xfs_inode.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_bmap.h"
  42. #include "xfs_error.h"
  43. #include "xfs_utils.h"
  44. #include "xfs_quota.h"
  45. #include "xfs_filestream.h"
  46. #include "xfs_vnodeops.h"
  47. #include "xfs_trace.h"
  48. kmem_zone_t *xfs_ifork_zone;
  49. kmem_zone_t *xfs_inode_zone;
  50. /*
  51. * Used in xfs_itruncate_extents(). This is the maximum number of extents
  52. * freed from a file in a single transaction.
  53. */
  54. #define XFS_ITRUNC_MAX_EXTENTS 2
  55. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  56. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  57. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  58. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  59. #ifdef DEBUG
  60. /*
  61. * Make sure that the extents in the given memory buffer
  62. * are valid.
  63. */
  64. STATIC void
  65. xfs_validate_extents(
  66. xfs_ifork_t *ifp,
  67. int nrecs,
  68. xfs_exntfmt_t fmt)
  69. {
  70. xfs_bmbt_irec_t irec;
  71. xfs_bmbt_rec_host_t rec;
  72. int i;
  73. for (i = 0; i < nrecs; i++) {
  74. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  75. rec.l0 = get_unaligned(&ep->l0);
  76. rec.l1 = get_unaligned(&ep->l1);
  77. xfs_bmbt_get_all(&rec, &irec);
  78. if (fmt == XFS_EXTFMT_NOSTATE)
  79. ASSERT(irec.br_state == XFS_EXT_NORM);
  80. }
  81. }
  82. #else /* DEBUG */
  83. #define xfs_validate_extents(ifp, nrecs, fmt)
  84. #endif /* DEBUG */
  85. /*
  86. * Check that none of the inode's in the buffer have a next
  87. * unlinked field of 0.
  88. */
  89. #if defined(DEBUG)
  90. void
  91. xfs_inobp_check(
  92. xfs_mount_t *mp,
  93. xfs_buf_t *bp)
  94. {
  95. int i;
  96. int j;
  97. xfs_dinode_t *dip;
  98. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  99. for (i = 0; i < j; i++) {
  100. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  101. i * mp->m_sb.sb_inodesize);
  102. if (!dip->di_next_unlinked) {
  103. xfs_alert(mp,
  104. "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
  105. bp);
  106. ASSERT(dip->di_next_unlinked);
  107. }
  108. }
  109. }
  110. #endif
  111. /*
  112. * Find the buffer associated with the given inode map
  113. * We do basic validation checks on the buffer once it has been
  114. * retrieved from disk.
  115. */
  116. STATIC int
  117. xfs_imap_to_bp(
  118. xfs_mount_t *mp,
  119. xfs_trans_t *tp,
  120. struct xfs_imap *imap,
  121. xfs_buf_t **bpp,
  122. uint buf_flags,
  123. uint iget_flags)
  124. {
  125. int error;
  126. int i;
  127. int ni;
  128. xfs_buf_t *bp;
  129. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  130. (int)imap->im_len, buf_flags, &bp);
  131. if (error) {
  132. if (error != EAGAIN) {
  133. xfs_warn(mp,
  134. "%s: xfs_trans_read_buf() returned error %d.",
  135. __func__, error);
  136. } else {
  137. ASSERT(buf_flags & XBF_TRYLOCK);
  138. }
  139. return error;
  140. }
  141. /*
  142. * Validate the magic number and version of every inode in the buffer
  143. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  144. */
  145. #ifdef DEBUG
  146. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  147. #else /* usual case */
  148. ni = 1;
  149. #endif
  150. for (i = 0; i < ni; i++) {
  151. int di_ok;
  152. xfs_dinode_t *dip;
  153. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  154. (i << mp->m_sb.sb_inodelog));
  155. di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
  156. XFS_DINODE_GOOD_VERSION(dip->di_version);
  157. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  158. XFS_ERRTAG_ITOBP_INOTOBP,
  159. XFS_RANDOM_ITOBP_INOTOBP))) {
  160. if (iget_flags & XFS_IGET_UNTRUSTED) {
  161. xfs_trans_brelse(tp, bp);
  162. return XFS_ERROR(EINVAL);
  163. }
  164. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  165. XFS_ERRLEVEL_HIGH, mp, dip);
  166. #ifdef DEBUG
  167. xfs_emerg(mp,
  168. "bad inode magic/vsn daddr %lld #%d (magic=%x)",
  169. (unsigned long long)imap->im_blkno, i,
  170. be16_to_cpu(dip->di_magic));
  171. ASSERT(0);
  172. #endif
  173. xfs_trans_brelse(tp, bp);
  174. return XFS_ERROR(EFSCORRUPTED);
  175. }
  176. }
  177. xfs_inobp_check(mp, bp);
  178. /*
  179. * Mark the buffer as an inode buffer now that it looks good
  180. */
  181. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  182. *bpp = bp;
  183. return 0;
  184. }
  185. /*
  186. * This routine is called to map an inode number within a file
  187. * system to the buffer containing the on-disk version of the
  188. * inode. It returns a pointer to the buffer containing the
  189. * on-disk inode in the bpp parameter, and in the dip parameter
  190. * it returns a pointer to the on-disk inode within that buffer.
