efi.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
  5. *
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  12. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  13. *
  14. * All EFI Runtime Services are not implemented yet as EFI only
  15. * supports physical mode addressing on SoftSDV. This is to be fixed
  16. * in a future version. --drummond 1999-07-20
  17. *
  18. * Implemented EFI runtime services and virtual mode calls. --davidm
  19. *
  20. * Goutham Rao: <goutham.rao@intel.com>
  21. * Skip non-WB memory and ignore empty memory ranges.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/kernel.h>
  26. #include <linux/init.h>
  27. #include <linux/types.h>
  28. #include <linux/time.h>
  29. #include <linux/efi.h>
  30. #include <linux/kexec.h>
  31. #include <linux/mm.h>
  32. #include <asm/io.h>
  33. #include <asm/kregs.h>
  34. #include <asm/meminit.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/processor.h>
  37. #include <asm/mca.h>
  38. #define EFI_DEBUG 0
  39. extern efi_status_t efi_call_phys (void *, ...);
  40. struct efi efi;
  41. EXPORT_SYMBOL(efi);
  42. static efi_runtime_services_t *runtime;
  43. static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  44. #define efi_call_virt(f, args...) (*(f))(args)
  45. #define STUB_GET_TIME(prefix, adjust_arg) \
  46. static efi_status_t \
  47. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  48. { \
  49. struct ia64_fpreg fr[6]; \
  50. efi_time_cap_t *atc = NULL; \
  51. efi_status_t ret; \
  52. \
  53. if (tc) \
  54. atc = adjust_arg(tc); \
  55. ia64_save_scratch_fpregs(fr); \
  56. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
  57. ia64_load_scratch_fpregs(fr); \
  58. return ret; \
  59. }
  60. #define STUB_SET_TIME(prefix, adjust_arg) \
  61. static efi_status_t \
  62. prefix##_set_time (efi_time_t *tm) \
  63. { \
  64. struct ia64_fpreg fr[6]; \
  65. efi_status_t ret; \
  66. \
  67. ia64_save_scratch_fpregs(fr); \
  68. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
  69. ia64_load_scratch_fpregs(fr); \
  70. return ret; \
  71. }
  72. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  73. static efi_status_t \
  74. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
  75. { \
  76. struct ia64_fpreg fr[6]; \
  77. efi_status_t ret; \
  78. \
  79. ia64_save_scratch_fpregs(fr); \
  80. ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  81. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  82. ia64_load_scratch_fpregs(fr); \
  83. return ret; \
  84. }
  85. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  86. static efi_status_t \
  87. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  88. { \
  89. struct ia64_fpreg fr[6]; \
  90. efi_time_t *atm = NULL; \
  91. efi_status_t ret; \
  92. \
  93. if (tm) \
  94. atm = adjust_arg(tm); \
  95. ia64_save_scratch_fpregs(fr); \
  96. ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  97. enabled, atm); \
  98. ia64_load_scratch_fpregs(fr); \
  99. return ret; \
  100. }
  101. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  102. static efi_status_t \
  103. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  104. unsigned long *data_size, void *data) \
  105. { \
  106. struct ia64_fpreg fr[6]; \
  107. u32 *aattr = NULL; \
  108. efi_status_t ret; \
  109. \
  110. if (attr) \
  111. aattr = adjust_arg(attr); \
  112. ia64_save_scratch_fpregs(fr); \
  113. ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
  114. adjust_arg(name), adjust_arg(vendor), aattr, \
  115. adjust_arg(data_size), adjust_arg(data)); \
  116. ia64_load_scratch_fpregs(fr); \
  117. return ret; \
  118. }
  119. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  120. static efi_status_t \
  121. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
  122. { \
  123. struct ia64_fpreg fr[6]; \
  124. efi_status_t ret; \
  125. \
  126. ia64_save_scratch_fpregs(fr); \
  127. ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  128. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  129. ia64_load_scratch_fpregs(fr); \
  130. return ret; \
  131. }
  132. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  133. static efi_status_t \
  134. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
  135. unsigned long data_size, void *data) \
  136. { \
  137. struct ia64_fpreg fr[6]; \
  138. efi_status_t ret; \
  139. \
  140. ia64_save_scratch_fpregs(fr); \
  141. ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
  142. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  143. adjust_arg(data)); \
  144. ia64_load_scratch_fpregs(fr); \
  145. return ret; \
  146. }
  147. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  148. static efi_status_t \
  149. prefix##_get_next_high_mono_count (u32 *count) \
  150. { \
  151. struct ia64_fpreg fr[6]; \
  152. efi_status_t ret; \
  153. \
  154. ia64_save_scratch_fpregs(fr); \
  155. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  156. __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
