sky2.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/crc32.h>
  25. #include <linux/kernel.h>
  26. #include <linux/version.h>
  27. #include <linux/module.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/ip.h>
  34. #include <linux/tcp.h>
  35. #include <linux/in.h>
  36. #include <linux/delay.h>
  37. #include <linux/workqueue.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/prefetch.h>
  40. #include <linux/mii.h>
  41. #include <asm/irq.h>
  42. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  43. #define SKY2_VLAN_TAG_USED 1
  44. #endif
  45. #include "sky2.h"
  46. #define DRV_NAME "sky2"
  47. #define DRV_VERSION "1.10"
  48. #define PFX DRV_NAME " "
  49. /*
  50. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  51. * that are organized into three (receive, transmit, status) different rings
  52. * similar to Tigon3.
  53. */
  54. #define RX_LE_SIZE 1024
  55. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  56. #define RX_MAX_PENDING (RX_LE_SIZE/6 - 2)
  57. #define RX_DEF_PENDING RX_MAX_PENDING
  58. #define RX_SKB_ALIGN 8
  59. #define RX_BUF_WRITE 16
  60. #define TX_RING_SIZE 512
  61. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  62. #define TX_MIN_PENDING 64
  63. #define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
  64. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  65. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  66. #define TX_WATCHDOG (5 * HZ)
  67. #define NAPI_WEIGHT 64
  68. #define PHY_RETRIES 1000
  69. #define RING_NEXT(x,s) (((x)+1) & ((s)-1))
  70. static const u32 default_msg =
  71. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  72. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  73. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  74. static int debug = -1; /* defaults above */
  75. module_param(debug, int, 0);
  76. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  77. static int copybreak __read_mostly = 128;
  78. module_param(copybreak, int, 0);
  79. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  80. static int disable_msi = 0;
  81. module_param(disable_msi, int, 0);
  82. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  83. static int idle_timeout = 0;
  84. module_param(idle_timeout, int, 0);
  85. MODULE_PARM_DESC(idle_timeout, "Watchdog timer for lost interrupts (ms)");
  86. static const struct pci_device_id sky2_id_table[] = {
  87. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
  88. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
  89. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
  90. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */
  91. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B02) }, /* DGE-560SX */
  92. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
  93. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
  94. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
  103. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) },
  104. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4356) },
  105. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
  106. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
  107. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
  108. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
  109. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) },
  110. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4365) },
  111. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) },
  112. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) },
  113. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) },
  114. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4369) },
  115. { 0 }
  116. };
  117. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  118. /* Avoid conditionals by using array */
  119. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  120. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  121. static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
  122. /* This driver supports yukon2 chipset only */
  123. static const char *yukon2_name[] = {
  124. "XL", /* 0xb3 */
  125. "EC Ultra", /* 0xb4 */
  126. "UNKNOWN", /* 0xb5 */
  127. "EC", /* 0xb6 */
  128. "FE", /* 0xb7 */
  129. };
  130. /* Access to external PHY */
  131. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  132. {
  133. int i;
  134. gma_write16(hw, port, GM_SMI_DATA, val);
  135. gma_write16(hw, port, GM_SMI_CTRL,
  136. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  137. for (i = 0; i < PHY_RETRIES; i++) {
  138. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  139. return 0;
  140. udelay(1);
  141. }
  142. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  143. return -ETIMEDOUT;
  144. }
  145. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  146. {
  147. int i;
  148. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  149. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  150. for (i = 0; i < PHY_RETRIES; i++) {
  151. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  152. *val = gma_read16(hw, port, GM_SMI_DATA);
  153. return 0;
  154. }
  155. udelay(1);
  156. }
  157. return -ETIMEDOUT;
  158. }
  159. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  160. {
  161. u16 v;
  162. if (__gm_phy_read(hw, port, reg, &v) != 0)
  163. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  164. return v;
  165. }
  166. static void sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
  167. {
  168. u16 power_control;
  169. int vaux;
  170. pr_debug("sky2_set_power_state %d\n", state);
  171. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  172. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC);
  173. vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
  174. (power_control & PCI_PM_CAP_PME_D3cold);
  175. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL);
  176. power_control |= PCI_PM_CTRL_PME_STATUS;
  177. power_control &= ~(PCI_PM_CTRL_STATE_MASK);
  178. switch (state) {
  179. case PCI_D0:
  180. /* switch power to VCC (WA for VAUX problem) */
  181. sky2_write8(hw, B0_POWER_CTRL,
  182. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  183. /* disable Core Clock Division, */
  184. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  185. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  186. /* enable bits are inverted */
  187. sky2_write8(hw, B2_Y2_CLK_GATE,
  188. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  189. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  190. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  191. else
  192. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  193. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  194. u32 reg1;
  195. sky2_pci_write32(hw, PCI_DEV_REG3, 0);
  196. reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
  197. reg1 &= P_ASPM_CONTROL_MSK;
  198. sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
  199. sky2_pci_write32(hw, PCI_DEV_REG5, 0);
  200. }
  201. break;
  202. case PCI_D3hot:
  203. case PCI_D3cold:
  204. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  205. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  206. else
  207. /* enable bits are inverted */
  208. sky2_write8(hw, B2_Y2_CLK_GATE,
  209. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  210. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  211. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  212. /* switch power to VAUX */
  213. if (vaux && state != PCI_D3cold)
  214. sky2_write8(hw, B0_POWER_CTRL,
  215. (PC_VAUX_ENA | PC_VCC_ENA |
  216. PC_VAUX_ON | PC_VCC_OFF));
  217. break;
  218. default:
  219. printk(KERN_ERR PFX "Unknown power state %d\n", state);
  220. }
  221. sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
  222. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  223. }
  224. static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port)
  225. {
  226. u16 reg;
  227. /* disable all GMAC IRQ's */
  228. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  229. /* disable PHY IRQs */
  230. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  231. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  232. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  233. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  234. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  235. reg = gma_read16(hw, port, GM_RX_CTRL);
  236. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  237. gma_write16(hw, port, GM_RX_CTRL, reg);
  238. }
  239. /* flow control to advertise bits */
  240. static const u16 copper_fc_adv[] = {
  241. [FC_NONE] = 0,
  242. [FC_TX] = PHY_M_AN_ASP,
  243. [FC_RX] = PHY_M_AN_PC,
  244. [FC_BOTH] = PHY_M_AN_PC | PHY_M_AN_ASP,
  245. };
  246. /* flow control to advertise bits when using 1000BaseX */
  247. static const u16 fiber_fc_adv[] = {
  248. [FC_BOTH] = PHY_M_P_BOTH_MD_X,
  249. [FC_TX] = PHY_M_P_ASYM_MD_X,
  250. [FC_RX] = PHY_M_P_SYM_MD_X,
  251. [FC_NONE] = PHY_M_P_NO_PAUSE_X,
  252. };
  253. /* flow control to GMA disable bits */
  254. static const u16 gm_fc_disable[] = {
  255. [FC_NONE] = GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS,
  256. [FC_TX] = GM_GPCR_FC_RX_DIS,
  257. [FC_RX] = GM_GPCR_FC_TX_DIS,
  258. [FC_BOTH] = 0,
  259. };
  260. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  261. {
  262. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  263. u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg;
  264. if (sky2->autoneg == AUTONEG_ENABLE &&
  265. !(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  266. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  267. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  268. PHY_M_EC_MAC_S_MSK);
  269. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  270. if (hw->chip_id == CHIP_ID_YUKON_EC)
  271. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  272. else
  273. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  274. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  275. }
  276. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  277. if (sky2_is_copper(hw)) {
  278. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  279. /* enable automatic crossover */
  280. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  281. } else {
  282. /* disable energy detect */
  283. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  284. /* enable automatic crossover */
  285. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  286. if (sky2->autoneg == AUTONEG_ENABLE &&
  287. (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  288. ctrl &= ~PHY_M_PC_DSC_MSK;
  289. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  290. }
  291. }
  292. } else {
  293. /* workaround for deviation #4.88 (CRC errors) */
  294. /* disable Automatic Crossover */
  295. ctrl &= ~PHY_M_PC_MDIX_MSK;
  296. }
  297. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  298. /* special setup for PHY 88E1112 Fiber */
  299. if (hw->chip_id == CHIP_ID_YUKON_XL && !sky2_is_copper(hw)) {
  300. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  301. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  302. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  303. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  304. ctrl &= ~PHY_M_MAC_MD_MSK;
  305. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  306. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  307. if (hw->pmd_type == 'P') {
  308. /* select page 1 to access Fiber registers */
  309. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  310. /* for SFP-module set SIGDET polarity to low */
  311. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  312. ctrl |= PHY_M_FIB_SIGD_POL;
  313. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  314. }
  315. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  316. }
  317. ctrl = PHY_CT_RESET;
  318. ct1000 = 0;
  319. adv = PHY_AN_CSMA;
  320. reg = 0;
  321. if (sky2->autoneg == AUTONEG_ENABLE) {
  322. if (sky2_is_copper(hw)) {
  323. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  324. ct1000 |= PHY_M_1000C_AFD;
  325. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  326. ct1000 |= PHY_M_1000C_AHD;
  327. if (sky2->advertising & ADVERTISED_100baseT_Full)
  328. adv |= PHY_M_AN_100_FD;
  329. if (sky2->advertising & ADVERTISED_100baseT_Half)
  330. adv |= PHY_M_AN_100_HD;
  331. if (sky2->advertising & ADVERTISED_10baseT_Full)
  332. adv |= PHY_M_AN_10_FD;
  333. if (sky2->advertising & ADVERTISED_10baseT_Half)
  334. adv |= PHY_M_AN_10_HD;
  335. adv |= copper_fc_adv[sky2->flow_mode];
  336. } else { /* special defines for FIBER (88E1040S only) */
  337. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  338. adv |= PHY_M_AN_1000X_AFD;
  339. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  340. adv |= PHY_M_AN_1000X_AHD;
  341. adv |= fiber_fc_adv[sky2->flow_mode];
  342. }
  343. /* Restart Auto-negotiation */
  344. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  345. } else {
  346. /* forced speed/duplex settings */
  347. ct1000 = PHY_M_1000C_MSE;
  348. /* Disable auto update for duplex flow control and speed */
  349. reg |= GM_GPCR_AU_ALL_DIS;
  350. switch (sky2->speed) {
  351. case SPEED_1000:
  352. ctrl |= PHY_CT_SP1000;
  353. reg |= GM_GPCR_SPEED_1000;
  354. break;
  355. case SPEED_100:
  356. ctrl |= PHY_CT_SP100;
  357. reg |= GM_GPCR_SPEED_100;
  358. break;
  359. }
  360. if (sky2->duplex == DUPLEX_FULL) {
  361. reg |= GM_GPCR_DUP_FULL;
  362. ctrl |= PHY_CT_DUP_MD;
  363. } else if (sky2->speed < SPEED_1000)
  364. sky2->flow_mode = FC_NONE;
  365. reg |= gm_fc_disable[sky2->flow_mode];
  366. /* Forward pause packets to GMAC? */
  367. if (sky2->flow_mode & FC_RX)
  368. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  369. else
  370. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  371. }
  372. gma_write16(hw, port, GM_GP_CTRL, reg);
  373. if (hw->chip_id != CHIP_ID_YUKON_FE)
  374. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  375. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  376. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  377. /* Setup Phy LED's */
  378. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  379. ledover = 0;
  380. switch (hw->chip_id) {
  381. case CHIP_ID_YUKON_FE:
  382. /* on 88E3082 these bits are at 11..9 (shifted left) */
  383. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  384. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  385. /* delete ACT LED control bits */
  386. ctrl &= ~PHY_M_FELP_LED1_MSK;
  387. /* change ACT LED control to blink mode */
  388. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  389. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  390. break;
  391. case CHIP_ID_YUKON_XL:
  392. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  393. /* select page 3 to access LED control register */
  394. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  395. /* set LED Function Control register */
  396. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  397. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  398. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  399. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  400. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  401. /* set Polarity Control register */
  402. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  403. (PHY_M_POLC_LS1_P_MIX(4) |
  404. PHY_M_POLC_IS0_P_MIX(4) |
  405. PHY_M_POLC_LOS_CTRL(2) |
  406. PHY_M_POLC_INIT_CTRL(2) |
  407. PHY_M_POLC_STA1_CTRL(2) |
  408. PHY_M_POLC_STA0_CTRL(2)));
  409. /* restore page register */
  410. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  411. break;
  412. case CHIP_ID_YUKON_EC_U:
  413. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  414. /* select page 3 to access LED control register */
  415. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  416. /* set LED Function Control register */
  417. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  418. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  419. PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
  420. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  421. PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
  422. /* set Blink Rate in LED Timer Control Register */
  423. gm_phy_write(hw, port, PHY_MARV_INT_MASK,
  424. ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
  425. /* restore page register */
  426. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  427. break;
  428. default:
  429. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  430. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  431. /* turn off the Rx LED (LED_RX) */
  432. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  433. }
  434. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  435. /* apply fixes in PHY AFE */
  436. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  437. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
