svm.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  8. *
  9. * Authors:
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. * Avi Kivity <avi@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include <linux/kvm_host.h>
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include "x86.h"
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/desc.h>
  31. #include <asm/kvm_para.h>
  32. #include <asm/virtext.h>
  33. #include "trace.h"
  34. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  35. MODULE_AUTHOR("Qumranet");
  36. MODULE_LICENSE("GPL");
  37. #define IOPM_ALLOC_ORDER 2
  38. #define MSRPM_ALLOC_ORDER 1
  39. #define SEG_TYPE_LDT 2
  40. #define SEG_TYPE_BUSY_TSS16 3
  41. #define SVM_FEATURE_NPT (1 << 0)
  42. #define SVM_FEATURE_LBRV (1 << 1)
  43. #define SVM_FEATURE_SVML (1 << 2)
  44. #define SVM_FEATURE_NRIP (1 << 3)
  45. #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
  46. #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
  47. #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
  48. #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
  49. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  50. static bool erratum_383_found __read_mostly;
  51. static const u32 host_save_user_msrs[] = {
  52. #ifdef CONFIG_X86_64
  53. MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
  54. MSR_FS_BASE,
  55. #endif
  56. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  57. };
  58. #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
  59. struct kvm_vcpu;
  60. struct nested_state {
  61. struct vmcb *hsave;
  62. u64 hsave_msr;
  63. u64 vm_cr_msr;
  64. u64 vmcb;
  65. /* These are the merged vectors */
  66. u32 *msrpm;
  67. /* gpa pointers to the real vectors */
  68. u64 vmcb_msrpm;
  69. u64 vmcb_iopm;
  70. /* A VMEXIT is required but not yet emulated */
  71. bool exit_required;
  72. /*
  73. * If we vmexit during an instruction emulation we need this to restore
  74. * the l1 guest rip after the emulation
  75. */
  76. unsigned long vmexit_rip;
  77. unsigned long vmexit_rsp;
  78. unsigned long vmexit_rax;
  79. /* cache for intercepts of the guest */
  80. u16 intercept_cr_read;
  81. u16 intercept_cr_write;
  82. u16 intercept_dr_read;
  83. u16 intercept_dr_write;
  84. u32 intercept_exceptions;
  85. u64 intercept;
  86. /* Nested Paging related state */
  87. u64 nested_cr3;
  88. };
  89. #define MSRPM_OFFSETS 16
  90. static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
  91. struct vcpu_svm {
  92. struct kvm_vcpu vcpu;
  93. struct vmcb *vmcb;
  94. unsigned long vmcb_pa;
  95. struct svm_cpu_data *svm_data;
  96. uint64_t asid_generation;
  97. uint64_t sysenter_esp;
  98. uint64_t sysenter_eip;
  99. u64 next_rip;
  100. u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
  101. struct {
  102. u16 fs;
  103. u16 gs;
  104. u16 ldt;
  105. u64 gs_base;
  106. } host;
  107. u32 *msrpm;
  108. struct nested_state nested;
  109. bool nmi_singlestep;
  110. unsigned int3_injected;
  111. unsigned long int3_rip;
  112. u32 apf_reason;
  113. };
  114. #define MSR_INVALID 0xffffffffU
  115. static struct svm_direct_access_msrs {
  116. u32 index; /* Index of the MSR */
  117. bool always; /* True if intercept is always on */
  118. } direct_access_msrs[] = {
  119. { .index = MSR_STAR, .always = true },
  120. { .index = MSR_IA32_SYSENTER_CS, .always = true },
  121. #ifdef CONFIG_X86_64
  122. { .index = MSR_GS_BASE, .always = true },
  123. { .index = MSR_FS_BASE, .always = true },
  124. { .index = MSR_KERNEL_GS_BASE, .always = true },
  125. { .index = MSR_LSTAR, .always = true },
  126. { .index = MSR_CSTAR, .always = true },
  127. { .index = MSR_SYSCALL_MASK, .always = true },
  128. #endif
  129. { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
  130. { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
  131. { .index = MSR_IA32_LASTINTFROMIP, .always = false },
  132. { .index = MSR_IA32_LASTINTTOIP, .always = false },
  133. { .index = MSR_INVALID, .always = false },
  134. };
  135. /* enable NPT for AMD64 and X86 with PAE */
  136. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  137. static bool npt_enabled = true;
  138. #else
  139. static bool npt_enabled;
  140. #endif
  141. static int npt = 1;
  142. module_param(npt, int, S_IRUGO);
  143. static int nested = 1;
  144. module_param(nested, int, S_IRUGO);
  145. static void svm_flush_tlb(struct kvm_vcpu *vcpu);
  146. static void svm_complete_interrupts(struct vcpu_svm *svm);
  147. static int nested_svm_exit_handled(struct vcpu_svm *svm);
  148. static int nested_svm_intercept(struct vcpu_svm *svm);
  149. static int nested_svm_vmexit(struct vcpu_svm *svm);
  150. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  151. bool has_error_code, u32 error_code);
  152. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  153. {
  154. return container_of(vcpu, struct vcpu_svm, vcpu);
  155. }
  156. static inline bool is_nested(struct vcpu_svm *svm)
  157. {
  158. return svm->nested.vmcb;
  159. }
  160. static inline void enable_gif(struct vcpu_svm *svm)
  161. {
  162. svm->vcpu.arch.hflags |= HF_GIF_MASK;
  163. }
  164. static inline void disable_gif(struct vcpu_svm *svm)
  165. {
  166. svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
  167. }
  168. static inline bool gif_set(struct vcpu_svm *svm)
  169. {
  170. return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
  171. }
  172. static unsigned long iopm_base;
  173. struct kvm_ldttss_desc {
  174. u16 limit0;
  175. u16 base0;
  176. unsigned base1:8, type:5, dpl:2, p:1;
  177. unsigned limit1:4, zero0:3, g:1, base2:8;
  178. u32 base3;
  179. u32 zero1;
  180. } __attribute__((packed));
  181. struct svm_cpu_data {
  182. int cpu;
  183. u64 asid_generation;
  184. u32 max_asid;
  185. u32 next_asid;
  186. struct kvm_ldttss_desc *tss_desc;
  187. struct page *save_area;
  188. };
  189. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  190. static uint32_t svm_features;
  191. struct svm_init_data {
  192. int cpu;
  193. int r;
  194. };
  195. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  196. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  197. #define MSRS_RANGE_SIZE 2048
  198. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  199. static u32 svm_msrpm_offset(u32 msr)
  200. {
  201. u32 offset;
  202. int i;
  203. for (i = 0; i < NUM_MSR_MAPS; i++) {
  204. if (msr < msrpm_ranges[i] ||
  205. msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
  206. continue;
  207. offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
  208. offset += (i * MSRS_RANGE_SIZE); /* add range offset */
  209. /* Now we have the u8 offset - but need the u32 offset */
  210. return offset / 4;
  211. }
  212. /* MSR not in any range */
  213. return MSR_INVALID;
  214. }
  215. #define MAX_INST_SIZE 15
  216. static inline void clgi(void)
  217. {
  218. asm volatile (__ex(SVM_CLGI));
  219. }
  220. static inline void stgi(void)
  221. {
  222. asm volatile (__ex(SVM_STGI));
  223. }
  224. static inline void invlpga(unsigned long addr, u32 asid)
  225. {
  226. asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
  227. }
  228. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  229. {
  230. to_svm(vcpu)->asid_generation--;
  231. }
  232. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  233. {
  234. force_new_asid(vcpu);
  235. }
  236. static int get_npt_level(void)
  237. {
  238. #ifdef CONFIG_X86_64
  239. return PT64_ROOT_LEVEL;
  240. #else
  241. return PT32E_ROOT_LEVEL;
  242. #endif
  243. }
  244. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  245. {
  246. vcpu->arch.efer = efer;
  247. if (!npt_enabled && !(efer & EFER_LMA))
  248. efer &= ~EFER_LME;
  249. to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
  250. }
  251. static int is_external_interrupt(u32 info)
  252. {
  253. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  254. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  255. }
  256. static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  257. {
  258. struct vcpu_svm *svm = to_svm(vcpu);
  259. u32 ret = 0;
  260. if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
  261. ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
  262. return ret & mask;
  263. }
  264. static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  265. {
  266. struct vcpu_svm *svm = to_svm(vcpu);
  267. if (mask == 0)
  268. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  269. else
  270. svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
  271. }
  272. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  273. {
  274. struct vcpu_svm *svm = to_svm(vcpu);
  275. if (svm->vmcb->control.next_rip != 0)
  276. svm->next_rip = svm->vmcb->control.next_rip;
  277. if (!svm->next_rip) {
  278. if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
  279. EMULATE_DONE)
  280. printk(KERN_DEBUG "%s: NOP\n", __func__);
  281. return;
  282. }
  283. if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
  284. printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
  285. __func__, kvm_rip_read(vcpu), svm->next_rip);
  286. kvm_rip_write(vcpu, svm->next_rip);
  287. svm_set_interrupt_shadow(vcpu, 0);
  288. }
  289. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  290. bool has_error_code, u32 error_code,
  291. bool reinject)
  292. {
  293. struct vcpu_svm *svm = to_svm(vcpu);
  294. /*
  295. * If we are within a nested VM we'd better #VMEXIT and let the guest
  296. * handle the exception
  297. */
  298. if (!reinject &&
  299. nested_svm_check_exception(svm, nr, has_error_code, error_code))
  300. return;
  301. if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
  302. unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
  303. /*
  304. * For guest debugging where we have to reinject #BP if some
  305. * INT3 is guest-owned:
  306. * Emulate nRIP by moving RIP forward. Will fail if injection
  307. * raises a fault that is not intercepted. Still better than
  308. * failing in all cases.
  309. */
  310. skip_emulated_instruction(&svm->vcpu);
  311. rip = kvm_rip_read(&svm->vcpu);
  312. svm->int3_rip = rip + svm->vmcb->save.cs.base;
  313. svm->int3_injected = rip - old_rip;
  314. }
  315. svm->vmcb->control.event_inj = nr
  316. | SVM_EVTINJ_VALID
  317. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  318. | SVM_EVTINJ_TYPE_EXEPT;
  319. svm->vmcb->control.event_inj_err = error_code;
  320. }
  321. static void svm_init_erratum_383(void)
  322. {
  323. u32 low, high;
  324. int err;
  325. u64 val;
  326. if (!cpu_has_amd_erratum(amd_erratum_383))
  327. return;
  328. /* Use _safe variants to not break nested virtualization */
  329. val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
  330. if (err)
  331. return;
  332. val |= (1ULL << 47);
  333. low = lower_32_bits(val);
  334. high = upper_32_bits(val);
  335. native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
  336. erratum_383_found = true;
  337. }
  338. static int has_svm(void)
  339. {
  340. const char *msg;
  341. if (!cpu_has_svm(&msg)) {
  342. printk(KERN_INFO "has_svm: %s\n", msg);
  343. return 0;
  344. }
  345. return 1;
  346. }
  347. static void svm_hardware_disable(void *garbage)
  348. {
  349. cpu_svm_disable();
  350. }
  351. static int svm_hardware_enable(void *garbage)
  352. {
  353. struct svm_cpu_data *sd;
  354. uint64_t efer;
  355. struct desc_ptr gdt_descr;
  356. struct desc_struct *gdt;
  357. int me = raw_smp_processor_id();
  358. rdmsrl(MSR_EFER, efer);
  359. if (efer & EFER_SVME)
  360. return -EBUSY;
  361. if (!has_svm()) {
  362. printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
  363. me);
  364. return -EINVAL;
  365. }
  366. sd = per_cpu(svm_data, me);
  367. if (!sd) {
  368. printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
  369. me);
  370. return -EINVAL;
  371. }
  372. sd->asid_generation = 1;
  373. sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  374. sd->next_asid = sd->max_asid + 1;
  375. native_store_gdt(&gdt_descr);
  376. gdt = (struct desc_struct *)gdt_descr.address;
  377. sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  378. wrmsrl(MSR_EFER, efer | EFER_SVME);
  379. wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
  380. svm_init_erratum_383();
  381. return 0;
  382. }
  383. static void svm_cpu_uninit(int cpu)
  384. {
  385. struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
  386. if (!sd)
  387. return;
  388. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  389. __free_page(sd->save_area);
  390. kfree(sd);
  391. }
  392. static int svm_cpu_init(int cpu)
  393. {
  394. struct svm_cpu_data *sd;
  395. int r;
  396. sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  397. if (!sd)
  398. return -ENOMEM;
  399. sd->cpu = cpu;
  400. sd->save_area = alloc_page(GFP_KERNEL);
  401. r = -ENOMEM;
  402. if (!sd->save_area)
  403. goto err_1;
  404. per_cpu(svm_data, cpu) = sd;
  405. return 0;
  406. err_1:
  407. kfree(sd);
  408. return r;
  409. }
  410. static bool valid_msr_intercept(u32 index)
  411. {
  412. int i;
  413. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
  414. if (direct_access_msrs[i].index == index)
  415. return true;
  416. return false;
  417. }
  418. static void set_msr_interception(u32 *msrpm, unsigned msr,
  419. int read, int write)
  420. {
  421. u8 bit_read, bit_write;
  422. unsigned long tmp;
  423. u32 offset;
  424. /*
  425. * If this warning triggers extend the direct_access_msrs list at the
  426. * beginning of the file
  427. */
  428. WARN_ON(!valid_msr_intercept(msr));
  429. offset = svm_msrpm_offset(msr);
  430. bit_read = 2 * (msr & 0x0f);
  431. bit_write = 2 * (msr & 0x0f) + 1;
  432. tmp = msrpm[offset];
  433. BUG_ON(offset == MSR_INVALID);
  434. read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
  435. write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
  436. msrpm[offset] = tmp;
  437. }
  438. static void svm_vcpu_init_msrpm(u32 *msrpm)
  439. {
  440. int i;
  441. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  442. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  443. if (!direct_access_msrs[i].always)
  444. continue;
  445. set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
  446. }
  447. }
  448. static void add_msr_offset(u32 offset)
  449. {
  450. int i;
  451. for (i = 0; i < MSRPM_OFFSETS; ++i) {
  452. /* Offset already in list? */
  453. if (msrpm_offsets[i] == offset)
  454. return;
  455. /* Slot used by another offset? */
  456. if (msrpm_offsets[i] != MSR_INVALID)
  457. continue;
  458. /* Add offset to list */
  459. msrpm_offsets[i] = offset;
  460. return;
  461. }
  462. /*
  463. * If this BUG triggers the msrpm_offsets table has an overflow. Just
  464. * increase MSRPM_OFFSETS in this case.