  191. *
  192. * If a non-zero error is returned, then the contents of bpp and
  193. * dipp are undefined.
  194. *
  195. * Use xfs_imap() to determine the size and location of the
  196. * buffer to read from disk.
  197. */
  198. int
  199. xfs_inotobp(
  200. xfs_mount_t *mp,
  201. xfs_trans_t *tp,
  202. xfs_ino_t ino,
  203. xfs_dinode_t **dipp,
  204. xfs_buf_t **bpp,
  205. int *offset,
  206. uint imap_flags)
  207. {
  208. struct xfs_imap imap;
  209. xfs_buf_t *bp;
  210. int error;
  211. imap.im_blkno = 0;
  212. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  213. if (error)
  214. return error;
  215. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  216. if (error)
  217. return error;
  218. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  219. *bpp = bp;
  220. *offset = imap.im_boffset;
  221. return 0;
  222. }
  223. /*
  224. * This routine is called to map an inode to the buffer containing
  225. * the on-disk version of the inode. It returns a pointer to the
  226. * buffer containing the on-disk inode in the bpp parameter, and in
  227. * the dip parameter it returns a pointer to the on-disk inode within
  228. * that buffer.
  229. *
  230. * If a non-zero error is returned, then the contents of bpp and
  231. * dipp are undefined.
  232. *
  233. * The inode is expected to already been mapped to its buffer and read
  234. * in once, thus we can use the mapping information stored in the inode
  235. * rather than calling xfs_imap(). This allows us to avoid the overhead
  236. * of looking at the inode btree for small block file systems
  237. * (see xfs_imap()).
  238. */
  239. int
  240. xfs_itobp(
  241. xfs_mount_t *mp,
  242. xfs_trans_t *tp,
  243. xfs_inode_t *ip,
  244. xfs_dinode_t **dipp,
  245. xfs_buf_t **bpp,
  246. uint buf_flags)
  247. {
  248. xfs_buf_t *bp;
  249. int error;
  250. ASSERT(ip->i_imap.im_blkno != 0);
  251. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  252. if (error)
  253. return error;
  254. if (!bp) {
  255. ASSERT(buf_flags & XBF_TRYLOCK);
  256. ASSERT(tp == NULL);
  257. *bpp = NULL;
  258. return EAGAIN;
  259. }
  260. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  261. *bpp = bp;
  262. return 0;
  263. }
  264. /*
  265. * Move inode type and inode format specific information from the
  266. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  267. * this means set if_rdev to the proper value. For files, directories,
  268. * and symlinks this means to bring in the in-line data or extent
  269. * pointers. For a file in B-tree format, only the root is immediately
  270. * brought in-core. The rest will be in-lined in if_extents when it
  271. * is first referenced (see xfs_iread_extents()).
