irq.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. /*
  2. * Platform dependent support for SGI SN
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2000-2006 Silicon Graphics, Inc. All Rights Reserved.
  9. */
  10. #include <linux/irq.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/init.h>
  13. #include <asm/sn/addrs.h>
  14. #include <asm/sn/arch.h>
  15. #include <asm/sn/intr.h>
  16. #include <asm/sn/pcibr_provider.h>
  17. #include <asm/sn/pcibus_provider_defs.h>
  18. #include <asm/sn/pcidev.h>
  19. #include <asm/sn/shub_mmr.h>
  20. #include <asm/sn/sn_sal.h>
  21. #include <asm/sn/sn_feature_sets.h>
  22. static void force_interrupt(int irq);
  23. static void register_intr_pda(struct sn_irq_info *sn_irq_info);
  24. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
  25. int sn_force_interrupt_flag = 1;
  26. extern int sn_ioif_inited;
  27. struct list_head **sn_irq_lh;
  28. static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
  29. u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
  30. struct sn_irq_info *sn_irq_info,
  31. int req_irq, nasid_t req_nasid,
  32. int req_slice)
  33. {
  34. struct ia64_sal_retval ret_stuff;
  35. ret_stuff.status = 0;
  36. ret_stuff.v0 = 0;
  37. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  38. (u64) SAL_INTR_ALLOC, (u64) local_nasid,
  39. (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
  40. (u64) req_nasid, (u64) req_slice);
  41. return ret_stuff.status;
  42. }
  43. void sn_intr_free(nasid_t local_nasid, int local_widget,
  44. struct sn_irq_info *sn_irq_info)
  45. {
  46. struct ia64_sal_retval ret_stuff;
  47. ret_stuff.status = 0;
  48. ret_stuff.v0 = 0;
  49. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  50. (u64) SAL_INTR_FREE, (u64) local_nasid,
  51. (u64) local_widget, (u64) sn_irq_info->irq_irq,
  52. (u64) sn_irq_info->irq_cookie, 0, 0);
  53. }
  54. u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
  55. struct sn_irq_info *sn_irq_info,
  56. nasid_t req_nasid, int req_slice)
  57. {
  58. struct ia64_sal_retval ret_stuff;
  59. ret_stuff.status = 0;
  60. ret_stuff.v0 = 0;
  61. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  62. (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
  63. (u64) local_widget, __pa(sn_irq_info),
  64. (u64) req_nasid, (u64) req_slice, 0);
  65. return ret_stuff.status;
  66. }
  67. static unsigned int sn_startup_irq(unsigned int irq)
  68. {
  69. return 0;
  70. }
  71. static void sn_shutdown_irq(unsigned int irq)
  72. {
  73. }
  74. static void sn_disable_irq(unsigned int irq)
  75. {
  76. }
  77. static void sn_enable_irq(unsigned int irq)
  78. {
  79. }
  80. static void sn_ack_irq(unsigned int irq)
  81. {
  82. u64 event_occurred, mask;
  83. irq = irq & 0xff;
  84. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
  85. mask = event_occurred & SH_ALL_INT_MASK;
  86. HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
  87. __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
  88. move_native_irq(irq);
  89. }
  90. static void sn_end_irq(unsigned int irq)
  91. {
  92. int ivec;
  93. u64 event_occurred;
  94. ivec = irq & 0xff;
  95. if (ivec == SGI_UART_VECTOR) {
  96. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED));
  97. /* If the UART bit is set here, we may have received an
  98. * interrupt from the UART that the driver missed. To
  99. * make sure, we IPI ourselves to force us to look again.