  465. */
  466. BUG();
  467. }
  468. static void init_msrpm_offsets(void)
  469. {
  470. int i;
  471. memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
  472. for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
  473. u32 offset;
  474. offset = svm_msrpm_offset(direct_access_msrs[i].index);
  475. BUG_ON(offset == MSR_INVALID);
  476. add_msr_offset(offset);
  477. }
  478. }
  479. static void svm_enable_lbrv(struct vcpu_svm *svm)
  480. {
  481. u32 *msrpm = svm->msrpm;
  482. svm->vmcb->control.lbr_ctl = 1;
  483. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  484. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  485. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  486. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  487. }
  488. static void svm_disable_lbrv(struct vcpu_svm *svm)
  489. {
  490. u32 *msrpm = svm->msrpm;
  491. svm->vmcb->control.lbr_ctl = 0;
  492. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  493. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  494. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  495. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  496. }
  497. static __init int svm_hardware_setup(void)
  498. {
  499. int cpu;
  500. struct page *iopm_pages;
  501. void *iopm_va;
  502. int r;
  503. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  504. if (!iopm_pages)
  505. return -ENOMEM;
  506. iopm_va = page_address(iopm_pages);
  507. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  508. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  509. init_msrpm_offsets();
  510. if (boot_cpu_has(X86_FEATURE_NX))
  511. kvm_enable_efer_bits(EFER_NX);
  512. if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
  513. kvm_enable_efer_bits(EFER_FFXSR);
  514. if (nested) {
  515. printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
  516. kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
  517. }
  518. for_each_possible_cpu(cpu) {
  519. r = svm_cpu_init(cpu);
  520. if (r)
  521. goto err;
  522. }
  523. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  524. if (!boot_cpu_has(X86_FEATURE_NPT))
  525. npt_enabled = false;
  526. if (npt_enabled && !npt) {
  527. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  528. npt_enabled = false;
  529. }
  530. if (npt_enabled) {
  531. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  532. kvm_enable_tdp();
  533. } else
  534. kvm_disable_tdp();
  535. return 0;
  536. err:
  537. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  538. iopm_base = 0;
  539. return r;
  540. }
  541. static __exit void svm_hardware_unsetup(void)
  542. {
  543. int cpu;
  544. for_each_possible_cpu(cpu)
  545. svm_cpu_uninit(cpu);
  546. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  547. iopm_base = 0;
  548. }
  549. static void init_seg(struct vmcb_seg *seg)
  550. {
  551. seg->selector = 0;
  552. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  553. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  554. seg->limit = 0xffff;
  555. seg->base = 0;
  556. }
  557. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  558. {
  559. seg->selector = 0;
  560. seg->attrib = SVM_SELECTOR_P_MASK | type;
  561. seg->limit = 0xffff;
  562. seg->base = 0;
  563. }
  564. static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  565. {
  566. struct vcpu_svm *svm = to_svm(vcpu);
  567. u64 g_tsc_offset = 0;
  568. if (is_nested(svm)) {
  569. g_tsc_offset = svm->vmcb->control.tsc_offset -
  570. svm->nested.hsave->control.tsc_offset;
  571. svm->nested.hsave->control.tsc_offset = offset;
  572. }
  573. svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
  574. }
  575. static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  576. {
  577. struct vcpu_svm *svm = to_svm(vcpu);
  578. svm->vmcb->control.tsc_offset += adjustment;
  579. if (is_nested(svm))
  580. svm->nested.hsave->control.tsc_offset += adjustment;
  581. }
  582. static void init_vmcb(struct vcpu_svm *svm)
  583. {
  584. struct vmcb_control_area *control = &svm->vmcb->control;
  585. struct vmcb_save_area *save = &svm->vmcb->save;
  586. svm->vcpu.fpu_active = 1;
  587. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  588. INTERCEPT_CR3_MASK |
  589. INTERCEPT_CR4_MASK;
  590. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  591. INTERCEPT_CR3_MASK |
  592. INTERCEPT_CR4_MASK |
  593. INTERCEPT_CR8_MASK;
  594. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  595. INTERCEPT_DR1_MASK |
  596. INTERCEPT_DR2_MASK |
  597. INTERCEPT_DR3_MASK |
  598. INTERCEPT_DR4_MASK |
  599. INTERCEPT_DR5_MASK |
  600. INTERCEPT_DR6_MASK |
  601. INTERCEPT_DR7_MASK;
  602. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  603. INTERCEPT_DR1_MASK |
  604. INTERCEPT_DR2_MASK |
  605. INTERCEPT_DR3_MASK |
  606. INTERCEPT_DR4_MASK |
  607. INTERCEPT_DR5_MASK |
  608. INTERCEPT_DR6_MASK |
  609. INTERCEPT_DR7_MASK;
  610. control->intercept_exceptions = (1 << PF_VECTOR) |
  611. (1 << UD_VECTOR) |
  612. (1 << MC_VECTOR);
  613. control->intercept = (1ULL << INTERCEPT_INTR) |
  614. (1ULL << INTERCEPT_NMI) |
  615. (1ULL << INTERCEPT_SMI) |
  616. (1ULL << INTERCEPT_SELECTIVE_CR0) |
  617. (1ULL << INTERCEPT_CPUID) |
  618. (1ULL << INTERCEPT_INVD) |
  619. (1ULL << INTERCEPT_HLT) |
  620. (1ULL << INTERCEPT_INVLPG) |
  621. (1ULL << INTERCEPT_INVLPGA) |
  622. (1ULL << INTERCEPT_IOIO_PROT) |
  623. (1ULL << INTERCEPT_MSR_PROT) |
  624. (1ULL << INTERCEPT_TASK_SWITCH) |
  625. (1ULL << INTERCEPT_SHUTDOWN) |
  626. (1ULL << INTERCEPT_VMRUN) |
  627. (1ULL << INTERCEPT_VMMCALL) |
  628. (1ULL << INTERCEPT_VMLOAD) |
  629. (1ULL << INTERCEPT_VMSAVE) |
  630. (1ULL << INTERCEPT_STGI) |
  631. (1ULL << INTERCEPT_CLGI) |
  632. (1ULL << INTERCEPT_SKINIT) |
  633. (1ULL << INTERCEPT_WBINVD) |
  634. (1ULL << INTERCEPT_MONITOR) |
  635. (1ULL << INTERCEPT_MWAIT);
  636. control->iopm_base_pa = iopm_base;
  637. control->msrpm_base_pa = __pa(svm->msrpm);
  638. control->int_ctl = V_INTR_MASKING_MASK;
  639. init_seg(&save->es);
  640. init_seg(&save->ss);
  641. init_seg(&save->ds);
  642. init_seg(&save->fs);
  643. init_seg(&save->gs);
  644. save->cs.selector = 0xf000;
  645. /* Executable/Readable Code Segment */
  646. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  647. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  648. save->cs.limit = 0xffff;
  649. /*
  650. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  651. * be consistent with it.
  652. *
  653. * Replace when we have real mode working for vmx.
  654. */
  655. save->cs.base = 0xf0000;
  656. save->gdtr.limit = 0xffff;
  657. save->idtr.limit = 0xffff;
  658. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  659. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  660. svm_set_efer(&svm->vcpu, 0);
  661. save->dr6 = 0xffff0ff0;
  662. save->dr7 = 0x400;
  663. save->rflags = 2;
  664. save->rip = 0x0000fff0;
  665. svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
  666. /*
  667. * This is the guest-visible cr0 value.
  668. * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
  669. */
  670. svm->vcpu.arch.cr0 = 0;
  671. (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
  672. save->cr4 = X86_CR4_PAE;
  673. /* rdx = ?? */
  674. if (npt_enabled) {
  675. /* Setup VMCB for Nested Paging */
  676. control->nested_ctl = 1;
  677. control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
  678. (1ULL << INTERCEPT_INVLPG));
  679. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  680. control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
  681. control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
  682. save->g_pat = 0x0007040600070406ULL;
  683. save->cr3 = 0;
  684. save->cr4 = 0;
  685. }
  686. force_new_asid(&svm->vcpu);
  687. svm->nested.vmcb = 0;
  688. svm->vcpu.arch.hflags = 0;
  689. if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
  690. control->pause_filter_count = 3000;
  691. control->intercept |= (1ULL << INTERCEPT_PAUSE);
  692. }
  693. enable_gif(svm);
  694. }
  695. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  696. {
  697. struct vcpu_svm *svm = to_svm(vcpu);
  698. init_vmcb(svm);
  699. if (!kvm_vcpu_is_bsp(vcpu)) {
  700. kvm_rip_write(vcpu, 0);
  701. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  702. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  703. }
  704. vcpu->arch.regs_avail = ~0;
  705. vcpu->arch.regs_dirty = ~0;
  706. return 0;
  707. }
  708. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  709. {
  710. struct vcpu_svm *svm;
  711. struct page *page;
  712. struct page *msrpm_pages;
  713. struct page *hsave_page;
  714. struct page *nested_msrpm_pages;
  715. int err;
  716. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  717. if (!svm) {
  718. err = -ENOMEM;
  719. goto out;
  720. }
  721. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  722. if (err)
  723. goto free_svm;
  724. err = -ENOMEM;
  725. page = alloc_page(GFP_KERNEL);
  726. if (!page)
  727. goto uninit;
  728. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  729. if (!msrpm_pages)
  730. goto free_page1;
  731. nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  732. if (!nested_msrpm_pages)
  733. goto free_page2;
  734. hsave_page = alloc_page(GFP_KERNEL);
  735. if (!hsave_page)
  736. goto free_page3;
  737. svm->nested.hsave = page_address(hsave_page);
  738. svm->msrpm = page_address(msrpm_pages);
  739. svm_vcpu_init_msrpm(svm->msrpm);
  740. svm->nested.msrpm = page_address(nested_msrpm_pages);
  741. svm_vcpu_init_msrpm(svm->nested.msrpm);
  742. svm->vmcb = page_address(page);
  743. clear_page(svm->vmcb);
  744. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  745. svm->asid_generation = 0;
  746. init_vmcb(svm);
  747. kvm_write_tsc(&svm->vcpu, 0);
  748. err = fx_init(&svm->vcpu);
  749. if (err)
  750. goto free_page4;
  751. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  752. if (kvm_vcpu_is_bsp(&svm->vcpu))
  753. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  754. return &svm->vcpu;
  755. free_page4:
  756. __free_page(hsave_page);
  757. free_page3:
  758. __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
  759. free_page2:
  760. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  761. free_page1:
  762. __free_page(page);
  763. uninit:
  764. kvm_vcpu_uninit(&svm->vcpu);
  765. free_svm:
  766. kmem_cache_free(kvm_vcpu_cache, svm);
  767. out:
  768. return ERR_PTR(err);
  769. }
  770. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  771. {
  772. struct vcpu_svm *svm = to_svm(vcpu);
  773. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  774. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  775. __free_page(virt_to_page(svm->nested.hsave));
  776. __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
  777. kvm_vcpu_uninit(vcpu);
  778. kmem_cache_free(kvm_vcpu_cache, svm);
  779. }
  780. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  781. {
  782. struct vcpu_svm *svm = to_svm(vcpu);
  783. int i;
  784. if (unlikely(cpu != vcpu->cpu)) {
  785. svm->asid_generation = 0;
  786. }
  787. #ifdef CONFIG_X86_64
  788. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
  789. #endif
  790. savesegment(fs, svm->host.fs);
  791. savesegment(gs, svm->host.gs);
  792. svm->host.ldt = kvm_read_ldt();
  793. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  794. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  795. }
  796. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  797. {
  798. struct vcpu_svm *svm = to_svm(vcpu);
  799. int i;
  800. ++vcpu->stat.host_state_reload;
  801. kvm_load_ldt(svm->host.ldt);
  802. #ifdef CONFIG_X86_64
  803. loadsegment(fs, svm->host.fs);
  804. load_gs_index(svm->host.gs);
  805. wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
  806. #else
  807. loadsegment(gs, svm->host.gs);
  808. #endif
  809. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  810. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  811. }
  812. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  813. {
  814. return to_svm(vcpu)->vmcb->save.rflags;
  815. }
  816. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  817. {
  818. to_svm(vcpu)->vmcb->save.rflags = rflags;
  819. }
  820. static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  821. {
  822. switch (reg) {
  823. case VCPU_EXREG_PDPTR:
  824. BUG_ON(!npt_enabled);
  825. load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
  826. break;
  827. default:
  828. BUG();
  829. }
  830. }
  831. static void svm_set_vintr(struct vcpu_svm *svm)
  832. {
  833. svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
  834. }
  835. static void svm_clear_vintr(struct vcpu_svm *svm)
  836. {
  837. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  838. }
  839. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  840. {
  841. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  842. switch (seg) {
  843. case VCPU_SREG_CS: return &save->cs;
  844. case VCPU_SREG_DS: return &save->ds;
  845. case VCPU_SREG_ES: return &save->es;
  846. case VCPU_SREG_FS: return &save->fs;
  847. case VCPU_SREG_GS: return &save->gs;
  848. case VCPU_SREG_SS: return &save->ss;
  849. case VCPU_SREG_TR: return &save->tr;
  850. case VCPU_SREG_LDTR: return &save->ldtr;
  851. }
  852. BUG();
  853. return NULL;
  854. }
  855. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  856. {
  857. struct vmcb_seg *s = svm_seg(vcpu, seg);
  858. return s->base;
  859. }
  860. static void svm_get_segment(struct kvm_vcpu *vcpu,
  861. struct kvm_segment *var, int seg)
  862. {
  863. struct vmcb_seg *s = svm_seg(vcpu, seg);
  864. var->base = s->base;
  865. var->limit = s->limit;
  866. var->selector = s->selector;
  867. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  868. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  869. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  870. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  871. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  872. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  873. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  874. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  875. /*
  876. * AMD's VMCB does not have an explicit unusable field, so emulate it
  877. * for cross vendor migration purposes by "not present"
  878. */
  879. var->unusable = !var->present || (var->type == 0);
  880. switch (seg) {
  881. case VCPU_SREG_CS:
  882. /*
  883. * SVM always stores 0 for the 'G' bit in the CS selector in
  884. * the VMCB on a VMEXIT. This hurts cross-vendor migration:
  885. * Intel's VMENTRY has a check on the 'G' bit.
