pci-dma.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602
  1. /*
  2. ** PARISC 1.1 Dynamic DMA mapping support.
  3. ** This implementation is for PA-RISC platforms that do not support
  4. ** I/O TLBs (aka DMA address translation hardware).
  5. ** See Documentation/DMA-mapping.txt for interface definitions.
  6. **
  7. ** (c) Copyright 1999,2000 Hewlett-Packard Company
  8. ** (c) Copyright 2000 Grant Grundler
  9. ** (c) Copyright 2000 Philipp Rumpf <prumpf@tux.org>
  10. ** (c) Copyright 2000 John Marvin
  11. **
  12. ** "leveraged" from 2.3.47: arch/ia64/kernel/pci-dma.c.
  13. ** (I assume it's from David Mosberger-Tang but there was no Copyright)
  14. **
  15. ** AFAIK, all PA7100LC and PA7300LC platforms can use this code.
  16. **
  17. ** - ggg
  18. */
  19. #include <linux/init.h>
  20. #include <linux/mm.h>
  21. #include <linux/pci.h>
  22. #include <linux/proc_fs.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/slab.h>
  25. #include <linux/string.h>
  26. #include <linux/types.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/dma.h> /* for DMA_CHUNK_SIZE */
  29. #include <asm/io.h>
  30. #include <asm/page.h> /* get_order */
  31. #include <asm/pgalloc.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/tlbflush.h> /* for purge_tlb_*() macros */
  34. static struct proc_dir_entry * proc_gsc_root __read_mostly = NULL;
  35. static unsigned long pcxl_used_bytes __read_mostly = 0;
  36. static unsigned long pcxl_used_pages __read_mostly = 0;
  37. extern unsigned long pcxl_dma_start; /* Start of pcxl dma mapping area */
  38. static spinlock_t pcxl_res_lock;
  39. static char *pcxl_res_map;
  40. static int pcxl_res_hint;
  41. static int pcxl_res_size;
  42. #ifdef DEBUG_PCXL_RESOURCE
  43. #define DBG_RES(x...) printk(x)
  44. #else
  45. #define DBG_RES(x...)
  46. #endif
  47. /*
  48. ** Dump a hex representation of the resource map.
  49. */
  50. #ifdef DUMP_RESMAP
  51. static
  52. void dump_resmap(void)
  53. {
  54. u_long *res_ptr = (unsigned long *)pcxl_res_map;
  55. u_long i = 0;
  56. printk("res_map: ");
  57. for(; i < (pcxl_res_size / sizeof(unsigned long)); ++i, ++res_ptr)
  58. printk("%08lx ", *res_ptr);
  59. printk("\n");
  60. }
  61. #else
  62. static inline void dump_resmap(void) {;}
  63. #endif
  64. static int pa11_dma_supported( struct device *dev, u64 mask)
  65. {
  66. return 1;
  67. }
  68. static inline int map_pte_uncached(pte_t * pte,
  69. unsigned long vaddr,
  70. unsigned long size, unsigned long *paddr_ptr)
  71. {
  72. unsigned long end;
  73. unsigned long orig_vaddr = vaddr;
  74. vaddr &= ~PMD_MASK;
  75. end = vaddr + size;
  76. if (end > PMD_SIZE)
  77. end = PMD_SIZE;
  78. do {
  79. if (!pte_none(*pte))
  80. printk(KERN_ERR "map_pte_uncached: page already exists\n");
  81. set_pte(pte, __mk_pte(*paddr_ptr, PAGE_KERNEL_UNC));
  82. purge_tlb_start();
  83. pdtlb_kernel(orig_vaddr);
  84. purge_tlb_end();
  85. vaddr += PAGE_SIZE;
  86. orig_vaddr += PAGE_SIZE;
  87. (*paddr_ptr) += PAGE_SIZE;
  88. pte++;
  89. } while (vaddr < end);
  90. return 0;
  91. }
  92. static inline int map_pmd_uncached(pmd_t * pmd, unsigned long vaddr,
  93. unsigned long size, unsigned long *paddr_ptr)
  94. {
  95. unsigned long end;
  96. unsigned long orig_vaddr = vaddr;
  97. vaddr &= ~PGDIR_MASK;
  98. end = vaddr + size;
  99. if (end > PGDIR_SIZE)
  100. end = PGDIR_SIZE;
  101. do {
  102. pte_t * pte = pte_alloc_kernel(pmd, vaddr);
  103. if (!pte)
  104. return -ENOMEM;
  105. if (map_pte_uncached(pte, orig_vaddr, end - vaddr, paddr_ptr))