  100. */
  101. if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
  102. platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
  103. IA64_IPI_DM_INT, 0);
  104. }
  105. }
  106. __clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
  107. if (sn_force_interrupt_flag)
  108. force_interrupt(irq);
  109. }
  110. static void sn_irq_info_free(struct rcu_head *head);
  111. struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
  112. nasid_t nasid, int slice)
  113. {
  114. int vector;
  115. int cpuid;
  116. #ifdef CONFIG_SMP
  117. int cpuphys;
  118. #endif
  119. int64_t bridge;
  120. int local_widget, status;
  121. nasid_t local_nasid;
  122. struct sn_irq_info *new_irq_info;
  123. struct sn_pcibus_provider *pci_provider;
  124. bridge = (u64) sn_irq_info->irq_bridge;
  125. if (!bridge) {
  126. return NULL; /* irq is not a device interrupt */
  127. }
  128. local_nasid = NASID_GET(bridge);
  129. if (local_nasid & 1)
  130. local_widget = TIO_SWIN_WIDGETNUM(bridge);
  131. else
  132. local_widget = SWIN_WIDGETNUM(bridge);
  133. vector = sn_irq_info->irq_irq;
  134. /* Make use of SAL_INTR_REDIRECT if PROM supports it */
  135. status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
  136. if (!status) {
  137. new_irq_info = sn_irq_info;
  138. goto finish_up;
  139. }
  140. /*
  141. * PROM does not support SAL_INTR_REDIRECT, or it failed.
  142. * Revert to old method.
  143. */
  144. new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
  145. if (new_irq_info == NULL)
  146. return NULL;
  147. memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
  148. /* Free the old PROM new_irq_info structure */
  149. sn_intr_free(local_nasid, local_widget, new_irq_info);
  150. unregister_intr_pda(new_irq_info);
  151. /* allocate a new PROM new_irq_info struct */
  152. status = sn_intr_alloc(local_nasid, local_widget,
  153. new_irq_info, vector,
  154. nasid, slice);
  155. /* SAL call failed */
  156. if (status) {
  157. kfree(new_irq_info);
  158. return NULL;
  159. }
  160. register_intr_pda(new_irq_info);
  161. spin_lock(&sn_irq_info_lock);
  162. list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
  163. spin_unlock(&sn_irq_info_lock);
  164. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  165. finish_up:
  166. /* Update kernels new_irq_info with new target info */
  167. cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
  168. new_irq_info->irq_slice);
  169. new_irq_info->irq_cpuid = cpuid;
  170. pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
  171. /*
  172. * If this represents a line interrupt, target it. If it's
  173. * an msi (irq_int_bit < 0), it's already targeted.
  174. */
  175. if (new_irq_info->irq_int_bit >= 0 &&
  176. pci_provider && pci_provider->target_interrupt)
  177. (pci_provider->target_interrupt)(new_irq_info);
  178. #ifdef CONFIG_SMP
  179. cpuphys = cpu_physical_id(cpuid);
  180. set_irq_affinity_info((vector & 0xff), cpuphys, 0);
  181. #endif
  182. return new_irq_info;
  183. }
  184. static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
  185. {
  186. struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
  187. nasid_t nasid;
  188. int slice;
  189. nasid = cpuid_to_nasid(first_cpu(mask));
  190. slice = cpuid_to_slice(first_cpu(mask));
  191. list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
  192. sn_irq_lh[irq], list)
  193. (void)sn_retarget_vector(sn_irq_info, nasid, slice);
  194. }
  195. #ifdef CONFIG_SMP
  196. void sn_set_err_irq_affinity(unsigned int irq)
  197. {
  198. /*
  199. * On systems which support CPU disabling (SHub2), all error interrupts
  200. * are targetted at the boot CPU.