  886. */
  887. var->g = s->limit > 0xfffff;
  888. break;
  889. case VCPU_SREG_TR:
  890. /*
  891. * Work around a bug where the busy flag in the tr selector
  892. * isn't exposed
  893. */
  894. var->type |= 0x2;
  895. break;
  896. case VCPU_SREG_DS:
  897. case VCPU_SREG_ES:
  898. case VCPU_SREG_FS:
  899. case VCPU_SREG_GS:
  900. /*
  901. * The accessed bit must always be set in the segment
  902. * descriptor cache, although it can be cleared in the
  903. * descriptor, the cached bit always remains at 1. Since
  904. * Intel has a check on this, set it here to support
  905. * cross-vendor migration.
  906. */
  907. if (!var->unusable)
  908. var->type |= 0x1;
  909. break;
  910. case VCPU_SREG_SS:
  911. /*
  912. * On AMD CPUs sometimes the DB bit in the segment
  913. * descriptor is left as 1, although the whole segment has
  914. * been made unusable. Clear it here to pass an Intel VMX
  915. * entry check when cross vendor migrating.
  916. */
  917. if (var->unusable)
  918. var->db = 0;
  919. break;
  920. }
  921. }
  922. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  923. {
  924. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  925. return save->cpl;
  926. }
  927. static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  928. {
  929. struct vcpu_svm *svm = to_svm(vcpu);
  930. dt->size = svm->vmcb->save.idtr.limit;
  931. dt->address = svm->vmcb->save.idtr.base;
  932. }
  933. static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  934. {
  935. struct vcpu_svm *svm = to_svm(vcpu);
  936. svm->vmcb->save.idtr.limit = dt->size;
  937. svm->vmcb->save.idtr.base = dt->address ;
  938. }
  939. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  940. {
  941. struct vcpu_svm *svm = to_svm(vcpu);
  942. dt->size = svm->vmcb->save.gdtr.limit;
  943. dt->address = svm->vmcb->save.gdtr.base;
  944. }
  945. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  946. {
  947. struct vcpu_svm *svm = to_svm(vcpu);
  948. svm->vmcb->save.gdtr.limit = dt->size;
  949. svm->vmcb->save.gdtr.base = dt->address ;
  950. }
  951. static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  952. {
  953. }
  954. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  955. {
  956. }
  957. static void update_cr0_intercept(struct vcpu_svm *svm)
  958. {
  959. struct vmcb *vmcb = svm->vmcb;
  960. ulong gcr0 = svm->vcpu.arch.cr0;
  961. u64 *hcr0 = &svm->vmcb->save.cr0;
  962. if (!svm->vcpu.fpu_active)
  963. *hcr0 |= SVM_CR0_SELECTIVE_MASK;
  964. else
  965. *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
  966. | (gcr0 & SVM_CR0_SELECTIVE_MASK);
  967. if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
  968. vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  969. vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  970. if (is_nested(svm)) {
  971. struct vmcb *hsave = svm->nested.hsave;
  972. hsave->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  973. hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  974. vmcb->control.intercept_cr_read |= svm->nested.intercept_cr_read;
  975. vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
  976. }
  977. } else {
  978. svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  979. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  980. if (is_nested(svm)) {
  981. struct vmcb *hsave = svm->nested.hsave;
  982. hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  983. hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  984. }
  985. }
  986. }
  987. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  988. {
  989. struct vcpu_svm *svm = to_svm(vcpu);
  990. if (is_nested(svm)) {
  991. /*
  992. * We are here because we run in nested mode, the host kvm
  993. * intercepts cr0 writes but the l1 hypervisor does not.
  994. * But the L1 hypervisor may intercept selective cr0 writes.
  995. * This needs to be checked here.
  996. */
  997. unsigned long old, new;
  998. /* Remove bits that would trigger a real cr0 write intercept */
  999. old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
  1000. new = cr0 & SVM_CR0_SELECTIVE_MASK;
  1001. if (old == new) {
  1002. /* cr0 write with ts and mp unchanged */
  1003. svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
  1004. if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
  1005. svm->nested.vmexit_rip = kvm_rip_read(vcpu);
  1006. svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  1007. svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  1008. return;
  1009. }
  1010. }
  1011. }
  1012. #ifdef CONFIG_X86_64
  1013. if (vcpu->arch.efer & EFER_LME) {
  1014. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  1015. vcpu->arch.efer |= EFER_LMA;
  1016. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  1017. }
  1018. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  1019. vcpu->arch.efer &= ~EFER_LMA;
  1020. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  1021. }
  1022. }
  1023. #endif
  1024. vcpu->arch.cr0 = cr0;
  1025. if (!npt_enabled)
  1026. cr0 |= X86_CR0_PG | X86_CR0_WP;
  1027. if (!vcpu->fpu_active)
  1028. cr0 |= X86_CR0_TS;
  1029. /*
  1030. * re-enable caching here because the QEMU bios
  1031. * does not do it - this results in some delay at
  1032. * reboot
  1033. */
  1034. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  1035. svm->vmcb->save.cr0 = cr0;
  1036. update_cr0_intercept(svm);
  1037. }
  1038. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1039. {
  1040. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  1041. unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
  1042. if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
  1043. force_new_asid(vcpu);
  1044. vcpu->arch.cr4 = cr4;
  1045. if (!npt_enabled)
  1046. cr4 |= X86_CR4_PAE;
  1047. cr4 |= host_cr4_mce;
  1048. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  1049. }
  1050. static void svm_set_segment(struct kvm_vcpu *vcpu,
  1051. struct kvm_segment *var, int seg)
  1052. {
  1053. struct vcpu_svm *svm = to_svm(vcpu);
  1054. struct vmcb_seg *s = svm_seg(vcpu, seg);
  1055. s->base = var->base;
  1056. s->limit = var->limit;
  1057. s->selector = var->selector;
  1058. if (var->unusable)
  1059. s->attrib = 0;
  1060. else {
  1061. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  1062. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  1063. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  1064. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  1065. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  1066. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  1067. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  1068. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  1069. }
  1070. if (seg == VCPU_SREG_CS)
  1071. svm->vmcb->save.cpl
  1072. = (svm->vmcb->save.cs.attrib
  1073. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  1074. }
  1075. static void update_db_intercept(struct kvm_vcpu *vcpu)
  1076. {
  1077. struct vcpu_svm *svm = to_svm(vcpu);
  1078. svm->vmcb->control.intercept_exceptions &=
  1079. ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
  1080. if (svm->nmi_singlestep)
  1081. svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
  1082. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  1083. if (vcpu->guest_debug &
  1084. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  1085. svm->vmcb->control.intercept_exceptions |=
  1086. 1 << DB_VECTOR;
  1087. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  1088. svm->vmcb->control.intercept_exceptions |=
  1089. 1 << BP_VECTOR;
  1090. } else
  1091. vcpu->guest_debug = 0;
  1092. }
  1093. static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1094. {
  1095. struct vcpu_svm *svm = to_svm(vcpu);
  1096. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1097. svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
  1098. else
  1099. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  1100. update_db_intercept(vcpu);
  1101. }
  1102. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
  1103. {
  1104. if (sd->next_asid > sd->max_asid) {
  1105. ++sd->asid_generation;
  1106. sd->next_asid = 1;
  1107. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  1108. }
  1109. svm->asid_generation = sd->asid_generation;
  1110. svm->vmcb->control.asid = sd->next_asid++;
  1111. }
  1112. static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
  1113. {
  1114. struct vcpu_svm *svm = to_svm(vcpu);
  1115. svm->vmcb->save.dr7 = value;
  1116. }
  1117. static int pf_interception(struct vcpu_svm *svm)
  1118. {
  1119. u64 fault_address = svm->vmcb->control.exit_info_2;
  1120. u32 error_code;
  1121. int r = 1;
  1122. switch (svm->apf_reason) {
  1123. default:
  1124. error_code = svm->vmcb->control.exit_info_1;
  1125. trace_kvm_page_fault(fault_address, error_code);
  1126. if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
  1127. kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
  1128. r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  1129. break;
  1130. case KVM_PV_REASON_PAGE_NOT_PRESENT:
  1131. svm->apf_reason = 0;
  1132. local_irq_disable();
  1133. kvm_async_pf_task_wait(fault_address);
  1134. local_irq_enable();
  1135. break;
  1136. case KVM_PV_REASON_PAGE_READY:
  1137. svm->apf_reason = 0;
  1138. local_irq_disable();
  1139. kvm_async_pf_task_wake(fault_address);
  1140. local_irq_enable();
  1141. break;
  1142. }
  1143. return r;
  1144. }
  1145. static int db_interception(struct vcpu_svm *svm)
  1146. {
  1147. struct kvm_run *kvm_run = svm->vcpu.run;
  1148. if (!(svm->vcpu.guest_debug &
  1149. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
  1150. !svm->nmi_singlestep) {
  1151. kvm_queue_exception(&svm->vcpu, DB_VECTOR);
  1152. return 1;
  1153. }
  1154. if (svm->nmi_singlestep) {
  1155. svm->nmi_singlestep = false;
  1156. if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
  1157. svm->vmcb->save.rflags &=
  1158. ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1159. update_db_intercept(&svm->vcpu);
  1160. }
  1161. if (svm->vcpu.guest_debug &
  1162. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
  1163. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1164. kvm_run->debug.arch.pc =
  1165. svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1166. kvm_run->debug.arch.exception = DB_VECTOR;
  1167. return 0;
  1168. }
  1169. return 1;
  1170. }
  1171. static int bp_interception(struct vcpu_svm *svm)
  1172. {
  1173. struct kvm_run *kvm_run = svm->vcpu.run;
  1174. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1175. kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1176. kvm_run->debug.arch.exception = BP_VECTOR;
  1177. return 0;
  1178. }
  1179. static int ud_interception(struct vcpu_svm *svm)
  1180. {
  1181. int er;
  1182. er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
  1183. if (er != EMULATE_DONE)
  1184. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1185. return 1;
  1186. }
  1187. static void svm_fpu_activate(struct kvm_vcpu *vcpu)
  1188. {
  1189. struct vcpu_svm *svm = to_svm(vcpu);
  1190. u32 excp;
  1191. if (is_nested(svm)) {
  1192. u32 h_excp, n_excp;
  1193. h_excp = svm->nested.hsave->control.intercept_exceptions;
  1194. n_excp = svm->nested.intercept_exceptions;
  1195. h_excp &= ~(1 << NM_VECTOR);
  1196. excp = h_excp | n_excp;
  1197. } else {
  1198. excp = svm->vmcb->control.intercept_exceptions;
  1199. excp &= ~(1 << NM_VECTOR);
  1200. }
  1201. svm->vmcb->control.intercept_exceptions = excp;
  1202. svm->vcpu.fpu_active = 1;
  1203. update_cr0_intercept(svm);
  1204. }
  1205. static int nm_interception(struct vcpu_svm *svm)
  1206. {
  1207. svm_fpu_activate(&svm->vcpu);
  1208. return 1;
  1209. }
  1210. static bool is_erratum_383(void)
  1211. {
  1212. int err, i;
  1213. u64 value;
  1214. if (!erratum_383_found)
  1215. return false;
  1216. value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
  1217. if (err)
  1218. return false;
  1219. /* Bit 62 may or may not be set for this mce */
  1220. value &= ~(1ULL << 62);
  1221. if (value != 0xb600000000010015ULL)
  1222. return false;
  1223. /* Clear MCi_STATUS registers */
  1224. for (i = 0; i < 6; ++i)
  1225. native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
  1226. value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
  1227. if (!err) {
  1228. u32 low, high;
  1229. value &= ~(1ULL << 2);
  1230. low = lower_32_bits(value);
  1231. high = upper_32_bits(value);
  1232. native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
  1233. }
  1234. /* Flush tlb to evict multi-match entries */
  1235. __flush_tlb_all();
  1236. return true;
  1237. }
  1238. static void svm_handle_mce(struct vcpu_svm *svm)
  1239. {
  1240. if (is_erratum_383()) {
  1241. /*
  1242. * Erratum 383 triggered. Guest state is corrupt so kill the
  1243. * guest.
  1244. */
  1245. pr_err("KVM: Guest triggered AMD Erratum 383\n");
  1246. kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
  1247. return;
  1248. }
  1249. /*
  1250. * On an #MC intercept the MCE handler is not called automatically in
  1251. * the host. So do it by hand here.
  1252. */
  1253. asm volatile (
  1254. "int $0x12\n");
  1255. /* not sure if we ever come back to this point */
  1256. return;
  1257. }
  1258. static int mc_interception(struct vcpu_svm *svm)
  1259. {
  1260. return 1;
  1261. }
  1262. static int shutdown_interception(struct vcpu_svm *svm)
  1263. {
  1264. struct kvm_run *kvm_run = svm->vcpu.run;
  1265. /*
  1266. * VMCB is undefined after a SHUTDOWN intercept
  1267. * so reinitialize it.
