ctatc.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include "cttimer.h"
  25. #include <linux/delay.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define DAIONUM 7
  31. #define MAX_MULTI_CHN 8
  32. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  33. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  34. | ((IEC958_AES1_CON_MIXER \
  35. | IEC958_AES1_CON_ORIGINAL) << 8) \
  36. | (0x10 << 16) \
  37. | ((IEC958_AES3_CON_FS_48000) << 24))
  38. static const struct ct_atc_chip_sub_details atc_sub_details[NUM_CTCARDS] = {
  39. [CTSB0760] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  40. .nm_model = "SB076x"},
  41. [CTHENDRIX] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_HENDRIX,
  42. .nm_model = "Hendrix"},
  43. [CTSB08801] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  44. .nm_model = "SB0880"},
  45. [CTSB08802] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  46. .nm_model = "SB0880"},
  47. [CTSB08803] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  48. .nm_model = "SB0880"}
  49. };
  50. static struct ct_atc_chip_details atc_chip_details[] = {
  51. {.vendor = PCI_VENDOR_ID_CREATIVE,
  52. .device = PCI_DEVICE_ID_CREATIVE_20K1,
  53. .sub_details = NULL,
  54. .nm_card = "X-Fi 20k1"},
  55. {.vendor = PCI_VENDOR_ID_CREATIVE,
  56. .device = PCI_DEVICE_ID_CREATIVE_20K2,
  57. .sub_details = atc_sub_details,
  58. .nm_card = "X-Fi 20k2"},
  59. {} /* terminator */
  60. };
  61. static struct {
  62. int (*create)(struct ct_atc *atc,
  63. enum CTALSADEVS device, const char *device_name);
  64. int (*destroy)(void *alsa_dev);
  65. const char *public_name;
  66. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  67. [FRONT] = { .create = ct_alsa_pcm_create,
  68. .destroy = NULL,
  69. .public_name = "Front/WaveIn"},
  70. [SURROUND] = { .create = ct_alsa_pcm_create,
  71. .destroy = NULL,
  72. .public_name = "Surround"},
  73. [CLFE] = { .create = ct_alsa_pcm_create,
  74. .destroy = NULL,
  75. .public_name = "Center/LFE"},
  76. [SIDE] = { .create = ct_alsa_pcm_create,
  77. .destroy = NULL,
  78. .public_name = "Side"},
  79. [IEC958] = { .create = ct_alsa_pcm_create,
  80. .destroy = NULL,
  81. .public_name = "IEC958 Non-audio"},
  82. [MIXER] = { .create = ct_alsa_mix_create,
  83. .destroy = NULL,
  84. .public_name = "Mixer"}
  85. };
  86. typedef int (*create_t)(void *, void **);
  87. typedef int (*destroy_t)(void *);
  88. static struct {
  89. int (*create)(void *hw, void **rmgr);
  90. int (*destroy)(void *mgr);
  91. } rsc_mgr_funcs[NUM_RSCTYP] = {
  92. [SRC] = { .create = (create_t)src_mgr_create,
  93. .destroy = (destroy_t)src_mgr_destroy },
  94. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  95. .destroy = (destroy_t)srcimp_mgr_destroy },
  96. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  97. .destroy = (destroy_t)amixer_mgr_destroy },
  98. [SUM] = { .create = (create_t)sum_mgr_create,
  99. .destroy = (destroy_t)sum_mgr_destroy },
  100. [DAIO] = { .create = (create_t)daio_mgr_create,
  101. .destroy = (destroy_t)daio_mgr_destroy }
  102. };
  103. static int
  104. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  105. /* *
  106. * Only mono and interleaved modes are supported now.
  107. * Always allocates a contiguous channel block.
  108. * */
  109. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  110. {
  111. struct snd_pcm_runtime *runtime;
  112. struct ct_vm *vm;
  113. if (NULL == apcm->substream)
  114. return 0;
  115. runtime = apcm->substream->runtime;
  116. vm = atc->vm;
  117. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  118. if (NULL == apcm->vm_block)
  119. return -ENOENT;
  120. return 0;
  121. }
  122. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  123. {
  124. struct ct_vm *vm;
  125. if (NULL == apcm->vm_block)
  126. return;
  127. vm = atc->vm;
  128. vm->unmap(vm, apcm->vm_block);
  129. apcm->vm_block = NULL;
  130. }
  131. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  132. {
  133. struct ct_vm *vm;
  134. void *kvirt_addr;
  135. unsigned long phys_addr;
  136. vm = atc->vm;
  137. kvirt_addr = vm->get_ptp_virt(vm, index);
  138. if (kvirt_addr == NULL)
  139. phys_addr = (~0UL);
  140. else
  141. phys_addr = virt_to_phys(kvirt_addr);
  142. return phys_addr;
  143. }
  144. static unsigned int convert_format(snd_pcm_format_t snd_format)
  145. {
  146. switch (snd_format) {
  147. case SNDRV_PCM_FORMAT_U8:
  148. return SRC_SF_U8;
  149. case SNDRV_PCM_FORMAT_S16_LE:
  150. return SRC_SF_S16;
  151. case SNDRV_PCM_FORMAT_S24_3LE:
  152. return SRC_SF_S24;
  153. case SNDRV_PCM_FORMAT_S32_LE:
  154. return SRC_SF_S32;
  155. case SNDRV_PCM_FORMAT_FLOAT_LE:
  156. return SRC_SF_F32;
  157. default:
  158. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  159. snd_format);
  160. return SRC_SF_S16;
  161. }
  162. }
  163. static unsigned int
  164. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  165. {
  166. unsigned int pitch = 0;
  167. int b = 0;
  168. /* get pitch and convert to fixed-point 8.24 format. */
  169. pitch = (input_rate / output_rate) << 24;
  170. input_rate %= output_rate;
  171. input_rate /= 100;
  172. output_rate /= 100;
  173. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  174. b--;
  175. if (b >= 0) {
  176. input_rate <<= (31 - b);
  177. input_rate /= output_rate;
  178. b = 24 - (31 - b);
  179. if (b >= 0)
  180. input_rate <<= b;
  181. else
  182. input_rate >>= -b;
  183. pitch |= input_rate;
  184. }
  185. return pitch;
  186. }
  187. static int select_rom(unsigned int pitch)
  188. {
  189. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  190. /* 0.26 <= pitch <= 1.72 */
  191. return 1;
  192. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  193. /* pitch == 1.8375 */
  194. return 2;