  106. return -ENOMEM;
  107. vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
  108. orig_vaddr += PMD_SIZE;
  109. pmd++;
  110. } while (vaddr < end);
  111. return 0;
  112. }
  113. static inline int map_uncached_pages(unsigned long vaddr, unsigned long size,
  114. unsigned long paddr)
  115. {
  116. pgd_t * dir;
  117. unsigned long end = vaddr + size;
  118. dir = pgd_offset_k(vaddr);
  119. do {
  120. pmd_t *pmd;
  121. pmd = pmd_alloc(NULL, dir, vaddr);
  122. if (!pmd)
  123. return -ENOMEM;
  124. if (map_pmd_uncached(pmd, vaddr, end - vaddr, &paddr))
  125. return -ENOMEM;
  126. vaddr = vaddr + PGDIR_SIZE;
  127. dir++;
  128. } while (vaddr && (vaddr < end));
  129. return 0;
  130. }
  131. static inline void unmap_uncached_pte(pmd_t * pmd, unsigned long vaddr,
  132. unsigned long size)
  133. {
  134. pte_t * pte;
  135. unsigned long end;
  136. unsigned long orig_vaddr = vaddr;
  137. if (pmd_none(*pmd))
  138. return;
  139. if (pmd_bad(*pmd)) {
  140. pmd_ERROR(*pmd);
  141. pmd_clear(pmd);
  142. return;
  143. }
  144. pte = pte_offset_map(pmd, vaddr);
  145. vaddr &= ~PMD_MASK;
  146. end = vaddr + size;
  147. if (end > PMD_SIZE)
  148. end = PMD_SIZE;
  149. do {
  150. pte_t page = *pte;
  151. pte_clear(&init_mm, vaddr, pte);
  152. purge_tlb_start();
  153. pdtlb_kernel(orig_vaddr);
  154. purge_tlb_end();
  155. vaddr += PAGE_SIZE;
  156. orig_vaddr += PAGE_SIZE;
  157. pte++;
  158. if (pte_none(page) || pte_present(page))
  159. continue;
  160. printk(KERN_CRIT "Whee.. Swapped out page in kernel page table\n");
  161. } while (vaddr < end);
  162. }
  163. static inline void unmap_uncached_pmd(pgd_t * dir, unsigned long vaddr,
  164. unsigned long size)
  165. {
  166. pmd_t * pmd;
  167. unsigned long end;
  168. unsigned long orig_vaddr = vaddr;
  169. if (pgd_none(*dir))
  170. return;
  171. if (pgd_bad(*dir)) {
  172. pgd_ERROR(*dir);
  173. pgd_clear(dir);
  174. return;
  175. }
  176. pmd = pmd_offset(dir, vaddr);
  177. vaddr &= ~PGDIR_MASK;
  178. end = vaddr + size;
  179. if (end > PGDIR_SIZE)
  180. end = PGDIR_SIZE;
  181. do {
  182. unmap_uncached_pte(pmd, orig_vaddr, end - vaddr);
  183. vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
  184. orig_vaddr += PMD_SIZE;
  185. pmd++;
  186. } while (vaddr < end);
  187. }
  188. static void unmap_uncached_pages(unsigned long vaddr, unsigned long size)
  189. {
  190. pgd_t * dir;
  191. unsigned long end = vaddr + size;
  192. dir = pgd_offset_k(vaddr);
  193. do {
  194. unmap_uncached_pmd(dir, vaddr, end - vaddr);
  195. vaddr = vaddr + PGDIR_SIZE;
  196. dir++;
  197. } while (vaddr && (vaddr < end));
  198. }
  199. #define PCXL_SEARCH_LOOP(idx, mask, size) \
  200. for(; res_ptr < res_end; ++res_ptr) \
  201. { \
  202. if(0 == ((*res_ptr) & mask)) { \
  203. *res_ptr |= mask; \
  204. idx = (int)((u_long)res_ptr - (u_long)pcxl_res_map); \
  205. pcxl_res_hint = idx + (size >> 3); \
  206. goto resource_found; \
  207. } \
  208. }
  209. #define PCXL_FIND_FREE_MAPPING(idx, mask, size) { \
  210. u##size *res_ptr = (u##size *)&(pcxl_res_map[pcxl_res_hint & ~((size >> 3) - 1)]); \
  211. u##size *res_end = (u##size *)&pcxl_res_map[pcxl_res_size]; \
  212. PCXL_SEARCH_LOOP(idx, mask, size); \
  213. res_ptr = (u##size *)&pcxl_res_map[0]; \
  214. PCXL_SEARCH_LOOP(idx, mask, size); \
  215. }
  216. unsigned long
  217. pcxl_alloc_range(size_t size)
  218. {
  219. int res_idx;
  220. u_long mask, flags;
  221. unsigned int pages_needed = size >> PAGE_SHIFT;