  157. ia64_load_scratch_fpregs(fr); \
  158. return ret; \
  159. }
  160. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  161. static void \
  162. prefix##_reset_system (int reset_type, efi_status_t status, \
  163. unsigned long data_size, efi_char16_t *data) \
  164. { \
  165. struct ia64_fpreg fr[6]; \
  166. efi_char16_t *adata = NULL; \
  167. \
  168. if (data) \
  169. adata = adjust_arg(data); \
  170. \
  171. ia64_save_scratch_fpregs(fr); \
  172. efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
  173. reset_type, status, data_size, adata); \
  174. /* should not return, but just in case... */ \
  175. ia64_load_scratch_fpregs(fr); \
  176. }
  177. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  178. STUB_GET_TIME(phys, phys_ptr)
  179. STUB_SET_TIME(phys, phys_ptr)
  180. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  181. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  182. STUB_GET_VARIABLE(phys, phys_ptr)
  183. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  184. STUB_SET_VARIABLE(phys, phys_ptr)
  185. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  186. STUB_RESET_SYSTEM(phys, phys_ptr)
  187. #define id(arg) arg
  188. STUB_GET_TIME(virt, id)
  189. STUB_SET_TIME(virt, id)
  190. STUB_GET_WAKEUP_TIME(virt, id)
  191. STUB_SET_WAKEUP_TIME(virt, id)
  192. STUB_GET_VARIABLE(virt, id)
  193. STUB_GET_NEXT_VARIABLE(virt, id)
  194. STUB_SET_VARIABLE(virt, id)
  195. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  196. STUB_RESET_SYSTEM(virt, id)
  197. void
  198. efi_gettimeofday (struct timespec *ts)
  199. {
  200. efi_time_t tm;
  201. memset(ts, 0, sizeof(ts));
  202. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
  203. return;
  204. ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
  205. ts->tv_nsec = tm.nanosecond;
  206. }
  207. static int
  208. is_memory_available (efi_memory_desc_t *md)
  209. {
  210. if (!(md->attribute & EFI_MEMORY_WB))
  211. return 0;
  212. switch (md->type) {
  213. case EFI_LOADER_CODE:
  214. case EFI_LOADER_DATA:
  215. case EFI_BOOT_SERVICES_CODE:
  216. case EFI_BOOT_SERVICES_DATA:
  217. case EFI_CONVENTIONAL_MEMORY:
  218. return 1;
  219. }
  220. return 0;
  221. }
  222. typedef struct kern_memdesc {
  223. u64 attribute;
  224. u64 start;
  225. u64 num_pages;
  226. } kern_memdesc_t;
  227. static kern_memdesc_t *kern_memmap;
  228. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  229. static inline u64
  230. kmd_end(kern_memdesc_t *kmd)
  231. {
  232. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  233. }
  234. static inline u64
  235. efi_md_end(efi_memory_desc_t *md)
  236. {
  237. return (md->phys_addr + efi_md_size(md));
  238. }
  239. static inline int
  240. efi_wb(efi_memory_desc_t *md)
  241. {
  242. return (md->attribute & EFI_MEMORY_WB);
  243. }
  244. static inline int
  245. efi_uc(efi_memory_desc_t *md)
  246. {
  247. return (md->attribute & EFI_MEMORY_UC);
  248. }
  249. static void
  250. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  251. {
  252. kern_memdesc_t *k;
  253. u64 start, end, voff;
  254. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  255. for (k = kern_memmap; k->start != ~0UL; k++) {
  256. if (k->attribute != attr)
  257. continue;
  258. start = PAGE_ALIGN(k->start);
  259. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  260. if (start < end)
  261. if ((*callback)(start + voff, end + voff, arg) < 0)
  262. return;
  263. }
  264. }
  265. /*
  266. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  267. * has memory that is available for OS use.
  268. */
  269. void
  270. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  271. {
  272. walk(callback, arg, EFI_MEMORY_WB);
  273. }
  274. /*
  275. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  276. * has memory that is available for uncached allocator.
  277. */
  278. void
  279. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  280. {
  281. walk(callback, arg, EFI_MEMORY_UC);
  282. }
  283. /*
  284. * Look for the PAL_CODE region reported by EFI and maps it using an
  285. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  286. * Abstraction Layer chapter 11 in ADAG
  287. */
  288. void *
  289. efi_get_pal_addr (void)
  290. {
  291. void *efi_map_start, *efi_map_end, *p;
  292. efi_memory_desc_t *md;
  293. u64 efi_desc_size;
  294. int pal_code_count = 0;
  295. u64 vaddr, mask;
  296. efi_map_start = __va(ia64_boot_param->efi_memmap);
  297. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  298. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  299. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  300. md = p;
  301. if (md->type != EFI_PAL_CODE)
  302. continue;
  303. if (++pal_code_count > 1) {
  304. printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
  305. md->phys_addr);
  306. continue;
  307. }
  308. /*
  309. * The only ITLB entry in region 7 that is used is the one installed by
  310. * __start(). That entry covers a 64MB range.