  195. } else if (0x02000000 == pitch) {
  196. /* pitch == 2 */
  197. return 3;
  198. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  199. /* 0 <= pitch <= 8 */
  200. return 0;
  201. } else {
  202. return -ENOENT;
  203. }
  204. }
  205. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  206. {
  207. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  208. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  209. struct src_desc desc = {0};
  210. struct amixer_desc mix_dsc = {0};
  211. struct src *src = NULL;
  212. struct amixer *amixer = NULL;
  213. int err = 0;
  214. int n_amixer = apcm->substream->runtime->channels, i = 0;
  215. int device = apcm->substream->pcm->device;
  216. unsigned int pitch = 0;
  217. unsigned long flags;
  218. if (NULL != apcm->src) {
  219. /* Prepared pcm playback */
  220. return 0;
  221. }
  222. /* first release old resources */
  223. atc->pcm_release_resources(atc, apcm);
  224. /* Get SRC resource */
  225. desc.multi = apcm->substream->runtime->channels;
  226. desc.msr = atc->msr;
  227. desc.mode = MEMRD;
  228. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  229. if (err)
  230. goto error1;
  231. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  232. (atc->rsr * atc->msr));
  233. src = apcm->src;
  234. src->ops->set_pitch(src, pitch);
  235. src->ops->set_rom(src, select_rom(pitch));
  236. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  237. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  238. /* Get AMIXER resource */
  239. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  240. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  241. if (NULL == apcm->amixers) {
  242. err = -ENOMEM;
  243. goto error1;
  244. }
  245. mix_dsc.msr = atc->msr;
  246. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  247. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  248. (struct amixer **)&apcm->amixers[i]);
  249. if (err)
  250. goto error1;
  251. apcm->n_amixer++;
  252. }
  253. /* Set up device virtual mem map */
  254. err = ct_map_audio_buffer(atc, apcm);
  255. if (err < 0)
  256. goto error1;
  257. /* Connect resources */
  258. src = apcm->src;
  259. for (i = 0; i < n_amixer; i++) {
  260. amixer = apcm->amixers[i];
  261. spin_lock_irqsave(&atc->atc_lock, flags);
  262. amixer->ops->setup(amixer, &src->rsc,
  263. INIT_VOL, atc->pcm[i+device*2]);
  264. spin_unlock_irqrestore(&atc->atc_lock, flags);
  265. src = src->ops->next_interleave(src);
  266. if (NULL == src)
  267. src = apcm->src;
  268. }
  269. ct_timer_prepare(apcm->timer);
  270. return 0;
  271. error1:
  272. atc_pcm_release_resources(atc, apcm);
  273. return err;
  274. }
  275. static int
  276. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  277. {
  278. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  279. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  280. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  281. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  282. struct srcimp *srcimp = NULL;
  283. int i = 0;
  284. if (NULL != apcm->srcimps) {
  285. for (i = 0; i < apcm->n_srcimp; i++) {
  286. srcimp = apcm->srcimps[i];
  287. srcimp->ops->unmap(srcimp);
  288. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  289. apcm->srcimps[i] = NULL;
  290. }
  291. kfree(apcm->srcimps);
  292. apcm->srcimps = NULL;
  293. }
  294. if (NULL != apcm->srccs) {
  295. for (i = 0; i < apcm->n_srcc; i++) {
  296. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  297. apcm->srccs[i] = NULL;
  298. }
  299. kfree(apcm->srccs);
  300. apcm->srccs = NULL;
  301. }
  302. if (NULL != apcm->amixers) {
  303. for (i = 0; i < apcm->n_amixer; i++) {
  304. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  305. apcm->amixers[i] = NULL;
  306. }
  307. kfree(apcm->amixers);
  308. apcm->amixers = NULL;
  309. }
  310. if (NULL != apcm->mono) {
  311. sum_mgr->put_sum(sum_mgr, apcm->mono);
  312. apcm->mono = NULL;
  313. }
  314. if (NULL != apcm->src) {
  315. src_mgr->put_src(src_mgr, apcm->src);
  316. apcm->src = NULL;
  317. }
  318. if (NULL != apcm->vm_block) {
  319. /* Undo device virtual mem map */
  320. ct_unmap_audio_buffer(atc, apcm);
  321. apcm->vm_block = NULL;
  322. }
  323. return 0;
  324. }
  325. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  326. {
  327. unsigned int max_cisz = 0;
  328. struct src *src = apcm->src;
  329. max_cisz = src->multi * src->rsc.msr;
  330. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  331. src->ops->set_sa(src, apcm->vm_block->addr);
  332. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  333. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  334. src->ops->set_cisz(src, max_cisz);
  335. src->ops->set_bm(src, 1);
  336. src->ops->set_state(src, SRC_STATE_INIT);
  337. src->ops->commit_write(src);
  338. ct_timer_start(apcm->timer);
  339. return 0;
  340. }
  341. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  342. {
  343. struct src *src = NULL;
  344. int i = 0;
  345. ct_timer_stop(apcm->timer);
  346. src = apcm->src;
  347. src->ops->set_bm(src, 0);
  348. src->ops->set_state(src, SRC_STATE_OFF);
  349. src->ops->commit_write(src);
  350. if (NULL != apcm->srccs) {
  351. for (i = 0; i < apcm->n_srcc; i++) {
  352. src = apcm->srccs[i];
  353. src->ops->set_bm(src, 0);
  354. src->ops->set_state(src, SRC_STATE_OFF);
  355. src->ops->commit_write(src);
  356. }
  357. }
  358. apcm->started = 0;
  359. return 0;
  360. }
  361. static int
  362. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  363. {
  364. struct src *src = apcm->src;
  365. u32 size = 0, max_cisz = 0;
  366. int position = 0;
  367. position = src->ops->get_ca(src);
  368. size = apcm->vm_block->size;
  369. max_cisz = src->multi * src->rsc.msr;