  222. mask = (u_long) -1L;
  223. mask >>= BITS_PER_LONG - pages_needed;
  224. DBG_RES("pcxl_alloc_range() size: %d pages_needed %d pages_mask 0x%08lx\n",
  225. size, pages_needed, mask);
  226. spin_lock_irqsave(&pcxl_res_lock, flags);
  227. if(pages_needed <= 8) {
  228. PCXL_FIND_FREE_MAPPING(res_idx, mask, 8);
  229. } else if(pages_needed <= 16) {
  230. PCXL_FIND_FREE_MAPPING(res_idx, mask, 16);
  231. } else if(pages_needed <= 32) {
  232. PCXL_FIND_FREE_MAPPING(res_idx, mask, 32);
  233. } else {
  234. panic("%s: pcxl_alloc_range() Too many pages to map.\n",
  235. __FILE__);
  236. }
  237. dump_resmap();
  238. panic("%s: pcxl_alloc_range() out of dma mapping resources\n",
  239. __FILE__);
  240. resource_found:
  241. DBG_RES("pcxl_alloc_range() res_idx %d mask 0x%08lx res_hint: %d\n",
  242. res_idx, mask, pcxl_res_hint);
  243. pcxl_used_pages += pages_needed;
  244. pcxl_used_bytes += ((pages_needed >> 3) ? (pages_needed >> 3) : 1);
  245. spin_unlock_irqrestore(&pcxl_res_lock, flags);
  246. dump_resmap();
  247. /*
  248. ** return the corresponding vaddr in the pcxl dma map
  249. */
  250. return (pcxl_dma_start + (res_idx << (PAGE_SHIFT + 3)));
  251. }
  252. #define PCXL_FREE_MAPPINGS(idx, m, size) \
  253. u##size *res_ptr = (u##size *)&(pcxl_res_map[(idx) + (((size >> 3) - 1) & (~((size >> 3) - 1)))]); \
  254. /* BUG_ON((*res_ptr & m) != m); */ \
  255. *res_ptr &= ~m;
  256. /*
  257. ** clear bits in the pcxl resource map
  258. */
  259. static void
  260. pcxl_free_range(unsigned long vaddr, size_t size)
  261. {
  262. u_long mask, flags;
  263. unsigned int res_idx = (vaddr - pcxl_dma_start) >> (PAGE_SHIFT + 3);
  264. unsigned int pages_mapped = size >> PAGE_SHIFT;
  265. mask = (u_long) -1L;
  266. mask >>= BITS_PER_LONG - pages_mapped;
  267. DBG_RES("pcxl_free_range() res_idx: %d size: %d pages_mapped %d mask 0x%08lx\n",
  268. res_idx, size, pages_mapped, mask);
  269. spin_lock_irqsave(&pcxl_res_lock, flags);
  270. if(pages_mapped <= 8) {
  271. PCXL_FREE_MAPPINGS(res_idx, mask, 8);
  272. } else if(pages_mapped <= 16) {
  273. PCXL_FREE_MAPPINGS(res_idx, mask, 16);
  274. } else if(pages_mapped <= 32) {
  275. PCXL_FREE_MAPPINGS(res_idx, mask, 32);
  276. } else {
  277. panic("%s: pcxl_free_range() Too many pages to unmap.\n",
  278. __FILE__);
  279. }
  280. pcxl_used_pages -= (pages_mapped ? pages_mapped : 1);
  281. pcxl_used_bytes -= ((pages_mapped >> 3) ? (pages_mapped >> 3) : 1);
  282. spin_unlock_irqrestore(&pcxl_res_lock, flags);
  283. dump_resmap();
  284. }
  285. static int proc_pcxl_dma_show(struct seq_file *m, void *v)
  286. {
  287. #if 0
  288. u_long i = 0;
  289. unsigned long *res_ptr = (u_long *)pcxl_res_map;
  290. #endif
  291. unsigned long total_pages = pcxl_res_size << 3; /* 8 bits per byte */
  292. seq_printf(m, "\nDMA Mapping Area size : %d bytes (%ld pages)\n",
  293. PCXL_DMA_MAP_SIZE, total_pages);
  294. seq_printf(m, "Resource bitmap : %d bytes\n", pcxl_res_size);
  295. seq_puts(m, " total: free: used: % used:\n");
  296. seq_printf(m, "blocks %8d %8ld %8ld %8ld%%\n", pcxl_res_size,
  297. pcxl_res_size - pcxl_used_bytes, pcxl_used_bytes,
  298. (pcxl_used_bytes * 100) / pcxl_res_size);
  299. seq_printf(m, "pages %8ld %8ld %8ld %8ld%%\n", total_pages,
  300. total_pages - pcxl_used_pages, pcxl_used_pages,
  301. (pcxl_used_pages * 100 / total_pages));
  302. #if 0
  303. seq_puts(m, "\nResource bitmap:");
  304. for(; i < (pcxl_res_size / sizeof(u_long)); ++i, ++res_ptr) {
  305. if ((i & 7) == 0)
  306. seq_puts(m,"\n ");