  438. /* increase differential signal amplitude in 10BASE-T */
  439. gm_phy_write(hw, port, 0x18, 0xaa99);
  440. gm_phy_write(hw, port, 0x17, 0x2011);
  441. /* fix for IEEE A/B Symmetry failure in 1000BASE-T */
  442. gm_phy_write(hw, port, 0x18, 0xa204);
  443. gm_phy_write(hw, port, 0x17, 0x2002);
  444. /* set page register to 0 */
  445. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  446. } else {
  447. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  448. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  449. /* turn on 100 Mbps LED (LED_LINK100) */
  450. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  451. }
  452. if (ledover)
  453. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  454. }
  455. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  456. if (sky2->autoneg == AUTONEG_ENABLE)
  457. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  458. else
  459. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  460. }
  461. static void sky2_phy_power(struct sky2_hw *hw, unsigned port, int onoff)
  462. {
  463. u32 reg1;
  464. static const u32 phy_power[]
  465. = { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD };
  466. /* looks like this XL is back asswards .. */
  467. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  468. onoff = !onoff;
  469. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  470. if (onoff)
  471. /* Turn off phy power saving */
  472. reg1 &= ~phy_power[port];
  473. else
  474. reg1 |= phy_power[port];
  475. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  476. sky2_pci_read32(hw, PCI_DEV_REG1);
  477. udelay(100);
  478. }
  479. /* Force a renegotiation */
  480. static void sky2_phy_reinit(struct sky2_port *sky2)
  481. {
  482. spin_lock_bh(&sky2->phy_lock);
  483. sky2_phy_init(sky2->hw, sky2->port);
  484. spin_unlock_bh(&sky2->phy_lock);
  485. }
  486. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  487. {
  488. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  489. u16 reg;
  490. int i;
  491. const u8 *addr = hw->dev[port]->dev_addr;
  492. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  493. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  494. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  495. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  496. /* WA DEV_472 -- looks like crossed wires on port 2 */
  497. /* clear GMAC 1 Control reset */
  498. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  499. do {
  500. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  501. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  502. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  503. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  504. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  505. }
  506. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  507. /* Enable Transmit FIFO Underrun */
  508. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  509. spin_lock_bh(&sky2->phy_lock);
  510. sky2_phy_init(hw, port);
  511. spin_unlock_bh(&sky2->phy_lock);
  512. /* MIB clear */
  513. reg = gma_read16(hw, port, GM_PHY_ADDR);
  514. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  515. for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
  516. gma_read16(hw, port, i);
  517. gma_write16(hw, port, GM_PHY_ADDR, reg);
  518. /* transmit control */
  519. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  520. /* receive control reg: unicast + multicast + no FCS */
  521. gma_write16(hw, port, GM_RX_CTRL,
  522. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  523. /* transmit flow control */
  524. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  525. /* transmit parameter */
  526. gma_write16(hw, port, GM_TX_PARAM,
  527. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  528. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  529. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  530. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  531. /* serial mode register */
  532. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  533. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  534. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  535. reg |= GM_SMOD_JUMBO_ENA;
  536. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  537. /* virtual address for data */
  538. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  539. /* physical address: used for pause frames */
  540. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  541. /* ignore counter overflows */
  542. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  543. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  544. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  545. /* Configure Rx MAC FIFO */
  546. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  547. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
  548. GMF_OPER_ON | GMF_RX_F_FL_ON);
  549. /* Flush Rx MAC FIFO on any flow control or error */
  550. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  551. /* Set threshold to 0xa (64 bytes) + 1 to workaround pause bug */
  552. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  553. /* Configure Tx MAC FIFO */
  554. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  555. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  556. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  557. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
  558. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  559. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  560. /* set Tx GMAC FIFO Almost Empty Threshold */
  561. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  562. /* Disable Store & Forward mode for TX */
  563. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  564. }
  565. }
  566. }
  567. /* Assign Ram Buffer allocation in units of 64bit (8 bytes) */
  568. static void sky2_ramset(struct sky2_hw *hw, u16 q, u32 start, u32 end)
  569. {
  570. pr_debug(PFX "q %d %#x %#x\n", q, start, end);
  571. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  572. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  573. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  574. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  575. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  576. if (q == Q_R1 || q == Q_R2) {
  577. u32 space = end - start + 1;
  578. u32 tp = space - space/4;
  579. /* On receive queue's set the thresholds
  580. * give receiver priority when > 3/4 full
  581. * send pause when down to 2K
  582. */
  583. sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
  584. sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
  585. tp = space - 2048/8;
  586. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  587. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  588. } else {
  589. /* Enable store & forward on Tx queue's because
  590. * Tx FIFO is only 1K on Yukon
  591. */
  592. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  593. }
  594. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  595. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  596. }
  597. /* Setup Bus Memory Interface */
  598. static void sky2_qset(struct sky2_hw *hw, u16 q)
  599. {
  600. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  601. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  602. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  603. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  604. }
  605. /* Setup prefetch unit registers. This is the interface between
  606. * hardware and driver list elements
  607. */
  608. static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  609. u64 addr, u32 last)
  610. {
  611. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  612. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  613. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  614. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  615. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  616. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  617. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  618. }
  619. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  620. {
  621. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  622. sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE);
  623. le->ctrl = 0;
  624. return le;
  625. }
  626. static inline struct tx_ring_info *tx_le_re(struct sky2_port *sky2,
  627. struct sky2_tx_le *le)
  628. {
  629. return sky2->tx_ring + (le - sky2->tx_le);
  630. }
  631. /* Update chip's next pointer */
  632. static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
  633. {
  634. q = Y2_QADDR(q, PREF_UNIT_PUT_IDX);
  635. wmb();
  636. sky2_write16(hw, q, idx);
  637. sky2_read16(hw, q);
  638. }
  639. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  640. {
  641. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  642. sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
  643. le->ctrl = 0;
  644. return le;
  645. }
  646. /* Return high part of DMA address (could be 32 or 64 bit) */
  647. static inline u32 high32(dma_addr_t a)
  648. {
  649. return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
  650. }
  651. /* Build description to hardware for one receive segment */
  652. static void sky2_rx_add(struct sky2_port *sky2, u8 op,
  653. dma_addr_t map, unsigned len)
  654. {
  655. struct sky2_rx_le *le;
  656. u32 hi = high32(map);
  657. if (sky2->rx_addr64 != hi) {
  658. le = sky2_next_rx(sky2);
  659. le->addr = cpu_to_le32(hi);
  660. le->opcode = OP_ADDR64 | HW_OWNER;
  661. sky2->rx_addr64 = high32(map + len);
  662. }
  663. le = sky2_next_rx(sky2);
  664. le->addr = cpu_to_le32((u32) map);
  665. le->length = cpu_to_le16(len);
  666. le->opcode = op | HW_OWNER;
  667. }
  668. /* Build description to hardware for one possibly fragmented skb */
  669. static void sky2_rx_submit(struct sky2_port *sky2,
  670. const struct rx_ring_info *re)
  671. {
  672. int i;
  673. sky2_rx_add(sky2, OP_PACKET, re->data_addr, sky2->rx_data_size);
  674. for (i = 0; i < skb_shinfo(re->skb)->nr_frags; i++)
  675. sky2_rx_add(sky2, OP_BUFFER, re->frag_addr[i], PAGE_SIZE);
  676. }
  677. static void sky2_rx_map_skb(struct pci_dev *pdev, struct rx_ring_info *re,
  678. unsigned size)
  679. {
  680. struct sk_buff *skb = re->skb;
  681. int i;
  682. re->data_addr = pci_map_single(pdev, skb->data, size, PCI_DMA_FROMDEVICE);
  683. pci_unmap_len_set(re, data_size, size);
  684. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  685. re->frag_addr[i] = pci_map_page(pdev,
  686. skb_shinfo(skb)->frags[i].page,
  687. skb_shinfo(skb)->frags[i].page_offset,
  688. skb_shinfo(skb)->frags[i].size,
  689. PCI_DMA_FROMDEVICE);
  690. }
  691. static void sky2_rx_unmap_skb(struct pci_dev *pdev, struct rx_ring_info *re)
  692. {
  693. struct sk_buff *skb = re->skb;
  694. int i;
  695. pci_unmap_single(pdev, re->data_addr, pci_unmap_len(re, data_size),
  696. PCI_DMA_FROMDEVICE);
  697. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  698. pci_unmap_page(pdev, re->frag_addr[i],
  699. skb_shinfo(skb)->frags[i].size,
  700. PCI_DMA_FROMDEVICE);
  701. }
  702. /* Tell chip where to start receive checksum.
  703. * Actually has two checksums, but set both same to avoid possible byte
  704. * order problems.
  705. */
  706. static void rx_set_checksum(struct sky2_port *sky2)
  707. {
  708. struct sky2_rx_le *le;
  709. le = sky2_next_rx(sky2);
  710. le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN);
  711. le->ctrl = 0;
  712. le->opcode = OP_TCPSTART | HW_OWNER;
  713. sky2_write32(sky2->hw,
  714. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  715. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  716. }
  717. /*
  718. * The RX Stop command will not work for Yukon-2 if the BMU does not
  719. * reach the end of packet and since we can't make sure that we have
  720. * incoming data, we must reset the BMU while it is not doing a DMA
  721. * transfer. Since it is possible that the RX path is still active,
  722. * the RX RAM buffer will be stopped first, so any possible incoming
  723. * data will not trigger a DMA. After the RAM buffer is stopped, the
  724. * BMU is polled until any DMA in progress is ended and only then it
  725. * will be reset.
  726. */
  727. static void sky2_rx_stop(struct sky2_port *sky2)
  728. {
  729. struct sky2_hw *hw = sky2->hw;
  730. unsigned rxq = rxqaddr[sky2->port];
  731. int i;
  732. /* disable the RAM Buffer receive queue */
  733. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  734. for (i = 0; i < 0xffff; i++)
  735. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  736. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  737. goto stopped;
  738. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  739. sky2->netdev->name);
  740. stopped:
  741. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  742. /* reset the Rx prefetch unit */
  743. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  744. }
  745. /* Clean out receive buffer area, assumes receiver hardware stopped */
  746. static void sky2_rx_clean(struct sky2_port *sky2)
  747. {
  748. unsigned i;
  749. memset(sky2->rx_le, 0, RX_LE_BYTES);
  750. for (i = 0; i < sky2->rx_pending; i++) {
  751. struct rx_ring_info *re = sky2->rx_ring + i;
  752. if (re->skb) {
  753. sky2_rx_unmap_skb(sky2->hw->pdev, re);
  754. kfree_skb(re->skb);
  755. re->skb = NULL;
  756. }
  757. }
  758. }
  759. /* Basic MII support */
  760. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  761. {
  762. struct mii_ioctl_data *data = if_mii(ifr);
  763. struct sky2_port *sky2 = netdev_priv(dev);
  764. struct sky2_hw *hw = sky2->hw;
  765. int err = -EOPNOTSUPP;
  766. if (!netif_running(dev))
  767. return -ENODEV; /* Phy still in reset */
  768. switch (cmd) {
  769. case SIOCGMIIPHY:
  770. data->phy_id = PHY_ADDR_MARV;
  771. /* fallthru */
  772. case SIOCGMIIREG: {
  773. u16 val = 0;
  774. spin_lock_bh(&sky2->phy_lock);
  775. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  776. spin_unlock_bh(&sky2->phy_lock);
  777. data->val_out = val;
  778. break;
  779. }
  780. case SIOCSMIIREG:
  781. if (!capable(CAP_NET_ADMIN))
  782. return -EPERM;
  783. spin_lock_bh(&sky2->phy_lock);
  784. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  785. data->val_in);
  786. spin_unlock_bh(&sky2->phy_lock);
  787. break;
  788. }
  789. return err;
  790. }
  791. #ifdef SKY2_VLAN_TAG_USED
  792. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  793. {
  794. struct sky2_port *sky2 = netdev_priv(dev);
  795. struct sky2_hw *hw = sky2->hw;
  796. u16 port = sky2->port;
  797. netif_tx_lock_bh(dev);
  798. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  799. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  800. sky2->vlgrp = grp;
  801. netif_tx_unlock_bh(dev);
  802. }
  803. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  804. {
  805. struct sky2_port *sky2 = netdev_priv(dev);
  806. struct sky2_hw *hw = sky2->hw;
  807. u16 port = sky2->port;
  808. netif_tx_lock_bh(dev);
  809. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  810. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  811. if (sky2->vlgrp)
  812. sky2->vlgrp->vlan_devices[vid] = NULL;
  813. netif_tx_unlock_bh(dev);
  814. }
  815. #endif
  816. /*
  817. * Allocate an skb for receiving. If the MTU is large enough
  818. * make the skb non-linear with a fragment list of pages.
  819. *
  820. * It appears the hardware has a bug in the FIFO logic that
  821. * cause it to hang if the FIFO gets overrun and the receive buffer
  822. * is not 64 byte aligned. The buffer returned from netdev_alloc_skb is
  823. * aligned except if slab debugging is enabled.
  824. */
  825. static struct sk_buff *sky2_rx_alloc(struct sky2_port *sky2)
  826. {
  827. struct sk_buff *skb;
  828. unsigned long p;
  829. int i;
  830. skb = netdev_alloc_skb(sky2->netdev, sky2->rx_data_size + RX_SKB_ALIGN);
  831. if (!skb)
  832. goto nomem;
  833. p = (unsigned long) skb->data;
  834. skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p);
  835. for (i = 0; i < sky2->rx_nfrags; i++) {
  836. struct page *page = alloc_page(GFP_ATOMIC);
  837. if (!page)
  838. goto free_partial;
  839. skb_fill_page_desc(skb, i, page, 0, PAGE_SIZE);
  840. }
  841. return skb;
  842. free_partial:
  843. kfree_skb(skb);
  844. nomem:
  845. return NULL;
  846. }
  847. /*
  848. * Allocate and setup receiver buffer pool.
  849. * Normal case this ends up creating one list element for skb
  850. * in the receive ring. Worst case if using large MTU and each
  851. * allocation falls on a different 64 bit region, that results
  852. * in 6 list elements per ring entry.
  853. * One element is used for checksum enable/disable, and one
  854. * extra to avoid wrap.