  370. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  371. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  372. }
  373. struct src_node_conf_t {
  374. unsigned int pitch;
  375. unsigned int msr:8;
  376. unsigned int mix_msr:8;
  377. unsigned int imp_msr:8;
  378. unsigned int vo:1;
  379. };
  380. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  381. struct src_node_conf_t *conf, int *n_srcc)
  382. {
  383. unsigned int pitch = 0;
  384. /* get pitch and convert to fixed-point 8.24 format. */
  385. pitch = atc_get_pitch((atc->rsr * atc->msr),
  386. apcm->substream->runtime->rate);
  387. *n_srcc = 0;
  388. if (1 == atc->msr) {
  389. *n_srcc = apcm->substream->runtime->channels;
  390. conf[0].pitch = pitch;
  391. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  392. conf[0].vo = 1;
  393. } else if (2 == atc->msr) {
  394. if (0x8000000 < pitch) {
  395. /* Need two-stage SRCs, SRCIMPs and
  396. * AMIXERs for converting format */
  397. conf[0].pitch = (atc->msr << 24);
  398. conf[0].msr = conf[0].mix_msr = 1;
  399. conf[0].imp_msr = atc->msr;
  400. conf[0].vo = 0;
  401. conf[1].pitch = atc_get_pitch(atc->rsr,
  402. apcm->substream->runtime->rate);
  403. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  404. conf[1].vo = 1;
  405. *n_srcc = apcm->substream->runtime->channels * 2;
  406. } else if (0x1000000 < pitch) {
  407. /* Need one-stage SRCs, SRCIMPs and
  408. * AMIXERs for converting format */
  409. conf[0].pitch = pitch;
  410. conf[0].msr = conf[0].mix_msr
  411. = conf[0].imp_msr = atc->msr;
  412. conf[0].vo = 1;
  413. *n_srcc = apcm->substream->runtime->channels;
  414. }
  415. }
  416. }
  417. static int
  418. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  419. {
  420. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  421. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  422. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  423. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  424. struct src_desc src_dsc = {0};
  425. struct src *src = NULL;
  426. struct srcimp_desc srcimp_dsc = {0};
  427. struct srcimp *srcimp = NULL;
  428. struct amixer_desc mix_dsc = {0};
  429. struct sum_desc sum_dsc = {0};
  430. unsigned int pitch = 0;
  431. int multi = 0, err = 0, i = 0;
  432. int n_srcimp = 0, n_amixer = 0, n_srcc = 0, n_sum = 0;
  433. struct src_node_conf_t src_node_conf[2] = {{0} };
  434. /* first release old resources */
  435. atc->pcm_release_resources(atc, apcm);
  436. /* The numbers of converting SRCs and SRCIMPs should be determined
  437. * by pitch value. */
  438. multi = apcm->substream->runtime->channels;
  439. /* get pitch and convert to fixed-point 8.24 format. */
  440. pitch = atc_get_pitch((atc->rsr * atc->msr),
  441. apcm->substream->runtime->rate);
  442. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  443. n_sum = (1 == multi) ? 1 : 0;
  444. n_amixer += n_sum * 2 + n_srcc;
  445. n_srcimp += n_srcc;
  446. if ((multi > 1) && (0x8000000 >= pitch)) {
  447. /* Need extra AMIXERs and SRCIMPs for special treatment
  448. * of interleaved recording of conjugate channels */
  449. n_amixer += multi * atc->msr;
  450. n_srcimp += multi * atc->msr;
  451. } else {
  452. n_srcimp += multi;
  453. }
  454. if (n_srcc) {
  455. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  456. if (NULL == apcm->srccs)
  457. return -ENOMEM;
  458. }
  459. if (n_amixer) {
  460. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  461. if (NULL == apcm->amixers) {
  462. err = -ENOMEM;
  463. goto error1;
  464. }
  465. }
  466. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  467. if (NULL == apcm->srcimps) {
  468. err = -ENOMEM;
  469. goto error1;
  470. }
  471. /* Allocate SRCs for sample rate conversion if needed */
  472. src_dsc.multi = 1;
  473. src_dsc.mode = ARCRW;
  474. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  475. src_dsc.msr = src_node_conf[i/multi].msr;
  476. err = src_mgr->get_src(src_mgr, &src_dsc,
  477. (struct src **)&apcm->srccs[i]);
  478. if (err)
  479. goto error1;
  480. src = apcm->srccs[i];
  481. pitch = src_node_conf[i/multi].pitch;
  482. src->ops->set_pitch(src, pitch);
  483. src->ops->set_rom(src, select_rom(pitch));
  484. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  485. apcm->n_srcc++;
  486. }
  487. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  488. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  489. if (i < (n_sum*2))
  490. mix_dsc.msr = atc->msr;
  491. else if (i < (n_sum*2+n_srcc))
  492. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  493. else
  494. mix_dsc.msr = 1;
  495. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  496. (struct amixer **)&apcm->amixers[i]);
  497. if (err)
  498. goto error1;
  499. apcm->n_amixer++;
  500. }
  501. /* Allocate a SUM resource to mix all input channels together */
  502. sum_dsc.msr = atc->msr;
  503. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  504. if (err)
  505. goto error1;
  506. pitch = atc_get_pitch((atc->rsr * atc->msr),
  507. apcm->substream->runtime->rate);
  508. /* Allocate SRCIMP resources */
  509. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  510. if (i < (n_srcc))
  511. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  512. else if (1 == multi)
  513. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  514. else
  515. srcimp_dsc.msr = 1;
  516. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  517. if (err)
  518. goto error1;
  519. apcm->srcimps[i] = srcimp;
  520. apcm->n_srcimp++;
  521. }
  522. /* Allocate a SRC for writing data to host memory */
  523. src_dsc.multi = apcm->substream->runtime->channels;
  524. src_dsc.msr = 1;
  525. src_dsc.mode = MEMWR;
  526. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  527. if (err)
  528. goto error1;