  272. */
  273. STATIC int
  274. xfs_iformat(
  275. xfs_inode_t *ip,
  276. xfs_dinode_t *dip)
  277. {
  278. xfs_attr_shortform_t *atp;
  279. int size;
  280. int error;
  281. xfs_fsize_t di_size;
  282. ip->i_df.if_ext_max =
  283. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  284. error = 0;
  285. if (unlikely(be32_to_cpu(dip->di_nextents) +
  286. be16_to_cpu(dip->di_anextents) >
  287. be64_to_cpu(dip->di_nblocks))) {
  288. xfs_warn(ip->i_mount,
  289. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  290. (unsigned long long)ip->i_ino,
  291. (int)(be32_to_cpu(dip->di_nextents) +
  292. be16_to_cpu(dip->di_anextents)),
  293. (unsigned long long)
  294. be64_to_cpu(dip->di_nblocks));
  295. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  296. ip->i_mount, dip);
  297. return XFS_ERROR(EFSCORRUPTED);
  298. }
  299. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  300. xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
  301. (unsigned long long)ip->i_ino,
  302. dip->di_forkoff);
  303. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  304. ip->i_mount, dip);
  305. return XFS_ERROR(EFSCORRUPTED);
  306. }
  307. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  308. !ip->i_mount->m_rtdev_targp)) {
  309. xfs_warn(ip->i_mount,
  310. "corrupt dinode %Lu, has realtime flag set.",
  311. ip->i_ino);
  312. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  313. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  314. return XFS_ERROR(EFSCORRUPTED);
  315. }
  316. switch (ip->i_d.di_mode & S_IFMT) {
  317. case S_IFIFO:
  318. case S_IFCHR:
  319. case S_IFBLK:
  320. case S_IFSOCK:
  321. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  322. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  323. ip->i_mount, dip);
  324. return XFS_ERROR(EFSCORRUPTED);
  325. }
  326. ip->i_d.di_size = 0;
  327. ip->i_size = 0;
  328. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  329. break;
  330. case S_IFREG:
  331. case S_IFLNK:
  332. case S_IFDIR:
  333. switch (dip->di_format) {
  334. case XFS_DINODE_FMT_LOCAL:
  335. /*
  336. * no local regular files yet
  337. */
  338. if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
  339. xfs_warn(ip->i_mount,
  340. "corrupt inode %Lu (local format for regular file).",
  341. (unsigned long long) ip->i_ino);
  342. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  343. XFS_ERRLEVEL_LOW,
  344. ip->i_mount, dip);
  345. return XFS_ERROR(EFSCORRUPTED);
  346. }
  347. di_size = be64_to_cpu(dip->di_size);
  348. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  349. xfs_warn(ip->i_mount,
  350. "corrupt inode %Lu (bad size %Ld for local inode).",
  351. (unsigned long long) ip->i_ino,
  352. (long long) di_size);
  353. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  354. XFS_ERRLEVEL_LOW,
  355. ip->i_mount, dip);
  356. return XFS_ERROR(EFSCORRUPTED);
  357. }
  358. size = (int)di_size;
  359. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  360. break;
  361. case XFS_DINODE_FMT_EXTENTS:
  362. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  363. break;
  364. case XFS_DINODE_FMT_BTREE:
  365. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  366. break;
  367. default:
  368. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  369. ip->i_mount);
  370. return XFS_ERROR(EFSCORRUPTED);
  371. }
  372. break;
  373. default:
  374. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  375. return XFS_ERROR(EFSCORRUPTED);
  376. }
  377. if (error) {
  378. return error;
  379. }
  380. if (!XFS_DFORK_Q(dip))
  381. return 0;
  382. ASSERT(ip->i_afp == NULL);
  383. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  384. ip->i_afp->if_ext_max =
  385. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  386. switch (dip->di_aformat) {
  387. case XFS_DINODE_FMT_LOCAL:
  388. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  389. size = be16_to_cpu(atp->hdr.totsize);
  390. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  391. xfs_warn(ip->i_mount,
  392. "corrupt inode %Lu (bad attr fork size %Ld).",
  393. (unsigned long long) ip->i_ino,
  394. (long long) size);
  395. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  396. XFS_ERRLEVEL_LOW,
  397. ip->i_mount, dip);
  398. return XFS_ERROR(EFSCORRUPTED);
  399. }
  400. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  401. break;
  402. case XFS_DINODE_FMT_EXTENTS:
  403. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  404. break;
  405. case XFS_DINODE_FMT_BTREE:
  406. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  407. break;
  408. default:
  409. error = XFS_ERROR(EFSCORRUPTED);
  410. break;
  411. }
  412. if (error) {
  413. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  414. ip->i_afp = NULL;
  415. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  416. }
  417. return error;
  418. }
  419. /*
  420. * The file is in-lined in the on-disk inode.