  311. */
  312. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  313. vaddr = PAGE_OFFSET + md->phys_addr;
  314. /*
  315. * We must check that the PAL mapping won't overlap with the kernel
  316. * mapping.
  317. *
  318. * PAL code is guaranteed to be aligned on a power of 2 between 4k and
  319. * 256KB and that only one ITR is needed to map it. This implies that the
  320. * PAL code is always aligned on its size, i.e., the closest matching page
  321. * size supported by the TLB. Therefore PAL code is guaranteed never to
  322. * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
  323. * now the following test is enough to determine whether or not we need a
  324. * dedicated ITR for the PAL code.
  325. */
  326. if ((vaddr & mask) == (KERNEL_START & mask)) {
  327. printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
  328. __FUNCTION__);
  329. continue;
  330. }
  331. if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
  332. panic("Woah! PAL code size bigger than a granule!");
  333. #if EFI_DEBUG
  334. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  335. printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  336. smp_processor_id(), md->phys_addr,
  337. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  338. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  339. #endif
  340. return __va(md->phys_addr);
  341. }
  342. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
  343. __FUNCTION__);
  344. return NULL;
  345. }
  346. void
  347. efi_map_pal_code (void)
  348. {
  349. void *pal_vaddr = efi_get_pal_addr ();
  350. u64 psr;
  351. if (!pal_vaddr)
  352. return;
  353. /*
  354. * Cannot write to CRx with PSR.ic=1
  355. */
  356. psr = ia64_clear_ic();
  357. ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  358. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  359. IA64_GRANULE_SHIFT);
  360. ia64_set_psr(psr); /* restore psr */
  361. ia64_srlz_i();
  362. }
  363. void __init
  364. efi_init (void)
  365. {
  366. void *efi_map_start, *efi_map_end;
  367. efi_config_table_t *config_tables;
  368. efi_char16_t *c16;
  369. u64 efi_desc_size;
  370. char *cp, vendor[100] = "unknown";
  371. int i;
  372. /* it's too early to be able to use the standard kernel command line support... */
  373. for (cp = boot_command_line; *cp; ) {
  374. if (memcmp(cp, "mem=", 4) == 0) {
  375. mem_limit = memparse(cp + 4, &cp);
  376. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  377. max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  378. } else if (memcmp(cp, "min_addr=", 9) == 0) {
  379. min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  380. } else {
  381. while (*cp != ' ' && *cp)
  382. ++cp;
  383. while (*cp == ' ')
  384. ++cp;
  385. }
  386. }
  387. if (min_addr != 0UL)
  388. printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
  389. if (max_addr != ~0UL)
  390. printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
  391. efi.systab = __va(ia64_boot_param->efi_systab);
  392. /*
  393. * Verify the EFI Table
  394. */
  395. if (efi.systab == NULL)
  396. panic("Woah! Can't find EFI system table.\n");
  397. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  398. panic("Woah! EFI system table signature incorrect\n");
  399. if ((efi.systab->hdr.revision >> 16) == 0)
  400. printk(KERN_WARNING "Warning: EFI system table version "
  401. "%d.%02d, expected 1.00 or greater\n",
  402. efi.systab->hdr.revision >> 16,
  403. efi.systab->hdr.revision & 0xffff);
  404. config_tables = __va(efi.systab->tables);
  405. /* Show what we know for posterity */
  406. c16 = __va(efi.systab->fw_vendor);
  407. if (c16) {
  408. for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
  409. vendor[i] = *c16++;
  410. vendor[i] = '\0';
  411. }
  412. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  413. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
  414. efi.mps = EFI_INVALID_TABLE_ADDR;
  415. efi.acpi = EFI_INVALID_TABLE_ADDR;
  416. efi.acpi20 = EFI_INVALID_TABLE_ADDR;
  417. efi.smbios = EFI_INVALID_TABLE_ADDR;
  418. efi.sal_systab = EFI_INVALID_TABLE_ADDR;
  419. efi.boot_info = EFI_INVALID_TABLE_ADDR;
  420. efi.hcdp = EFI_INVALID_TABLE_ADDR;
  421. efi.uga = EFI_INVALID_TABLE_ADDR;
  422. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  423. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  424. efi.mps = config_tables[i].table;
  425. printk(" MPS=0x%lx", config_tables[i].table);