  529. src = apcm->src;
  530. src->ops->set_pitch(src, pitch);
  531. /* Set up device virtual mem map */
  532. err = ct_map_audio_buffer(atc, apcm);
  533. if (err < 0)
  534. goto error1;
  535. return 0;
  536. error1:
  537. atc_pcm_release_resources(atc, apcm);
  538. return err;
  539. }
  540. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  541. {
  542. struct src *src = NULL;
  543. struct amixer *amixer = NULL;
  544. struct srcimp *srcimp = NULL;
  545. struct ct_mixer *mixer = atc->mixer;
  546. struct sum *mono = NULL;
  547. struct rsc *out_ports[8] = {NULL};
  548. int err = 0, i = 0, j = 0, n_sum = 0, multi = 0;
  549. unsigned int pitch = 0;
  550. int mix_base = 0, imp_base = 0;
  551. if (NULL != apcm->src) {
  552. /* Prepared pcm capture */
  553. return 0;
  554. }
  555. /* Get needed resources. */
  556. err = atc_pcm_capture_get_resources(atc, apcm);
  557. if (err)
  558. return err;
  559. /* Connect resources */
  560. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  561. &out_ports[0], &out_ports[1]);
  562. multi = apcm->substream->runtime->channels;
  563. if (1 == multi) {
  564. mono = apcm->mono;
  565. for (i = 0; i < 2; i++) {
  566. amixer = apcm->amixers[i];
  567. amixer->ops->setup(amixer, out_ports[i],
  568. MONO_SUM_SCALE, mono);
  569. }
  570. out_ports[0] = &mono->rsc;
  571. n_sum = 1;
  572. mix_base = n_sum * 2;
  573. }
  574. for (i = 0; i < apcm->n_srcc; i++) {
  575. src = apcm->srccs[i];
  576. srcimp = apcm->srcimps[imp_base+i];
  577. amixer = apcm->amixers[mix_base+i];
  578. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  579. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  580. out_ports[i%multi] = &amixer->rsc;
  581. }
  582. pitch = atc_get_pitch((atc->rsr * atc->msr),
  583. apcm->substream->runtime->rate);
  584. if ((multi > 1) && (pitch <= 0x8000000)) {
  585. /* Special connection for interleaved
  586. * recording with conjugate channels */
  587. for (i = 0; i < multi; i++) {
  588. out_ports[i]->ops->master(out_ports[i]);
  589. for (j = 0; j < atc->msr; j++) {
  590. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  591. amixer->ops->set_input(amixer, out_ports[i]);
  592. amixer->ops->set_scale(amixer, INIT_VOL);
  593. amixer->ops->set_sum(amixer, NULL);
  594. amixer->ops->commit_raw_write(amixer);
  595. out_ports[i]->ops->next_conj(out_ports[i]);
  596. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  597. srcimp->ops->map(srcimp, apcm->src,
  598. &amixer->rsc);
  599. }
  600. }
  601. } else {
  602. for (i = 0; i < multi; i++) {
  603. srcimp = apcm->srcimps[apcm->n_srcc+i];
  604. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  605. }
  606. }
  607. ct_timer_prepare(apcm->timer);
  608. return 0;
  609. }
  610. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  611. {
  612. struct src *src = NULL;
  613. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  614. int i = 0, multi = 0;
  615. if (apcm->started)
  616. return 0;
  617. apcm->started = 1;
  618. multi = apcm->substream->runtime->channels;
  619. /* Set up converting SRCs */
  620. for (i = 0; i < apcm->n_srcc; i++) {
  621. src = apcm->srccs[i];
  622. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  623. src_mgr->src_disable(src_mgr, src);
  624. }
  625. /* Set up recording SRC */
  626. src = apcm->src;
  627. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  628. src->ops->set_sa(src, apcm->vm_block->addr);
  629. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  630. src->ops->set_ca(src, apcm->vm_block->addr);
  631. src_mgr->src_disable(src_mgr, src);
  632. /* Disable relevant SRCs firstly */
  633. src_mgr->commit_write(src_mgr);
  634. /* Enable SRCs respectively */
  635. for (i = 0; i < apcm->n_srcc; i++) {
  636. src = apcm->srccs[i];
  637. src->ops->set_state(src, SRC_STATE_RUN);
  638. src->ops->commit_write(src);
  639. src_mgr->src_enable_s(src_mgr, src);
  640. }
  641. src = apcm->src;
  642. src->ops->set_bm(src, 1);
  643. src->ops->set_state(src, SRC_STATE_RUN);
  644. src->ops->commit_write(src);
  645. src_mgr->src_enable_s(src_mgr, src);
  646. /* Enable relevant SRCs synchronously */
  647. src_mgr->commit_write(src_mgr);
  648. ct_timer_start(apcm->timer);
  649. return 0;
  650. }
  651. static int
  652. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  653. {
  654. struct src *src = apcm->src;
  655. return src->ops->get_ca(src) - apcm->vm_block->addr;
  656. }
  657. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  658. struct ct_atc_pcm *apcm)
  659. {
  660. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  661. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  662. struct src_desc desc = {0};
  663. struct amixer_desc mix_dsc = {0};
  664. struct src *src = NULL;
  665. int err = 0;
  666. int n_amixer = apcm->substream->runtime->channels, i = 0;
  667. unsigned int pitch = 0, rsr = atc->pll_rate;
  668. /* first release old resources */
  669. atc->pcm_release_resources(atc, apcm);
  670. /* Get SRC resource */
  671. desc.multi = apcm->substream->runtime->channels;
  672. desc.msr = 1;
  673. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  674. desc.msr <<= 1;
  675. desc.mode = MEMRD;
  676. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  677. if (err)
  678. goto error1;
  679. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  680. src = apcm->src;
  681. src->ops->set_pitch(src, pitch);
  682. src->ops->set_rom(src, select_rom(pitch));
  683. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  684. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  685. src->ops->set_bp(src, 1);
  686. /* Get AMIXER resource */
  687. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  688. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  689. if (NULL == apcm->amixers) {