  855. */
  856. static int sky2_rx_start(struct sky2_port *sky2)
  857. {
  858. struct sky2_hw *hw = sky2->hw;
  859. struct rx_ring_info *re;
  860. unsigned rxq = rxqaddr[sky2->port];
  861. unsigned i, size, space, thresh;
  862. sky2->rx_put = sky2->rx_next = 0;
  863. sky2_qset(hw, rxq);
  864. if (hw->chip_id == CHIP_ID_YUKON_EC_U &&
  865. (hw->chip_rev == CHIP_REV_YU_EC_U_A1 || hw->chip_rev == CHIP_REV_YU_EC_U_B0)) {
  866. /* MAC Rx RAM Read is controlled by hardware */
  867. sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
  868. }
  869. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  870. rx_set_checksum(sky2);
  871. /* Space needed for frame data + headers rounded up */
  872. size = ALIGN(sky2->netdev->mtu + ETH_HLEN + VLAN_HLEN, 8)
  873. + 8;
  874. /* Stopping point for hardware truncation */
  875. thresh = (size - 8) / sizeof(u32);
  876. /* Account for overhead of skb - to avoid order > 0 allocation */
  877. space = SKB_DATA_ALIGN(size) + NET_SKB_PAD
  878. + sizeof(struct skb_shared_info);
  879. sky2->rx_nfrags = space >> PAGE_SHIFT;
  880. BUG_ON(sky2->rx_nfrags > ARRAY_SIZE(re->frag_addr));
  881. if (sky2->rx_nfrags != 0) {
  882. /* Compute residue after pages */
  883. space = sky2->rx_nfrags << PAGE_SHIFT;
  884. if (space < size)
  885. size -= space;
  886. else
  887. size = 0;
  888. /* Optimize to handle small packets and headers */
  889. if (size < copybreak)
  890. size = copybreak;
  891. if (size < ETH_HLEN)
  892. size = ETH_HLEN;
  893. }
  894. sky2->rx_data_size = size;
  895. /* Fill Rx ring */
  896. for (i = 0; i < sky2->rx_pending; i++) {
  897. re = sky2->rx_ring + i;
  898. re->skb = sky2_rx_alloc(sky2);
  899. if (!re->skb)
  900. goto nomem;
  901. sky2_rx_map_skb(hw->pdev, re, sky2->rx_data_size);
  902. sky2_rx_submit(sky2, re);
  903. }
  904. /*
  905. * The receiver hangs if it receives frames larger than the
  906. * packet buffer. As a workaround, truncate oversize frames, but
  907. * the register is limited to 9 bits, so if you do frames > 2052
  908. * you better get the MTU right!
  909. */
  910. if (thresh > 0x1ff)
  911. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
  912. else {
  913. sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
  914. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
  915. }
  916. /* Tell chip about available buffers */
  917. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  918. return 0;
  919. nomem:
  920. sky2_rx_clean(sky2);
  921. return -ENOMEM;
  922. }
  923. /* Bring up network interface. */
  924. static int sky2_up(struct net_device *dev)
  925. {
  926. struct sky2_port *sky2 = netdev_priv(dev);
  927. struct sky2_hw *hw = sky2->hw;
  928. unsigned port = sky2->port;
  929. u32 ramsize, rxspace, imask;
  930. int cap, err = -ENOMEM;
  931. struct net_device *otherdev = hw->dev[sky2->port^1];
  932. /*
  933. * On dual port PCI-X card, there is an problem where status
  934. * can be received out of order due to split transactions
  935. */
  936. if (otherdev && netif_running(otherdev) &&
  937. (cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
  938. struct sky2_port *osky2 = netdev_priv(otherdev);
  939. u16 cmd;
  940. cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
  941. cmd &= ~PCI_X_CMD_MAX_SPLIT;
  942. sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
  943. sky2->rx_csum = 0;
  944. osky2->rx_csum = 0;
  945. }
  946. if (netif_msg_ifup(sky2))
  947. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  948. /* must be power of 2 */
  949. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  950. TX_RING_SIZE *
  951. sizeof(struct sky2_tx_le),
  952. &sky2->tx_le_map);
  953. if (!sky2->tx_le)
  954. goto err_out;
  955. sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
  956. GFP_KERNEL);
  957. if (!sky2->tx_ring)
  958. goto err_out;
  959. sky2->tx_prod = sky2->tx_cons = 0;
  960. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  961. &sky2->rx_le_map);
  962. if (!sky2->rx_le)
  963. goto err_out;
  964. memset(sky2->rx_le, 0, RX_LE_BYTES);
  965. sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct rx_ring_info),
  966. GFP_KERNEL);
  967. if (!sky2->rx_ring)
  968. goto err_out;
  969. sky2_phy_power(hw, port, 1);
  970. sky2_mac_init(hw, port);
  971. /* Determine available ram buffer space in qwords. */
  972. ramsize = sky2_read8(hw, B2_E_0) * 4096/8;
  973. if (ramsize > 6*1024/8)
  974. rxspace = ramsize - (ramsize + 2) / 3;
  975. else
  976. rxspace = ramsize / 2;
  977. sky2_ramset(hw, rxqaddr[port], 0, rxspace-1);
  978. sky2_ramset(hw, txqaddr[port], rxspace, ramsize-1);
  979. /* Make sure SyncQ is disabled */
  980. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  981. RB_RST_SET);
  982. sky2_qset(hw, txqaddr[port]);
  983. /* Set almost empty threshold */
  984. if (hw->chip_id == CHIP_ID_YUKON_EC_U
  985. && hw->chip_rev == CHIP_REV_YU_EC_U_A0)
  986. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  987. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  988. TX_RING_SIZE - 1);
  989. err = sky2_rx_start(sky2);
  990. if (err)
  991. goto err_out;
  992. /* Enable interrupts from phy/mac for port */
  993. imask = sky2_read32(hw, B0_IMSK);
  994. imask |= portirq_msk[port];
  995. sky2_write32(hw, B0_IMSK, imask);
  996. return 0;
  997. err_out:
  998. if (sky2->rx_le) {
  999. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1000. sky2->rx_le, sky2->rx_le_map);
  1001. sky2->rx_le = NULL;
  1002. }
  1003. if (sky2->tx_le) {
  1004. pci_free_consistent(hw->pdev,
  1005. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1006. sky2->tx_le, sky2->tx_le_map);
  1007. sky2->tx_le = NULL;
  1008. }
  1009. kfree(sky2->tx_ring);
  1010. kfree(sky2->rx_ring);
  1011. sky2->tx_ring = NULL;
  1012. sky2->rx_ring = NULL;
  1013. return err;
  1014. }
  1015. /* Modular subtraction in ring */
  1016. static inline int tx_dist(unsigned tail, unsigned head)
  1017. {
  1018. return (head - tail) & (TX_RING_SIZE - 1);
  1019. }
  1020. /* Number of list elements available for next tx */
  1021. static inline int tx_avail(const struct sky2_port *sky2)
  1022. {
  1023. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  1024. }
  1025. /* Estimate of number of transmit list elements required */
  1026. static unsigned tx_le_req(const struct sk_buff *skb)
  1027. {
  1028. unsigned count;
  1029. count = sizeof(dma_addr_t) / sizeof(u32);
  1030. count += skb_shinfo(skb)->nr_frags * count;
  1031. if (skb_is_gso(skb))
  1032. ++count;
  1033. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1034. ++count;
  1035. return count;
  1036. }
  1037. /*
  1038. * Put one packet in ring for transmit.
  1039. * A single packet can generate multiple list elements, and
  1040. * the number of ring elements will probably be less than the number
  1041. * of list elements used.
  1042. */
  1043. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1044. {
  1045. struct sky2_port *sky2 = netdev_priv(dev);
  1046. struct sky2_hw *hw = sky2->hw;
  1047. struct sky2_tx_le *le = NULL;
  1048. struct tx_ring_info *re;
  1049. unsigned i, len;
  1050. dma_addr_t mapping;
  1051. u32 addr64;
  1052. u16 mss;
  1053. u8 ctrl;
  1054. if (unlikely(tx_avail(sky2) < tx_le_req(skb)))
  1055. return NETDEV_TX_BUSY;
  1056. if (unlikely(netif_msg_tx_queued(sky2)))
  1057. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  1058. dev->name, sky2->tx_prod, skb->len);
  1059. len = skb_headlen(skb);
  1060. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1061. addr64 = high32(mapping);
  1062. /* Send high bits if changed or crosses boundary */
  1063. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  1064. le = get_tx_le(sky2);
  1065. le->addr = cpu_to_le32(addr64);
  1066. le->opcode = OP_ADDR64 | HW_OWNER;
  1067. sky2->tx_addr64 = high32(mapping + len);
  1068. }
  1069. /* Check for TCP Segmentation Offload */
  1070. mss = skb_shinfo(skb)->gso_size;
  1071. if (mss != 0) {
  1072. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  1073. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  1074. mss += ETH_HLEN;
  1075. if (mss != sky2->tx_last_mss) {
  1076. le = get_tx_le(sky2);
  1077. le->addr = cpu_to_le32(mss);
  1078. le->opcode = OP_LRGLEN | HW_OWNER;
  1079. sky2->tx_last_mss = mss;
  1080. }
  1081. }
  1082. ctrl = 0;
  1083. #ifdef SKY2_VLAN_TAG_USED
  1084. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  1085. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  1086. if (!le) {
  1087. le = get_tx_le(sky2);
  1088. le->addr = 0;
  1089. le->opcode = OP_VLAN|HW_OWNER;
  1090. } else
  1091. le->opcode |= OP_VLAN;
  1092. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  1093. ctrl |= INS_VLAN;
  1094. }
  1095. #endif
  1096. /* Handle TCP checksum offload */
  1097. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1098. unsigned offset = skb->h.raw - skb->data;
  1099. u32 tcpsum;
  1100. tcpsum = offset << 16; /* sum start */
  1101. tcpsum |= offset + skb->csum_offset; /* sum write */
  1102. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  1103. if (skb->nh.iph->protocol == IPPROTO_UDP)
  1104. ctrl |= UDPTCP;
  1105. if (tcpsum != sky2->tx_tcpsum) {
  1106. sky2->tx_tcpsum = tcpsum;
  1107. le = get_tx_le(sky2);
  1108. le->addr = cpu_to_le32(tcpsum);
  1109. le->length = 0; /* initial checksum value */
  1110. le->ctrl = 1; /* one packet */
  1111. le->opcode = OP_TCPLISW | HW_OWNER;
  1112. }
  1113. }
  1114. le = get_tx_le(sky2);
  1115. le->addr = cpu_to_le32((u32) mapping);
  1116. le->length = cpu_to_le16(len);
  1117. le->ctrl = ctrl;
  1118. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  1119. re = tx_le_re(sky2, le);
  1120. re->skb = skb;
  1121. pci_unmap_addr_set(re, mapaddr, mapping);
  1122. pci_unmap_len_set(re, maplen, len);
  1123. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1124. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1125. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1126. frag->size, PCI_DMA_TODEVICE);
  1127. addr64 = high32(mapping);
  1128. if (addr64 != sky2->tx_addr64) {
  1129. le = get_tx_le(sky2);
  1130. le->addr = cpu_to_le32(addr64);
  1131. le->ctrl = 0;
  1132. le->opcode = OP_ADDR64 | HW_OWNER;
  1133. sky2->tx_addr64 = addr64;
  1134. }
  1135. le = get_tx_le(sky2);
  1136. le->addr = cpu_to_le32((u32) mapping);
  1137. le->length = cpu_to_le16(frag->size);
  1138. le->ctrl = ctrl;
  1139. le->opcode = OP_BUFFER | HW_OWNER;
  1140. re = tx_le_re(sky2, le);
  1141. re->skb = skb;
  1142. pci_unmap_addr_set(re, mapaddr, mapping);
  1143. pci_unmap_len_set(re, maplen, frag->size);
  1144. }
  1145. le->ctrl |= EOP;
  1146. if (tx_avail(sky2) <= MAX_SKB_TX_LE)
  1147. netif_stop_queue(dev);
  1148. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
  1149. dev->trans_start = jiffies;
  1150. return NETDEV_TX_OK;
  1151. }
  1152. /*
  1153. * Free ring elements from starting at tx_cons until "done"
  1154. *
  1155. * NB: the hardware will tell us about partial completion of multi-part
  1156. * buffers so make sure not to free skb to early.