  426. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  427. efi.acpi20 = config_tables[i].table;
  428. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  429. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  430. efi.acpi = config_tables[i].table;
  431. printk(" ACPI=0x%lx", config_tables[i].table);
  432. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  433. efi.smbios = config_tables[i].table;
  434. printk(" SMBIOS=0x%lx", config_tables[i].table);
  435. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  436. efi.sal_systab = config_tables[i].table;
  437. printk(" SALsystab=0x%lx", config_tables[i].table);
  438. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  439. efi.hcdp = config_tables[i].table;
  440. printk(" HCDP=0x%lx", config_tables[i].table);
  441. }
  442. }
  443. printk("\n");
  444. runtime = __va(efi.systab->runtime);
  445. efi.get_time = phys_get_time;
  446. efi.set_time = phys_set_time;
  447. efi.get_wakeup_time = phys_get_wakeup_time;
  448. efi.set_wakeup_time = phys_set_wakeup_time;
  449. efi.get_variable = phys_get_variable;
  450. efi.get_next_variable = phys_get_next_variable;
  451. efi.set_variable = phys_set_variable;
  452. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  453. efi.reset_system = phys_reset_system;
  454. efi_map_start = __va(ia64_boot_param->efi_memmap);
  455. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  456. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  457. #if EFI_DEBUG
  458. /* print EFI memory map: */
  459. {
  460. efi_memory_desc_t *md;
  461. void *p;
  462. for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
  463. md = p;
  464. printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
  465. i, md->type, md->attribute, md->phys_addr,
  466. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  467. md->num_pages >> (20 - EFI_PAGE_SHIFT));
  468. }
  469. }
  470. #endif
  471. efi_map_pal_code();
  472. efi_enter_virtual_mode();
  473. }
  474. void
  475. efi_enter_virtual_mode (void)
  476. {
  477. void *efi_map_start, *efi_map_end, *p;
  478. efi_memory_desc_t *md;
  479. efi_status_t status;
  480. u64 efi_desc_size;
  481. efi_map_start = __va(ia64_boot_param->efi_memmap);
  482. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  483. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  484. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  485. md = p;
  486. if (md->attribute & EFI_MEMORY_RUNTIME) {
  487. /*
  488. * Some descriptors have multiple bits set, so the order of
  489. * the tests is relevant.
  490. */
  491. if (md->attribute & EFI_MEMORY_WB) {
  492. md->virt_addr = (u64) __va(md->phys_addr);
  493. } else if (md->attribute & EFI_MEMORY_UC) {
  494. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  495. } else if (md->attribute & EFI_MEMORY_WC) {
  496. #if 0
  497. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  498. | _PAGE_D
  499. | _PAGE_MA_WC
  500. | _PAGE_PL_0
  501. | _PAGE_AR_RW));
  502. #else
  503. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  504. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  505. #endif
  506. } else if (md->attribute & EFI_MEMORY_WT) {
  507. #if 0
  508. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  509. | _PAGE_D | _PAGE_MA_WT
  510. | _PAGE_PL_0
  511. | _PAGE_AR_RW));
  512. #else
  513. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  514. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  515. #endif
  516. }
  517. }
  518. }
  519. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  520. ia64_boot_param->efi_memmap_size,
  521. efi_desc_size, ia64_boot_param->efi_memdesc_version,
  522. ia64_boot_param->efi_memmap);
  523. if (status != EFI_SUCCESS) {
  524. printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
  525. "(status=%lu)\n", status);
  526. return;
  527. }
  528. /*
  529. * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
  530. */
  531. efi.get_time = virt_get_time;
  532. efi.set_time = virt_set_time;
  533. efi.get_wakeup_time = virt_get_wakeup_time;
  534. efi.set_wakeup_time = virt_set_wakeup_time;
  535. efi.get_variable = virt_get_variable;
  536. efi.get_next_variable = virt_get_next_variable;
  537. efi.set_variable = virt_set_variable;
  538. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  539. efi.reset_system = virt_reset_system;
  540. }
  541. /*
  542. * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
  543. * this type, other I/O port ranges should be described via ACPI.