  690. err = -ENOMEM;
  691. goto error1;
  692. }
  693. mix_dsc.msr = desc.msr;
  694. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  695. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  696. (struct amixer **)&apcm->amixers[i]);
  697. if (err)
  698. goto error1;
  699. apcm->n_amixer++;
  700. }
  701. /* Set up device virtual mem map */
  702. err = ct_map_audio_buffer(atc, apcm);
  703. if (err < 0)
  704. goto error1;
  705. return 0;
  706. error1:
  707. atc_pcm_release_resources(atc, apcm);
  708. return err;
  709. }
  710. static int
  711. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  712. {
  713. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  714. unsigned long flags;
  715. unsigned int rate = apcm->substream->runtime->rate;
  716. unsigned int status = 0;
  717. int err = 0;
  718. unsigned char iec958_con_fs = 0;
  719. switch (rate) {
  720. case 48000:
  721. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  722. break;
  723. case 44100:
  724. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  725. break;
  726. case 32000:
  727. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  728. break;
  729. default:
  730. return -ENOENT;
  731. }
  732. spin_lock_irqsave(&atc->atc_lock, flags);
  733. dao->ops->get_spos(dao, &status);
  734. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  735. status &= ((~IEC958_AES3_CON_FS) << 24);
  736. status |= (iec958_con_fs << 24);
  737. dao->ops->set_spos(dao, status);
  738. dao->ops->commit_write(dao);
  739. }
  740. if ((rate != atc->pll_rate) && (32000 != rate)) {
  741. err = ((struct hw *)atc->hw)->pll_init(atc->hw, rate);
  742. atc->pll_rate = err ? 0 : rate;
  743. }
  744. spin_unlock_irqrestore(&atc->atc_lock, flags);
  745. return err;
  746. }
  747. static int
  748. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  749. {
  750. struct src *src = NULL;
  751. struct amixer *amixer = NULL;
  752. struct dao *dao = NULL;
  753. int err = 0;
  754. int i = 0;
  755. unsigned long flags;
  756. if (NULL != apcm->src)
  757. return 0;
  758. /* Configure SPDIFOO and PLL to passthrough mode;
  759. * determine pll_rate. */
  760. err = spdif_passthru_playback_setup(atc, apcm);
  761. if (err)
  762. return err;
  763. /* Get needed resources. */
  764. err = spdif_passthru_playback_get_resources(atc, apcm);
  765. if (err)
  766. return err;
  767. /* Connect resources */
  768. src = apcm->src;
  769. for (i = 0; i < apcm->n_amixer; i++) {
  770. amixer = apcm->amixers[i];
  771. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  772. src = src->ops->next_interleave(src);
  773. if (NULL == src)
  774. src = apcm->src;
  775. }
  776. /* Connect to SPDIFOO */
  777. spin_lock_irqsave(&atc->atc_lock, flags);
  778. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  779. amixer = apcm->amixers[0];
  780. dao->ops->set_left_input(dao, &amixer->rsc);
  781. amixer = apcm->amixers[1];
  782. dao->ops->set_right_input(dao, &amixer->rsc);
  783. spin_unlock_irqrestore(&atc->atc_lock, flags);
  784. ct_timer_prepare(apcm->timer);
  785. return 0;
  786. }
  787. static int atc_select_line_in(struct ct_atc *atc)
  788. {
  789. struct hw *hw = atc->hw;
  790. struct ct_mixer *mixer = atc->mixer;
  791. struct src *src = NULL;
  792. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  793. return 0;
  794. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  795. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  796. hw->select_adc_source(hw, ADC_LINEIN);
  797. src = atc->srcs[2];
  798. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  799. src = atc->srcs[3];
  800. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  801. return 0;
  802. }
  803. static int atc_select_mic_in(struct ct_atc *atc)
  804. {
  805. struct hw *hw = atc->hw;
  806. struct ct_mixer *mixer = atc->mixer;
  807. struct src *src = NULL;
  808. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  809. return 0;
  810. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  811. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  812. hw->select_adc_source(hw, ADC_MICIN);
  813. src = atc->srcs[2];
  814. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  815. src = atc->srcs[3];
  816. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  817. return 0;
  818. }
  819. static int atc_have_digit_io_switch(struct ct_atc *atc)
  820. {
  821. struct hw *hw = atc->hw;
  822. return hw->have_digit_io_switch(hw);
  823. }
  824. static int atc_select_digit_io(struct ct_atc *atc)
  825. {
  826. struct hw *hw = atc->hw;
  827. if (hw->is_adc_source_selected(hw, ADC_NONE))
  828. return 0;
  829. hw->select_adc_source(hw, ADC_NONE);
  830. return 0;
  831. }
  832. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  833. {
  834. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  835. if (state)
  836. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  837. else
  838. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  839. daio_mgr->commit_write(daio_mgr);
  840. return 0;
  841. }
  842. static int
  843. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  844. {
  845. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  846. return dao->ops->get_spos(dao, status);
  847. }
  848. static int
  849. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  850. {
  851. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  852. dao->ops->set_spos(dao, status);
  853. dao->ops->commit_write(dao);
  854. return 0;
  855. }
  856. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  857. {
  858. return atc_daio_unmute(atc, state, LINEO1);
  859. }
  860. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  861. {
  862. return atc_daio_unmute(atc, state, LINEO4);
  863. }
  864. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  865. {