  307. seq_printf(m, "%s %08lx", buf, *res_ptr);
  308. }
  309. #endif
  310. seq_putc(m, '\n');
  311. return 0;
  312. }
  313. static int proc_pcxl_dma_open(struct inode *inode, struct file *file)
  314. {
  315. return single_open(file, proc_pcxl_dma_show, NULL);
  316. }
  317. static const struct file_operations proc_pcxl_dma_ops = {
  318. .owner = THIS_MODULE,
  319. .open = proc_pcxl_dma_open,
  320. .read = seq_read,
  321. .llseek = seq_lseek,
  322. .release = single_release,
  323. };
  324. static int __init
  325. pcxl_dma_init(void)
  326. {
  327. if (pcxl_dma_start == 0)
  328. return 0;
  329. spin_lock_init(&pcxl_res_lock);
  330. pcxl_res_size = PCXL_DMA_MAP_SIZE >> (PAGE_SHIFT + 3);
  331. pcxl_res_hint = 0;
  332. pcxl_res_map = (char *)__get_free_pages(GFP_KERNEL,
  333. get_order(pcxl_res_size));
  334. memset(pcxl_res_map, 0, pcxl_res_size);
  335. proc_gsc_root = proc_mkdir("gsc", NULL);
  336. if (!proc_gsc_root)
  337. printk(KERN_WARNING
  338. "pcxl_dma_init: Unable to create gsc /proc dir entry\n");
  339. else {
  340. struct proc_dir_entry* ent;
  341. ent = create_proc_entry("pcxl_dma", 0, proc_gsc_root);
  342. if (ent)
  343. ent->proc_fops = &proc_pcxl_dma_ops;
  344. else
  345. printk(KERN_WARNING
  346. "pci-dma.c: Unable to create pcxl_dma /proc entry.\n");
  347. }
  348. return 0;
  349. }
  350. __initcall(pcxl_dma_init);
  351. static void * pa11_dma_alloc_consistent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
  352. {
  353. unsigned long vaddr;
  354. unsigned long paddr;
  355. int order;
  356. order = get_order(size);
  357. size = 1 << (order + PAGE_SHIFT);
  358. vaddr = pcxl_alloc_range(size);
  359. paddr = __get_free_pages(flag, order);
  360. flush_kernel_dcache_range(paddr, size);
  361. paddr = __pa(paddr);
  362. map_uncached_pages(vaddr, size, paddr);
  363. *dma_handle = (dma_addr_t) paddr;
  364. #if 0
  365. /* This probably isn't needed to support EISA cards.
  366. ** ISA cards will certainly only support 24-bit DMA addressing.
  367. ** Not clear if we can, want, or need to support ISA.
  368. */
  369. if (!dev || *dev->coherent_dma_mask < 0xffffffff)
  370. gfp |= GFP_DMA;
  371. #endif
  372. return (void *)vaddr;
  373. }
  374. static void pa11_dma_free_consistent (struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle)
  375. {
  376. int order;
  377. order = get_order(size);
  378. size = 1 << (order + PAGE_SHIFT);
  379. unmap_uncached_pages((unsigned long)vaddr, size);
  380. pcxl_free_range((unsigned long)vaddr, size);
  381. free_pages((unsigned long)__va(dma_handle), order);
  382. }
  383. static dma_addr_t pa11_dma_map_single(struct device *dev, void *addr, size_t size, enum dma_data_direction direction)
  384. {
  385. if (direction == DMA_NONE) {
  386. printk(KERN_ERR "pa11_dma_map_single(PCI_DMA_NONE) called by %p\n", __builtin_return_address(0));
  387. BUG();
  388. }
  389. flush_kernel_dcache_range((unsigned long) addr, size);
  390. return virt_to_phys(addr);
  391. }
  392. static void pa11_dma_unmap_single(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  393. {
  394. if (direction == DMA_NONE) {
  395. printk(KERN_ERR "pa11_dma_unmap_single(PCI_DMA_NONE) called by %p\n", __builtin_return_address(0));
  396. BUG();
  397. }
  398. if (direction == DMA_TO_DEVICE)
  399. return;
  400. /*
  401. * For PCI_DMA_FROMDEVICE this flush is not necessary for the
  402. * simple map/unmap case. However, it IS necessary if if
  403. * pci_dma_sync_single_* has been called and the buffer reused.