  1157. */
  1158. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1159. {
  1160. struct net_device *dev = sky2->netdev;
  1161. struct pci_dev *pdev = sky2->hw->pdev;
  1162. unsigned idx;
  1163. BUG_ON(done >= TX_RING_SIZE);
  1164. for (idx = sky2->tx_cons; idx != done;
  1165. idx = RING_NEXT(idx, TX_RING_SIZE)) {
  1166. struct sky2_tx_le *le = sky2->tx_le + idx;
  1167. struct tx_ring_info *re = sky2->tx_ring + idx;
  1168. switch(le->opcode & ~HW_OWNER) {
  1169. case OP_LARGESEND:
  1170. case OP_PACKET:
  1171. pci_unmap_single(pdev,
  1172. pci_unmap_addr(re, mapaddr),
  1173. pci_unmap_len(re, maplen),
  1174. PCI_DMA_TODEVICE);
  1175. break;
  1176. case OP_BUFFER:
  1177. pci_unmap_page(pdev, pci_unmap_addr(re, mapaddr),
  1178. pci_unmap_len(re, maplen),
  1179. PCI_DMA_TODEVICE);
  1180. break;
  1181. }
  1182. if (le->ctrl & EOP) {
  1183. if (unlikely(netif_msg_tx_done(sky2)))
  1184. printk(KERN_DEBUG "%s: tx done %u\n",
  1185. dev->name, idx);
  1186. dev_kfree_skb_any(re->skb);
  1187. }
  1188. le->opcode = 0; /* paranoia */
  1189. }
  1190. sky2->tx_cons = idx;
  1191. if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
  1192. netif_wake_queue(dev);
  1193. }
  1194. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1195. static void sky2_tx_clean(struct net_device *dev)
  1196. {
  1197. struct sky2_port *sky2 = netdev_priv(dev);
  1198. netif_tx_lock_bh(dev);
  1199. sky2_tx_complete(sky2, sky2->tx_prod);
  1200. netif_tx_unlock_bh(dev);
  1201. }
  1202. /* Network shutdown */
  1203. static int sky2_down(struct net_device *dev)
  1204. {
  1205. struct sky2_port *sky2 = netdev_priv(dev);
  1206. struct sky2_hw *hw = sky2->hw;
  1207. unsigned port = sky2->port;
  1208. u16 ctrl;
  1209. u32 imask;
  1210. /* Never really got started! */
  1211. if (!sky2->tx_le)
  1212. return 0;
  1213. if (netif_msg_ifdown(sky2))
  1214. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1215. /* Stop more packets from being queued */
  1216. netif_stop_queue(dev);
  1217. /* Disable port IRQ */
  1218. imask = sky2_read32(hw, B0_IMSK);
  1219. imask &= ~portirq_msk[port];
  1220. sky2_write32(hw, B0_IMSK, imask);
  1221. sky2_gmac_reset(hw, port);
  1222. /* Stop transmitter */
  1223. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1224. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1225. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1226. RB_RST_SET | RB_DIS_OP_MD);
  1227. /* WA for dev. #4.209 */
  1228. if (hw->chip_id == CHIP_ID_YUKON_EC_U
  1229. && (hw->chip_rev == CHIP_REV_YU_EC_U_A1 || hw->chip_rev == CHIP_REV_YU_EC_U_B0))
  1230. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
  1231. sky2->speed != SPEED_1000 ?
  1232. TX_STFW_ENA : TX_STFW_DIS);
  1233. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1234. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1235. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1236. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1237. /* Workaround shared GMAC reset */
  1238. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1239. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1240. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1241. /* Disable Force Sync bit and Enable Alloc bit */
  1242. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1243. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1244. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1245. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1246. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1247. /* Reset the PCI FIFO of the async Tx queue */
  1248. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1249. BMU_RST_SET | BMU_FIFO_RST);
  1250. /* Reset the Tx prefetch units */
  1251. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1252. PREF_UNIT_RST_SET);
  1253. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1254. sky2_rx_stop(sky2);
  1255. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1256. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1257. sky2_phy_power(hw, port, 0);
  1258. /* turn off LED's */
  1259. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1260. synchronize_irq(hw->pdev->irq);
  1261. sky2_tx_clean(dev);
  1262. sky2_rx_clean(sky2);
  1263. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1264. sky2->rx_le, sky2->rx_le_map);
  1265. kfree(sky2->rx_ring);
  1266. pci_free_consistent(hw->pdev,
  1267. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1268. sky2->tx_le, sky2->tx_le_map);
  1269. kfree(sky2->tx_ring);
  1270. sky2->tx_le = NULL;
  1271. sky2->rx_le = NULL;
  1272. sky2->rx_ring = NULL;
  1273. sky2->tx_ring = NULL;
  1274. return 0;
  1275. }
  1276. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1277. {
  1278. if (!sky2_is_copper(hw))
  1279. return SPEED_1000;
  1280. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1281. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1282. switch (aux & PHY_M_PS_SPEED_MSK) {
  1283. case PHY_M_PS_SPEED_1000:
  1284. return SPEED_1000;
  1285. case PHY_M_PS_SPEED_100:
  1286. return SPEED_100;
  1287. default:
  1288. return SPEED_10;
  1289. }
  1290. }
  1291. static void sky2_link_up(struct sky2_port *sky2)
  1292. {
  1293. struct sky2_hw *hw = sky2->hw;
  1294. unsigned port = sky2->port;
  1295. u16 reg;
  1296. static const char *fc_name[] = {
  1297. [FC_NONE] = "none",
  1298. [FC_TX] = "tx",
  1299. [FC_RX] = "rx",
  1300. [FC_BOTH] = "both",
  1301. };
  1302. /* enable Rx/Tx */
  1303. reg = gma_read16(hw, port, GM_GP_CTRL);
  1304. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1305. gma_write16(hw, port, GM_GP_CTRL, reg);
  1306. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1307. netif_carrier_on(sky2->netdev);
  1308. netif_wake_queue(sky2->netdev);
  1309. /* Turn on link LED */
  1310. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1311. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1312. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) {
  1313. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1314. u16 led = PHY_M_LEDC_LOS_CTRL(1); /* link active */
  1315. switch(sky2->speed) {
  1316. case SPEED_10:
  1317. led |= PHY_M_LEDC_INIT_CTRL(7);
  1318. break;
  1319. case SPEED_100:
  1320. led |= PHY_M_LEDC_STA1_CTRL(7);
  1321. break;
  1322. case SPEED_1000:
  1323. led |= PHY_M_LEDC_STA0_CTRL(7);
  1324. break;
  1325. }
  1326. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1327. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, led);
  1328. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1329. }
  1330. if (netif_msg_link(sky2))
  1331. printk(KERN_INFO PFX
  1332. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1333. sky2->netdev->name, sky2->speed,
  1334. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1335. fc_name[sky2->flow_status]);
  1336. }
  1337. static void sky2_link_down(struct sky2_port *sky2)
  1338. {
  1339. struct sky2_hw *hw = sky2->hw;
  1340. unsigned port = sky2->port;
  1341. u16 reg;
  1342. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1343. reg = gma_read16(hw, port, GM_GP_CTRL);
  1344. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1345. gma_write16(hw, port, GM_GP_CTRL, reg);
  1346. if (sky2->flow_status == FC_RX) {
  1347. /* restore Asymmetric Pause bit */
  1348. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1349. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1350. | PHY_M_AN_ASP);
  1351. }
  1352. netif_carrier_off(sky2->netdev);
  1353. netif_stop_queue(sky2->netdev);
  1354. /* Turn on link LED */
  1355. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1356. if (netif_msg_link(sky2))
  1357. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1358. sky2_phy_init(hw, port);
  1359. }
  1360. static enum flow_control sky2_flow(int rx, int tx)
  1361. {
  1362. if (rx)
  1363. return tx ? FC_BOTH : FC_RX;
  1364. else
  1365. return tx ? FC_TX : FC_NONE;
  1366. }
  1367. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1368. {
  1369. struct sky2_hw *hw = sky2->hw;
  1370. unsigned port = sky2->port;
  1371. u16 lpa;
  1372. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1373. if (lpa & PHY_M_AN_RF) {
  1374. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1375. return -1;
  1376. }
  1377. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1378. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1379. sky2->netdev->name);
  1380. return -1;
  1381. }
  1382. sky2->speed = sky2_phy_speed(hw, aux);
  1383. sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1384. /* Pause bits are offset (9..8) */
  1385. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)
  1386. aux >>= 6;
  1387. sky2->flow_status = sky2_flow(aux & PHY_M_PS_RX_P_EN,
  1388. aux & PHY_M_PS_TX_P_EN);
  1389. if (sky2->duplex == DUPLEX_HALF && sky2->speed < SPEED_1000
  1390. && hw->chip_id != CHIP_ID_YUKON_EC_U)
  1391. sky2->flow_status = FC_NONE;
  1392. if (aux & PHY_M_PS_RX_P_EN)
  1393. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1394. else
  1395. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1396. return 0;
  1397. }
  1398. /* Interrupt from PHY */
  1399. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1400. {
  1401. struct net_device *dev = hw->dev[port];
  1402. struct sky2_port *sky2 = netdev_priv(dev);
  1403. u16 istatus, phystat;
  1404. if (!netif_running(dev))
  1405. return;
  1406. spin_lock(&sky2->phy_lock);
  1407. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1408. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1409. if (netif_msg_intr(sky2))
  1410. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1411. sky2->netdev->name, istatus, phystat);
  1412. if (sky2->autoneg == AUTONEG_ENABLE && (istatus & PHY_M_IS_AN_COMPL)) {
  1413. if (sky2_autoneg_done(sky2, phystat) == 0)
  1414. sky2_link_up(sky2);
  1415. goto out;
  1416. }
  1417. if (istatus & PHY_M_IS_LSP_CHANGE)
  1418. sky2->speed = sky2_phy_speed(hw, phystat);
  1419. if (istatus & PHY_M_IS_DUP_CHANGE)
  1420. sky2->duplex =
  1421. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1422. if (istatus & PHY_M_IS_LST_CHANGE) {
  1423. if (phystat & PHY_M_PS_LINK_UP)
  1424. sky2_link_up(sky2);
  1425. else
  1426. sky2_link_down(sky2);
  1427. }
  1428. out:
  1429. spin_unlock(&sky2->phy_lock);
  1430. }
  1431. /* Transmit timeout is only called if we are running, carries is up
  1432. * and tx queue is full (stopped).
  1433. */
  1434. static void sky2_tx_timeout(struct net_device *dev)
  1435. {
  1436. struct sky2_port *sky2 = netdev_priv(dev);
  1437. struct sky2_hw *hw = sky2->hw;
  1438. unsigned txq = txqaddr[sky2->port];
  1439. u16 report, done;
  1440. if (netif_msg_timer(sky2))
  1441. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1442. report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
  1443. done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
  1444. printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
  1445. dev->name,
  1446. sky2->tx_cons, sky2->tx_prod, report, done);
  1447. if (report != done) {
  1448. printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
  1449. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1450. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1451. } else if (report != sky2->tx_cons) {
  1452. printk(KERN_INFO PFX "status report lost?\n");
  1453. netif_tx_lock_bh(dev);
  1454. sky2_tx_complete(sky2, report);
  1455. netif_tx_unlock_bh(dev);
  1456. } else {
  1457. printk(KERN_INFO PFX "hardware hung? flushing\n");
  1458. sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
  1459. sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  1460. sky2_tx_clean(dev);
  1461. sky2_qset(hw, txq);
  1462. sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
  1463. }
  1464. }
  1465. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1466. {
  1467. struct sky2_port *sky2 = netdev_priv(dev);
  1468. struct sky2_hw *hw = sky2->hw;
  1469. int err;
  1470. u16 ctl, mode;
  1471. u32 imask;
  1472. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1473. return -EINVAL;
  1474. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1475. return -EINVAL;
  1476. if (!netif_running(dev)) {
  1477. dev->mtu = new_mtu;
  1478. return 0;
  1479. }
  1480. imask = sky2_read32(hw, B0_IMSK);
  1481. sky2_write32(hw, B0_IMSK, 0);
  1482. dev->trans_start = jiffies; /* prevent tx timeout */
  1483. netif_stop_queue(dev);
  1484. netif_poll_disable(hw->dev[0]);
  1485. synchronize_irq(hw->pdev->irq);
  1486. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1487. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1488. sky2_rx_stop(sky2);
  1489. sky2_rx_clean(sky2);
  1490. dev->mtu = new_mtu;
  1491. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1492. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1493. if (dev->mtu > ETH_DATA_LEN)
  1494. mode |= GM_SMOD_JUMBO_ENA;
  1495. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1496. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1497. err = sky2_rx_start(sky2);
  1498. sky2_write32(hw, B0_IMSK, imask);
  1499. if (err)
  1500. dev_close(dev);
  1501. else {
  1502. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1503. netif_poll_enable(hw->dev[0]);
  1504. netif_wake_queue(dev);
  1505. }
  1506. return err;
  1507. }
  1508. /* For small just reuse existing skb for next receive */
  1509. static struct sk_buff *receive_copy(struct sky2_port *sky2,
  1510. const struct rx_ring_info *re,
  1511. unsigned length)
  1512. {
  1513. struct sk_buff *skb;
  1514. skb = netdev_alloc_skb(sky2->netdev, length + 2);
  1515. if (likely(skb)) {
  1516. skb_reserve(skb, 2);
  1517. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->data_addr,
  1518. length, PCI_DMA_FROMDEVICE);
  1519. memcpy(skb->data, re->skb->data, length);
  1520. skb->ip_summed = re->skb->ip_summed;
  1521. skb->csum = re->skb->csum;
  1522. pci_dma_sync_single_for_device(sky2->hw->pdev, re->data_addr,
  1523. length, PCI_DMA_FROMDEVICE);
  1524. re->skb->ip_summed = CHECKSUM_NONE;
  1525. skb_put(skb, length);
  1526. }
  1527. return skb;
  1528. }
  1529. /* Adjust length of skb with fragments to match received data */
  1530. static void skb_put_frags(struct sk_buff *skb, unsigned int hdr_space,
  1531. unsigned int length)
  1532. {
  1533. int i, num_frags;
  1534. unsigned int size;
  1535. /* put header into skb */
  1536. size = min(length, hdr_space);
  1537. skb->tail += size;
  1538. skb->len += size;
  1539. length -= size;
  1540. num_frags = skb_shinfo(skb)->nr_frags;
  1541. for (i = 0; i < num_frags; i++) {
  1542. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1543. if (length == 0) {
  1544. /* don't need this page */
  1545. __free_page(frag->page);
  1546. --skb_shinfo(skb)->nr_frags;
  1547. } else {
  1548. size = min(length, (unsigned) PAGE_SIZE);
  1549. frag->size = size;
  1550. skb->data_len += size;
  1551. skb->truesize += size;
  1552. skb->len += size;
  1553. length -= size;
  1554. }
  1555. }
  1556. }
  1557. /* Normal packet - take skb from ring element and put in a new one */
  1558. static struct sk_buff *receive_new(struct sky2_port *sky2,
  1559. struct rx_ring_info *re,
  1560. unsigned int length)
  1561. {
  1562. struct sk_buff *skb, *nskb;
  1563. unsigned hdr_space = sky2->rx_data_size;
  1564. pr_debug(PFX "receive new length=%d\n", length);
  1565. /* Don't be tricky about reusing pages (yet) */
  1566. nskb = sky2_rx_alloc(sky2);
  1567. if (unlikely(!nskb))
  1568. return NULL;
  1569. skb = re->skb;
  1570. sky2_rx_unmap_skb(sky2->hw->pdev, re);
  1571. prefetch(skb->data);
  1572. re->skb = nskb;
  1573. sky2_rx_map_skb(sky2->hw->pdev, re, hdr_space);
  1574. if (skb_shinfo(skb)->nr_frags)
  1575. skb_put_frags(skb, hdr_space, length);
  1576. else
  1577. skb_put(skb, length);
  1578. return skb;
  1579. }
  1580. /*
  1581. * Receive one packet.
