contig.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/bootmem.h>
  18. #include <linux/efi.h>
  19. #include <linux/mm.h>
  20. #include <linux/nmi.h>
  21. #include <linux/swap.h>
  22. #include <asm/meminit.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/pgtable.h>
  25. #include <asm/sections.h>
  26. #include <asm/mca.h>
  27. #ifdef CONFIG_VIRTUAL_MEM_MAP
  28. static unsigned long max_gap;
  29. #endif
  30. /**
  31. * show_mem - give short summary of memory stats
  32. *
  33. * Shows a simple page count of reserved and used pages in the system.
  34. * For discontig machines, it does this on a per-pgdat basis.
  35. */
  36. void show_mem(void)
  37. {
  38. int i, total_reserved = 0;
  39. int total_shared = 0, total_cached = 0;
  40. unsigned long total_present = 0;
  41. pg_data_t *pgdat;
  42. printk(KERN_INFO "Mem-info:\n");
  43. show_free_areas();
  44. printk(KERN_INFO "Free swap: %6ldkB\n",
  45. nr_swap_pages<<(PAGE_SHIFT-10));
  46. printk(KERN_INFO "Node memory in pages:\n");
  47. for_each_online_pgdat(pgdat) {
  48. unsigned long present;
  49. unsigned long flags;
  50. int shared = 0, cached = 0, reserved = 0;
  51. pgdat_resize_lock(pgdat, &flags);
  52. present = pgdat->node_present_pages;
  53. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  54. struct page *page;
  55. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  56. touch_nmi_watchdog();
  57. if (pfn_valid(pgdat->node_start_pfn + i))
  58. page = pfn_to_page(pgdat->node_start_pfn + i);
  59. else {
  60. #ifdef CONFIG_VIRTUAL_MEM_MAP
  61. if (max_gap < LARGE_GAP)
  62. continue;
  63. #endif
  64. i = vmemmap_find_next_valid_pfn(pgdat->node_id,
  65. i) - 1;
  66. continue;
  67. }
  68. if (PageReserved(page))
  69. reserved++;
  70. else if (PageSwapCache(page))
  71. cached++;
  72. else if (page_count(page))
  73. shared += page_count(page)-1;
  74. }
  75. pgdat_resize_unlock(pgdat, &flags);
  76. total_present += present;
  77. total_reserved += reserved;
  78. total_cached += cached;
  79. total_shared += shared;
  80. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  81. "shrd: %10d, swpd: %10d\n", pgdat->node_id,
  82. present, reserved, shared, cached);
  83. }
  84. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  85. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  86. printk(KERN_INFO "%d pages shared\n", total_shared);
  87. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  88. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  89. quicklist_total_size());
  90. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  91. }
  92. /* physical address where the bootmem map is located */
  93. unsigned long bootmap_start;
  94. /**
  95. * find_bootmap_location - callback to find a memory area for the bootmap
  96. * @start: start of region
  97. * @end: end of region
  98. * @arg: unused callback data
  99. *
  100. * Find a place to put the bootmap and return its starting address in
  101. * bootmap_start. This address must be page-aligned.
  102. */
  103. static int __init
  104. find_bootmap_location (unsigned long start, unsigned long end, void *arg)
  105. {
  106. unsigned long needed = *(unsigned long *)arg;
  107. unsigned long range_start, range_end, free_start;
  108. int i;
  109. #if IGNORE_PFN0
  110. if (start == PAGE_OFFSET) {
  111. start += PAGE_SIZE;
  112. if (start >= end)
  113. return 0;
  114. }
  115. #endif
  116. free_start = PAGE_OFFSET;
  117. for (i = 0; i < num_rsvd_regions; i++) {
  118. range_start = max(start, free_start);
  119. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  120. free_start = PAGE_ALIGN(rsvd_region[i].end);
  121. if (range_end <= range_start)
  122. continue; /* skip over empty range */
  123. if (range_end - range_start >= needed) {
  124. bootmap_start = __pa(range_start);
  125. return -1; /* done */
  126. }
  127. /* nothing more available in this segment */
  128. if (range_end == end)
  129. return 0;
  130. }
  131. return 0;
  132. }
  133. /**
  134. * find_memory - setup memory map
  135. *
  136. * Walk the EFI memory map and find usable memory for the system, taking
  137. * into account reserved areas.