  404. */
  405. flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle), size);
  406. return;
  407. }
  408. static int pa11_dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  409. {
  410. int i;
  411. if (direction == DMA_NONE)
  412. BUG();
  413. for (i = 0; i < nents; i++, sglist++ ) {
  414. unsigned long vaddr = sg_virt_addr(sglist);
  415. sg_dma_address(sglist) = (dma_addr_t) virt_to_phys(vaddr);
  416. sg_dma_len(sglist) = sglist->length;
  417. flush_kernel_dcache_range(vaddr, sglist->length);
  418. }
  419. return nents;
  420. }
  421. static void pa11_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  422. {
  423. int i;
  424. if (direction == DMA_NONE)
  425. BUG();
  426. if (direction == DMA_TO_DEVICE)
  427. return;
  428. /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
  429. for (i = 0; i < nents; i++, sglist++ )
  430. flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
  431. return;
  432. }
  433. static void pa11_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction)
  434. {
  435. if (direction == DMA_NONE)
  436. BUG();
  437. flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size);
  438. }
  439. static void pa11_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction)
  440. {
  441. if (direction == DMA_NONE)
  442. BUG();
  443. flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size);
  444. }
  445. static void pa11_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  446. {
  447. int i;
  448. /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
  449. for (i = 0; i < nents; i++, sglist++ )
  450. flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
  451. }
  452. static void pa11_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  453. {
  454. int i;
  455. /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
  456. for (i = 0; i < nents; i++, sglist++ )
  457. flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
  458. }
  459. struct hppa_dma_ops pcxl_dma_ops = {
  460. .dma_supported = pa11_dma_supported,
  461. .alloc_consistent = pa11_dma_alloc_consistent,
  462. .alloc_noncoherent = pa11_dma_alloc_consistent,
  463. .free_consistent = pa11_dma_free_consistent,
  464. .map_single = pa11_dma_map_single,
  465. .unmap_single = pa11_dma_unmap_single,
  466. .map_sg = pa11_dma_map_sg,
  467. .unmap_sg = pa11_dma_unmap_sg,
  468. .dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
  469. .dma_sync_single_for_device = pa11_dma_sync_single_for_device,
  470. .dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
  471. .dma_sync_sg_for_device = pa11_dma_sync_sg_for_device,
  472. };
  473. static void *fail_alloc_consistent(struct device *dev, size_t size,
  474. dma_addr_t *dma_handle, gfp_t flag)
  475. {
  476. return NULL;
  477. }
  478. static void *pa11_dma_alloc_noncoherent(struct device *dev, size_t size,
  479. dma_addr_t *dma_handle, gfp_t flag)
  480. {
  481. void *addr = NULL;
  482. /* rely on kmalloc to be cacheline aligned */
  483. addr = kmalloc(size, flag);
  484. if(addr)
  485. *dma_handle = (dma_addr_t)virt_to_phys(addr);
  486. return addr;
  487. }
  488. static void pa11_dma_free_noncoherent(struct device *dev, size_t size,
  489. void *vaddr, dma_addr_t iova)
  490. {
  491. kfree(vaddr);
  492. return;
  493. }
  494. struct hppa_dma_ops pcx_dma_ops = {
  495. .dma_supported = pa11_dma_supported,
  496. .alloc_consistent = fail_alloc_consistent,
  497. .alloc_noncoherent = pa11_dma_alloc_noncoherent,
  498. .free_consistent = pa11_dma_free_noncoherent,
  499. .map_single = pa11_dma_map_single,
  500. .unmap_single = pa11_dma_unmap_single,
  501. .map_sg = pa11_dma_map_sg,
  502. .unmap_sg = pa11_dma_unmap_sg,
  503. .dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
  504. .dma_sync_single_for_device = pa11_dma_sync_single_for_device,
  505. .dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
  506. .dma_sync_sg_for_device = pa11_dma_sync_sg_for_device,
  507. };