  1268. */
  1269. clear_page(svm->vmcb);
  1270. init_vmcb(svm);
  1271. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1272. return 0;
  1273. }
  1274. static int io_interception(struct vcpu_svm *svm)
  1275. {
  1276. struct kvm_vcpu *vcpu = &svm->vcpu;
  1277. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  1278. int size, in, string;
  1279. unsigned port;
  1280. ++svm->vcpu.stat.io_exits;
  1281. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  1282. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  1283. if (string || in)
  1284. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  1285. port = io_info >> 16;
  1286. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  1287. svm->next_rip = svm->vmcb->control.exit_info_2;
  1288. skip_emulated_instruction(&svm->vcpu);
  1289. return kvm_fast_pio_out(vcpu, size, port);
  1290. }
  1291. static int nmi_interception(struct vcpu_svm *svm)
  1292. {
  1293. return 1;
  1294. }
  1295. static int intr_interception(struct vcpu_svm *svm)
  1296. {
  1297. ++svm->vcpu.stat.irq_exits;
  1298. return 1;
  1299. }
  1300. static int nop_on_interception(struct vcpu_svm *svm)
  1301. {
  1302. return 1;
  1303. }
  1304. static int halt_interception(struct vcpu_svm *svm)
  1305. {
  1306. svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
  1307. skip_emulated_instruction(&svm->vcpu);
  1308. return kvm_emulate_halt(&svm->vcpu);
  1309. }
  1310. static int vmmcall_interception(struct vcpu_svm *svm)
  1311. {
  1312. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1313. skip_emulated_instruction(&svm->vcpu);
  1314. kvm_emulate_hypercall(&svm->vcpu);
  1315. return 1;
  1316. }
  1317. static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
  1318. {
  1319. struct vcpu_svm *svm = to_svm(vcpu);
  1320. return svm->nested.nested_cr3;
  1321. }
  1322. static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
  1323. unsigned long root)
  1324. {
  1325. struct vcpu_svm *svm = to_svm(vcpu);
  1326. svm->vmcb->control.nested_cr3 = root;
  1327. force_new_asid(vcpu);
  1328. }
  1329. static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu)
  1330. {
  1331. struct vcpu_svm *svm = to_svm(vcpu);
  1332. svm->vmcb->control.exit_code = SVM_EXIT_NPF;
  1333. svm->vmcb->control.exit_code_hi = 0;
  1334. svm->vmcb->control.exit_info_1 = vcpu->arch.fault.error_code;
  1335. svm->vmcb->control.exit_info_2 = vcpu->arch.fault.address;
  1336. nested_svm_vmexit(svm);
  1337. }
  1338. static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
  1339. {
  1340. int r;
  1341. r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
  1342. vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
  1343. vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
  1344. vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
  1345. vcpu->arch.mmu.shadow_root_level = get_npt_level();
  1346. vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
  1347. return r;
  1348. }
  1349. static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
  1350. {
  1351. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  1352. }
  1353. static int nested_svm_check_permissions(struct vcpu_svm *svm)
  1354. {
  1355. if (!(svm->vcpu.arch.efer & EFER_SVME)
  1356. || !is_paging(&svm->vcpu)) {
  1357. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1358. return 1;
  1359. }
  1360. if (svm->vmcb->save.cpl) {
  1361. kvm_inject_gp(&svm->vcpu, 0);
  1362. return 1;
  1363. }
  1364. return 0;
  1365. }
  1366. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  1367. bool has_error_code, u32 error_code)
  1368. {
  1369. int vmexit;
  1370. if (!is_nested(svm))
  1371. return 0;
  1372. svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
  1373. svm->vmcb->control.exit_code_hi = 0;
  1374. svm->vmcb->control.exit_info_1 = error_code;
  1375. svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
  1376. vmexit = nested_svm_intercept(svm);
  1377. if (vmexit == NESTED_EXIT_DONE)
  1378. svm->nested.exit_required = true;
  1379. return vmexit;
  1380. }
  1381. /* This function returns true if it is save to enable the irq window */
  1382. static inline bool nested_svm_intr(struct vcpu_svm *svm)
  1383. {
  1384. if (!is_nested(svm))
  1385. return true;
  1386. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1387. return true;
  1388. if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
  1389. return false;
  1390. /*
  1391. * if vmexit was already requested (by intercepted exception
  1392. * for instance) do not overwrite it with "external interrupt"
  1393. * vmexit.
  1394. */
  1395. if (svm->nested.exit_required)
  1396. return false;
  1397. svm->vmcb->control.exit_code = SVM_EXIT_INTR;
  1398. svm->vmcb->control.exit_info_1 = 0;
  1399. svm->vmcb->control.exit_info_2 = 0;
  1400. if (svm->nested.intercept & 1ULL) {
  1401. /*
  1402. * The #vmexit can't be emulated here directly because this
  1403. * code path runs with irqs and preemtion disabled. A
  1404. * #vmexit emulation might sleep. Only signal request for
  1405. * the #vmexit here.
  1406. */
  1407. svm->nested.exit_required = true;
  1408. trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
  1409. return false;
  1410. }
  1411. return true;
  1412. }
  1413. /* This function returns true if it is save to enable the nmi window */
  1414. static inline bool nested_svm_nmi(struct vcpu_svm *svm)
  1415. {
  1416. if (!is_nested(svm))
  1417. return true;
  1418. if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
  1419. return true;
  1420. svm->vmcb->control.exit_code = SVM_EXIT_NMI;
  1421. svm->nested.exit_required = true;
  1422. return false;
  1423. }
  1424. static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
  1425. {
  1426. struct page *page;
  1427. might_sleep();
  1428. page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
  1429. if (is_error_page(page))
  1430. goto error;
  1431. *_page = page;
  1432. return kmap(page);
  1433. error:
  1434. kvm_release_page_clean(page);
  1435. kvm_inject_gp(&svm->vcpu, 0);
  1436. return NULL;
  1437. }
  1438. static void nested_svm_unmap(struct page *page)
  1439. {
  1440. kunmap(page);
  1441. kvm_release_page_dirty(page);
  1442. }
  1443. static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
  1444. {
  1445. unsigned port;
  1446. u8 val, bit;
  1447. u64 gpa;
  1448. if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
  1449. return NESTED_EXIT_HOST;
  1450. port = svm->vmcb->control.exit_info_1 >> 16;
  1451. gpa = svm->nested.vmcb_iopm + (port / 8);
  1452. bit = port % 8;
  1453. val = 0;
  1454. if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
  1455. val &= (1 << bit);
  1456. return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1457. }
  1458. static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
  1459. {
  1460. u32 offset, msr, value;
  1461. int write, mask;
  1462. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1463. return NESTED_EXIT_HOST;
  1464. msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1465. offset = svm_msrpm_offset(msr);
  1466. write = svm->vmcb->control.exit_info_1 & 1;
  1467. mask = 1 << ((2 * (msr & 0xf)) + write);
  1468. if (offset == MSR_INVALID)
  1469. return NESTED_EXIT_DONE;
  1470. /* Offset is in 32 bit units but need in 8 bit units */
  1471. offset *= 4;
  1472. if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
  1473. return NESTED_EXIT_DONE;
  1474. return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
  1475. }
  1476. static int nested_svm_exit_special(struct vcpu_svm *svm)
  1477. {
  1478. u32 exit_code = svm->vmcb->control.exit_code;
  1479. switch (exit_code) {
  1480. case SVM_EXIT_INTR:
  1481. case SVM_EXIT_NMI:
  1482. case SVM_EXIT_EXCP_BASE + MC_VECTOR:
  1483. return NESTED_EXIT_HOST;
  1484. case SVM_EXIT_NPF:
  1485. /* For now we are always handling NPFs when using them */
  1486. if (npt_enabled)
  1487. return NESTED_EXIT_HOST;
  1488. break;
  1489. case SVM_EXIT_EXCP_BASE + PF_VECTOR:
  1490. /* When we're shadowing, trap PFs, but not async PF */
  1491. if (!npt_enabled && svm->apf_reason == 0)
  1492. return NESTED_EXIT_HOST;
  1493. break;
  1494. case SVM_EXIT_EXCP_BASE + NM_VECTOR:
  1495. nm_interception(svm);
  1496. break;
  1497. default:
  1498. break;
  1499. }
  1500. return NESTED_EXIT_CONTINUE;
  1501. }
  1502. /*
  1503. * If this function returns true, this #vmexit was already handled
  1504. */
  1505. static int nested_svm_intercept(struct vcpu_svm *svm)
  1506. {
  1507. u32 exit_code = svm->vmcb->control.exit_code;
  1508. int vmexit = NESTED_EXIT_HOST;
  1509. switch (exit_code) {
  1510. case SVM_EXIT_MSR:
  1511. vmexit = nested_svm_exit_handled_msr(svm);
  1512. break;
  1513. case SVM_EXIT_IOIO:
  1514. vmexit = nested_svm_intercept_ioio(svm);
  1515. break;
  1516. case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
  1517. u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
  1518. if (svm->nested.intercept_cr_read & cr_bits)
  1519. vmexit = NESTED_EXIT_DONE;
  1520. break;
  1521. }
  1522. case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
  1523. u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
  1524. if (svm->nested.intercept_cr_write & cr_bits)
  1525. vmexit = NESTED_EXIT_DONE;
  1526. break;
  1527. }
  1528. case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
  1529. u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
  1530. if (svm->nested.intercept_dr_read & dr_bits)
  1531. vmexit = NESTED_EXIT_DONE;
  1532. break;
  1533. }
  1534. case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
  1535. u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
  1536. if (svm->nested.intercept_dr_write & dr_bits)
  1537. vmexit = NESTED_EXIT_DONE;
  1538. break;
  1539. }
  1540. case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
  1541. u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
  1542. if (svm->nested.intercept_exceptions & excp_bits)
  1543. vmexit = NESTED_EXIT_DONE;
  1544. /* async page fault always cause vmexit */
  1545. else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
  1546. svm->apf_reason != 0)
  1547. vmexit = NESTED_EXIT_DONE;
  1548. break;
  1549. }
  1550. case SVM_EXIT_ERR: {
  1551. vmexit = NESTED_EXIT_DONE;
  1552. break;
  1553. }
  1554. default: {
  1555. u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
  1556. if (svm->nested.intercept & exit_bits)
  1557. vmexit = NESTED_EXIT_DONE;
  1558. }
  1559. }
  1560. return vmexit;
  1561. }
  1562. static int nested_svm_exit_handled(struct vcpu_svm *svm)
  1563. {
  1564. int vmexit;
  1565. vmexit = nested_svm_intercept(svm);
  1566. if (vmexit == NESTED_EXIT_DONE)
  1567. nested_svm_vmexit(svm);
  1568. return vmexit;
  1569. }
  1570. static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
  1571. {
  1572. struct vmcb_control_area *dst = &dst_vmcb->control;
  1573. struct vmcb_control_area *from = &from_vmcb->control;
  1574. dst->intercept_cr_read = from->intercept_cr_read;
  1575. dst->intercept_cr_write = from->intercept_cr_write;
  1576. dst->intercept_dr_read = from->intercept_dr_read;
  1577. dst->intercept_dr_write = from->intercept_dr_write;
  1578. dst->intercept_exceptions = from->intercept_exceptions;
  1579. dst->intercept = from->intercept;
  1580. dst->iopm_base_pa = from->iopm_base_pa;
  1581. dst->msrpm_base_pa = from->msrpm_base_pa;
  1582. dst->tsc_offset = from->tsc_offset;
  1583. dst->asid = from->asid;
  1584. dst->tlb_ctl = from->tlb_ctl;
  1585. dst->int_ctl = from->int_ctl;
  1586. dst->int_vector = from->int_vector;
  1587. dst->int_state = from->int_state;
  1588. dst->exit_code = from->exit_code;
  1589. dst->exit_code_hi = from->exit_code_hi;
  1590. dst->exit_info_1 = from->exit_info_1;
  1591. dst->exit_info_2 = from->exit_info_2;
  1592. dst->exit_int_info = from->exit_int_info;
  1593. dst->exit_int_info_err = from->exit_int_info_err;
  1594. dst->nested_ctl = from->nested_ctl;
  1595. dst->event_inj = from->event_inj;
  1596. dst->event_inj_err = from->event_inj_err;
  1597. dst->nested_cr3 = from->nested_cr3;
  1598. dst->lbr_ctl = from->lbr_ctl;
  1599. }
  1600. static int nested_svm_vmexit(struct vcpu_svm *svm)
  1601. {
  1602. struct vmcb *nested_vmcb;
  1603. struct vmcb *hsave = svm->nested.hsave;
  1604. struct vmcb *vmcb = svm->vmcb;
  1605. struct page *page;
  1606. trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
  1607. vmcb->control.exit_info_1,
  1608. vmcb->control.exit_info_2,
  1609. vmcb->control.exit_int_info,
  1610. vmcb->control.exit_int_info_err);
  1611. nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
  1612. if (!nested_vmcb)
  1613. return 1;
  1614. /* Exit nested SVM mode */
  1615. svm->nested.vmcb = 0;
  1616. /* Give the current vmcb to the guest */
  1617. disable_gif(svm);
  1618. nested_vmcb->save.es = vmcb->save.es;
  1619. nested_vmcb->save.cs = vmcb->save.cs;
  1620. nested_vmcb->save.ss = vmcb->save.ss;
  1621. nested_vmcb->save.ds = vmcb->save.ds;
  1622. nested_vmcb->save.gdtr = vmcb->save.gdtr;
  1623. nested_vmcb->save.idtr = vmcb->save.idtr;
  1624. nested_vmcb->save.efer = svm->vcpu.arch.efer;
  1625. nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1626. nested_vmcb->save.cr3 = svm->vcpu.arch.cr3;
  1627. nested_vmcb->save.cr2 = vmcb->save.cr2;
  1628. nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
  1629. nested_vmcb->save.rflags = vmcb->save.rflags;
  1630. nested_vmcb->save.rip = vmcb->save.rip;
  1631. nested_vmcb->save.rsp = vmcb->save.rsp;
  1632. nested_vmcb->save.rax = vmcb->save.rax;
  1633. nested_vmcb->save.dr7 = vmcb->save.dr7;
  1634. nested_vmcb->save.dr6 = vmcb->save.dr6;
  1635. nested_vmcb->save.cpl = vmcb->save.cpl;
  1636. nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
  1637. nested_vmcb->control.int_vector = vmcb->control.int_vector;
  1638. nested_vmcb->control.int_state = vmcb->control.int_state;
  1639. nested_vmcb->control.exit_code = vmcb->control.exit_code;
  1640. nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
  1641. nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
  1642. nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
  1643. nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
  1644. nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
  1645. nested_vmcb->control.next_rip = vmcb->control.next_rip;
  1646. /*
  1647. * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
  1648. * to make sure that we do not lose injected events. So check event_inj
  1649. * here and copy it to exit_int_info if it is valid.
  1650. * Exit_int_info and event_inj can't be both valid because the case
  1651. * below only happens on a VMRUN instruction intercept which has
  1652. * no valid exit_int_info set.