  201. */
  202. if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
  203. set_irq_affinity_info(irq, cpu_physical_id(0), 0);
  204. }
  205. #else
  206. void sn_set_err_irq_affinity(unsigned int irq) { }
  207. #endif
  208. static void
  209. sn_mask_irq(unsigned int irq)
  210. {
  211. }
  212. static void
  213. sn_unmask_irq(unsigned int irq)
  214. {
  215. }
  216. struct irq_chip irq_type_sn = {
  217. .name = "SN hub",
  218. .startup = sn_startup_irq,
  219. .shutdown = sn_shutdown_irq,
  220. .enable = sn_enable_irq,
  221. .disable = sn_disable_irq,
  222. .ack = sn_ack_irq,
  223. .end = sn_end_irq,
  224. .mask = sn_mask_irq,
  225. .unmask = sn_unmask_irq,
  226. .set_affinity = sn_set_affinity_irq
  227. };
  228. ia64_vector sn_irq_to_vector(int irq)
  229. {
  230. if (irq >= IA64_NUM_VECTORS)
  231. return 0;
  232. return (ia64_vector)irq;
  233. }
  234. unsigned int sn_local_vector_to_irq(u8 vector)
  235. {
  236. return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
  237. }
  238. void sn_irq_init(void)
  239. {
  240. int i;
  241. irq_desc_t *base_desc = irq_desc;
  242. ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
  243. ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
  244. for (i = 0; i < NR_IRQS; i++) {
  245. if (base_desc[i].chip == &no_irq_type) {
  246. base_desc[i].chip = &irq_type_sn;
  247. }
  248. }
  249. }
  250. static void register_intr_pda(struct sn_irq_info *sn_irq_info)
  251. {
  252. int irq = sn_irq_info->irq_irq;
  253. int cpu = sn_irq_info->irq_cpuid;
  254. if (pdacpu(cpu)->sn_last_irq < irq) {
  255. pdacpu(cpu)->sn_last_irq = irq;
  256. }
  257. if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
  258. pdacpu(cpu)->sn_first_irq = irq;
  259. }
  260. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
  261. {
  262. int irq = sn_irq_info->irq_irq;
  263. int cpu = sn_irq_info->irq_cpuid;
  264. struct sn_irq_info *tmp_irq_info;
  265. int i, foundmatch;
  266. rcu_read_lock();
  267. if (pdacpu(cpu)->sn_last_irq == irq) {
  268. foundmatch = 0;
  269. for (i = pdacpu(cpu)->sn_last_irq - 1;
  270. i && !foundmatch; i--) {
  271. list_for_each_entry_rcu(tmp_irq_info,
  272. sn_irq_lh[i],
  273. list) {
  274. if (tmp_irq_info->irq_cpuid == cpu) {
  275. foundmatch = 1;
  276. break;
  277. }
  278. }
  279. }
  280. pdacpu(cpu)->sn_last_irq = i;
  281. }
  282. if (pdacpu(cpu)->sn_first_irq == irq) {
  283. foundmatch = 0;
  284. for (i = pdacpu(cpu)->sn_first_irq + 1;
  285. i < NR_IRQS && !foundmatch; i++) {
  286. list_for_each_entry_rcu(tmp_irq_info,
  287. sn_irq_lh[i],
  288. list) {
  289. if (tmp_irq_info->irq_cpuid == cpu) {
  290. foundmatch = 1;
  291. break;
  292. }
  293. }
  294. }
  295. pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
  296. }
  297. rcu_read_unlock();
  298. }
  299. static void sn_irq_info_free(struct rcu_head *head)
  300. {
  301. struct sn_irq_info *sn_irq_info;
  302. sn_irq_info = container_of(head, struct sn_irq_info, rcu);
  303. kfree(sn_irq_info);
  304. }
  305. void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
  306. {
  307. nasid_t nasid = sn_irq_info->irq_nasid;
  308. int slice = sn_irq_info->irq_slice;
  309. int cpu = nasid_slice_to_cpuid(nasid, slice);
  310. #ifdef CONFIG_SMP
  311. int cpuphys;
  312. #endif
  313. pci_dev_get(pci_dev);
  314. sn_irq_info->irq_cpuid = cpu;
  315. sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
  316. /* link it into the sn_irq[irq] list */
  317. spin_lock(&sn_irq_info_lock);
  318. list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
  319. reserve_irq_vector(sn_irq_info->irq_irq);
  320. spin_unlock(&sn_irq_info_lock);
  321. register_intr_pda(sn_irq_info);
  322. #ifdef CONFIG_SMP
  323. cpuphys = cpu_physical_id(cpu);
  324. set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
  325. #endif
  326. }
  327. void sn_irq_unfixup(struct pci_dev *pci_dev)
  328. {
  329. struct sn_irq_info *sn_irq_info;