  1582. * For larger packets, get new buffer.
  1583. */
  1584. static struct sk_buff *sky2_receive(struct net_device *dev,
  1585. u16 length, u32 status)
  1586. {
  1587. struct sky2_port *sky2 = netdev_priv(dev);
  1588. struct rx_ring_info *re = sky2->rx_ring + sky2->rx_next;
  1589. struct sk_buff *skb = NULL;
  1590. if (unlikely(netif_msg_rx_status(sky2)))
  1591. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1592. dev->name, sky2->rx_next, status, length);
  1593. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1594. prefetch(sky2->rx_ring + sky2->rx_next);
  1595. if (status & GMR_FS_ANY_ERR)
  1596. goto error;
  1597. if (!(status & GMR_FS_RX_OK))
  1598. goto resubmit;
  1599. if (length > dev->mtu + ETH_HLEN)
  1600. goto oversize;
  1601. if (length < copybreak)
  1602. skb = receive_copy(sky2, re, length);
  1603. else
  1604. skb = receive_new(sky2, re, length);
  1605. resubmit:
  1606. sky2_rx_submit(sky2, re);
  1607. return skb;
  1608. oversize:
  1609. ++sky2->net_stats.rx_over_errors;
  1610. goto resubmit;
  1611. error:
  1612. ++sky2->net_stats.rx_errors;
  1613. if (status & GMR_FS_RX_FF_OV) {
  1614. sky2->net_stats.rx_fifo_errors++;
  1615. goto resubmit;
  1616. }
  1617. if (netif_msg_rx_err(sky2) && net_ratelimit())
  1618. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1619. dev->name, status, length);
  1620. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1621. sky2->net_stats.rx_length_errors++;
  1622. if (status & GMR_FS_FRAGMENT)
  1623. sky2->net_stats.rx_frame_errors++;
  1624. if (status & GMR_FS_CRC_ERR)
  1625. sky2->net_stats.rx_crc_errors++;
  1626. goto resubmit;
  1627. }
  1628. /* Transmit complete */
  1629. static inline void sky2_tx_done(struct net_device *dev, u16 last)
  1630. {
  1631. struct sky2_port *sky2 = netdev_priv(dev);
  1632. if (netif_running(dev)) {
  1633. netif_tx_lock(dev);
  1634. sky2_tx_complete(sky2, last);
  1635. netif_tx_unlock(dev);
  1636. }
  1637. }
  1638. /* Process status response ring */
  1639. static int sky2_status_intr(struct sky2_hw *hw, int to_do)
  1640. {
  1641. struct sky2_port *sky2;
  1642. int work_done = 0;
  1643. unsigned buf_write[2] = { 0, 0 };
  1644. u16 hwidx = sky2_read16(hw, STAT_PUT_IDX);
  1645. rmb();
  1646. while (hw->st_idx != hwidx) {
  1647. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1648. struct net_device *dev;
  1649. struct sk_buff *skb;
  1650. u32 status;
  1651. u16 length;
  1652. hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE);
  1653. BUG_ON(le->link >= 2);
  1654. dev = hw->dev[le->link];
  1655. sky2 = netdev_priv(dev);
  1656. length = le16_to_cpu(le->length);
  1657. status = le32_to_cpu(le->status);
  1658. switch (le->opcode & ~HW_OWNER) {
  1659. case OP_RXSTAT:
  1660. skb = sky2_receive(dev, length, status);
  1661. if (!skb)
  1662. goto force_update;
  1663. skb->protocol = eth_type_trans(skb, dev);
  1664. dev->last_rx = jiffies;
  1665. #ifdef SKY2_VLAN_TAG_USED
  1666. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1667. vlan_hwaccel_receive_skb(skb,
  1668. sky2->vlgrp,
  1669. be16_to_cpu(sky2->rx_tag));
  1670. } else
  1671. #endif
  1672. netif_receive_skb(skb);
  1673. /* Update receiver after 16 frames */
  1674. if (++buf_write[le->link] == RX_BUF_WRITE) {
  1675. force_update:
  1676. sky2_put_idx(hw, rxqaddr[le->link], sky2->rx_put);
  1677. buf_write[le->link] = 0;
  1678. }
  1679. /* Stop after net poll weight */
  1680. if (++work_done >= to_do)
  1681. goto exit_loop;
  1682. break;
  1683. #ifdef SKY2_VLAN_TAG_USED
  1684. case OP_RXVLAN:
  1685. sky2->rx_tag = length;
  1686. break;
  1687. case OP_RXCHKSVLAN:
  1688. sky2->rx_tag = length;
  1689. /* fall through */
  1690. #endif
  1691. case OP_RXCHKS:
  1692. skb = sky2->rx_ring[sky2->rx_next].skb;
  1693. skb->ip_summed = CHECKSUM_COMPLETE;
  1694. skb->csum = status & 0xffff;
  1695. break;
  1696. case OP_TXINDEXLE:
  1697. /* TX index reports status for both ports */
  1698. BUILD_BUG_ON(TX_RING_SIZE > 0x1000);
  1699. sky2_tx_done(hw->dev[0], status & 0xfff);
  1700. if (hw->dev[1])
  1701. sky2_tx_done(hw->dev[1],
  1702. ((status >> 24) & 0xff)
  1703. | (u16)(length & 0xf) << 8);
  1704. break;
  1705. default:
  1706. if (net_ratelimit())
  1707. printk(KERN_WARNING PFX
  1708. "unknown status opcode 0x%x\n", le->opcode);
  1709. goto exit_loop;
  1710. }
  1711. }
  1712. /* Fully processed status ring so clear irq */
  1713. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1714. exit_loop:
  1715. if (buf_write[0]) {
  1716. sky2 = netdev_priv(hw->dev[0]);
  1717. sky2_put_idx(hw, Q_R1, sky2->rx_put);
  1718. }
  1719. if (buf_write[1]) {
  1720. sky2 = netdev_priv(hw->dev[1]);
  1721. sky2_put_idx(hw, Q_R2, sky2->rx_put);
  1722. }
  1723. return work_done;
  1724. }
  1725. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1726. {
  1727. struct net_device *dev = hw->dev[port];
  1728. if (net_ratelimit())
  1729. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1730. dev->name, status);
  1731. if (status & Y2_IS_PAR_RD1) {
  1732. if (net_ratelimit())
  1733. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1734. dev->name);
  1735. /* Clear IRQ */
  1736. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1737. }
  1738. if (status & Y2_IS_PAR_WR1) {
  1739. if (net_ratelimit())
  1740. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1741. dev->name);
  1742. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1743. }
  1744. if (status & Y2_IS_PAR_MAC1) {
  1745. if (net_ratelimit())
  1746. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1747. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1748. }
  1749. if (status & Y2_IS_PAR_RX1) {
  1750. if (net_ratelimit())
  1751. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1752. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1753. }
  1754. if (status & Y2_IS_TCP_TXA1) {
  1755. if (net_ratelimit())
  1756. printk(KERN_ERR PFX "%s: TCP segmentation error\n",
  1757. dev->name);
  1758. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1759. }
  1760. }
  1761. static void sky2_hw_intr(struct sky2_hw *hw)
  1762. {
  1763. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1764. if (status & Y2_IS_TIST_OV)
  1765. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1766. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1767. u16 pci_err;
  1768. pci_err = sky2_pci_read16(hw, PCI_STATUS);
  1769. if (net_ratelimit())
  1770. printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
  1771. pci_name(hw->pdev), pci_err);
  1772. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1773. sky2_pci_write16(hw, PCI_STATUS,
  1774. pci_err | PCI_STATUS_ERROR_BITS);
  1775. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1776. }
  1777. if (status & Y2_IS_PCI_EXP) {
  1778. /* PCI-Express uncorrectable Error occurred */
  1779. u32 pex_err;
  1780. pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT);
  1781. if (net_ratelimit())
  1782. printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
  1783. pci_name(hw->pdev), pex_err);
  1784. /* clear the interrupt */
  1785. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1786. sky2_pci_write32(hw, PEX_UNC_ERR_STAT,
  1787. 0xffffffffUL);
  1788. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1789. if (pex_err & PEX_FATAL_ERRORS) {
  1790. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1791. hwmsk &= ~Y2_IS_PCI_EXP;
  1792. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1793. }
  1794. }
  1795. if (status & Y2_HWE_L1_MASK)
  1796. sky2_hw_error(hw, 0, status);
  1797. status >>= 8;
  1798. if (status & Y2_HWE_L1_MASK)
  1799. sky2_hw_error(hw, 1, status);
  1800. }
  1801. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1802. {
  1803. struct net_device *dev = hw->dev[port];
  1804. struct sky2_port *sky2 = netdev_priv(dev);
  1805. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1806. if (netif_msg_intr(sky2))
  1807. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1808. dev->name, status);
  1809. if (status & GM_IS_RX_FF_OR) {
  1810. ++sky2->net_stats.rx_fifo_errors;
  1811. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1812. }
  1813. if (status & GM_IS_TX_FF_UR) {
  1814. ++sky2->net_stats.tx_fifo_errors;
  1815. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1816. }
  1817. }
  1818. /* This should never happen it is a fatal situation */
  1819. static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
  1820. const char *rxtx, u32 mask)
  1821. {
  1822. struct net_device *dev = hw->dev[port];
  1823. struct sky2_port *sky2 = netdev_priv(dev);
  1824. u32 imask;
  1825. printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
  1826. dev ? dev->name : "<not registered>", rxtx);
  1827. imask = sky2_read32(hw, B0_IMSK);
  1828. imask &= ~mask;
  1829. sky2_write32(hw, B0_IMSK, imask);
  1830. if (dev) {
  1831. spin_lock(&sky2->phy_lock);
  1832. sky2_link_down(sky2);
  1833. spin_unlock(&sky2->phy_lock);
  1834. }
  1835. }
  1836. /* If idle then force a fake soft NAPI poll once a second
  1837. * to work around cases where sharing an edge triggered interrupt.