  1653. */
  1654. if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
  1655. struct vmcb_control_area *nc = &nested_vmcb->control;
  1656. nc->exit_int_info = vmcb->control.event_inj;
  1657. nc->exit_int_info_err = vmcb->control.event_inj_err;
  1658. }
  1659. nested_vmcb->control.tlb_ctl = 0;
  1660. nested_vmcb->control.event_inj = 0;
  1661. nested_vmcb->control.event_inj_err = 0;
  1662. /* We always set V_INTR_MASKING and remember the old value in hflags */
  1663. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1664. nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
  1665. /* Restore the original control entries */
  1666. copy_vmcb_control_area(vmcb, hsave);
  1667. kvm_clear_exception_queue(&svm->vcpu);
  1668. kvm_clear_interrupt_queue(&svm->vcpu);
  1669. svm->nested.nested_cr3 = 0;
  1670. /* Restore selected save entries */
  1671. svm->vmcb->save.es = hsave->save.es;
  1672. svm->vmcb->save.cs = hsave->save.cs;
  1673. svm->vmcb->save.ss = hsave->save.ss;
  1674. svm->vmcb->save.ds = hsave->save.ds;
  1675. svm->vmcb->save.gdtr = hsave->save.gdtr;
  1676. svm->vmcb->save.idtr = hsave->save.idtr;
  1677. svm->vmcb->save.rflags = hsave->save.rflags;
  1678. svm_set_efer(&svm->vcpu, hsave->save.efer);
  1679. svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
  1680. svm_set_cr4(&svm->vcpu, hsave->save.cr4);
  1681. if (npt_enabled) {
  1682. svm->vmcb->save.cr3 = hsave->save.cr3;
  1683. svm->vcpu.arch.cr3 = hsave->save.cr3;
  1684. } else {
  1685. (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
  1686. }
  1687. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
  1688. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
  1689. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
  1690. svm->vmcb->save.dr7 = 0;
  1691. svm->vmcb->save.cpl = 0;
  1692. svm->vmcb->control.exit_int_info = 0;
  1693. nested_svm_unmap(page);
  1694. nested_svm_uninit_mmu_context(&svm->vcpu);
  1695. kvm_mmu_reset_context(&svm->vcpu);
  1696. kvm_mmu_load(&svm->vcpu);
  1697. return 0;
  1698. }
  1699. static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
  1700. {
  1701. /*
  1702. * This function merges the msr permission bitmaps of kvm and the
  1703. * nested vmcb. It is omptimized in that it only merges the parts where
  1704. * the kvm msr permission bitmap may contain zero bits
  1705. */
  1706. int i;
  1707. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1708. return true;
  1709. for (i = 0; i < MSRPM_OFFSETS; i++) {
  1710. u32 value, p;
  1711. u64 offset;
  1712. if (msrpm_offsets[i] == 0xffffffff)
  1713. break;
  1714. p = msrpm_offsets[i];
  1715. offset = svm->nested.vmcb_msrpm + (p * 4);
  1716. if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
  1717. return false;
  1718. svm->nested.msrpm[p] = svm->msrpm[p] | value;
  1719. }
  1720. svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
  1721. return true;
  1722. }
  1723. static bool nested_vmcb_checks(struct vmcb *vmcb)
  1724. {
  1725. if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
  1726. return false;
  1727. if (vmcb->control.asid == 0)
  1728. return false;
  1729. if (vmcb->control.nested_ctl && !npt_enabled)
  1730. return false;
  1731. return true;
  1732. }
  1733. static bool nested_svm_vmrun(struct vcpu_svm *svm)
  1734. {
  1735. struct vmcb *nested_vmcb;
  1736. struct vmcb *hsave = svm->nested.hsave;
  1737. struct vmcb *vmcb = svm->vmcb;
  1738. struct page *page;
  1739. u64 vmcb_gpa;
  1740. vmcb_gpa = svm->vmcb->save.rax;
  1741. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1742. if (!nested_vmcb)
  1743. return false;
  1744. if (!nested_vmcb_checks(nested_vmcb)) {
  1745. nested_vmcb->control.exit_code = SVM_EXIT_ERR;
  1746. nested_vmcb->control.exit_code_hi = 0;
  1747. nested_vmcb->control.exit_info_1 = 0;
  1748. nested_vmcb->control.exit_info_2 = 0;
  1749. nested_svm_unmap(page);
  1750. return false;
  1751. }
  1752. trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
  1753. nested_vmcb->save.rip,
  1754. nested_vmcb->control.int_ctl,
  1755. nested_vmcb->control.event_inj,
  1756. nested_vmcb->control.nested_ctl);
  1757. trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
  1758. nested_vmcb->control.intercept_cr_write,
  1759. nested_vmcb->control.intercept_exceptions,
  1760. nested_vmcb->control.intercept);
  1761. /* Clear internal status */
  1762. kvm_clear_exception_queue(&svm->vcpu);
  1763. kvm_clear_interrupt_queue(&svm->vcpu);
  1764. /*
  1765. * Save the old vmcb, so we don't need to pick what we save, but can
  1766. * restore everything when a VMEXIT occurs
  1767. */
  1768. hsave->save.es = vmcb->save.es;
  1769. hsave->save.cs = vmcb->save.cs;
  1770. hsave->save.ss = vmcb->save.ss;
  1771. hsave->save.ds = vmcb->save.ds;
  1772. hsave->save.gdtr = vmcb->save.gdtr;
  1773. hsave->save.idtr = vmcb->save.idtr;
  1774. hsave->save.efer = svm->vcpu.arch.efer;
  1775. hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1776. hsave->save.cr4 = svm->vcpu.arch.cr4;
  1777. hsave->save.rflags = vmcb->save.rflags;
  1778. hsave->save.rip = kvm_rip_read(&svm->vcpu);
  1779. hsave->save.rsp = vmcb->save.rsp;
  1780. hsave->save.rax = vmcb->save.rax;
  1781. if (npt_enabled)
  1782. hsave->save.cr3 = vmcb->save.cr3;
  1783. else
  1784. hsave->save.cr3 = svm->vcpu.arch.cr3;
  1785. copy_vmcb_control_area(hsave, vmcb);
  1786. if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
  1787. svm->vcpu.arch.hflags |= HF_HIF_MASK;
  1788. else
  1789. svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
  1790. if (nested_vmcb->control.nested_ctl) {
  1791. kvm_mmu_unload(&svm->vcpu);
  1792. svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
  1793. nested_svm_init_mmu_context(&svm->vcpu);
  1794. }
  1795. /* Load the nested guest state */
  1796. svm->vmcb->save.es = nested_vmcb->save.es;
  1797. svm->vmcb->save.cs = nested_vmcb->save.cs;
  1798. svm->vmcb->save.ss = nested_vmcb->save.ss;
  1799. svm->vmcb->save.ds = nested_vmcb->save.ds;
  1800. svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
  1801. svm->vmcb->save.idtr = nested_vmcb->save.idtr;
  1802. svm->vmcb->save.rflags = nested_vmcb->save.rflags;
  1803. svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
  1804. svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
  1805. svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
  1806. if (npt_enabled) {
  1807. svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
  1808. svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
  1809. } else
  1810. (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
  1811. /* Guest paging mode is active - reset mmu */
  1812. kvm_mmu_reset_context(&svm->vcpu);
  1813. svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
  1814. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
  1815. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
  1816. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
  1817. /* In case we don't even reach vcpu_run, the fields are not updated */
  1818. svm->vmcb->save.rax = nested_vmcb->save.rax;
  1819. svm->vmcb->save.rsp = nested_vmcb->save.rsp;
  1820. svm->vmcb->save.rip = nested_vmcb->save.rip;
  1821. svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
  1822. svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
  1823. svm->vmcb->save.cpl = nested_vmcb->save.cpl;
  1824. svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
  1825. svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
  1826. /* cache intercepts */
  1827. svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
  1828. svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
  1829. svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
  1830. svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
  1831. svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
  1832. svm->nested.intercept = nested_vmcb->control.intercept;
  1833. force_new_asid(&svm->vcpu);
  1834. svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
  1835. if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
  1836. svm->vcpu.arch.hflags |= HF_VINTR_MASK;
  1837. else
  1838. svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
  1839. if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
  1840. /* We only want the cr8 intercept bits of the guest */
  1841. svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
  1842. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1843. }
  1844. /* We don't want to see VMMCALLs from a nested guest */
  1845. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
  1846. /*
  1847. * We don't want a nested guest to be more powerful than the guest, so
  1848. * all intercepts are ORed
  1849. */
  1850. svm->vmcb->control.intercept_cr_read |=
  1851. nested_vmcb->control.intercept_cr_read;
  1852. svm->vmcb->control.intercept_cr_write |=
  1853. nested_vmcb->control.intercept_cr_write;
  1854. svm->vmcb->control.intercept_dr_read |=
  1855. nested_vmcb->control.intercept_dr_read;
  1856. svm->vmcb->control.intercept_dr_write |=
  1857. nested_vmcb->control.intercept_dr_write;
  1858. svm->vmcb->control.intercept_exceptions |=
  1859. nested_vmcb->control.intercept_exceptions;
  1860. svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
  1861. svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
  1862. svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
  1863. svm->vmcb->control.int_state = nested_vmcb->control.int_state;
  1864. svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
  1865. svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
  1866. svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
  1867. nested_svm_unmap(page);
  1868. /* nested_vmcb is our indicator if nested SVM is activated */
  1869. svm->nested.vmcb = vmcb_gpa;
  1870. enable_gif(svm);
  1871. return true;
  1872. }
  1873. static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
  1874. {
  1875. to_vmcb->save.fs = from_vmcb->save.fs;
  1876. to_vmcb->save.gs = from_vmcb->save.gs;
  1877. to_vmcb->save.tr = from_vmcb->save.tr;
  1878. to_vmcb->save.ldtr = from_vmcb->save.ldtr;
  1879. to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
  1880. to_vmcb->save.star = from_vmcb->save.star;
  1881. to_vmcb->save.lstar = from_vmcb->save.lstar;
  1882. to_vmcb->save.cstar = from_vmcb->save.cstar;
  1883. to_vmcb->save.sfmask = from_vmcb->save.sfmask;
  1884. to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
  1885. to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
  1886. to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
  1887. }
  1888. static int vmload_interception(struct vcpu_svm *svm)
  1889. {
  1890. struct vmcb *nested_vmcb;
  1891. struct page *page;
  1892. if (nested_svm_check_permissions(svm))
  1893. return 1;
  1894. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1895. skip_emulated_instruction(&svm->vcpu);
  1896. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1897. if (!nested_vmcb)
  1898. return 1;
  1899. nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
  1900. nested_svm_unmap(page);
  1901. return 1;
  1902. }
  1903. static int vmsave_interception(struct vcpu_svm *svm)
  1904. {
  1905. struct vmcb *nested_vmcb;
  1906. struct page *page;
  1907. if (nested_svm_check_permissions(svm))
  1908. return 1;
  1909. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1910. skip_emulated_instruction(&svm->vcpu);
  1911. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1912. if (!nested_vmcb)
  1913. return 1;
  1914. nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
  1915. nested_svm_unmap(page);
  1916. return 1;
  1917. }
  1918. static int vmrun_interception(struct vcpu_svm *svm)
  1919. {
  1920. if (nested_svm_check_permissions(svm))
  1921. return 1;
  1922. /* Save rip after vmrun instruction */
  1923. kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
  1924. if (!nested_svm_vmrun(svm))
  1925. return 1;
  1926. if (!nested_svm_vmrun_msrpm(svm))
  1927. goto failed;
  1928. return 1;
  1929. failed:
  1930. svm->vmcb->control.exit_code = SVM_EXIT_ERR;
  1931. svm->vmcb->control.exit_code_hi = 0;
  1932. svm->vmcb->control.exit_info_1 = 0;
  1933. svm->vmcb->control.exit_info_2 = 0;
  1934. nested_svm_vmexit(svm);
  1935. return 1;
  1936. }
  1937. static int stgi_interception(struct vcpu_svm *svm)
  1938. {
  1939. if (nested_svm_check_permissions(svm))
  1940. return 1;
  1941. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1942. skip_emulated_instruction(&svm->vcpu);
  1943. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  1944. enable_gif(svm);
  1945. return 1;
  1946. }
  1947. static int clgi_interception(struct vcpu_svm *svm)
  1948. {
  1949. if (nested_svm_check_permissions(svm))
  1950. return 1;
  1951. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1952. skip_emulated_instruction(&svm->vcpu);
  1953. disable_gif(svm);
  1954. /* After a CLGI no interrupts should come */
  1955. svm_clear_vintr(svm);
  1956. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1957. return 1;
  1958. }
  1959. static int invlpga_interception(struct vcpu_svm *svm)
  1960. {
  1961. struct kvm_vcpu *vcpu = &svm->vcpu;
  1962. trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
  1963. vcpu->arch.regs[VCPU_REGS_RAX]);
  1964. /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
  1965. kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
  1966. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1967. skip_emulated_instruction(&svm->vcpu);
  1968. return 1;
  1969. }
  1970. static int skinit_interception(struct vcpu_svm *svm)
  1971. {
  1972. trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
  1973. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1974. return 1;
  1975. }
  1976. static int invalid_op_interception(struct vcpu_svm *svm)
  1977. {
  1978. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1979. return 1;
  1980. }
  1981. static int task_switch_interception(struct vcpu_svm *svm)
  1982. {
  1983. u16 tss_selector;
  1984. int reason;
  1985. int int_type = svm->vmcb->control.exit_int_info &
  1986. SVM_EXITINTINFO_TYPE_MASK;
  1987. int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
  1988. uint32_t type =
  1989. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
  1990. uint32_t idt_v =
  1991. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
  1992. bool has_error_code = false;
  1993. u32 error_code = 0;
  1994. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  1995. if (svm->vmcb->control.exit_info_2 &
  1996. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  1997. reason = TASK_SWITCH_IRET;
  1998. else if (svm->vmcb->control.exit_info_2 &
  1999. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  2000. reason = TASK_SWITCH_JMP;
  2001. else if (idt_v)
  2002. reason = TASK_SWITCH_GATE;
  2003. else
  2004. reason = TASK_SWITCH_CALL;
  2005. if (reason == TASK_SWITCH_GATE) {
  2006. switch (type) {
  2007. case SVM_EXITINTINFO_TYPE_NMI:
  2008. svm->vcpu.arch.nmi_injected = false;
  2009. break;
  2010. case SVM_EXITINTINFO_TYPE_EXEPT:
  2011. if (svm->vmcb->control.exit_info_2 &
  2012. (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
  2013. has_error_code = true;
  2014. error_code =
  2015. (u32)svm->vmcb->control.exit_info_2;
  2016. }
  2017. kvm_clear_exception_queue(&svm->vcpu);
  2018. break;
  2019. case SVM_EXITINTINFO_TYPE_INTR:
  2020. kvm_clear_interrupt_queue(&svm->vcpu);
  2021. break;
  2022. default:
  2023. break;
  2024. }
  2025. }
  2026. if (reason != TASK_SWITCH_GATE ||
  2027. int_type == SVM_EXITINTINFO_TYPE_SOFT ||
  2028. (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
  2029. (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
  2030. skip_emulated_instruction(&svm->vcpu);
  2031. if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
  2032. has_error_code, error_code) == EMULATE_FAIL) {
  2033. svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2034. svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2035. svm->vcpu.run->internal.ndata = 0;
  2036. return 0;
  2037. }
  2038. return 1;
  2039. }
  2040. static int cpuid_interception(struct vcpu_svm *svm)
  2041. {
  2042. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2043. kvm_emulate_cpuid(&svm->vcpu);
  2044. return 1;
  2045. }
  2046. static int iret_interception(struct vcpu_svm *svm)
  2047. {
  2048. ++svm->vcpu.stat.nmi_window_exits;
  2049. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
  2050. svm->vcpu.arch.hflags |= HF_IRET_MASK;
  2051. return 1;
  2052. }
  2053. static int invlpg_interception(struct vcpu_svm *svm)
  2054. {
  2055. return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
  2056. }
  2057. static int emulate_on_interception(struct vcpu_svm *svm)
  2058. {
  2059. return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
  2060. }
  2061. static int cr0_write_interception(struct vcpu_svm *svm)
  2062. {
  2063. struct kvm_vcpu *vcpu = &svm->vcpu;
  2064. int r;
  2065. r = emulate_instruction(&svm->vcpu, 0, 0, 0);
  2066. if (svm->nested.vmexit_rip) {
  2067. kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
  2068. kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
  2069. kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
  2070. svm->nested.vmexit_rip = 0;
  2071. }
  2072. return r == EMULATE_DONE;
  2073. }
  2074. static int cr8_write_interception(struct vcpu_svm *svm)
  2075. {
  2076. struct kvm_run *kvm_run = svm->vcpu.run;
  2077. u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
  2078. /* instruction emulation calls kvm_set_cr8() */
  2079. emulate_instruction(&svm->vcpu, 0, 0, 0);
  2080. if (irqchip_in_kernel(svm->vcpu.kvm)) {
  2081. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  2082. return 1;
  2083. }
  2084. if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
  2085. return 1;
  2086. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2087. return 0;
  2088. }
  2089. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  2090. {
  2091. struct vcpu_svm *svm = to_svm(vcpu);
  2092. switch (ecx) {
  2093. case MSR_IA32_TSC: {
  2094. u64 tsc_offset;
  2095. if (is_nested(svm))
  2096. tsc_offset = svm->nested.hsave->control.tsc_offset;
  2097. else
  2098. tsc_offset = svm->vmcb->control.tsc_offset;
  2099. *data = tsc_offset + native_read_tsc();
  2100. break;
  2101. }
  2102. case MSR_STAR:
  2103. *data = svm->vmcb->save.star;
  2104. break;
  2105. #ifdef CONFIG_X86_64
  2106. case MSR_LSTAR:
  2107. *data = svm->vmcb->save.lstar;
  2108. break;
  2109. case MSR_CSTAR:
  2110. *data = svm->vmcb->save.cstar;
  2111. break;
  2112. case MSR_KERNEL_GS_BASE:
  2113. *data = svm->vmcb->save.kernel_gs_base;
  2114. break;
  2115. case MSR_SYSCALL_MASK:
  2116. *data = svm->vmcb->save.sfmask;
  2117. break;
  2118. #endif
  2119. case MSR_IA32_SYSENTER_CS:
  2120. *data = svm->vmcb->save.sysenter_cs;
  2121. break;
  2122. case MSR_IA32_SYSENTER_EIP:
  2123. *data = svm->sysenter_eip;
  2124. break;
  2125. case MSR_IA32_SYSENTER_ESP:
  2126. *data = svm->sysenter_esp;
  2127. break;
  2128. /*
  2129. * Nobody will change the following 5 values in the VMCB so we can
  2130. * safely return them on rdmsr. They will always be 0 until LBRV is
  2131. * implemented.