  421. * If it fits into if_inline_data, then copy
  422. * it there, otherwise allocate a buffer for it
  423. * and copy the data there. Either way, set
  424. * if_data to point at the data.
  425. * If we allocate a buffer for the data, make
  426. * sure that its size is a multiple of 4 and
  427. * record the real size in i_real_bytes.
  428. */
  429. STATIC int
  430. xfs_iformat_local(
  431. xfs_inode_t *ip,
  432. xfs_dinode_t *dip,
  433. int whichfork,
  434. int size)
  435. {
  436. xfs_ifork_t *ifp;
  437. int real_size;
  438. /*
  439. * If the size is unreasonable, then something
  440. * is wrong and we just bail out rather than crash in
  441. * kmem_alloc() or memcpy() below.
  442. */
  443. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  444. xfs_warn(ip->i_mount,
  445. "corrupt inode %Lu (bad size %d for local fork, size = %d).",
  446. (unsigned long long) ip->i_ino, size,
  447. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  448. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  449. ip->i_mount, dip);
  450. return XFS_ERROR(EFSCORRUPTED);
  451. }
  452. ifp = XFS_IFORK_PTR(ip, whichfork);
  453. real_size = 0;
  454. if (size == 0)
  455. ifp->if_u1.if_data = NULL;
  456. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  457. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  458. else {
  459. real_size = roundup(size, 4);
  460. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  461. }
  462. ifp->if_bytes = size;
  463. ifp->if_real_bytes = real_size;
  464. if (size)
  465. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  466. ifp->if_flags &= ~XFS_IFEXTENTS;
  467. ifp->if_flags |= XFS_IFINLINE;
  468. return 0;
  469. }
  470. /*
  471. * The file consists of a set of extents all
  472. * of which fit into the on-disk inode.
  473. * If there are few enough extents to fit into
  474. * the if_inline_ext, then copy them there.
  475. * Otherwise allocate a buffer for them and copy
  476. * them into it. Either way, set if_extents
  477. * to point at the extents.
  478. */
  479. STATIC int
  480. xfs_iformat_extents(
  481. xfs_inode_t *ip,
  482. xfs_dinode_t *dip,
  483. int whichfork)
  484. {
  485. xfs_bmbt_rec_t *dp;
  486. xfs_ifork_t *ifp;
  487. int nex;
  488. int size;
  489. int i;
  490. ifp = XFS_IFORK_PTR(ip, whichfork);
  491. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  492. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  493. /*
  494. * If the number of extents is unreasonable, then something
  495. * is wrong and we just bail out rather than crash in
  496. * kmem_alloc() or memcpy() below.
  497. */
  498. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  499. xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
  500. (unsigned long long) ip->i_ino, nex);
  501. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  502. ip->i_mount, dip);
  503. return XFS_ERROR(EFSCORRUPTED);
  504. }
  505. ifp->if_real_bytes = 0;
  506. if (nex == 0)
  507. ifp->if_u1.if_extents = NULL;
  508. else if (nex <= XFS_INLINE_EXTS)
  509. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  510. else
  511. xfs_iext_add(ifp, 0, nex);
  512. ifp->if_bytes = size;
  513. if (size) {
  514. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  515. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  516. for (i = 0; i < nex; i++, dp++) {
  517. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  518. ep->l0 = get_unaligned_be64(&dp->l0);
  519. ep->l1 = get_unaligned_be64(&dp->l1);
  520. }
  521. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  522. if (whichfork != XFS_DATA_FORK ||
  523. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  524. if (unlikely(xfs_check_nostate_extents(
  525. ifp, 0, nex))) {
  526. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  527. XFS_ERRLEVEL_LOW,
  528. ip->i_mount);
  529. return XFS_ERROR(EFSCORRUPTED);
  530. }
  531. }
  532. ifp->if_flags |= XFS_IFEXTENTS;
  533. return 0;
  534. }
  535. /*
  536. * The file has too many extents to fit into
  537. * the inode, so they are in B-tree format.
  538. * Allocate a buffer for the root of the B-tree
  539. * and copy the root into it. The i_extents
  540. * field will remain NULL until all of the
  541. * extents are read in (when they are needed).