  544. */
  545. u64
  546. efi_get_iobase (void)
  547. {
  548. void *efi_map_start, *efi_map_end, *p;
  549. efi_memory_desc_t *md;
  550. u64 efi_desc_size;
  551. efi_map_start = __va(ia64_boot_param->efi_memmap);
  552. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  553. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  554. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  555. md = p;
  556. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  557. if (md->attribute & EFI_MEMORY_UC)
  558. return md->phys_addr;
  559. }
  560. }
  561. return 0;
  562. }
  563. static struct kern_memdesc *
  564. kern_memory_descriptor (unsigned long phys_addr)
  565. {
  566. struct kern_memdesc *md;
  567. for (md = kern_memmap; md->start != ~0UL; md++) {
  568. if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
  569. return md;
  570. }
  571. return NULL;
  572. }
  573. static efi_memory_desc_t *
  574. efi_memory_descriptor (unsigned long phys_addr)
  575. {
  576. void *efi_map_start, *efi_map_end, *p;
  577. efi_memory_desc_t *md;
  578. u64 efi_desc_size;
  579. efi_map_start = __va(ia64_boot_param->efi_memmap);
  580. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  581. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  582. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  583. md = p;
  584. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
  585. return md;
  586. }
  587. return NULL;
  588. }
  589. static int
  590. efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
  591. {
  592. void *efi_map_start, *efi_map_end, *p;
  593. efi_memory_desc_t *md;
  594. u64 efi_desc_size;
  595. unsigned long end;
  596. efi_map_start = __va(ia64_boot_param->efi_memmap);
  597. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  598. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  599. end = phys_addr + size;
  600. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  601. md = p;
  602. if (md->phys_addr < end && efi_md_end(md) > phys_addr)
  603. return 1;
  604. }
  605. return 0;
  606. }
  607. u32
  608. efi_mem_type (unsigned long phys_addr)
  609. {
  610. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  611. if (md)
  612. return md->type;
  613. return 0;
  614. }
  615. u64
  616. efi_mem_attributes (unsigned long phys_addr)
  617. {
  618. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  619. if (md)
  620. return md->attribute;
  621. return 0;
  622. }
  623. EXPORT_SYMBOL(efi_mem_attributes);
  624. u64
  625. efi_mem_attribute (unsigned long phys_addr, unsigned long size)
  626. {
  627. unsigned long end = phys_addr + size;
  628. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  629. u64 attr;
  630. if (!md)
  631. return 0;
  632. /*
  633. * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
  634. * the kernel that firmware needs this region mapped.
  635. */
  636. attr = md->attribute & ~EFI_MEMORY_RUNTIME;
  637. do {
  638. unsigned long md_end = efi_md_end(md);
  639. if (end <= md_end)
  640. return attr;
  641. md = efi_memory_descriptor(md_end);
  642. if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
  643. return 0;
  644. } while (md);
  645. return 0;
  646. }
  647. u64
  648. kern_mem_attribute (unsigned long phys_addr, unsigned long size)
  649. {
  650. unsigned long end = phys_addr + size;
  651. struct kern_memdesc *md;
  652. u64 attr;
  653. /*
  654. * This is a hack for ioremap calls before we set up kern_memmap.
  655. * Maybe we should do efi_memmap_init() earlier instead.
  656. */
  657. if (!kern_memmap) {
  658. attr = efi_mem_attribute(phys_addr, size);
  659. if (attr & EFI_MEMORY_WB)
  660. return EFI_MEMORY_WB;
  661. return 0;
  662. }
  663. md = kern_memory_descriptor(phys_addr);
  664. if (!md)
  665. return 0;
  666. attr = md->attribute;
  667. do {
  668. unsigned long md_end = kmd_end(md);
  669. if (end <= md_end)
  670. return attr;
  671. md = kern_memory_descriptor(md_end);
  672. if (!md || md->attribute != attr)
  673. return 0;
  674. } while (md);
  675. return 0;
  676. }
  677. EXPORT_SYMBOL(kern_mem_attribute);
  678. int
  679. valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
  680. {
  681. u64 attr;
  682. /*
  683. * /dev/mem reads and writes use copy_to_user(), which implicitly
  684. * uses a granule-sized kernel identity mapping. It's really
  685. * only safe to do this for regions in kern_memmap. For more
  686. * details, see Documentation/ia64/aliasing.txt.
  687. */
  688. attr = kern_mem_attribute(phys_addr, size);
  689. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  690. return 1;
  691. return 0;
  692. }
  693. int
  694. valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
  695. {
  696. unsigned long phys_addr = pfn << PAGE_SHIFT;
  697. u64 attr;
  698. attr = efi_mem_attribute(phys_addr, size);
  699. /*
  700. * /dev/mem mmap uses normal user pages, so we don't need the entire
  701. * granule, but the entire region we're mapping must support the same
  702. * attribute.
  703. */
  704. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  705. return 1;
  706. /*
  707. * Intel firmware doesn't tell us about all the MMIO regions, so
  708. * in general we have to allow mmap requests. But if EFI *does*
  709. * tell us about anything inside this region, we should deny it.