  330. /* Only cleanup IRQ stuff if this device has a host bus context */
  331. if (!SN_PCIDEV_BUSSOFT(pci_dev))
  332. return;
  333. sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
  334. if (!sn_irq_info)
  335. return;
  336. if (!sn_irq_info->irq_irq) {
  337. kfree(sn_irq_info);
  338. return;
  339. }
  340. unregister_intr_pda(sn_irq_info);
  341. spin_lock(&sn_irq_info_lock);
  342. list_del_rcu(&sn_irq_info->list);
  343. spin_unlock(&sn_irq_info_lock);
  344. if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
  345. free_irq_vector(sn_irq_info->irq_irq);
  346. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  347. pci_dev_put(pci_dev);
  348. }
  349. static inline void
  350. sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
  351. {
  352. struct sn_pcibus_provider *pci_provider;
  353. pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
  354. /* Don't force an interrupt if the irq has been disabled */
  355. if (!(irq_desc[sn_irq_info->irq_irq].status & IRQ_DISABLED) &&
  356. pci_provider && pci_provider->force_interrupt)
  357. (*pci_provider->force_interrupt)(sn_irq_info);
  358. }
  359. static void force_interrupt(int irq)
  360. {
  361. struct sn_irq_info *sn_irq_info;
  362. if (!sn_ioif_inited)
  363. return;
  364. rcu_read_lock();
  365. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
  366. sn_call_force_intr_provider(sn_irq_info);
  367. rcu_read_unlock();
  368. }
  369. /*
  370. * Check for lost interrupts. If the PIC int_status reg. says that
  371. * an interrupt has been sent, but not handled, and the interrupt
  372. * is not pending in either the cpu irr regs or in the soft irr regs,
  373. * and the interrupt is not in service, then the interrupt may have
  374. * been lost. Force an interrupt on that pin. It is possible that
  375. * the interrupt is in flight, so we may generate a spurious interrupt,
  376. * but we should never miss a real lost interrupt.
  377. */
  378. static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
  379. {
  380. u64 regval;
  381. struct pcidev_info *pcidev_info;
  382. struct pcibus_info *pcibus_info;
  383. /*
  384. * Bridge types attached to TIO (anything but PIC) do not need this WAR
  385. * since they do not target Shub II interrupt registers. If that
  386. * ever changes, this check needs to accomodate.
  387. */
  388. if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
  389. return;
  390. pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  391. if (!pcidev_info)
  392. return;
  393. pcibus_info =
  394. (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
  395. pdi_pcibus_info;
  396. regval = pcireg_intr_status_get(pcibus_info);
  397. if (!ia64_get_irr(irq_to_vector(irq))) {
  398. if (!test_bit(irq, pda->sn_in_service_ivecs)) {
  399. regval &= 0xff;
  400. if (sn_irq_info->irq_int_bit & regval &
  401. sn_irq_info->irq_last_intr) {
  402. regval &= ~(sn_irq_info->irq_int_bit & regval);
  403. sn_call_force_intr_provider(sn_irq_info);
  404. }
  405. }
  406. }
  407. sn_irq_info->irq_last_intr = regval;
  408. }
  409. void sn_lb_int_war_check(void)
  410. {
  411. struct sn_irq_info *sn_irq_info;
  412. int i;
  413. if (!sn_ioif_inited || pda->sn_first_irq == 0)
  414. return;
  415. rcu_read_lock();
  416. for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
  417. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
  418. sn_check_intr(i, sn_irq_info);
  419. }
  420. }
  421. rcu_read_unlock();
  422. }
  423. void __init sn_irq_lh_init(void)
  424. {
  425. int i;
  426. sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
  427. if (!sn_irq_lh)
  428. panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
  429. for (i = 0; i < NR_IRQS; i++) {
  430. sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
  431. if (!sn_irq_lh[i])
  432. panic("SN PCI INIT: Failed IRQ memory allocation\n");
  433. INIT_LIST_HEAD(sn_irq_lh[i]);
  434. }
  435. }