  1838. */
  1839. static inline void sky2_idle_start(struct sky2_hw *hw)
  1840. {
  1841. if (idle_timeout > 0)
  1842. mod_timer(&hw->idle_timer,
  1843. jiffies + msecs_to_jiffies(idle_timeout));
  1844. }
  1845. static void sky2_idle(unsigned long arg)
  1846. {
  1847. struct sky2_hw *hw = (struct sky2_hw *) arg;
  1848. struct net_device *dev = hw->dev[0];
  1849. if (__netif_rx_schedule_prep(dev))
  1850. __netif_rx_schedule(dev);
  1851. mod_timer(&hw->idle_timer, jiffies + msecs_to_jiffies(idle_timeout));
  1852. }
  1853. static int sky2_poll(struct net_device *dev0, int *budget)
  1854. {
  1855. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1856. int work_limit = min(dev0->quota, *budget);
  1857. int work_done = 0;
  1858. u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
  1859. if (status & Y2_IS_HW_ERR)
  1860. sky2_hw_intr(hw);
  1861. if (status & Y2_IS_IRQ_PHY1)
  1862. sky2_phy_intr(hw, 0);
  1863. if (status & Y2_IS_IRQ_PHY2)
  1864. sky2_phy_intr(hw, 1);
  1865. if (status & Y2_IS_IRQ_MAC1)
  1866. sky2_mac_intr(hw, 0);
  1867. if (status & Y2_IS_IRQ_MAC2)
  1868. sky2_mac_intr(hw, 1);
  1869. if (status & Y2_IS_CHK_RX1)
  1870. sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
  1871. if (status & Y2_IS_CHK_RX2)
  1872. sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
  1873. if (status & Y2_IS_CHK_TXA1)
  1874. sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
  1875. if (status & Y2_IS_CHK_TXA2)
  1876. sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
  1877. work_done = sky2_status_intr(hw, work_limit);
  1878. if (work_done < work_limit) {
  1879. netif_rx_complete(dev0);
  1880. sky2_read32(hw, B0_Y2_SP_LISR);
  1881. return 0;
  1882. } else {
  1883. *budget -= work_done;
  1884. dev0->quota -= work_done;
  1885. return 1;
  1886. }
  1887. }
  1888. static irqreturn_t sky2_intr(int irq, void *dev_id)
  1889. {
  1890. struct sky2_hw *hw = dev_id;
  1891. struct net_device *dev0 = hw->dev[0];
  1892. u32 status;
  1893. /* Reading this mask interrupts as side effect */
  1894. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1895. if (status == 0 || status == ~0)
  1896. return IRQ_NONE;
  1897. prefetch(&hw->st_le[hw->st_idx]);
  1898. if (likely(__netif_rx_schedule_prep(dev0)))
  1899. __netif_rx_schedule(dev0);
  1900. return IRQ_HANDLED;
  1901. }
  1902. #ifdef CONFIG_NET_POLL_CONTROLLER
  1903. static void sky2_netpoll(struct net_device *dev)
  1904. {
  1905. struct sky2_port *sky2 = netdev_priv(dev);
  1906. struct net_device *dev0 = sky2->hw->dev[0];
  1907. if (netif_running(dev) && __netif_rx_schedule_prep(dev0))
  1908. __netif_rx_schedule(dev0);
  1909. }
  1910. #endif
  1911. /* Chip internal frequency for clock calculations */
  1912. static inline u32 sky2_mhz(const struct sky2_hw *hw)
  1913. {
  1914. switch (hw->chip_id) {
  1915. case CHIP_ID_YUKON_EC:
  1916. case CHIP_ID_YUKON_EC_U:
  1917. return 125; /* 125 Mhz */
  1918. case CHIP_ID_YUKON_FE:
  1919. return 100; /* 100 Mhz */
  1920. default: /* YUKON_XL */
  1921. return 156; /* 156 Mhz */
  1922. }
  1923. }
  1924. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1925. {
  1926. return sky2_mhz(hw) * us;
  1927. }
  1928. static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
  1929. {
  1930. return clk / sky2_mhz(hw);
  1931. }
  1932. static int sky2_reset(struct sky2_hw *hw)
  1933. {
  1934. u16 status;
  1935. u8 t8;
  1936. int i;
  1937. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1938. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1939. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1940. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  1941. pci_name(hw->pdev), hw->chip_id);
  1942. return -EOPNOTSUPP;
  1943. }
  1944. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1945. /* This rev is really old, and requires untested workarounds */
  1946. if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  1947. printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n",
  1948. pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  1949. hw->chip_id, hw->chip_rev);
  1950. return -EOPNOTSUPP;
  1951. }
  1952. /* disable ASF */
  1953. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  1954. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  1955. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  1956. }
  1957. /* do a SW reset */
  1958. sky2_write8(hw, B0_CTST, CS_RST_SET);
  1959. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1960. /* clear PCI errors, if any */
  1961. status = sky2_pci_read16(hw, PCI_STATUS);
  1962. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1963. sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
  1964. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  1965. /* clear any PEX errors */
  1966. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
  1967. sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL);
  1968. hw->pmd_type = sky2_read8(hw, B2_PMD_TYP);
  1969. hw->ports = 1;
  1970. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  1971. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  1972. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  1973. ++hw->ports;
  1974. }
  1975. sky2_set_power_state(hw, PCI_D0);
  1976. for (i = 0; i < hw->ports; i++) {
  1977. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1978. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1979. }
  1980. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1981. /* Clear I2C IRQ noise */
  1982. sky2_write32(hw, B2_I2C_IRQ, 1);
  1983. /* turn off hardware timer (unused) */
  1984. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  1985. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1986. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  1987. /* Turn off descriptor polling */
  1988. sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
  1989. /* Turn off receive timestamp */
  1990. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  1991. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1992. /* enable the Tx Arbiters */
  1993. for (i = 0; i < hw->ports; i++)
  1994. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  1995. /* Initialize ram interface */
  1996. for (i = 0; i < hw->ports; i++) {
  1997. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  1998. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  1999. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  2000. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  2001. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  2002. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  2003. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  2004. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  2005. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  2006. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  2007. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  2008. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  2009. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  2010. }
  2011. sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
  2012. for (i = 0; i < hw->ports; i++)
  2013. sky2_gmac_reset(hw, i);
  2014. memset(hw->st_le, 0, STATUS_LE_BYTES);
  2015. hw->st_idx = 0;
  2016. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  2017. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  2018. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  2019. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  2020. /* Set the list last index */
  2021. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  2022. sky2_write16(hw, STAT_TX_IDX_TH, 10);
  2023. sky2_write8(hw, STAT_FIFO_WM, 16);
  2024. /* set Status-FIFO ISR watermark */
  2025. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  2026. sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
  2027. else
  2028. sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
  2029. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
  2030. sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
  2031. sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
  2032. /* enable status unit */
  2033. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  2034. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2035. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2036. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2037. return 0;
  2038. }
  2039. static u32 sky2_supported_modes(const struct sky2_hw *hw)
  2040. {
  2041. if (sky2_is_copper(hw)) {
  2042. u32 modes = SUPPORTED_10baseT_Half
  2043. | SUPPORTED_10baseT_Full
  2044. | SUPPORTED_100baseT_Half
  2045. | SUPPORTED_100baseT_Full
  2046. | SUPPORTED_Autoneg | SUPPORTED_TP;
  2047. if (hw->chip_id != CHIP_ID_YUKON_FE)
  2048. modes |= SUPPORTED_1000baseT_Half
  2049. | SUPPORTED_1000baseT_Full;
  2050. return modes;
  2051. } else
  2052. return SUPPORTED_1000baseT_Half
  2053. | SUPPORTED_1000baseT_Full
  2054. | SUPPORTED_Autoneg
  2055. | SUPPORTED_FIBRE;
  2056. }
  2057. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2058. {
  2059. struct sky2_port *sky2 = netdev_priv(dev);
  2060. struct sky2_hw *hw = sky2->hw;
  2061. ecmd->transceiver = XCVR_INTERNAL;
  2062. ecmd->supported = sky2_supported_modes(hw);
  2063. ecmd->phy_address = PHY_ADDR_MARV;
  2064. if (sky2_is_copper(hw)) {
  2065. ecmd->supported = SUPPORTED_10baseT_Half
  2066. | SUPPORTED_10baseT_Full
  2067. | SUPPORTED_100baseT_Half
  2068. | SUPPORTED_100baseT_Full
  2069. | SUPPORTED_1000baseT_Half
  2070. | SUPPORTED_1000baseT_Full
  2071. | SUPPORTED_Autoneg | SUPPORTED_TP;
  2072. ecmd->port = PORT_TP;
  2073. ecmd->speed = sky2->speed;
  2074. } else {
  2075. ecmd->speed = SPEED_1000;
  2076. ecmd->port = PORT_FIBRE;
  2077. }
  2078. ecmd->advertising = sky2->advertising;
  2079. ecmd->autoneg = sky2->autoneg;
  2080. ecmd->duplex = sky2->duplex;
  2081. return 0;
  2082. }
  2083. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2084. {
  2085. struct sky2_port *sky2 = netdev_priv(dev);
  2086. const struct sky2_hw *hw = sky2->hw;
  2087. u32 supported = sky2_supported_modes(hw);
  2088. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2089. ecmd->advertising = supported;
  2090. sky2->duplex = -1;
  2091. sky2->speed = -1;
  2092. } else {
  2093. u32 setting;
  2094. switch (ecmd->speed) {
  2095. case SPEED_1000:
  2096. if (ecmd->duplex == DUPLEX_FULL)
  2097. setting = SUPPORTED_1000baseT_Full;
  2098. else if (ecmd->duplex == DUPLEX_HALF)
  2099. setting = SUPPORTED_1000baseT_Half;
  2100. else
  2101. return -EINVAL;
  2102. break;
  2103. case SPEED_100:
  2104. if (ecmd->duplex == DUPLEX_FULL)
  2105. setting = SUPPORTED_100baseT_Full;
  2106. else if (ecmd->duplex == DUPLEX_HALF)
  2107. setting = SUPPORTED_100baseT_Half;
  2108. else
  2109. return -EINVAL;
  2110. break;
  2111. case SPEED_10:
  2112. if (ecmd->duplex == DUPLEX_FULL)
  2113. setting = SUPPORTED_10baseT_Full;
  2114. else if (ecmd->duplex == DUPLEX_HALF)
  2115. setting = SUPPORTED_10baseT_Half;
  2116. else
  2117. return -EINVAL;
  2118. break;
  2119. default:
  2120. return -EINVAL;
  2121. }
  2122. if ((setting & supported) == 0)
  2123. return -EINVAL;
  2124. sky2->speed = ecmd->speed;
  2125. sky2->duplex = ecmd->duplex;
  2126. }
  2127. sky2->autoneg = ecmd->autoneg;
  2128. sky2->advertising = ecmd->advertising;
  2129. if (netif_running(dev))
  2130. sky2_phy_reinit(sky2);
  2131. return 0;
  2132. }
  2133. static void sky2_get_drvinfo(struct net_device *dev,
  2134. struct ethtool_drvinfo *info)
  2135. {
  2136. struct sky2_port *sky2 = netdev_priv(dev);
  2137. strcpy(info->driver, DRV_NAME);
  2138. strcpy(info->version, DRV_VERSION);
  2139. strcpy(info->fw_version, "N/A");
  2140. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  2141. }
  2142. static const struct sky2_stat {
  2143. char name[ETH_GSTRING_LEN];
  2144. u16 offset;
  2145. } sky2_stats[] = {
  2146. { "tx_bytes", GM_TXO_OK_HI },
  2147. { "rx_bytes", GM_RXO_OK_HI },
  2148. { "tx_broadcast", GM_TXF_BC_OK },
  2149. { "rx_broadcast", GM_RXF_BC_OK },
  2150. { "tx_multicast", GM_TXF_MC_OK },
  2151. { "rx_multicast", GM_RXF_MC_OK },
  2152. { "tx_unicast", GM_TXF_UC_OK },
  2153. { "rx_unicast", GM_RXF_UC_OK },
  2154. { "tx_mac_pause", GM_TXF_MPAUSE },
  2155. { "rx_mac_pause", GM_RXF_MPAUSE },
  2156. { "collisions", GM_TXF_COL },
  2157. { "late_collision",GM_TXF_LAT_COL },
  2158. { "aborted", GM_TXF_ABO_COL },
  2159. { "single_collisions", GM_TXF_SNG_COL },
  2160. { "multi_collisions", GM_TXF_MUL_COL },
  2161. { "rx_short", GM_RXF_SHT },
  2162. { "rx_runt", GM_RXE_FRAG },
  2163. { "rx_64_byte_packets", GM_RXF_64B },
  2164. { "rx_65_to_127_byte_packets", GM_RXF_127B },
  2165. { "rx_128_to_255_byte_packets", GM_RXF_255B },
  2166. { "rx_256_to_511_byte_packets", GM_RXF_511B },
  2167. { "rx_512_to_1023_byte_packets", GM_RXF_1023B },
  2168. { "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
  2169. { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
  2170. { "rx_too_long", GM_RXF_LNG_ERR },
  2171. { "rx_fifo_overflow", GM_RXE_FIFO_OV },
  2172. { "rx_jabber", GM_RXF_JAB_PKT },
  2173. { "rx_fcs_error", GM_RXF_FCS_ERR },
  2174. { "tx_64_byte_packets", GM_TXF_64B },
  2175. { "tx_65_to_127_byte_packets", GM_TXF_127B },
  2176. { "tx_128_to_255_byte_packets", GM_TXF_255B },
  2177. { "tx_256_to_511_byte_packets", GM_TXF_511B },
  2178. { "tx_512_to_1023_byte_packets", GM_TXF_1023B },
  2179. { "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
  2180. { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
  2181. { "tx_fifo_underrun", GM_TXE_FIFO_UR },
  2182. };
  2183. static u32 sky2_get_rx_csum(struct net_device *dev)
  2184. {
  2185. struct sky2_port *sky2 = netdev_priv(dev);
  2186. return sky2->rx_csum;
  2187. }
  2188. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  2189. {
  2190. struct sky2_port *sky2 = netdev_priv(dev);
  2191. sky2->rx_csum = data;
  2192. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  2193. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  2194. return 0;
  2195. }
  2196. static u32 sky2_get_msglevel(struct net_device *netdev)
  2197. {
  2198. struct sky2_port *sky2 = netdev_priv(netdev);
  2199. return sky2->msg_enable;
  2200. }
  2201. static int sky2_nway_reset(struct net_device *dev)
  2202. {
  2203. struct sky2_port *sky2 = netdev_priv(dev);
  2204. if (!netif_running(dev) || sky2->autoneg != AUTONEG_ENABLE)
  2205. return -EINVAL;
  2206. sky2_phy_reinit(sky2);
  2207. return 0;
  2208. }
  2209. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  2210. {
  2211. struct sky2_hw *hw = sky2->hw;
  2212. unsigned port = sky2->port;
  2213. int i;
  2214. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  2215. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  2216. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  2217. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  2218. for (i = 2; i < count; i++)
  2219. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  2220. }
  2221. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  2222. {
  2223. struct sky2_port *sky2 = netdev_priv(netdev);
  2224. sky2->msg_enable = value;
  2225. }
  2226. static int sky2_get_stats_count(struct net_device *dev)
  2227. {
  2228. return ARRAY_SIZE(sky2_stats);
  2229. }
  2230. static void sky2_get_ethtool_stats(struct net_device *dev,
  2231. struct ethtool_stats *stats, u64 * data)
  2232. {
  2233. struct sky2_port *sky2 = netdev_priv(dev);
  2234. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  2235. }
  2236. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  2237. {
  2238. int i;
  2239. switch (stringset) {
  2240. case ETH_SS_STATS:
  2241. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  2242. memcpy(data + i * ETH_GSTRING_LEN,
  2243. sky2_stats[i].name, ETH_GSTRING_LEN);
  2244. break;
  2245. }
  2246. }
  2247. /* Use hardware MIB variables for critical path statistics and
  2248. * transmit feedback not reported at interrupt.
  2249. * Other errors are accounted for in interrupt handler.