  710. * The user can always map a smaller region to avoid the overlap.
  711. */
  712. if (efi_memmap_intersects(phys_addr, size))
  713. return 0;
  714. return 1;
  715. }
  716. pgprot_t
  717. phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
  718. pgprot_t vma_prot)
  719. {
  720. unsigned long phys_addr = pfn << PAGE_SHIFT;
  721. u64 attr;
  722. /*
  723. * For /dev/mem mmap, we use user mappings, but if the region is
  724. * in kern_memmap (and hence may be covered by a kernel mapping),
  725. * we must use the same attribute as the kernel mapping.
  726. */
  727. attr = kern_mem_attribute(phys_addr, size);
  728. if (attr & EFI_MEMORY_WB)
  729. return pgprot_cacheable(vma_prot);
  730. else if (attr & EFI_MEMORY_UC)
  731. return pgprot_noncached(vma_prot);
  732. /*
  733. * Some chipsets don't support UC access to memory. If
  734. * WB is supported, we prefer that.
  735. */
  736. if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
  737. return pgprot_cacheable(vma_prot);
  738. return pgprot_noncached(vma_prot);
  739. }
  740. int __init
  741. efi_uart_console_only(void)
  742. {
  743. efi_status_t status;
  744. char *s, name[] = "ConOut";
  745. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  746. efi_char16_t *utf16, name_utf16[32];
  747. unsigned char data[1024];
  748. unsigned long size = sizeof(data);
  749. struct efi_generic_dev_path *hdr, *end_addr;
  750. int uart = 0;
  751. /* Convert to UTF-16 */
  752. utf16 = name_utf16;
  753. s = name;
  754. while (*s)
  755. *utf16++ = *s++ & 0x7f;
  756. *utf16 = 0;
  757. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  758. if (status != EFI_SUCCESS) {
  759. printk(KERN_ERR "No EFI %s variable?\n", name);
  760. return 0;
  761. }
  762. hdr = (struct efi_generic_dev_path *) data;
  763. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  764. while (hdr < end_addr) {
  765. if (hdr->type == EFI_DEV_MSG &&
  766. hdr->sub_type == EFI_DEV_MSG_UART)
  767. uart = 1;
  768. else if (hdr->type == EFI_DEV_END_PATH ||
  769. hdr->type == EFI_DEV_END_PATH2) {
  770. if (!uart)
  771. return 0;
  772. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  773. return 1;
  774. uart = 0;
  775. }
  776. hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
  777. }
  778. printk(KERN_ERR "Malformed %s value\n", name);
  779. return 0;
  780. }
  781. /*
  782. * Look for the first granule aligned memory descriptor memory
  783. * that is big enough to hold EFI memory map. Make sure this
  784. * descriptor is atleast granule sized so it does not get trimmed
  785. */
  786. struct kern_memdesc *
  787. find_memmap_space (void)
  788. {
  789. u64 contig_low=0, contig_high=0;
  790. u64 as = 0, ae;
  791. void *efi_map_start, *efi_map_end, *p, *q;
  792. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  793. u64 space_needed, efi_desc_size;
  794. unsigned long total_mem = 0;
  795. efi_map_start = __va(ia64_boot_param->efi_memmap);
  796. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  797. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  798. /*
  799. * Worst case: we need 3 kernel descriptors for each efi descriptor
  800. * (if every entry has a WB part in the middle, and UC head and tail),
  801. * plus one for the end marker.
  802. */
  803. space_needed = sizeof(kern_memdesc_t) *
  804. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  805. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  806. md = p;
  807. if (!efi_wb(md)) {
  808. continue;
  809. }
  810. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  811. contig_low = GRANULEROUNDUP(md->phys_addr);
  812. contig_high = efi_md_end(md);
  813. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  814. check_md = q;
  815. if (!efi_wb(check_md))
  816. break;
  817. if (contig_high != check_md->phys_addr)
  818. break;
  819. contig_high = efi_md_end(check_md);
  820. }
  821. contig_high = GRANULEROUNDDOWN(contig_high);
  822. }
  823. if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
  824. continue;
  825. /* Round ends inward to granule boundaries */
  826. as = max(contig_low, md->phys_addr);
  827. ae = min(contig_high, efi_md_end(md));
  828. /* keep within max_addr= and min_addr= command line arg */
  829. as = max(as, min_addr);
  830. ae = min(ae, max_addr);
  831. if (ae <= as)
  832. continue;
  833. /* avoid going over mem= command line arg */
  834. if (total_mem + (ae - as) > mem_limit)
  835. ae -= total_mem + (ae - as) - mem_limit;
  836. if (ae <= as)
  837. continue;
  838. if (ae - as > space_needed)
  839. break;
  840. }
  841. if (p >= efi_map_end)
  842. panic("Can't allocate space for kernel memory descriptors");
  843. return __va(as);
  844. }
  845. /*
  846. * Walk the EFI memory map and gather all memory available for kernel
  847. * to use. We can allocate partial granules only if the unavailable
  848. * parts exist, and are WB.
