  912. day -= days_in_month(i);
  913. days_in_month(FEBRUARY) = 28;
  914. tm->tm_mon = i;
  915. /* Days are what is left over (+1) from all that. */
  916. tm->tm_mday = day + 1;
  917. /*
  918. * Determine the day of week
  919. */
  920. GregorianDay(tm);
  921. }
  922. /* Auxiliary function to compute scaling factors */
  923. /* Actually the choice of a timebase running at 1/4 the of the bus
  924. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  925. * It makes this computation very precise (27-28 bits typically) which
  926. * is optimistic considering the stability of most processor clock
  927. * oscillators and the precision with which the timebase frequency
  928. * is measured but does not harm.
  929. */
  930. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  931. {
  932. unsigned mlt=0, tmp, err;
  933. /* No concern for performance, it's done once: use a stupid
  934. * but safe and compact method to find the multiplier.
  935. */
  936. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  937. if (mulhwu(inscale, mlt|tmp) < outscale)
  938. mlt |= tmp;
  939. }
  940. /* We might still be off by 1 for the best approximation.
  941. * A side effect of this is that if outscale is too large
  942. * the returned value will be zero.
  943. * Many corner cases have been checked and seem to work,
  944. * some might have been forgotten in the test however.
  945. */
  946. err = inscale * (mlt+1);
  947. if (err <= inscale/2)
  948. mlt++;
  949. return mlt;
  950. }
  951. /*
  952. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  953. * result.
  954. */
  955. void div128_by_32(u64 dividend_high, u64 dividend_low,
  956. unsigned divisor, struct div_result *dr)
  957. {
  958. unsigned long a, b, c, d;
  959. unsigned long w, x, y, z;
  960. u64 ra, rb, rc;
  961. a = dividend_high >> 32;
  962. b = dividend_high & 0xffffffff;
  963. c = dividend_low >> 32;
  964. d = dividend_low & 0xffffffff;
  965. w = a / divisor;
  966. ra = ((u64)(a - (w * divisor)) << 32) + b;
  967. rb = ((u64) do_div(ra, divisor) << 32) + c;
  968. x = ra;
  969. rc = ((u64) do_div(rb, divisor) << 32) + d;
  970. y = rb;
  971. do_div(rc, divisor);
  972. z = rc;
  973. dr->result_high = ((u64)w << 32) + x;
  974. dr->result_low = ((u64)y << 32) + z;
  975. }