  866. return atc_daio_unmute(atc, state, LINEO3);
  867. }
  868. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  869. {
  870. return atc_daio_unmute(atc, state, LINEO2);
  871. }
  872. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  873. {
  874. return atc_daio_unmute(atc, state, LINEIM);
  875. }
  876. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  877. {
  878. return atc_daio_unmute(atc, state, SPDIFOO);
  879. }
  880. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  881. {
  882. return atc_daio_unmute(atc, state, SPDIFIO);
  883. }
  884. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  885. {
  886. return atc_dao_get_status(atc, status, SPDIFOO);
  887. }
  888. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  889. {
  890. return atc_dao_set_status(atc, status, SPDIFOO);
  891. }
  892. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  893. {
  894. unsigned long flags;
  895. struct dao_desc da_dsc = {0};
  896. struct dao *dao = NULL;
  897. int err = 0;
  898. struct ct_mixer *mixer = atc->mixer;
  899. struct rsc *rscs[2] = {NULL};
  900. unsigned int spos = 0;
  901. spin_lock_irqsave(&atc->atc_lock, flags);
  902. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  903. da_dsc.msr = state ? 1 : atc->msr;
  904. da_dsc.passthru = state ? 1 : 0;
  905. err = dao->ops->reinit(dao, &da_dsc);
  906. if (state) {
  907. spos = IEC958_DEFAULT_CON;
  908. } else {
  909. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  910. &rscs[0], &rscs[1]);
  911. dao->ops->set_left_input(dao, rscs[0]);
  912. dao->ops->set_right_input(dao, rscs[1]);
  913. /* Restore PLL to atc->rsr if needed. */
  914. if (atc->pll_rate != atc->rsr) {
  915. err = ((struct hw *)atc->hw)->pll_init(atc->hw,
  916. atc->rsr);
  917. atc->pll_rate = err ? 0 : atc->rsr;
  918. }
  919. }
  920. dao->ops->set_spos(dao, spos);
  921. dao->ops->commit_write(dao);
  922. spin_unlock_irqrestore(&atc->atc_lock, flags);
  923. return err;
  924. }
  925. static int ct_atc_destroy(struct ct_atc *atc)
  926. {
  927. struct daio_mgr *daio_mgr = NULL;
  928. struct dao *dao = NULL;
  929. struct dai *dai = NULL;
  930. struct daio *daio = NULL;
  931. struct sum_mgr *sum_mgr = NULL;
  932. struct src_mgr *src_mgr = NULL;
  933. struct srcimp_mgr *srcimp_mgr = NULL;
  934. struct srcimp *srcimp = NULL;
  935. struct ct_mixer *mixer = NULL;
  936. int i = 0;
  937. if (NULL == atc)
  938. return 0;
  939. if (atc->timer) {
  940. ct_timer_free(atc->timer);
  941. atc->timer = NULL;
  942. }
  943. /* Stop hardware and disable all interrupts */
  944. if (NULL != atc->hw)
  945. ((struct hw *)atc->hw)->card_stop(atc->hw);
  946. /* Destroy internal mixer objects */
  947. if (NULL != atc->mixer) {
  948. mixer = atc->mixer;
  949. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  950. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  951. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  952. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  953. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  954. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  955. ct_mixer_destroy(atc->mixer);
  956. }
  957. if (NULL != atc->daios) {
  958. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  959. for (i = 0; i < atc->n_daio; i++) {
  960. daio = atc->daios[i];
  961. if (daio->type < LINEIM) {
  962. dao = container_of(daio, struct dao, daio);
  963. dao->ops->clear_left_input(dao);
  964. dao->ops->clear_right_input(dao);
  965. } else {
  966. dai = container_of(daio, struct dai, daio);
  967. /* some thing to do for dai ... */
  968. }
  969. daio_mgr->put_daio(daio_mgr, daio);
  970. }
  971. kfree(atc->daios);
  972. }
  973. if (NULL != atc->pcm) {
  974. sum_mgr = atc->rsc_mgrs[SUM];
  975. for (i = 0; i < atc->n_pcm; i++)
  976. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  977. kfree(atc->pcm);
  978. }
  979. if (NULL != atc->srcs) {
  980. src_mgr = atc->rsc_mgrs[SRC];
  981. for (i = 0; i < atc->n_src; i++)
  982. src_mgr->put_src(src_mgr, atc->srcs[i]);
  983. kfree(atc->srcs);
  984. }
  985. if (NULL != atc->srcimps) {
  986. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  987. for (i = 0; i < atc->n_srcimp; i++) {
  988. srcimp = atc->srcimps[i];
  989. srcimp->ops->unmap(srcimp);
  990. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  991. }
  992. kfree(atc->srcimps);
  993. }
  994. for (i = 0; i < NUM_RSCTYP; i++) {
  995. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  996. (NULL != atc->rsc_mgrs[i]))
  997. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  998. }
  999. if (NULL != atc->hw)
  1000. destroy_hw_obj((struct hw *)atc->hw);
  1001. /* Destroy device virtual memory manager object */
  1002. if (NULL != atc->vm) {
  1003. ct_vm_destroy(atc->vm);
  1004. atc->vm = NULL;
  1005. }
  1006. kfree(atc);
  1007. return 0;
  1008. }
  1009. static int atc_dev_free(struct snd_device *dev)
  1010. {
  1011. struct ct_atc *atc = dev->device_data;
  1012. return ct_atc_destroy(atc);
  1013. }
  1014. static int __devinit atc_identify_card(struct ct_atc *atc)
  1015. {
  1016. u16 subsys;
  1017. u8 revision;
  1018. struct pci_dev *pci = atc->pci;
  1019. const struct ct_atc_chip_details *d;
  1020. enum CTCARDS i;
  1021. subsys = pci->subsystem_device;
  1022. revision = pci->revision;
  1023. atc->chip_details = NULL;
  1024. atc->model = NUM_CTCARDS;
  1025. for (d = atc_chip_details; d->vendor; d++) {
  1026. if (d->vendor != pci->vendor || d->device != pci->device)
  1027. continue;
  1028. if (NULL == d->sub_details) {
  1029. atc->chip_details = d;
  1030. break;
  1031. }
  1032. for (i = 0; i < NUM_CTCARDS; i++) {
  1033. if ((d->sub_details[i].subsys == subsys) ||
  1034. (((subsys & 0x6000) == 0x6000) &&