  542. */
  543. STATIC int
  544. xfs_iformat_btree(
  545. xfs_inode_t *ip,
  546. xfs_dinode_t *dip,
  547. int whichfork)
  548. {
  549. xfs_bmdr_block_t *dfp;
  550. xfs_ifork_t *ifp;
  551. /* REFERENCED */
  552. int nrecs;
  553. int size;
  554. ifp = XFS_IFORK_PTR(ip, whichfork);
  555. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  556. size = XFS_BMAP_BROOT_SPACE(dfp);
  557. nrecs = be16_to_cpu(dfp->bb_numrecs);
  558. /*
  559. * blow out if -- fork has less extents than can fit in
  560. * fork (fork shouldn't be a btree format), root btree
  561. * block has more records than can fit into the fork,
  562. * or the number of extents is greater than the number of
  563. * blocks.
  564. */
  565. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  566. || XFS_BMDR_SPACE_CALC(nrecs) >
  567. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  568. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  569. xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
  570. (unsigned long long) ip->i_ino);
  571. XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  572. ip->i_mount, dip);
  573. return XFS_ERROR(EFSCORRUPTED);
  574. }
  575. ifp->if_broot_bytes = size;
  576. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  577. ASSERT(ifp->if_broot != NULL);
  578. /*
  579. * Copy and convert from the on-disk structure
  580. * to the in-memory structure.
  581. */
  582. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  583. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  584. ifp->if_broot, size);
  585. ifp->if_flags &= ~XFS_IFEXTENTS;
  586. ifp->if_flags |= XFS_IFBROOT;
  587. return 0;
  588. }
  589. STATIC void
  590. xfs_dinode_from_disk(
  591. xfs_icdinode_t *to,
  592. xfs_dinode_t *from)
  593. {
  594. to->di_magic = be16_to_cpu(from->di_magic);
  595. to->di_mode = be16_to_cpu(from->di_mode);
  596. to->di_version = from ->di_version;
  597. to->di_format = from->di_format;
  598. to->di_onlink = be16_to_cpu(from->di_onlink);
  599. to->di_uid = be32_to_cpu(from->di_uid);
  600. to->di_gid = be32_to_cpu(from->di_gid);
  601. to->di_nlink = be32_to_cpu(from->di_nlink);
  602. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  603. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  604. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  605. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  606. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  607. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  608. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  609. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  610. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  611. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  612. to->di_size = be64_to_cpu(from->di_size);
  613. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  614. to->di_extsize = be32_to_cpu(from->di_extsize);
  615. to->di_nextents = be32_to_cpu(from->di_nextents);
  616. to->di_anextents = be16_to_cpu(from->di_anextents);
  617. to->di_forkoff = from->di_forkoff;
  618. to->di_aformat = from->di_aformat;
  619. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  620. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  621. to->di_flags = be16_to_cpu(from->di_flags);
  622. to->di_gen = be32_to_cpu(from->di_gen);
  623. }
  624. void
  625. xfs_dinode_to_disk(
  626. xfs_dinode_t *to,
  627. xfs_icdinode_t *from)
  628. {
  629. to->di_magic = cpu_to_be16(from->di_magic);
  630. to->di_mode = cpu_to_be16(from->di_mode);
  631. to->di_version = from ->di_version;
  632. to->di_format = from->di_format;
  633. to->di_onlink = cpu_to_be16(from->di_onlink);
  634. to->di_uid = cpu_to_be32(from->di_uid);
  635. to->di_gid = cpu_to_be32(from->di_gid);
  636. to->di_nlink = cpu_to_be32(from->di_nlink);
  637. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  638. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  639. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  640. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  641. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  642. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  643. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  644. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  645. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  646. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  647. to->di_size = cpu_to_be64(from->di_size);
  648. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  649. to->di_extsize = cpu_to_be32(from->di_extsize);
  650. to->di_nextents = cpu_to_be32(from->di_nextents);