  2132. */
  2133. case MSR_IA32_DEBUGCTLMSR:
  2134. *data = svm->vmcb->save.dbgctl;
  2135. break;
  2136. case MSR_IA32_LASTBRANCHFROMIP:
  2137. *data = svm->vmcb->save.br_from;
  2138. break;
  2139. case MSR_IA32_LASTBRANCHTOIP:
  2140. *data = svm->vmcb->save.br_to;
  2141. break;
  2142. case MSR_IA32_LASTINTFROMIP:
  2143. *data = svm->vmcb->save.last_excp_from;
  2144. break;
  2145. case MSR_IA32_LASTINTTOIP:
  2146. *data = svm->vmcb->save.last_excp_to;
  2147. break;
  2148. case MSR_VM_HSAVE_PA:
  2149. *data = svm->nested.hsave_msr;
  2150. break;
  2151. case MSR_VM_CR:
  2152. *data = svm->nested.vm_cr_msr;
  2153. break;
  2154. case MSR_IA32_UCODE_REV:
  2155. *data = 0x01000065;
  2156. break;
  2157. default:
  2158. return kvm_get_msr_common(vcpu, ecx, data);
  2159. }
  2160. return 0;
  2161. }
  2162. static int rdmsr_interception(struct vcpu_svm *svm)
  2163. {
  2164. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2165. u64 data;
  2166. if (svm_get_msr(&svm->vcpu, ecx, &data)) {
  2167. trace_kvm_msr_read_ex(ecx);
  2168. kvm_inject_gp(&svm->vcpu, 0);
  2169. } else {
  2170. trace_kvm_msr_read(ecx, data);
  2171. svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
  2172. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  2173. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2174. skip_emulated_instruction(&svm->vcpu);
  2175. }
  2176. return 1;
  2177. }
  2178. static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
  2179. {
  2180. struct vcpu_svm *svm = to_svm(vcpu);
  2181. int svm_dis, chg_mask;
  2182. if (data & ~SVM_VM_CR_VALID_MASK)
  2183. return 1;
  2184. chg_mask = SVM_VM_CR_VALID_MASK;
  2185. if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
  2186. chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
  2187. svm->nested.vm_cr_msr &= ~chg_mask;
  2188. svm->nested.vm_cr_msr |= (data & chg_mask);
  2189. svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
  2190. /* check for svm_disable while efer.svme is set */
  2191. if (svm_dis && (vcpu->arch.efer & EFER_SVME))
  2192. return 1;
  2193. return 0;
  2194. }
  2195. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  2196. {
  2197. struct vcpu_svm *svm = to_svm(vcpu);
  2198. switch (ecx) {
  2199. case MSR_IA32_TSC:
  2200. kvm_write_tsc(vcpu, data);
  2201. break;
  2202. case MSR_STAR:
  2203. svm->vmcb->save.star = data;
  2204. break;
  2205. #ifdef CONFIG_X86_64
  2206. case MSR_LSTAR:
  2207. svm->vmcb->save.lstar = data;
  2208. break;
  2209. case MSR_CSTAR:
  2210. svm->vmcb->save.cstar = data;
  2211. break;
  2212. case MSR_KERNEL_GS_BASE:
  2213. svm->vmcb->save.kernel_gs_base = data;
  2214. break;
  2215. case MSR_SYSCALL_MASK:
  2216. svm->vmcb->save.sfmask = data;
  2217. break;
  2218. #endif
  2219. case MSR_IA32_SYSENTER_CS:
  2220. svm->vmcb->save.sysenter_cs = data;
  2221. break;
  2222. case MSR_IA32_SYSENTER_EIP:
  2223. svm->sysenter_eip = data;
  2224. svm->vmcb->save.sysenter_eip = data;
  2225. break;
  2226. case MSR_IA32_SYSENTER_ESP:
  2227. svm->sysenter_esp = data;
  2228. svm->vmcb->save.sysenter_esp = data;
  2229. break;
  2230. case MSR_IA32_DEBUGCTLMSR:
  2231. if (!boot_cpu_has(X86_FEATURE_LBRV)) {
  2232. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  2233. __func__, data);
  2234. break;
  2235. }
  2236. if (data & DEBUGCTL_RESERVED_BITS)
  2237. return 1;
  2238. svm->vmcb->save.dbgctl = data;
  2239. if (data & (1ULL<<0))
  2240. svm_enable_lbrv(svm);
  2241. else
  2242. svm_disable_lbrv(svm);
  2243. break;
  2244. case MSR_VM_HSAVE_PA:
  2245. svm->nested.hsave_msr = data;
  2246. break;
  2247. case MSR_VM_CR:
  2248. return svm_set_vm_cr(vcpu, data);
  2249. case MSR_VM_IGNNE:
  2250. pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
  2251. break;
  2252. default:
  2253. return kvm_set_msr_common(vcpu, ecx, data);
  2254. }
  2255. return 0;
  2256. }
  2257. static int wrmsr_interception(struct vcpu_svm *svm)
  2258. {
  2259. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  2260. u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
  2261. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2262. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  2263. if (svm_set_msr(&svm->vcpu, ecx, data)) {
  2264. trace_kvm_msr_write_ex(ecx, data);
  2265. kvm_inject_gp(&svm->vcpu, 0);
  2266. } else {
  2267. trace_kvm_msr_write(ecx, data);
  2268. skip_emulated_instruction(&svm->vcpu);
  2269. }
  2270. return 1;
  2271. }
  2272. static int msr_interception(struct vcpu_svm *svm)
  2273. {
  2274. if (svm->vmcb->control.exit_info_1)
  2275. return wrmsr_interception(svm);
  2276. else
  2277. return rdmsr_interception(svm);
  2278. }
  2279. static int interrupt_window_interception(struct vcpu_svm *svm)
  2280. {
  2281. struct kvm_run *kvm_run = svm->vcpu.run;
  2282. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  2283. svm_clear_vintr(svm);
  2284. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  2285. /*
  2286. * If the user space waits to inject interrupts, exit as soon as
  2287. * possible
  2288. */
  2289. if (!irqchip_in_kernel(svm->vcpu.kvm) &&
  2290. kvm_run->request_interrupt_window &&
  2291. !kvm_cpu_has_interrupt(&svm->vcpu)) {
  2292. ++svm->vcpu.stat.irq_window_exits;
  2293. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2294. return 0;
  2295. }
  2296. return 1;
  2297. }
  2298. static int pause_interception(struct vcpu_svm *svm)
  2299. {
  2300. kvm_vcpu_on_spin(&(svm->vcpu));
  2301. return 1;
  2302. }
  2303. static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
  2304. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  2305. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  2306. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  2307. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  2308. [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
  2309. [SVM_EXIT_WRITE_CR0] = cr0_write_interception,
  2310. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  2311. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  2312. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  2313. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  2314. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  2315. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  2316. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  2317. [SVM_EXIT_READ_DR4] = emulate_on_interception,
  2318. [SVM_EXIT_READ_DR5] = emulate_on_interception,
  2319. [SVM_EXIT_READ_DR6] = emulate_on_interception,
  2320. [SVM_EXIT_READ_DR7] = emulate_on_interception,
  2321. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  2322. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  2323. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  2324. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  2325. [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
  2326. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  2327. [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
  2328. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  2329. [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
  2330. [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
  2331. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  2332. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  2333. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  2334. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  2335. [SVM_EXIT_INTR] = intr_interception,
  2336. [SVM_EXIT_NMI] = nmi_interception,
  2337. [SVM_EXIT_SMI] = nop_on_interception,
  2338. [SVM_EXIT_INIT] = nop_on_interception,
  2339. [SVM_EXIT_VINTR] = interrupt_window_interception,
  2340. [SVM_EXIT_CPUID] = cpuid_interception,
  2341. [SVM_EXIT_IRET] = iret_interception,
  2342. [SVM_EXIT_INVD] = emulate_on_interception,
  2343. [SVM_EXIT_PAUSE] = pause_interception,
  2344. [SVM_EXIT_HLT] = halt_interception,
  2345. [SVM_EXIT_INVLPG] = invlpg_interception,
  2346. [SVM_EXIT_INVLPGA] = invlpga_interception,
  2347. [SVM_EXIT_IOIO] = io_interception,
  2348. [SVM_EXIT_MSR] = msr_interception,
  2349. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  2350. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  2351. [SVM_EXIT_VMRUN] = vmrun_interception,
  2352. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  2353. [SVM_EXIT_VMLOAD] = vmload_interception,
  2354. [SVM_EXIT_VMSAVE] = vmsave_interception,
  2355. [SVM_EXIT_STGI] = stgi_interception,
  2356. [SVM_EXIT_CLGI] = clgi_interception,
  2357. [SVM_EXIT_SKINIT] = skinit_interception,
  2358. [SVM_EXIT_WBINVD] = emulate_on_interception,
  2359. [SVM_EXIT_MONITOR] = invalid_op_interception,
  2360. [SVM_EXIT_MWAIT] = invalid_op_interception,
  2361. [SVM_EXIT_NPF] = pf_interception,
  2362. };
  2363. void dump_vmcb(struct kvm_vcpu *vcpu)
  2364. {
  2365. struct vcpu_svm *svm = to_svm(vcpu);
  2366. struct vmcb_control_area *control = &svm->vmcb->control;
  2367. struct vmcb_save_area *save = &svm->vmcb->save;
  2368. pr_err("VMCB Control Area:\n");
  2369. pr_err("cr_read: %04x\n", control->intercept_cr_read);
  2370. pr_err("cr_write: %04x\n", control->intercept_cr_write);
  2371. pr_err("dr_read: %04x\n", control->intercept_dr_read);
  2372. pr_err("dr_write: %04x\n", control->intercept_dr_write);
  2373. pr_err("exceptions: %08x\n", control->intercept_exceptions);
  2374. pr_err("intercepts: %016llx\n", control->intercept);
  2375. pr_err("pause filter count: %d\n", control->pause_filter_count);
  2376. pr_err("iopm_base_pa: %016llx\n", control->iopm_base_pa);
  2377. pr_err("msrpm_base_pa: %016llx\n", control->msrpm_base_pa);
  2378. pr_err("tsc_offset: %016llx\n", control->tsc_offset);
  2379. pr_err("asid: %d\n", control->asid);
  2380. pr_err("tlb_ctl: %d\n", control->tlb_ctl);
  2381. pr_err("int_ctl: %08x\n", control->int_ctl);
  2382. pr_err("int_vector: %08x\n", control->int_vector);
  2383. pr_err("int_state: %08x\n", control->int_state);
  2384. pr_err("exit_code: %08x\n", control->exit_code);
  2385. pr_err("exit_info1: %016llx\n", control->exit_info_1);
  2386. pr_err("exit_info2: %016llx\n", control->exit_info_2);
  2387. pr_err("exit_int_info: %08x\n", control->exit_int_info);
  2388. pr_err("exit_int_info_err: %08x\n", control->exit_int_info_err);
  2389. pr_err("nested_ctl: %lld\n", control->nested_ctl);
  2390. pr_err("nested_cr3: %016llx\n", control->nested_cr3);
  2391. pr_err("event_inj: %08x\n", control->event_inj);
  2392. pr_err("event_inj_err: %08x\n", control->event_inj_err);
  2393. pr_err("lbr_ctl: %lld\n", control->lbr_ctl);
  2394. pr_err("next_rip: %016llx\n", control->next_rip);
  2395. pr_err("VMCB State Save Area:\n");
  2396. pr_err("es: s: %04x a: %04x l: %08x b: %016llx\n",
  2397. save->es.selector, save->es.attrib,
  2398. save->es.limit, save->es.base);
  2399. pr_err("cs: s: %04x a: %04x l: %08x b: %016llx\n",
  2400. save->cs.selector, save->cs.attrib,
  2401. save->cs.limit, save->cs.base);
  2402. pr_err("ss: s: %04x a: %04x l: %08x b: %016llx\n",
  2403. save->ss.selector, save->ss.attrib,
  2404. save->ss.limit, save->ss.base);
  2405. pr_err("ds: s: %04x a: %04x l: %08x b: %016llx\n",
  2406. save->ds.selector, save->ds.attrib,
  2407. save->ds.limit, save->ds.base);
  2408. pr_err("fs: s: %04x a: %04x l: %08x b: %016llx\n",
  2409. save->fs.selector, save->fs.attrib,
  2410. save->fs.limit, save->fs.base);
  2411. pr_err("gs: s: %04x a: %04x l: %08x b: %016llx\n",
  2412. save->gs.selector, save->gs.attrib,
  2413. save->gs.limit, save->gs.base);
  2414. pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2415. save->gdtr.selector, save->gdtr.attrib,
  2416. save->gdtr.limit, save->gdtr.base);
  2417. pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2418. save->ldtr.selector, save->ldtr.attrib,
  2419. save->ldtr.limit, save->ldtr.base);
  2420. pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