  138. */
  139. void __init
  140. find_memory (void)
  141. {
  142. unsigned long bootmap_size;
  143. reserve_memory();
  144. /* first find highest page frame number */
  145. min_low_pfn = ~0UL;
  146. max_low_pfn = 0;
  147. efi_memmap_walk(find_max_min_low_pfn, NULL);
  148. max_pfn = max_low_pfn;
  149. /* how many bytes to cover all the pages */
  150. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  151. /* look for a location to hold the bootmap */
  152. bootmap_start = ~0UL;
  153. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  154. if (bootmap_start == ~0UL)
  155. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  156. bootmap_size = init_bootmem_node(NODE_DATA(0),
  157. (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
  158. /* Free all available memory, then mark bootmem-map as being in use. */
  159. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  160. reserve_bootmem(bootmap_start, bootmap_size);
  161. find_initrd();
  162. }
  163. #ifdef CONFIG_SMP
  164. /**
  165. * per_cpu_init - setup per-cpu variables
  166. *
  167. * Allocate and setup per-cpu data areas.
  168. */
  169. void * __cpuinit
  170. per_cpu_init (void)
  171. {
  172. void *cpu_data;
  173. int cpu;
  174. static int first_time=1;
  175. /*
  176. * get_free_pages() cannot be used before cpu_init() done. BSP
  177. * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
  178. * get_zeroed_page().
  179. */
  180. if (first_time) {
  181. first_time=0;
  182. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
  183. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  184. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  185. memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
  186. __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
  187. cpu_data += PERCPU_PAGE_SIZE;
  188. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  189. }
  190. }
  191. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  192. }
  193. #endif /* CONFIG_SMP */
  194. static int
  195. count_pages (u64 start, u64 end, void *arg)
  196. {
  197. unsigned long *count = arg;
  198. *count += (end - start) >> PAGE_SHIFT;
  199. return 0;
  200. }
  201. /*
  202. * Set up the page tables.
  203. */
  204. void __init
  205. paging_init (void)
  206. {
  207. unsigned long max_dma;
  208. unsigned long max_zone_pfns[MAX_NR_ZONES];
  209. num_physpages = 0;
  210. efi_memmap_walk(count_pages, &num_physpages);
  211. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  212. #ifdef CONFIG_ZONE_DMA
  213. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  214. max_zone_pfns[ZONE_DMA] = max_dma;
  215. #endif
  216. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  217. #ifdef CONFIG_VIRTUAL_MEM_MAP
  218. efi_memmap_walk(register_active_ranges, NULL);
  219. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  220. if (max_gap < LARGE_GAP) {
  221. vmem_map = (struct page *) 0;
  222. free_area_init_nodes(max_zone_pfns);
  223. } else {
  224. unsigned long map_size;
  225. /* allocate virtual_mem_map */
  226. map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  227. sizeof(struct page));
  228. vmalloc_end -= map_size;
  229. vmem_map = (struct page *) vmalloc_end;
  230. efi_memmap_walk(create_mem_map_page_table, NULL);
  231. /*
  232. * alloc_node_mem_map makes an adjustment for mem_map
  233. * which isn't compatible with vmem_map.
  234. */
  235. NODE_DATA(0)->node_mem_map = vmem_map +
  236. find_min_pfn_with_active_regions();
  237. free_area_init_nodes(max_zone_pfns);
  238. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  239. }
  240. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  241. add_active_range(0, 0, max_low_pfn);
  242. free_area_init_nodes(max_zone_pfns);
  243. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  244. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  245. }