  2250. */
  2251. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  2252. {
  2253. struct sky2_port *sky2 = netdev_priv(dev);
  2254. u64 data[13];
  2255. sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
  2256. sky2->net_stats.tx_bytes = data[0];
  2257. sky2->net_stats.rx_bytes = data[1];
  2258. sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
  2259. sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
  2260. sky2->net_stats.multicast = data[3] + data[5];
  2261. sky2->net_stats.collisions = data[10];
  2262. sky2->net_stats.tx_aborted_errors = data[12];
  2263. return &sky2->net_stats;
  2264. }
  2265. static int sky2_set_mac_address(struct net_device *dev, void *p)
  2266. {
  2267. struct sky2_port *sky2 = netdev_priv(dev);
  2268. struct sky2_hw *hw = sky2->hw;
  2269. unsigned port = sky2->port;
  2270. const struct sockaddr *addr = p;
  2271. if (!is_valid_ether_addr(addr->sa_data))
  2272. return -EADDRNOTAVAIL;
  2273. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2274. memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
  2275. dev->dev_addr, ETH_ALEN);
  2276. memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
  2277. dev->dev_addr, ETH_ALEN);
  2278. /* virtual address for data */
  2279. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2280. /* physical address: used for pause frames */
  2281. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2282. return 0;
  2283. }
  2284. static void inline sky2_add_filter(u8 filter[8], const u8 *addr)
  2285. {
  2286. u32 bit;
  2287. bit = ether_crc(ETH_ALEN, addr) & 63;
  2288. filter[bit >> 3] |= 1 << (bit & 7);
  2289. }
  2290. static void sky2_set_multicast(struct net_device *dev)
  2291. {
  2292. struct sky2_port *sky2 = netdev_priv(dev);
  2293. struct sky2_hw *hw = sky2->hw;
  2294. unsigned port = sky2->port;
  2295. struct dev_mc_list *list = dev->mc_list;
  2296. u16 reg;
  2297. u8 filter[8];
  2298. int rx_pause;
  2299. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2300. rx_pause = (sky2->flow_status == FC_RX || sky2->flow_status == FC_BOTH);
  2301. memset(filter, 0, sizeof(filter));
  2302. reg = gma_read16(hw, port, GM_RX_CTRL);
  2303. reg |= GM_RXCR_UCF_ENA;
  2304. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2305. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2306. else if (dev->flags & IFF_ALLMULTI)
  2307. memset(filter, 0xff, sizeof(filter));
  2308. else if (dev->mc_count == 0 && !rx_pause)
  2309. reg &= ~GM_RXCR_MCF_ENA;
  2310. else {
  2311. int i;
  2312. reg |= GM_RXCR_MCF_ENA;
  2313. if (rx_pause)
  2314. sky2_add_filter(filter, pause_mc_addr);
  2315. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2316. sky2_add_filter(filter, list->dmi_addr);
  2317. }
  2318. gma_write16(hw, port, GM_MC_ADDR_H1,
  2319. (u16) filter[0] | ((u16) filter[1] << 8));
  2320. gma_write16(hw, port, GM_MC_ADDR_H2,
  2321. (u16) filter[2] | ((u16) filter[3] << 8));
  2322. gma_write16(hw, port, GM_MC_ADDR_H3,
  2323. (u16) filter[4] | ((u16) filter[5] << 8));
  2324. gma_write16(hw, port, GM_MC_ADDR_H4,
  2325. (u16) filter[6] | ((u16) filter[7] << 8));
  2326. gma_write16(hw, port, GM_RX_CTRL, reg);
  2327. }
  2328. /* Can have one global because blinking is controlled by
  2329. * ethtool and that is always under RTNL mutex
  2330. */
  2331. static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2332. {
  2333. u16 pg;
  2334. switch (hw->chip_id) {
  2335. case CHIP_ID_YUKON_XL:
  2336. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2337. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2338. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2339. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2340. PHY_M_LEDC_INIT_CTRL(7) |
  2341. PHY_M_LEDC_STA1_CTRL(7) |
  2342. PHY_M_LEDC_STA0_CTRL(7))
  2343. : 0);
  2344. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2345. break;
  2346. default:
  2347. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2348. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2349. on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
  2350. PHY_M_LED_MO_10(MO_LED_ON) |
  2351. PHY_M_LED_MO_100(MO_LED_ON) |
  2352. PHY_M_LED_MO_1000(MO_LED_ON) |
  2353. PHY_M_LED_MO_RX(MO_LED_ON)
  2354. : PHY_M_LED_MO_DUP(MO_LED_OFF) |
  2355. PHY_M_LED_MO_10(MO_LED_OFF) |
  2356. PHY_M_LED_MO_100(MO_LED_OFF) |
  2357. PHY_M_LED_MO_1000(MO_LED_OFF) |
  2358. PHY_M_LED_MO_RX(MO_LED_OFF));
  2359. }
  2360. }
  2361. /* blink LED's for finding board */
  2362. static int sky2_phys_id(struct net_device *dev, u32 data)
  2363. {
  2364. struct sky2_port *sky2 = netdev_priv(dev);
  2365. struct sky2_hw *hw = sky2->hw;
  2366. unsigned port = sky2->port;
  2367. u16 ledctrl, ledover = 0;
  2368. long ms;
  2369. int interrupted;
  2370. int onoff = 1;
  2371. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2372. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2373. else
  2374. ms = data * 1000;
  2375. /* save initial values */
  2376. spin_lock_bh(&sky2->phy_lock);
  2377. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2378. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2379. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2380. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2381. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2382. } else {
  2383. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2384. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2385. }
  2386. interrupted = 0;
  2387. while (!interrupted && ms > 0) {
  2388. sky2_led(hw, port, onoff);
  2389. onoff = !onoff;
  2390. spin_unlock_bh(&sky2->phy_lock);
  2391. interrupted = msleep_interruptible(250);
  2392. spin_lock_bh(&sky2->phy_lock);
  2393. ms -= 250;
  2394. }
  2395. /* resume regularly scheduled programming */
  2396. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2397. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2398. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2399. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2400. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2401. } else {
  2402. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2403. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2404. }
  2405. spin_unlock_bh(&sky2->phy_lock);
  2406. return 0;
  2407. }
  2408. static void sky2_get_pauseparam(struct net_device *dev,
  2409. struct ethtool_pauseparam *ecmd)
  2410. {
  2411. struct sky2_port *sky2 = netdev_priv(dev);
  2412. switch (sky2->flow_mode) {
  2413. case FC_NONE:
  2414. ecmd->tx_pause = ecmd->rx_pause = 0;
  2415. break;
  2416. case FC_TX:
  2417. ecmd->tx_pause = 1, ecmd->rx_pause = 0;
  2418. break;
  2419. case FC_RX:
  2420. ecmd->tx_pause = 0, ecmd->rx_pause = 1;
  2421. break;
  2422. case FC_BOTH:
  2423. ecmd->tx_pause = ecmd->rx_pause = 1;
  2424. }
  2425. ecmd->autoneg = sky2->autoneg;
  2426. }
  2427. static int sky2_set_pauseparam(struct net_device *dev,
  2428. struct ethtool_pauseparam *ecmd)
  2429. {
  2430. struct sky2_port *sky2 = netdev_priv(dev);
  2431. sky2->autoneg = ecmd->autoneg;
  2432. sky2->flow_mode = sky2_flow(ecmd->rx_pause, ecmd->tx_pause);
  2433. if (netif_running(dev))
  2434. sky2_phy_reinit(sky2);
  2435. return 0;
  2436. }
  2437. static int sky2_get_coalesce(struct net_device *dev,
  2438. struct ethtool_coalesce *ecmd)
  2439. {
  2440. struct sky2_port *sky2 = netdev_priv(dev);
  2441. struct sky2_hw *hw = sky2->hw;
  2442. if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
  2443. ecmd->tx_coalesce_usecs = 0;
  2444. else {
  2445. u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
  2446. ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
  2447. }
  2448. ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
  2449. if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
  2450. ecmd->rx_coalesce_usecs = 0;
  2451. else {
  2452. u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
  2453. ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
  2454. }
  2455. ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
  2456. if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
  2457. ecmd->rx_coalesce_usecs_irq = 0;
  2458. else {
  2459. u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
  2460. ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
  2461. }
  2462. ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
  2463. return 0;
  2464. }
  2465. /* Note: this affect both ports */
  2466. static int sky2_set_coalesce(struct net_device *dev,
  2467. struct ethtool_coalesce *ecmd)
  2468. {
  2469. struct sky2_port *sky2 = netdev_priv(dev);
  2470. struct sky2_hw *hw = sky2->hw;
  2471. const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
  2472. if (ecmd->tx_coalesce_usecs > tmax ||
  2473. ecmd->rx_coalesce_usecs > tmax ||
  2474. ecmd->rx_coalesce_usecs_irq > tmax)
  2475. return -EINVAL;
  2476. if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
  2477. return -EINVAL;
  2478. if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
  2479. return -EINVAL;
  2480. if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
  2481. return -EINVAL;
  2482. if (ecmd->tx_coalesce_usecs == 0)
  2483. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  2484. else {
  2485. sky2_write32(hw, STAT_TX_TIMER_INI,
  2486. sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
  2487. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2488. }
  2489. sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
  2490. if (ecmd->rx_coalesce_usecs == 0)
  2491. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
  2492. else {
  2493. sky2_write32(hw, STAT_LEV_TIMER_INI,
  2494. sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
  2495. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2496. }
  2497. sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
  2498. if (ecmd->rx_coalesce_usecs_irq == 0)
  2499. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
  2500. else {
  2501. sky2_write32(hw, STAT_ISR_TIMER_INI,
  2502. sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
  2503. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2504. }
  2505. sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
  2506. return 0;
  2507. }
  2508. static void sky2_get_ringparam(struct net_device *dev,
  2509. struct ethtool_ringparam *ering)
  2510. {
  2511. struct sky2_port *sky2 = netdev_priv(dev);
  2512. ering->rx_max_pending = RX_MAX_PENDING;
  2513. ering->rx_mini_max_pending = 0;
  2514. ering->rx_jumbo_max_pending = 0;
  2515. ering->tx_max_pending = TX_RING_SIZE - 1;
  2516. ering->rx_pending = sky2->rx_pending;
  2517. ering->rx_mini_pending = 0;
  2518. ering->rx_jumbo_pending = 0;
  2519. ering->tx_pending = sky2->tx_pending;
  2520. }
  2521. static int sky2_set_ringparam(struct net_device *dev,
  2522. struct ethtool_ringparam *ering)
  2523. {
  2524. struct sky2_port *sky2 = netdev_priv(dev);
  2525. int err = 0;
  2526. if (ering->rx_pending > RX_MAX_PENDING ||
  2527. ering->rx_pending < 8 ||
  2528. ering->tx_pending < MAX_SKB_TX_LE ||
  2529. ering->tx_pending > TX_RING_SIZE - 1)
  2530. return -EINVAL;
  2531. if (netif_running(dev))
  2532. sky2_down(dev);
  2533. sky2->rx_pending = ering->rx_pending;
  2534. sky2->tx_pending = ering->tx_pending;
  2535. if (netif_running(dev)) {
  2536. err = sky2_up(dev);
  2537. if (err)
  2538. dev_close(dev);
  2539. else
  2540. sky2_set_multicast(dev);
  2541. }
  2542. return err;
  2543. }
  2544. static int sky2_get_regs_len(struct net_device *dev)
  2545. {
  2546. return 0x4000;
  2547. }
  2548. /*
  2549. * Returns copy of control register region
  2550. * Note: access to the RAM address register set will cause timeouts.