  1035. ((d->sub_details[i].subsys & 0x6000) == 0x6000))) {
  1036. atc->model = i;
  1037. break;
  1038. }
  1039. }
  1040. if (i >= NUM_CTCARDS)
  1041. continue;
  1042. atc->chip_details = d;
  1043. break;
  1044. /* not take revision into consideration now */
  1045. }
  1046. if (!d->vendor)
  1047. return -ENOENT;
  1048. return 0;
  1049. }
  1050. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1051. {
  1052. enum CTALSADEVS i;
  1053. struct hw *hw = atc->hw;
  1054. int err;
  1055. switch (hw->get_chip_type(hw)) {
  1056. case ATC20K1:
  1057. alsa_dev_funcs[MIXER].public_name = "20K1";
  1058. break;
  1059. case ATC20K2:
  1060. alsa_dev_funcs[MIXER].public_name = "20K2";
  1061. break;
  1062. default:
  1063. alsa_dev_funcs[MIXER].public_name = "Unknown";
  1064. break;
  1065. }
  1066. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1067. if (NULL == alsa_dev_funcs[i].create)
  1068. continue;
  1069. err = alsa_dev_funcs[i].create(atc, i,
  1070. alsa_dev_funcs[i].public_name);
  1071. if (err) {
  1072. printk(KERN_ERR "ctxfi: "
  1073. "Creating alsa device %d failed!\n", i);
  1074. return err;
  1075. }
  1076. }
  1077. return 0;
  1078. }
  1079. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1080. {
  1081. struct hw *hw = NULL;
  1082. struct card_conf info = {0};
  1083. int i = 0, err = 0;
  1084. err = create_hw_obj(atc->pci, &hw);
  1085. if (err) {
  1086. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1087. return err;
  1088. }
  1089. atc->hw = hw;
  1090. /* Initialize card hardware. */
  1091. info.rsr = atc->rsr;
  1092. info.msr = atc->msr;
  1093. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1094. err = hw->card_init(hw, &info);
  1095. if (err < 0)
  1096. return err;
  1097. for (i = 0; i < NUM_RSCTYP; i++) {
  1098. if (NULL == rsc_mgr_funcs[i].create)
  1099. continue;
  1100. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1101. if (err) {
  1102. printk(KERN_ERR "ctxfi: "
  1103. "Failed to create rsc_mgr %d!!!\n", i);
  1104. return err;
  1105. }
  1106. }
  1107. return 0;
  1108. }
  1109. static int __devinit atc_get_resources(struct ct_atc *atc)
  1110. {
  1111. struct daio_desc da_desc = {0};
  1112. struct daio_mgr *daio_mgr = NULL;
  1113. struct src_desc src_dsc = {0};
  1114. struct src_mgr *src_mgr = NULL;
  1115. struct srcimp_desc srcimp_dsc = {0};
  1116. struct srcimp_mgr *srcimp_mgr = NULL;
  1117. struct sum_desc sum_dsc = {0};
  1118. struct sum_mgr *sum_mgr = NULL;
  1119. int err = 0, i = 0;
  1120. unsigned short subsys_id;
  1121. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1122. if (NULL == atc->daios)
  1123. return -ENOMEM;
  1124. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1125. if (NULL == atc->srcs)
  1126. return -ENOMEM;
  1127. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1128. if (NULL == atc->srcimps)
  1129. return -ENOMEM;
  1130. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1131. if (NULL == atc->pcm)
  1132. return -ENOMEM;
  1133. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1134. da_desc.msr = atc->msr;
  1135. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1136. da_desc.type = i;
  1137. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1138. (struct daio **)&atc->daios[i]);
  1139. if (err) {
  1140. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1141. "resource %d!!!\n", i);
  1142. return err;
  1143. }
  1144. atc->n_daio++;
  1145. }
  1146. subsys_id = atc->pci->subsystem_device;
  1147. if ((subsys_id == 0x0029) || (subsys_id == 0x0031)) {
  1148. /* SB073x cards */
  1149. da_desc.type = SPDIFI1;
  1150. } else {
  1151. da_desc.type = SPDIFIO;
  1152. }
  1153. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1154. (struct daio **)&atc->daios[i]);
  1155. if (err) {
  1156. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1157. return err;
  1158. }
  1159. atc->n_daio++;
  1160. src_mgr = atc->rsc_mgrs[SRC];
  1161. src_dsc.multi = 1;
  1162. src_dsc.msr = atc->msr;
  1163. src_dsc.mode = ARCRW;
  1164. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1165. err = src_mgr->get_src(src_mgr, &src_dsc,
  1166. (struct src **)&atc->srcs[i]);
  1167. if (err)
  1168. return err;
  1169. atc->n_src++;
  1170. }
  1171. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1172. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1173. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1174. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1175. (struct srcimp **)&atc->srcimps[i]);
  1176. if (err)
  1177. return err;
  1178. atc->n_srcimp++;
  1179. }
  1180. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1181. for (i = 0; i < (2*1); i++) {
  1182. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1183. (struct srcimp **)&atc->srcimps[2*1+i]);
  1184. if (err)
  1185. return err;
  1186. atc->n_srcimp++;
  1187. }
  1188. sum_mgr = atc->rsc_mgrs[SUM];
  1189. sum_dsc.msr = atc->msr;
  1190. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1191. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1192. (struct sum **)&atc->pcm[i]);
  1193. if (err)
  1194. return err;
  1195. atc->n_pcm++;
  1196. }
  1197. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1198. if (err) {
  1199. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1200. return err;
  1201. }
  1202. return 0;
  1203. }
  1204. static void __devinit
  1205. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1206. struct src **srcs, struct srcimp **srcimps)
  1207. {
  1208. struct rsc *rscs[2] = {NULL};
  1209. struct src *src = NULL;
  1210. struct srcimp *srcimp = NULL;
  1211. int i = 0;
  1212. rscs[0] = &dai->daio.rscl;
  1213. rscs[1] = &dai->daio.rscr;
  1214. for (i = 0; i < 2; i++) {
  1215. src = srcs[i];
  1216. srcimp = srcimps[i];
  1217. srcimp->ops->map(srcimp, src, rscs[i]);