  2421. save->idtr.selector, save->idtr.attrib,
  2422. save->idtr.limit, save->idtr.base);
  2423. pr_err("tr: s: %04x a: %04x l: %08x b: %016llx\n",
  2424. save->tr.selector, save->tr.attrib,
  2425. save->tr.limit, save->tr.base);
  2426. pr_err("cpl: %d efer: %016llx\n",
  2427. save->cpl, save->efer);
  2428. pr_err("cr0: %016llx cr2: %016llx\n",
  2429. save->cr0, save->cr2);
  2430. pr_err("cr3: %016llx cr4: %016llx\n",
  2431. save->cr3, save->cr4);
  2432. pr_err("dr6: %016llx dr7: %016llx\n",
  2433. save->dr6, save->dr7);
  2434. pr_err("rip: %016llx rflags: %016llx\n",
  2435. save->rip, save->rflags);
  2436. pr_err("rsp: %016llx rax: %016llx\n",
  2437. save->rsp, save->rax);
  2438. pr_err("star: %016llx lstar: %016llx\n",
  2439. save->star, save->lstar);
  2440. pr_err("cstar: %016llx sfmask: %016llx\n",
  2441. save->cstar, save->sfmask);
  2442. pr_err("kernel_gs_base: %016llx sysenter_cs: %016llx\n",
  2443. save->kernel_gs_base, save->sysenter_cs);
  2444. pr_err("sysenter_esp: %016llx sysenter_eip: %016llx\n",
  2445. save->sysenter_esp, save->sysenter_eip);
  2446. pr_err("gpat: %016llx dbgctl: %016llx\n",
  2447. save->g_pat, save->dbgctl);
  2448. pr_err("br_from: %016llx br_to: %016llx\n",
  2449. save->br_from, save->br_to);
  2450. pr_err("excp_from: %016llx excp_to: %016llx\n",
  2451. save->last_excp_from, save->last_excp_to);
  2452. }
  2453. static int handle_exit(struct kvm_vcpu *vcpu)
  2454. {
  2455. struct vcpu_svm *svm = to_svm(vcpu);
  2456. struct kvm_run *kvm_run = vcpu->run;
  2457. u32 exit_code = svm->vmcb->control.exit_code;
  2458. trace_kvm_exit(exit_code, vcpu);
  2459. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
  2460. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  2461. if (npt_enabled)
  2462. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  2463. if (unlikely(svm->nested.exit_required)) {
  2464. nested_svm_vmexit(svm);
  2465. svm->nested.exit_required = false;
  2466. return 1;
  2467. }
  2468. if (is_nested(svm)) {
  2469. int vmexit;
  2470. trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
  2471. svm->vmcb->control.exit_info_1,
  2472. svm->vmcb->control.exit_info_2,
  2473. svm->vmcb->control.exit_int_info,
  2474. svm->vmcb->control.exit_int_info_err);
  2475. vmexit = nested_svm_exit_special(svm);
  2476. if (vmexit == NESTED_EXIT_CONTINUE)
  2477. vmexit = nested_svm_exit_handled(svm);
  2478. if (vmexit == NESTED_EXIT_DONE)
  2479. return 1;
  2480. }
  2481. svm_complete_interrupts(svm);
  2482. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  2483. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2484. kvm_run->fail_entry.hardware_entry_failure_reason
  2485. = svm->vmcb->control.exit_code;
  2486. pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
  2487. dump_vmcb(vcpu);
  2488. return 0;
  2489. }
  2490. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  2491. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  2492. exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
  2493. exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
  2494. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  2495. "exit_code 0x%x\n",
  2496. __func__, svm->vmcb->control.exit_int_info,
  2497. exit_code);
  2498. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  2499. || !svm_exit_handlers[exit_code]) {
  2500. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2501. kvm_run->hw.hardware_exit_reason = exit_code;
  2502. return 0;
  2503. }
  2504. return svm_exit_handlers[exit_code](svm);
  2505. }
  2506. static void reload_tss(struct kvm_vcpu *vcpu)
  2507. {
  2508. int cpu = raw_smp_processor_id();
  2509. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2510. sd->tss_desc->type = 9; /* available 32/64-bit TSS */
  2511. load_TR_desc();
  2512. }
  2513. static void pre_svm_run(struct vcpu_svm *svm)
  2514. {
  2515. int cpu = raw_smp_processor_id();
  2516. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2517. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  2518. /* FIXME: handle wraparound of asid_generation */
  2519. if (svm->asid_generation != sd->asid_generation)
  2520. new_asid(svm, sd);
  2521. }
  2522. static void svm_inject_nmi(struct kvm_vcpu *vcpu)
  2523. {
  2524. struct vcpu_svm *svm = to_svm(vcpu);
  2525. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
  2526. vcpu->arch.hflags |= HF_NMI_MASK;
  2527. svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
  2528. ++vcpu->stat.nmi_injections;
  2529. }
  2530. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  2531. {
  2532. struct vmcb_control_area *control;
  2533. control = &svm->vmcb->control;
  2534. control->int_vector = irq;
  2535. control->int_ctl &= ~V_INTR_PRIO_MASK;
  2536. control->int_ctl |= V_IRQ_MASK |
  2537. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  2538. }
  2539. static void svm_set_irq(struct kvm_vcpu *vcpu)
  2540. {
  2541. struct vcpu_svm *svm = to_svm(vcpu);
  2542. BUG_ON(!(gif_set(svm)));
  2543. trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
  2544. ++vcpu->stat.irq_injections;
  2545. svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
  2546. SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
  2547. }
  2548. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2549. {
  2550. struct vcpu_svm *svm = to_svm(vcpu);
  2551. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2552. return;
  2553. if (irr == -1)
  2554. return;
  2555. if (tpr >= irr)
  2556. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  2557. }
  2558. static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
  2559. {
  2560. struct vcpu_svm *svm = to_svm(vcpu);
  2561. struct vmcb *vmcb = svm->vmcb;
  2562. int ret;
  2563. ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  2564. !(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2565. ret = ret && gif_set(svm) && nested_svm_nmi(svm);
  2566. return ret;
  2567. }
  2568. static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
  2569. {
  2570. struct vcpu_svm *svm = to_svm(vcpu);
  2571. return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2572. }
  2573. static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2574. {
  2575. struct vcpu_svm *svm = to_svm(vcpu);
  2576. if (masked) {
  2577. svm->vcpu.arch.hflags |= HF_NMI_MASK;
  2578. svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
  2579. } else {
  2580. svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
  2581. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
  2582. }
  2583. }
  2584. static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
  2585. {
  2586. struct vcpu_svm *svm = to_svm(vcpu);
  2587. struct vmcb *vmcb = svm->vmcb;
  2588. int ret;
  2589. if (!gif_set(svm) ||
  2590. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
  2591. return 0;
  2592. ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
  2593. if (is_nested(svm))
  2594. return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
  2595. return ret;
  2596. }
  2597. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2598. {
  2599. struct vcpu_svm *svm = to_svm(vcpu);
  2600. /*
  2601. * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
  2602. * 1, because that's a separate STGI/VMRUN intercept. The next time we
  2603. * get that intercept, this function will be called again though and
  2604. * we'll get the vintr intercept.
  2605. */
  2606. if (gif_set(svm) && nested_svm_intr(svm)) {
  2607. svm_set_vintr(svm);
  2608. svm_inject_irq(svm, 0x0);
  2609. }
  2610. }
  2611. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2612. {
  2613. struct vcpu_svm *svm = to_svm(vcpu);
  2614. if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
  2615. == HF_NMI_MASK)
  2616. return; /* IRET will cause a vm exit */
  2617. /*
  2618. * Something prevents NMI from been injected. Single step over possible
  2619. * problem (IRET or exception injection or interrupt shadow)
  2620. */
  2621. svm->nmi_singlestep = true;
  2622. svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
  2623. update_db_intercept(vcpu);
  2624. }
  2625. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2626. {
  2627. return 0;
  2628. }
  2629. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  2630. {
  2631. force_new_asid(vcpu);
  2632. }
  2633. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  2634. {
  2635. }
  2636. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  2637. {
  2638. struct vcpu_svm *svm = to_svm(vcpu);
  2639. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2640. return;
  2641. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  2642. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  2643. kvm_set_cr8(vcpu, cr8);
  2644. }
  2645. }
  2646. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  2647. {
  2648. struct vcpu_svm *svm = to_svm(vcpu);
  2649. u64 cr8;
  2650. if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
  2651. return;
  2652. cr8 = kvm_get_cr8(vcpu);
  2653. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  2654. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  2655. }
  2656. static void svm_complete_interrupts(struct vcpu_svm *svm)
  2657. {
  2658. u8 vector;
  2659. int type;
  2660. u32 exitintinfo = svm->vmcb->control.exit_int_info;
  2661. unsigned int3_injected = svm->int3_injected;
  2662. svm->int3_injected = 0;
  2663. if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
  2664. svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
  2665. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  2666. }
  2667. svm->vcpu.arch.nmi_injected = false;
  2668. kvm_clear_exception_queue(&svm->vcpu);
  2669. kvm_clear_interrupt_queue(&svm->vcpu);
  2670. if (!(exitintinfo & SVM_EXITINTINFO_VALID))
  2671. return;
  2672. kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
  2673. vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
  2674. type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
  2675. switch (type) {
  2676. case SVM_EXITINTINFO_TYPE_NMI:
  2677. svm->vcpu.arch.nmi_injected = true;
  2678. break;
  2679. case SVM_EXITINTINFO_TYPE_EXEPT:
  2680. /*
  2681. * In case of software exceptions, do not reinject the vector,
  2682. * but re-execute the instruction instead. Rewind RIP first
  2683. * if we emulated INT3 before.
  2684. */
  2685. if (kvm_exception_is_soft(vector)) {
  2686. if (vector == BP_VECTOR && int3_injected &&
  2687. kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
  2688. kvm_rip_write(&svm->vcpu,
  2689. kvm_rip_read(&svm->vcpu) -
  2690. int3_injected);
  2691. break;
  2692. }
  2693. if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
  2694. u32 err = svm->vmcb->control.exit_int_info_err;
  2695. kvm_requeue_exception_e(&svm->vcpu, vector, err);
  2696. } else
  2697. kvm_requeue_exception(&svm->vcpu, vector);
  2698. break;
  2699. case SVM_EXITINTINFO_TYPE_INTR:
  2700. kvm_queue_interrupt(&svm->vcpu, vector, false);
  2701. break;
  2702. default:
  2703. break;
  2704. }
  2705. }
  2706. static void svm_cancel_injection(struct kvm_vcpu *vcpu)
  2707. {
  2708. struct vcpu_svm *svm = to_svm(vcpu);
  2709. struct vmcb_control_area *control = &svm->vmcb->control;
  2710. control->exit_int_info = control->event_inj;
  2711. control->exit_int_info_err = control->event_inj_err;
  2712. control->event_inj = 0;
  2713. svm_complete_interrupts(svm);
  2714. }
  2715. #ifdef CONFIG_X86_64
  2716. #define R "r"
  2717. #else
  2718. #define R "e"
  2719. #endif
  2720. static void svm_vcpu_run(struct kvm_vcpu *vcpu)
  2721. {
  2722. struct vcpu_svm *svm = to_svm(vcpu);
  2723. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2724. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2725. svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
  2726. /*
  2727. * A vmexit emulation is required before the vcpu can be executed
  2728. * again.