  2551. */
  2552. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2553. void *p)
  2554. {
  2555. const struct sky2_port *sky2 = netdev_priv(dev);
  2556. const void __iomem *io = sky2->hw->regs;
  2557. BUG_ON(regs->len < B3_RI_WTO_R1);
  2558. regs->version = 1;
  2559. memset(p, 0, regs->len);
  2560. memcpy_fromio(p, io, B3_RAM_ADDR);
  2561. memcpy_fromio(p + B3_RI_WTO_R1,
  2562. io + B3_RI_WTO_R1,
  2563. regs->len - B3_RI_WTO_R1);
  2564. }
  2565. static const struct ethtool_ops sky2_ethtool_ops = {
  2566. .get_settings = sky2_get_settings,
  2567. .set_settings = sky2_set_settings,
  2568. .get_drvinfo = sky2_get_drvinfo,
  2569. .get_msglevel = sky2_get_msglevel,
  2570. .set_msglevel = sky2_set_msglevel,
  2571. .nway_reset = sky2_nway_reset,
  2572. .get_regs_len = sky2_get_regs_len,
  2573. .get_regs = sky2_get_regs,
  2574. .get_link = ethtool_op_get_link,
  2575. .get_sg = ethtool_op_get_sg,
  2576. .set_sg = ethtool_op_set_sg,
  2577. .get_tx_csum = ethtool_op_get_tx_csum,
  2578. .set_tx_csum = ethtool_op_set_tx_csum,
  2579. .get_tso = ethtool_op_get_tso,
  2580. .set_tso = ethtool_op_set_tso,
  2581. .get_rx_csum = sky2_get_rx_csum,
  2582. .set_rx_csum = sky2_set_rx_csum,
  2583. .get_strings = sky2_get_strings,
  2584. .get_coalesce = sky2_get_coalesce,
  2585. .set_coalesce = sky2_set_coalesce,
  2586. .get_ringparam = sky2_get_ringparam,
  2587. .set_ringparam = sky2_set_ringparam,
  2588. .get_pauseparam = sky2_get_pauseparam,
  2589. .set_pauseparam = sky2_set_pauseparam,
  2590. .phys_id = sky2_phys_id,
  2591. .get_stats_count = sky2_get_stats_count,
  2592. .get_ethtool_stats = sky2_get_ethtool_stats,
  2593. .get_perm_addr = ethtool_op_get_perm_addr,
  2594. };
  2595. /* Initialize network device */
  2596. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2597. unsigned port, int highmem)
  2598. {
  2599. struct sky2_port *sky2;
  2600. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2601. if (!dev) {
  2602. printk(KERN_ERR "sky2 etherdev alloc failed");
  2603. return NULL;
  2604. }
  2605. SET_MODULE_OWNER(dev);
  2606. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2607. dev->irq = hw->pdev->irq;
  2608. dev->open = sky2_up;
  2609. dev->stop = sky2_down;
  2610. dev->do_ioctl = sky2_ioctl;
  2611. dev->hard_start_xmit = sky2_xmit_frame;
  2612. dev->get_stats = sky2_get_stats;
  2613. dev->set_multicast_list = sky2_set_multicast;
  2614. dev->set_mac_address = sky2_set_mac_address;
  2615. dev->change_mtu = sky2_change_mtu;
  2616. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2617. dev->tx_timeout = sky2_tx_timeout;
  2618. dev->watchdog_timeo = TX_WATCHDOG;
  2619. if (port == 0)
  2620. dev->poll = sky2_poll;
  2621. dev->weight = NAPI_WEIGHT;
  2622. #ifdef CONFIG_NET_POLL_CONTROLLER
  2623. /* Network console (only works on port 0)
  2624. * because netpoll makes assumptions about NAPI
  2625. */
  2626. if (port == 0)
  2627. dev->poll_controller = sky2_netpoll;
  2628. #endif
  2629. sky2 = netdev_priv(dev);
  2630. sky2->netdev = dev;
  2631. sky2->hw = hw;
  2632. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2633. /* Auto speed and flow control */
  2634. sky2->autoneg = AUTONEG_ENABLE;
  2635. sky2->flow_mode = FC_BOTH;
  2636. sky2->duplex = -1;
  2637. sky2->speed = -1;
  2638. sky2->advertising = sky2_supported_modes(hw);
  2639. sky2->rx_csum = 1;
  2640. spin_lock_init(&sky2->phy_lock);
  2641. sky2->tx_pending = TX_DEF_PENDING;
  2642. sky2->rx_pending = RX_DEF_PENDING;
  2643. hw->dev[port] = dev;
  2644. sky2->port = port;
  2645. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2646. dev->features |= NETIF_F_TSO;
  2647. if (highmem)
  2648. dev->features |= NETIF_F_HIGHDMA;
  2649. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2650. #ifdef SKY2_VLAN_TAG_USED
  2651. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2652. dev->vlan_rx_register = sky2_vlan_rx_register;
  2653. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2654. #endif
  2655. /* read the mac address */
  2656. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2657. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2658. /* device is off until link detection */
  2659. netif_carrier_off(dev);
  2660. netif_stop_queue(dev);
  2661. return dev;
  2662. }
  2663. static void __devinit sky2_show_addr(struct net_device *dev)
  2664. {
  2665. const struct sky2_port *sky2 = netdev_priv(dev);
  2666. if (netif_msg_probe(sky2))
  2667. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2668. dev->name,
  2669. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2670. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2671. }
  2672. /* Handle software interrupt used during MSI test */
  2673. static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id)
  2674. {
  2675. struct sky2_hw *hw = dev_id;
  2676. u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  2677. if (status == 0)
  2678. return IRQ_NONE;
  2679. if (status & Y2_IS_IRQ_SW) {
  2680. hw->msi = 1;
  2681. wake_up(&hw->msi_wait);
  2682. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2683. }
  2684. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  2685. return IRQ_HANDLED;
  2686. }
  2687. /* Test interrupt path by forcing a a software IRQ */
  2688. static int __devinit sky2_test_msi(struct sky2_hw *hw)
  2689. {
  2690. struct pci_dev *pdev = hw->pdev;
  2691. int err;
  2692. init_waitqueue_head (&hw->msi_wait);
  2693. sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
  2694. err = request_irq(pdev->irq, sky2_test_intr, 0, DRV_NAME, hw);
  2695. if (err) {
  2696. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2697. pci_name(pdev), pdev->irq);
  2698. return err;
  2699. }
  2700. sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
  2701. sky2_read8(hw, B0_CTST);
  2702. wait_event_timeout(hw->msi_wait, hw->msi, HZ/10);
  2703. if (!hw->msi) {
  2704. /* MSI test failed, go back to INTx mode */
  2705. printk(KERN_INFO PFX "%s: No interrupt generated using MSI, "
  2706. "switching to INTx mode.\n",
  2707. pci_name(pdev));
  2708. err = -EOPNOTSUPP;
  2709. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2710. }
  2711. sky2_write32(hw, B0_IMSK, 0);
  2712. sky2_read32(hw, B0_IMSK);
  2713. free_irq(pdev->irq, hw);
  2714. return err;
  2715. }
  2716. static int __devinit sky2_probe(struct pci_dev *pdev,
  2717. const struct pci_device_id *ent)
  2718. {
  2719. struct net_device *dev, *dev1 = NULL;
  2720. struct sky2_hw *hw;
  2721. int err, pm_cap, using_dac = 0;
  2722. err = pci_enable_device(pdev);
  2723. if (err) {
  2724. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2725. pci_name(pdev));
  2726. goto err_out;
  2727. }
  2728. err = pci_request_regions(pdev, DRV_NAME);
  2729. if (err) {
  2730. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2731. pci_name(pdev));
  2732. goto err_out;
  2733. }
  2734. pci_set_master(pdev);
  2735. /* Find power-management capability. */
  2736. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2737. if (pm_cap == 0) {
  2738. printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
  2739. "aborting.\n");
  2740. err = -EIO;
  2741. goto err_out_free_regions;
  2742. }
  2743. if (sizeof(dma_addr_t) > sizeof(u32) &&
  2744. !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  2745. using_dac = 1;
  2746. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2747. if (err < 0) {
  2748. printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
  2749. "for consistent allocations\n", pci_name(pdev));
  2750. goto err_out_free_regions;
  2751. }
  2752. } else {
  2753. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2754. if (err) {
  2755. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2756. pci_name(pdev));
  2757. goto err_out_free_regions;
  2758. }
  2759. }
  2760. err = -ENOMEM;
  2761. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2762. if (!hw) {
  2763. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2764. pci_name(pdev));
  2765. goto err_out_free_regions;
  2766. }
  2767. hw->pdev = pdev;
  2768. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2769. if (!hw->regs) {
  2770. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2771. pci_name(pdev));
  2772. goto err_out_free_hw;
  2773. }
  2774. hw->pm_cap = pm_cap;
  2775. #ifdef __BIG_ENDIAN
  2776. /* The sk98lin vendor driver uses hardware byte swapping but
  2777. * this driver uses software swapping.
  2778. */
  2779. {
  2780. u32 reg;
  2781. reg = sky2_pci_read32(hw, PCI_DEV_REG2);
  2782. reg &= ~PCI_REV_DESC;
  2783. sky2_pci_write32(hw, PCI_DEV_REG2, reg);
  2784. }
  2785. #endif
  2786. /* ring for status responses */
  2787. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  2788. &hw->st_dma);
  2789. if (!hw->st_le)
  2790. goto err_out_iounmap;
  2791. err = sky2_reset(hw);
  2792. if (err)
  2793. goto err_out_iounmap;
  2794. printk(KERN_INFO PFX "v%s addr 0x%llx irq %d Yukon-%s (0x%x) rev %d\n",
  2795. DRV_VERSION, (unsigned long long)pci_resource_start(pdev, 0),
  2796. pdev->irq, yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2797. hw->chip_id, hw->chip_rev);
  2798. dev = sky2_init_netdev(hw, 0, using_dac);
  2799. if (!dev)
  2800. goto err_out_free_pci;
  2801. if (!disable_msi && pci_enable_msi(pdev) == 0) {
  2802. err = sky2_test_msi(hw);
  2803. if (err == -EOPNOTSUPP)
  2804. pci_disable_msi(pdev);
  2805. else if (err)
  2806. goto err_out_free_netdev;
  2807. }
  2808. err = register_netdev(dev);
  2809. if (err) {
  2810. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2811. pci_name(pdev));
  2812. goto err_out_free_netdev;
  2813. }
  2814. err = request_irq(pdev->irq, sky2_intr, hw->msi ? 0 : IRQF_SHARED,
  2815. dev->name, hw);
  2816. if (err) {
  2817. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2818. pci_name(pdev), pdev->irq);
  2819. goto err_out_unregister;
  2820. }
  2821. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2822. sky2_show_addr(dev);
  2823. if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
  2824. if (register_netdev(dev1) == 0)
  2825. sky2_show_addr(dev1);
  2826. else {
  2827. /* Failure to register second port need not be fatal */
  2828. printk(KERN_WARNING PFX
  2829. "register of second port failed\n");
  2830. hw->dev[1] = NULL;
  2831. free_netdev(dev1);
  2832. }
  2833. }
  2834. setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw);
  2835. sky2_idle_start(hw);
  2836. pci_set_drvdata(pdev, hw);
  2837. return 0;
  2838. err_out_unregister:
  2839. if (hw->msi)
  2840. pci_disable_msi(pdev);
  2841. unregister_netdev(dev);
  2842. err_out_free_netdev:
  2843. free_netdev(dev);
  2844. err_out_free_pci:
  2845. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2846. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2847. err_out_iounmap:
  2848. iounmap(hw->regs);
  2849. err_out_free_hw:
  2850. kfree(hw);
  2851. err_out_free_regions:
  2852. pci_release_regions(pdev);
  2853. pci_disable_device(pdev);
  2854. err_out:
  2855. return err;
  2856. }
  2857. static void __devexit sky2_remove(struct pci_dev *pdev)
  2858. {
  2859. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2860. struct net_device *dev0, *dev1;
  2861. if (!hw)
  2862. return;
  2863. del_timer_sync(&hw->idle_timer);
  2864. sky2_write32(hw, B0_IMSK, 0);
  2865. synchronize_irq(hw->pdev->irq);
  2866. dev0 = hw->dev[0];
  2867. dev1 = hw->dev[1];
  2868. if (dev1)
  2869. unregister_netdev(dev1);
  2870. unregister_netdev(dev0);
  2871. sky2_set_power_state(hw, PCI_D3hot);
  2872. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2873. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2874. sky2_read8(hw, B0_CTST);
  2875. free_irq(pdev->irq, hw);
  2876. if (hw->msi)
  2877. pci_disable_msi(pdev);
  2878. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2879. pci_release_regions(pdev);
  2880. pci_disable_device(pdev);
  2881. if (dev1)
  2882. free_netdev(dev1);
  2883. free_netdev(dev0);
  2884. iounmap(hw->regs);
  2885. kfree(hw);
  2886. pci_set_drvdata(pdev, NULL);
  2887. }
  2888. #ifdef CONFIG_PM
  2889. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2890. {
  2891. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2892. int i;
  2893. pci_power_t pstate = pci_choose_state(pdev, state);
  2894. if (!(pstate == PCI_D3hot || pstate == PCI_D3cold))
  2895. return -EINVAL;
  2896. del_timer_sync(&hw->idle_timer);
  2897. netif_poll_disable(hw->dev[0]);
  2898. for (i = 0; i < hw->ports; i++) {
  2899. struct net_device *dev = hw->dev[i];
  2900. if (netif_running(dev)) {
  2901. sky2_down(dev);
  2902. netif_device_detach(dev);
  2903. }
  2904. }
  2905. sky2_write32(hw, B0_IMSK, 0);
  2906. pci_save_state(pdev);
  2907. sky2_set_power_state(hw, pstate);
  2908. return 0;
  2909. }
  2910. static int sky2_resume(struct pci_dev *pdev)
  2911. {
  2912. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2913. int i, err;
  2914. pci_restore_state(pdev);
  2915. pci_enable_wake(pdev, PCI_D0, 0);
  2916. sky2_set_power_state(hw, PCI_D0);
  2917. err = sky2_reset(hw);
  2918. if (err)
  2919. goto out;
  2920. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2921. for (i = 0; i < hw->ports; i++) {
  2922. struct net_device *dev = hw->dev[i];
  2923. if (netif_running(dev)) {
  2924. netif_device_attach(dev);
  2925. err = sky2_up(dev);
  2926. if (err) {
  2927. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2928. dev->name, err);
  2929. dev_close(dev);
  2930. goto out;
  2931. }
  2932. }
  2933. }
  2934. netif_poll_enable(hw->dev[0]);
  2935. sky2_idle_start(hw);
  2936. out:
  2937. return err;
  2938. }
  2939. #endif
  2940. static struct pci_driver sky2_driver = {
  2941. .name = DRV_NAME,
  2942. .id_table = sky2_id_table,
  2943. .probe = sky2_probe,
  2944. .remove = __devexit_p(sky2_remove),
  2945. #ifdef CONFIG_PM
  2946. .suspend = sky2_suspend,
  2947. .resume = sky2_resume,
  2948. #endif
  2949. };
  2950. static int __init sky2_init_module(void)
  2951. {
  2952. return pci_register_driver(&sky2_driver);
  2953. }
  2954. static void __exit sky2_cleanup_module(void)
  2955. {
  2956. pci_unregister_driver(&sky2_driver);
  2957. }
  2958. module_init(sky2_init_module);
  2959. module_exit(sky2_cleanup_module);
  2960. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  2961. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  2962. MODULE_LICENSE("GPL");
  2963. MODULE_VERSION(DRV_VERSION);