  651. to->di_anextents = cpu_to_be16(from->di_anextents);
  652. to->di_forkoff = from->di_forkoff;
  653. to->di_aformat = from->di_aformat;
  654. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  655. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  656. to->di_flags = cpu_to_be16(from->di_flags);
  657. to->di_gen = cpu_to_be32(from->di_gen);
  658. }
  659. STATIC uint
  660. _xfs_dic2xflags(
  661. __uint16_t di_flags)
  662. {
  663. uint flags = 0;
  664. if (di_flags & XFS_DIFLAG_ANY) {
  665. if (di_flags & XFS_DIFLAG_REALTIME)
  666. flags |= XFS_XFLAG_REALTIME;
  667. if (di_flags & XFS_DIFLAG_PREALLOC)
  668. flags |= XFS_XFLAG_PREALLOC;
  669. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  670. flags |= XFS_XFLAG_IMMUTABLE;
  671. if (di_flags & XFS_DIFLAG_APPEND)
  672. flags |= XFS_XFLAG_APPEND;
  673. if (di_flags & XFS_DIFLAG_SYNC)
  674. flags |= XFS_XFLAG_SYNC;
  675. if (di_flags & XFS_DIFLAG_NOATIME)
  676. flags |= XFS_XFLAG_NOATIME;
  677. if (di_flags & XFS_DIFLAG_NODUMP)
  678. flags |= XFS_XFLAG_NODUMP;
  679. if (di_flags & XFS_DIFLAG_RTINHERIT)
  680. flags |= XFS_XFLAG_RTINHERIT;
  681. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  682. flags |= XFS_XFLAG_PROJINHERIT;
  683. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  684. flags |= XFS_XFLAG_NOSYMLINKS;
  685. if (di_flags & XFS_DIFLAG_EXTSIZE)
  686. flags |= XFS_XFLAG_EXTSIZE;
  687. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  688. flags |= XFS_XFLAG_EXTSZINHERIT;
  689. if (di_flags & XFS_DIFLAG_NODEFRAG)
  690. flags |= XFS_XFLAG_NODEFRAG;
  691. if (di_flags & XFS_DIFLAG_FILESTREAM)
  692. flags |= XFS_XFLAG_FILESTREAM;
  693. }
  694. return flags;
  695. }
  696. uint
  697. xfs_ip2xflags(
  698. xfs_inode_t *ip)
  699. {
  700. xfs_icdinode_t *dic = &ip->i_d;
  701. return _xfs_dic2xflags(dic->di_flags) |
  702. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  703. }
  704. uint
  705. xfs_dic2xflags(
  706. xfs_dinode_t *dip)
  707. {
  708. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  709. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  710. }
  711. /*
  712. * Read the disk inode attributes into the in-core inode structure.
  713. */
  714. int
  715. xfs_iread(
  716. xfs_mount_t *mp,
  717. xfs_trans_t *tp,
  718. xfs_inode_t *ip,
  719. uint iget_flags)
  720. {
  721. xfs_buf_t *bp;
  722. xfs_dinode_t *dip;
  723. int error;
  724. /*
  725. * Fill in the location information in the in-core inode.
  726. */
  727. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  728. if (error)
  729. return error;
  730. /*
  731. * Get pointers to the on-disk inode and the buffer containing it.
  732. */
  733. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  734. XBF_LOCK, iget_flags);
  735. if (error)
  736. return error;
  737. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  738. /*
  739. * If we got something that isn't an inode it means someone
  740. * (nfs or dmi) has a stale handle.
  741. */
  742. if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
  743. #ifdef DEBUG
  744. xfs_alert(mp,
  745. "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
  746. __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
  747. #endif /* DEBUG */
  748. error = XFS_ERROR(EINVAL);
  749. goto out_brelse;
  750. }
  751. /*
  752. * If the on-disk inode is already linked to a directory
  753. * entry, copy all of the inode into the in-core inode.
  754. * xfs_iformat() handles copying in the inode format
  755. * specific information.
  756. * Otherwise, just get the truly permanent information.
  757. */
  758. if (dip->di_mode) {
  759. xfs_dinode_from_disk(&ip->i_d, dip);
  760. error = xfs_iformat(ip, dip);
  761. if (error) {
  762. #ifdef DEBUG
  763. xfs_alert(mp, "%s: xfs_iformat() returned error %d",
  764. __func__, error);
  765. #endif /* DEBUG */
  766. goto out_brelse;
  767. }
  768. } else {
  769. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  770. ip->i_d.di_version = dip->di_version;
  771. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  772. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  773. /*
  774. * Make sure to pull in the mode here as well in
  775. * case the inode is released without being used.
  776. * This ensures that xfs_inactive() will see that
  777. * the inode is already free and not try to mess
  778. * with the uninitialized part of it.
  779. */
  780. ip->i_d.di_mode = 0;
  781. /*
  782. * Initialize the per-fork minima and maxima for a new
  783. * inode here. xfs_iformat will do it for old inodes.