  1218. src_mgr->src_disable(src_mgr, src);
  1219. }
  1220. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1221. src = srcs[0];
  1222. src->ops->set_pm(src, 1);
  1223. for (i = 0; i < 2; i++) {
  1224. src = srcs[i];
  1225. src->ops->set_state(src, SRC_STATE_RUN);
  1226. src->ops->commit_write(src);
  1227. src_mgr->src_enable_s(src_mgr, src);
  1228. }
  1229. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1230. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1231. dai->ops->set_enb_src(dai, 1);
  1232. dai->ops->set_enb_srt(dai, 1);
  1233. dai->ops->commit_write(dai);
  1234. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1235. }
  1236. static void __devinit atc_connect_resources(struct ct_atc *atc)
  1237. {
  1238. struct dai *dai = NULL;
  1239. struct dao *dao = NULL;
  1240. struct src *src = NULL;
  1241. struct sum *sum = NULL;
  1242. struct ct_mixer *mixer = NULL;
  1243. struct rsc *rscs[2] = {NULL};
  1244. int i = 0, j = 0;
  1245. mixer = atc->mixer;
  1246. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1247. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1248. dao = container_of(atc->daios[j], struct dao, daio);
  1249. dao->ops->set_left_input(dao, rscs[0]);
  1250. dao->ops->set_right_input(dao, rscs[1]);
  1251. }
  1252. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1253. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1254. (struct src **)&atc->srcs[2],
  1255. (struct srcimp **)&atc->srcimps[2]);
  1256. src = atc->srcs[2];
  1257. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1258. src = atc->srcs[3];
  1259. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1260. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1261. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1262. (struct src **)&atc->srcs[0],
  1263. (struct srcimp **)&atc->srcimps[0]);
  1264. src = atc->srcs[0];
  1265. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1266. src = atc->srcs[1];
  1267. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1268. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1269. sum = atc->pcm[j];
  1270. mixer->set_input_left(mixer, i, &sum->rsc);
  1271. sum = atc->pcm[j+1];
  1272. mixer->set_input_right(mixer, i, &sum->rsc);
  1273. }
  1274. }
  1275. static struct ct_atc atc_preset __devinitdata = {
  1276. .map_audio_buffer = ct_map_audio_buffer,
  1277. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1278. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1279. .pcm_release_resources = atc_pcm_release_resources,
  1280. .pcm_playback_start = atc_pcm_playback_start,
  1281. .pcm_playback_stop = atc_pcm_stop,
  1282. .pcm_playback_position = atc_pcm_playback_position,
  1283. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1284. .pcm_capture_start = atc_pcm_capture_start,
  1285. .pcm_capture_stop = atc_pcm_stop,
  1286. .pcm_capture_position = atc_pcm_capture_position,
  1287. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1288. .get_ptp_phys = atc_get_ptp_phys,
  1289. .select_line_in = atc_select_line_in,
  1290. .select_mic_in = atc_select_mic_in,
  1291. .select_digit_io = atc_select_digit_io,
  1292. .line_front_unmute = atc_line_front_unmute,
  1293. .line_surround_unmute = atc_line_surround_unmute,
  1294. .line_clfe_unmute = atc_line_clfe_unmute,
  1295. .line_rear_unmute = atc_line_rear_unmute,
  1296. .line_in_unmute = atc_line_in_unmute,
  1297. .spdif_out_unmute = atc_spdif_out_unmute,
  1298. .spdif_in_unmute = atc_spdif_in_unmute,
  1299. .spdif_out_get_status = atc_spdif_out_get_status,
  1300. .spdif_out_set_status = atc_spdif_out_set_status,
  1301. .spdif_out_passthru = atc_spdif_out_passthru,
  1302. .have_digit_io_switch = atc_have_digit_io_switch,
  1303. };
  1304. /**
  1305. * ct_atc_create - create and initialize a hardware manager
  1306. * @card: corresponding alsa card object
  1307. * @pci: corresponding kernel pci device object
  1308. * @ratc: return created object address in it
  1309. *
  1310. * Creates and initializes a hardware manager.
  1311. *
  1312. * Creates kmallocated ct_atc structure. Initializes hardware.
  1313. * Returns 0 if suceeds, or negative error code if fails.
  1314. */
  1315. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1316. unsigned int rsr, unsigned int msr, struct ct_atc **ratc)
  1317. {
  1318. struct ct_atc *atc = NULL;
  1319. static struct snd_device_ops ops = {
  1320. .dev_free = atc_dev_free,
  1321. };
  1322. int err = 0;
  1323. *ratc = NULL;
  1324. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1325. if (NULL == atc)
  1326. return -ENOMEM;
  1327. /* Set operations */
  1328. *atc = atc_preset;
  1329. atc->card = card;
  1330. atc->pci = pci;
  1331. atc->rsr = rsr;
  1332. atc->msr = msr;
  1333. spin_lock_init(&atc->atc_lock);
  1334. /* Find card model */
  1335. err = atc_identify_card(atc);
  1336. if (err < 0) {
  1337. printk(KERN_ERR "ctatc: Card not recognised\n");
  1338. goto error1;
  1339. }
  1340. /* Set up device virtual memory management object */
  1341. err = ct_vm_create(&atc->vm);
  1342. if (err < 0)
  1343. goto error1;
  1344. /* Create all atc hw devices */
  1345. err = atc_create_hw_devs(atc);
  1346. if (err < 0)
  1347. goto error1;
  1348. /* Get resources */
  1349. err = atc_get_resources(atc);
  1350. if (err < 0)
  1351. goto error1;
  1352. /* Build topology */
  1353. atc_connect_resources(atc);
  1354. atc->timer = ct_timer_new(atc);
  1355. if (!atc->timer)
  1356. goto error1;
  1357. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1358. if (err < 0)
  1359. goto error1;
  1360. snd_card_set_dev(card, &pci->dev);
  1361. *ratc = atc;
  1362. return 0;
  1363. error1:
  1364. ct_atc_destroy(atc);
  1365. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1366. return err;
  1367. }