  2729. */
  2730. if (unlikely(svm->nested.exit_required))
  2731. return;
  2732. pre_svm_run(svm);
  2733. sync_lapic_to_cr8(vcpu);
  2734. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  2735. clgi();
  2736. local_irq_enable();
  2737. asm volatile (
  2738. "push %%"R"bp; \n\t"
  2739. "mov %c[rbx](%[svm]), %%"R"bx \n\t"
  2740. "mov %c[rcx](%[svm]), %%"R"cx \n\t"
  2741. "mov %c[rdx](%[svm]), %%"R"dx \n\t"
  2742. "mov %c[rsi](%[svm]), %%"R"si \n\t"
  2743. "mov %c[rdi](%[svm]), %%"R"di \n\t"
  2744. "mov %c[rbp](%[svm]), %%"R"bp \n\t"
  2745. #ifdef CONFIG_X86_64
  2746. "mov %c[r8](%[svm]), %%r8 \n\t"
  2747. "mov %c[r9](%[svm]), %%r9 \n\t"
  2748. "mov %c[r10](%[svm]), %%r10 \n\t"
  2749. "mov %c[r11](%[svm]), %%r11 \n\t"
  2750. "mov %c[r12](%[svm]), %%r12 \n\t"
  2751. "mov %c[r13](%[svm]), %%r13 \n\t"
  2752. "mov %c[r14](%[svm]), %%r14 \n\t"
  2753. "mov %c[r15](%[svm]), %%r15 \n\t"
  2754. #endif
  2755. /* Enter guest mode */
  2756. "push %%"R"ax \n\t"
  2757. "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
  2758. __ex(SVM_VMLOAD) "\n\t"
  2759. __ex(SVM_VMRUN) "\n\t"
  2760. __ex(SVM_VMSAVE) "\n\t"
  2761. "pop %%"R"ax \n\t"
  2762. /* Save guest registers, load host registers */
  2763. "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
  2764. "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
  2765. "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
  2766. "mov %%"R"si, %c[rsi](%[svm]) \n\t"
  2767. "mov %%"R"di, %c[rdi](%[svm]) \n\t"
  2768. "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
  2769. #ifdef CONFIG_X86_64
  2770. "mov %%r8, %c[r8](%[svm]) \n\t"
  2771. "mov %%r9, %c[r9](%[svm]) \n\t"
  2772. "mov %%r10, %c[r10](%[svm]) \n\t"
  2773. "mov %%r11, %c[r11](%[svm]) \n\t"
  2774. "mov %%r12, %c[r12](%[svm]) \n\t"
  2775. "mov %%r13, %c[r13](%[svm]) \n\t"
  2776. "mov %%r14, %c[r14](%[svm]) \n\t"
  2777. "mov %%r15, %c[r15](%[svm]) \n\t"
  2778. #endif
  2779. "pop %%"R"bp"
  2780. :
  2781. : [svm]"a"(svm),
  2782. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  2783. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  2784. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  2785. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  2786. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  2787. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  2788. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  2789. #ifdef CONFIG_X86_64
  2790. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  2791. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  2792. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  2793. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  2794. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  2795. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  2796. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  2797. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  2798. #endif
  2799. : "cc", "memory"
  2800. , R"bx", R"cx", R"dx", R"si", R"di"
  2801. #ifdef CONFIG_X86_64
  2802. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  2803. #endif
  2804. );
  2805. #ifdef CONFIG_X86_64
  2806. wrmsrl(MSR_GS_BASE, svm->host.gs_base);
  2807. #else
  2808. loadsegment(fs, svm->host.fs);
  2809. #endif
  2810. reload_tss(vcpu);
  2811. local_irq_disable();
  2812. stgi();
  2813. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  2814. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  2815. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  2816. vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
  2817. sync_cr8_to_lapic(vcpu);
  2818. svm->next_rip = 0;
  2819. /* if exit due to PF check for async PF */
  2820. if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
  2821. svm->apf_reason = kvm_read_and_reset_pf_reason();
  2822. if (npt_enabled) {
  2823. vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
  2824. vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
  2825. }
  2826. /*
  2827. * We need to handle MC intercepts here before the vcpu has a chance to
  2828. * change the physical cpu
  2829. */
  2830. if (unlikely(svm->vmcb->control.exit_code ==
  2831. SVM_EXIT_EXCP_BASE + MC_VECTOR))
  2832. svm_handle_mce(svm);
  2833. }
  2834. #undef R
  2835. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2836. {
  2837. struct vcpu_svm *svm = to_svm(vcpu);
  2838. svm->vmcb->save.cr3 = root;
  2839. force_new_asid(vcpu);
  2840. }
  2841. static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2842. {
  2843. struct vcpu_svm *svm = to_svm(vcpu);
  2844. svm->vmcb->control.nested_cr3 = root;
  2845. /* Also sync guest cr3 here in case we live migrate */
  2846. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  2847. force_new_asid(vcpu);
  2848. }
  2849. static int is_disabled(void)
  2850. {
  2851. u64 vm_cr;
  2852. rdmsrl(MSR_VM_CR, vm_cr);
  2853. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  2854. return 1;
  2855. return 0;
  2856. }
  2857. static void
  2858. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2859. {
  2860. /*
  2861. * Patch in the VMMCALL instruction:
  2862. */
  2863. hypercall[0] = 0x0f;
  2864. hypercall[1] = 0x01;
  2865. hypercall[2] = 0xd9;
  2866. }
  2867. static void svm_check_processor_compat(void *rtn)
  2868. {
  2869. *(int *)rtn = 0;
  2870. }
  2871. static bool svm_cpu_has_accelerated_tpr(void)
  2872. {
  2873. return false;
  2874. }
  2875. static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  2876. {
  2877. return 0;
  2878. }
  2879. static void svm_cpuid_update(struct kvm_vcpu *vcpu)
  2880. {
  2881. }
  2882. static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  2883. {
  2884. switch (func) {
  2885. case 0x00000001:
  2886. /* Mask out xsave bit as long as it is not supported by SVM */
  2887. entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
  2888. break;
  2889. case 0x80000001:
  2890. if (nested)
  2891. entry->ecx |= (1 << 2); /* Set SVM bit */
  2892. break;
  2893. case 0x8000000A:
  2894. entry->eax = 1; /* SVM revision 1 */
  2895. entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
  2896. ASID emulation to nested SVM */
  2897. entry->ecx = 0; /* Reserved */
  2898. entry->edx = 0; /* Per default do not support any
  2899. additional features */
  2900. /* Support next_rip if host supports it */
  2901. if (boot_cpu_has(X86_FEATURE_NRIPS))
  2902. entry->edx |= SVM_FEATURE_NRIP;
  2903. /* Support NPT for the guest if enabled */
  2904. if (npt_enabled)
  2905. entry->edx |= SVM_FEATURE_NPT;
  2906. break;
  2907. }
  2908. }
  2909. static const struct trace_print_flags svm_exit_reasons_str[] = {
  2910. { SVM_EXIT_READ_CR0, "read_cr0" },
  2911. { SVM_EXIT_READ_CR3, "read_cr3" },
  2912. { SVM_EXIT_READ_CR4, "read_cr4" },
  2913. { SVM_EXIT_READ_CR8, "read_cr8" },
  2914. { SVM_EXIT_WRITE_CR0, "write_cr0" },
  2915. { SVM_EXIT_WRITE_CR3, "write_cr3" },
  2916. { SVM_EXIT_WRITE_CR4, "write_cr4" },
  2917. { SVM_EXIT_WRITE_CR8, "write_cr8" },
  2918. { SVM_EXIT_READ_DR0, "read_dr0" },
  2919. { SVM_EXIT_READ_DR1, "read_dr1" },
  2920. { SVM_EXIT_READ_DR2, "read_dr2" },
  2921. { SVM_EXIT_READ_DR3, "read_dr3" },
  2922. { SVM_EXIT_WRITE_DR0, "write_dr0" },
  2923. { SVM_EXIT_WRITE_DR1, "write_dr1" },
  2924. { SVM_EXIT_WRITE_DR2, "write_dr2" },
  2925. { SVM_EXIT_WRITE_DR3, "write_dr3" },
  2926. { SVM_EXIT_WRITE_DR5, "write_dr5" },
  2927. { SVM_EXIT_WRITE_DR7, "write_dr7" },
  2928. { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
  2929. { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
  2930. { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
  2931. { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
  2932. { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
  2933. { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
  2934. { SVM_EXIT_INTR, "interrupt" },
  2935. { SVM_EXIT_NMI, "nmi" },
  2936. { SVM_EXIT_SMI, "smi" },
  2937. { SVM_EXIT_INIT, "init" },
  2938. { SVM_EXIT_VINTR, "vintr" },
  2939. { SVM_EXIT_CPUID, "cpuid" },
  2940. { SVM_EXIT_INVD, "invd" },
  2941. { SVM_EXIT_HLT, "hlt" },
  2942. { SVM_EXIT_INVLPG, "invlpg" },
  2943. { SVM_EXIT_INVLPGA, "invlpga" },
  2944. { SVM_EXIT_IOIO, "io" },
  2945. { SVM_EXIT_MSR, "msr" },
  2946. { SVM_EXIT_TASK_SWITCH, "task_switch" },
  2947. { SVM_EXIT_SHUTDOWN, "shutdown" },
  2948. { SVM_EXIT_VMRUN, "vmrun" },
  2949. { SVM_EXIT_VMMCALL, "hypercall" },
  2950. { SVM_EXIT_VMLOAD, "vmload" },
  2951. { SVM_EXIT_VMSAVE, "vmsave" },
  2952. { SVM_EXIT_STGI, "stgi" },
  2953. { SVM_EXIT_CLGI, "clgi" },
  2954. { SVM_EXIT_SKINIT, "skinit" },
  2955. { SVM_EXIT_WBINVD, "wbinvd" },
  2956. { SVM_EXIT_MONITOR, "monitor" },
  2957. { SVM_EXIT_MWAIT, "mwait" },
  2958. { SVM_EXIT_NPF, "npf" },
  2959. { -1, NULL }
  2960. };
  2961. static int svm_get_lpage_level(void)
  2962. {
  2963. return PT_PDPE_LEVEL;
  2964. }
  2965. static bool svm_rdtscp_supported(void)
  2966. {
  2967. return false;
  2968. }
  2969. static bool svm_has_wbinvd_exit(void)
  2970. {
  2971. return true;
  2972. }
  2973. static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
  2974. {
  2975. struct vcpu_svm *svm = to_svm(vcpu);
  2976. svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
  2977. if (is_nested(svm))
  2978. svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
  2979. update_cr0_intercept(svm);
  2980. }
  2981. static struct kvm_x86_ops svm_x86_ops = {
  2982. .cpu_has_kvm_support = has_svm,
  2983. .disabled_by_bios = is_disabled,
  2984. .hardware_setup = svm_hardware_setup,
  2985. .hardware_unsetup = svm_hardware_unsetup,
  2986. .check_processor_compatibility = svm_check_processor_compat,
  2987. .hardware_enable = svm_hardware_enable,
  2988. .hardware_disable = svm_hardware_disable,
  2989. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  2990. .vcpu_create = svm_create_vcpu,
  2991. .vcpu_free = svm_free_vcpu,
  2992. .vcpu_reset = svm_vcpu_reset,
  2993. .prepare_guest_switch = svm_prepare_guest_switch,
  2994. .vcpu_load = svm_vcpu_load,
  2995. .vcpu_put = svm_vcpu_put,
  2996. .set_guest_debug = svm_guest_debug,
  2997. .get_msr = svm_get_msr,
  2998. .set_msr = svm_set_msr,
  2999. .get_segment_base = svm_get_segment_base,
  3000. .get_segment = svm_get_segment,
  3001. .set_segment = svm_set_segment,
  3002. .get_cpl = svm_get_cpl,
  3003. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  3004. .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
  3005. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  3006. .set_cr0 = svm_set_cr0,
  3007. .set_cr3 = svm_set_cr3,
  3008. .set_cr4 = svm_set_cr4,
  3009. .set_efer = svm_set_efer,
  3010. .get_idt = svm_get_idt,
  3011. .set_idt = svm_set_idt,
  3012. .get_gdt = svm_get_gdt,
  3013. .set_gdt = svm_set_gdt,
  3014. .set_dr7 = svm_set_dr7,
  3015. .cache_reg = svm_cache_reg,
  3016. .get_rflags = svm_get_rflags,
  3017. .set_rflags = svm_set_rflags,
  3018. .fpu_activate = svm_fpu_activate,
  3019. .fpu_deactivate = svm_fpu_deactivate,
  3020. .tlb_flush = svm_flush_tlb,
  3021. .run = svm_vcpu_run,
  3022. .handle_exit = handle_exit,
  3023. .skip_emulated_instruction = skip_emulated_instruction,
  3024. .set_interrupt_shadow = svm_set_interrupt_shadow,
  3025. .get_interrupt_shadow = svm_get_interrupt_shadow,
  3026. .patch_hypercall = svm_patch_hypercall,
  3027. .set_irq = svm_set_irq,
  3028. .set_nmi = svm_inject_nmi,
  3029. .queue_exception = svm_queue_exception,
  3030. .cancel_injection = svm_cancel_injection,
  3031. .interrupt_allowed = svm_interrupt_allowed,
  3032. .nmi_allowed = svm_nmi_allowed,
  3033. .get_nmi_mask = svm_get_nmi_mask,
  3034. .set_nmi_mask = svm_set_nmi_mask,
  3035. .enable_nmi_window = enable_nmi_window,
  3036. .enable_irq_window = enable_irq_window,
  3037. .update_cr8_intercept = update_cr8_intercept,
  3038. .set_tss_addr = svm_set_tss_addr,
  3039. .get_tdp_level = get_npt_level,
  3040. .get_mt_mask = svm_get_mt_mask,
  3041. .exit_reasons_str = svm_exit_reasons_str,
  3042. .get_lpage_level = svm_get_lpage_level,
  3043. .cpuid_update = svm_cpuid_update,
  3044. .rdtscp_supported = svm_rdtscp_supported,
  3045. .set_supported_cpuid = svm_set_supported_cpuid,
  3046. .has_wbinvd_exit = svm_has_wbinvd_exit,
  3047. .write_tsc_offset = svm_write_tsc_offset,
  3048. .adjust_tsc_offset = svm_adjust_tsc_offset,
  3049. .set_tdp_cr3 = set_tdp_cr3,
  3050. };
  3051. static int __init svm_init(void)
  3052. {
  3053. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  3054. __alignof__(struct vcpu_svm), THIS_MODULE);
  3055. }
  3056. static void __exit svm_exit(void)
  3057. {
  3058. kvm_exit();
  3059. }
  3060. module_init(svm_init)
  3061. module_exit(svm_exit)