  784. */
  785. ip->i_df.if_ext_max =
  786. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  787. }
  788. /*
  789. * The inode format changed when we moved the link count and
  790. * made it 32 bits long. If this is an old format inode,
  791. * convert it in memory to look like a new one. If it gets
  792. * flushed to disk we will convert back before flushing or
  793. * logging it. We zero out the new projid field and the old link
  794. * count field. We'll handle clearing the pad field (the remains
  795. * of the old uuid field) when we actually convert the inode to
  796. * the new format. We don't change the version number so that we
  797. * can distinguish this from a real new format inode.
  798. */
  799. if (ip->i_d.di_version == 1) {
  800. ip->i_d.di_nlink = ip->i_d.di_onlink;
  801. ip->i_d.di_onlink = 0;
  802. xfs_set_projid(ip, 0);
  803. }
  804. ip->i_delayed_blks = 0;
  805. ip->i_size = ip->i_d.di_size;
  806. /*
  807. * Mark the buffer containing the inode as something to keep
  808. * around for a while. This helps to keep recently accessed
  809. * meta-data in-core longer.
  810. */
  811. xfs_buf_set_ref(bp, XFS_INO_REF);
  812. /*
  813. * Use xfs_trans_brelse() to release the buffer containing the
  814. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  815. * in xfs_itobp() above. If tp is NULL, this is just a normal
  816. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  817. * will only release the buffer if it is not dirty within the
  818. * transaction. It will be OK to release the buffer in this case,
  819. * because inodes on disk are never destroyed and we will be
  820. * locking the new in-core inode before putting it in the hash
  821. * table where other processes can find it. Thus we don't have
  822. * to worry about the inode being changed just because we released
  823. * the buffer.
  824. */
  825. out_brelse:
  826. xfs_trans_brelse(tp, bp);
  827. return error;
  828. }
  829. /*
  830. * Read in extents from a btree-format inode.
  831. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  832. */
  833. int
  834. xfs_iread_extents(
  835. xfs_trans_t *tp,
  836. xfs_inode_t *ip,
  837. int whichfork)
  838. {
  839. int error;
  840. xfs_ifork_t *ifp;
  841. xfs_extnum_t nextents;
  842. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  843. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  844. ip->i_mount);
  845. return XFS_ERROR(EFSCORRUPTED);
  846. }
  847. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  848. ifp = XFS_IFORK_PTR(ip, whichfork);
  849. /*
  850. * We know that the size is valid (it's checked in iformat_btree)
  851. */
  852. ifp->if_bytes = ifp->if_real_bytes = 0;
  853. ifp->if_flags |= XFS_IFEXTENTS;
  854. xfs_iext_add(ifp, 0, nextents);
  855. error = xfs_bmap_read_extents(tp, ip, whichfork);
  856. if (error) {
  857. xfs_iext_destroy(ifp);
  858. ifp->if_flags &= ~XFS_IFEXTENTS;
  859. return error;
  860. }
  861. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  862. return 0;
  863. }
  864. /*
  865. * Allocate an inode on disk and return a copy of its in-core version.
  866. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  867. * appropriately within the inode. The uid and gid for the inode are
  868. * set according to the contents of the given cred structure.
  869. *
  870. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  871. * has a free inode available, call xfs_iget()
  872. * to obtain the in-core version of the allocated inode. Finally,
  873. * fill in the inode and log its initial contents. In this case,
  874. * ialloc_context would be set to NULL and call_again set to false.
  875. *
  876. * If xfs_dialloc() does not have an available inode,
  877. * it will replenish its supply by doing an allocation. Since we can
  878. * only do one allocation within a transaction without deadlocks, we
  879. * must commit the current transaction before returning the inode itself.
  880. * In this case, therefore, we will set call_again to true and return.
  881. * The caller should then commit the current transaction, start a new
  882. * transaction, and call xfs_ialloc() again to actually get the inode.
  883. *
  884. * To ensure that some other process does not grab the inode that
  885. * was allocated during the first call to xfs_ialloc(), this routine
  886. * also returns the [locked] bp pointing to the head of the freelist
  887. * as ialloc_context. The caller should hold this buffer across
  888. * the commit and pass it back into this routine on the second call.