  849. */
  850. unsigned long
  851. efi_memmap_init(unsigned long *s, unsigned long *e)
  852. {
  853. struct kern_memdesc *k, *prev = NULL;
  854. u64 contig_low=0, contig_high=0;
  855. u64 as, ae, lim;
  856. void *efi_map_start, *efi_map_end, *p, *q;
  857. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  858. u64 efi_desc_size;
  859. unsigned long total_mem = 0;
  860. k = kern_memmap = find_memmap_space();
  861. efi_map_start = __va(ia64_boot_param->efi_memmap);
  862. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  863. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  864. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  865. md = p;
  866. if (!efi_wb(md)) {
  867. if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
  868. md->type == EFI_BOOT_SERVICES_DATA)) {
  869. k->attribute = EFI_MEMORY_UC;
  870. k->start = md->phys_addr;
  871. k->num_pages = md->num_pages;
  872. k++;
  873. }
  874. continue;
  875. }
  876. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  877. contig_low = GRANULEROUNDUP(md->phys_addr);
  878. contig_high = efi_md_end(md);
  879. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  880. check_md = q;
  881. if (!efi_wb(check_md))
  882. break;
  883. if (contig_high != check_md->phys_addr)
  884. break;
  885. contig_high = efi_md_end(check_md);
  886. }
  887. contig_high = GRANULEROUNDDOWN(contig_high);
  888. }
  889. if (!is_memory_available(md))
  890. continue;
  891. #ifdef CONFIG_CRASH_DUMP
  892. /* saved_max_pfn should ignore max_addr= command line arg */
  893. if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
  894. saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
  895. #endif
  896. /*
  897. * Round ends inward to granule boundaries
  898. * Give trimmings to uncached allocator
  899. */
  900. if (md->phys_addr < contig_low) {
  901. lim = min(efi_md_end(md), contig_low);
  902. if (efi_uc(md)) {
  903. if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
  904. kmd_end(k-1) == md->phys_addr) {
  905. (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  906. } else {
  907. k->attribute = EFI_MEMORY_UC;
  908. k->start = md->phys_addr;
  909. k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  910. k++;
  911. }
  912. }
  913. as = contig_low;
  914. } else
  915. as = md->phys_addr;
  916. if (efi_md_end(md) > contig_high) {
  917. lim = max(md->phys_addr, contig_high);
  918. if (efi_uc(md)) {
  919. if (lim == md->phys_addr && k > kern_memmap &&
  920. (k-1)->attribute == EFI_MEMORY_UC &&
  921. kmd_end(k-1) == md->phys_addr) {
  922. (k-1)->num_pages += md->num_pages;
  923. } else {
  924. k->attribute = EFI_MEMORY_UC;
  925. k->start = lim;
  926. k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
  927. k++;
  928. }
  929. }
  930. ae = contig_high;
  931. } else
  932. ae = efi_md_end(md);
  933. /* keep within max_addr= and min_addr= command line arg */
  934. as = max(as, min_addr);
  935. ae = min(ae, max_addr);
  936. if (ae <= as)
  937. continue;
  938. /* avoid going over mem= command line arg */
  939. if (total_mem + (ae - as) > mem_limit)
  940. ae -= total_mem + (ae - as) - mem_limit;
  941. if (ae <= as)
  942. continue;
  943. if (prev && kmd_end(prev) == md->phys_addr) {
  944. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  945. total_mem += ae - as;
  946. continue;
  947. }
  948. k->attribute = EFI_MEMORY_WB;
  949. k->start = as;
  950. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  951. total_mem += ae - as;
  952. prev = k++;
  953. }
  954. k->start = ~0L; /* end-marker */
  955. /* reserve the memory we are using for kern_memmap */
  956. *s = (u64)kern_memmap;
  957. *e = (u64)++k;
  958. return total_mem;
  959. }
  960. void
  961. efi_initialize_iomem_resources(struct resource *code_resource,
  962. struct resource *data_resource)
  963. {
  964. struct resource *res;
  965. void *efi_map_start, *efi_map_end, *p;
  966. efi_memory_desc_t *md;
  967. u64 efi_desc_size;
  968. char *name;
  969. unsigned long flags;
  970. efi_map_start = __va(ia64_boot_param->efi_memmap);
  971. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  972. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  973. res = NULL;
  974. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  975. md = p;
  976. if (md->num_pages == 0) /* should not happen */
  977. continue;
  978. flags = IORESOURCE_MEM;
  979. switch (md->type) {
  980. case EFI_MEMORY_MAPPED_IO:
  981. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  982. continue;
  983. case EFI_LOADER_CODE:
  984. case EFI_LOADER_DATA:
  985. case EFI_BOOT_SERVICES_DATA:
  986. case EFI_BOOT_SERVICES_CODE:
  987. case EFI_CONVENTIONAL_MEMORY:
  988. if (md->attribute & EFI_MEMORY_WP) {
  989. name = "System ROM";
  990. flags |= IORESOURCE_READONLY;
  991. } else {
  992. name = "System RAM";
  993. }
  994. break;
  995. case EFI_ACPI_MEMORY_NVS:
  996. name = "ACPI Non-volatile Storage";
  997. flags |= IORESOURCE_BUSY;
  998. break;
  999. case EFI_UNUSABLE_MEMORY:
  1000. name = "reserved";
  1001. flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
  1002. break;
  1003. case EFI_RESERVED_TYPE:
  1004. case EFI_RUNTIME_SERVICES_CODE:
  1005. case EFI_RUNTIME_SERVICES_DATA:
  1006. case EFI_ACPI_RECLAIM_MEMORY:
  1007. default:
  1008. name = "reserved";
  1009. flags |= IORESOURCE_BUSY;
  1010. break;
  1011. }
  1012. if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
  1013. printk(KERN_ERR "failed to alocate resource for iomem\n");
  1014. return;
  1015. }
  1016. res->name = name;
  1017. res->start = md->phys_addr;
  1018. res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
  1019. res->flags = flags;
  1020. if (insert_resource(&iomem_resource, res) < 0)
  1021. kfree(res);
  1022. else {
  1023. /*
  1024. * We don't know which region contains
  1025. * kernel data so we try it repeatedly and
  1026. * let the resource manager test it.
  1027. */
  1028. insert_resource(res, code_resource);
  1029. insert_resource(res, data_resource);
  1030. #ifdef CONFIG_KEXEC
  1031. insert_resource(res, &efi_memmap_res);
  1032. insert_resource(res, &boot_param_res);
  1033. if (crashk_res.end > crashk_res.start)
  1034. insert_resource(res, &crashk_res);
  1035. #endif
  1036. }
  1037. }
  1038. }
  1039. #ifdef CONFIG_KEXEC
  1040. /* find a block of memory aligned to 64M exclude reserved regions
  1041. rsvd_regions are sorted
  1042. */
  1043. unsigned long __init
  1044. kdump_find_rsvd_region (unsigned long size,
  1045. struct rsvd_region *r, int n)
  1046. {
  1047. int i;
  1048. u64 start, end;
  1049. u64 alignment = 1UL << _PAGE_SIZE_64M;
  1050. void *efi_map_start, *efi_map_end, *p;
  1051. efi_memory_desc_t *md;
  1052. u64 efi_desc_size;
  1053. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1054. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1055. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1056. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1057. md = p;
  1058. if (!efi_wb(md))
  1059. continue;
  1060. start = ALIGN(md->phys_addr, alignment);
  1061. end = efi_md_end(md);
  1062. for (i = 0; i < n; i++) {
  1063. if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
  1064. if (__pa(r[i].start) > start + size)
  1065. return start;
  1066. start = ALIGN(__pa(r[i].end), alignment);
  1067. if (i < n-1 && __pa(r[i+1].start) < start + size)
  1068. continue;
  1069. else
  1070. break;
  1071. }
  1072. }
  1073. if (end > start + size)
  1074. return start;
  1075. }
  1076. printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
  1077. size);
  1078. return ~0UL;
  1079. }
  1080. #endif
  1081. #ifdef CONFIG_PROC_VMCORE
  1082. /* locate the size find a the descriptor at a certain address */
  1083. unsigned long
  1084. vmcore_find_descriptor_size (unsigned long address)
  1085. {
  1086. void *efi_map_start, *efi_map_end, *p;
  1087. efi_memory_desc_t *md;
  1088. u64 efi_desc_size;
  1089. unsigned long ret = 0;
  1090. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1091. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1092. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1093. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1094. md = p;
  1095. if (efi_wb(md) && md->type == EFI_LOADER_DATA
  1096. && md->phys_addr == address) {
  1097. ret = efi_md_size(md);
  1098. break;
  1099. }
  1100. }
  1101. if (ret == 0)
  1102. printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
  1103. return ret;
  1104. }
  1105. #endif