  889. *
  890. * If we are allocating quota inodes, we do not have a parent inode
  891. * to attach to or associate with (i.e. pip == NULL) because they
  892. * are not linked into the directory structure - they are attached
  893. * directly to the superblock - and so have no parent.
  894. */
  895. int
  896. xfs_ialloc(
  897. xfs_trans_t *tp,
  898. xfs_inode_t *pip,
  899. mode_t mode,
  900. xfs_nlink_t nlink,
  901. xfs_dev_t rdev,
  902. prid_t prid,
  903. int okalloc,
  904. xfs_buf_t **ialloc_context,
  905. boolean_t *call_again,
  906. xfs_inode_t **ipp)
  907. {
  908. xfs_ino_t ino;
  909. xfs_inode_t *ip;
  910. uint flags;
  911. int error;
  912. timespec_t tv;
  913. int filestreams = 0;
  914. /*
  915. * Call the space management code to pick
  916. * the on-disk inode to be allocated.
  917. */
  918. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  919. ialloc_context, call_again, &ino);
  920. if (error)
  921. return error;
  922. if (*call_again || ino == NULLFSINO) {
  923. *ipp = NULL;
  924. return 0;
  925. }
  926. ASSERT(*ialloc_context == NULL);
  927. /*
  928. * Get the in-core inode with the lock held exclusively.
  929. * This is because we're setting fields here we need
  930. * to prevent others from looking at until we're done.
  931. */
  932. error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
  933. XFS_ILOCK_EXCL, &ip);
  934. if (error)
  935. return error;
  936. ASSERT(ip != NULL);
  937. ip->i_d.di_mode = (__uint16_t)mode;
  938. ip->i_d.di_onlink = 0;
  939. ip->i_d.di_nlink = nlink;
  940. ASSERT(ip->i_d.di_nlink == nlink);
  941. ip->i_d.di_uid = current_fsuid();
  942. ip->i_d.di_gid = current_fsgid();
  943. xfs_set_projid(ip, prid);
  944. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  945. /*
  946. * If the superblock version is up to where we support new format
  947. * inodes and this is currently an old format inode, then change
  948. * the inode version number now. This way we only do the conversion
  949. * here rather than here and in the flush/logging code.
  950. */
  951. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  952. ip->i_d.di_version == 1) {
  953. ip->i_d.di_version = 2;
  954. /*
  955. * We've already zeroed the old link count, the projid field,
  956. * and the pad field.
  957. */
  958. }
  959. /*
  960. * Project ids won't be stored on disk if we are using a version 1 inode.
  961. */
  962. if ((prid != 0) && (ip->i_d.di_version == 1))
  963. xfs_bump_ino_vers2(tp, ip);
  964. if (pip && XFS_INHERIT_GID(pip)) {
  965. ip->i_d.di_gid = pip->i_d.di_gid;
  966. if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
  967. ip->i_d.di_mode |= S_ISGID;
  968. }
  969. }
  970. /*
  971. * If the group ID of the new file does not match the effective group
  972. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  973. * (and only if the irix_sgid_inherit compatibility variable is set).
  974. */
  975. if ((irix_sgid_inherit) &&
  976. (ip->i_d.di_mode & S_ISGID) &&
  977. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  978. ip->i_d.di_mode &= ~S_ISGID;
  979. }
  980. ip->i_d.di_size = 0;
  981. ip->i_size = 0;
  982. ip->i_d.di_nextents = 0;
  983. ASSERT(ip->i_d.di_nblocks == 0);
  984. nanotime(&tv);
  985. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  986. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  987. ip->i_d.di_atime = ip->i_d.di_mtime;
  988. ip->i_d.di_ctime = ip->i_d.di_mtime;
  989. /*
  990. * di_gen will have been taken care of in xfs_iread.
  991. */
  992. ip->i_d.di_extsize = 0;
  993. ip->i_d.di_dmevmask = 0;
  994. ip->i_d.di_dmstate = 0;
  995. ip->i_d.di_flags = 0;
  996. flags = XFS_ILOG_CORE;
  997. switch (mode & S_IFMT) {
  998. case S_IFIFO:
  999. case S_IFCHR:
  1000. case S_IFBLK:
  1001. case S_IFSOCK:
  1002. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1003. ip->i_df.if_u2.if_rdev = rdev;
  1004. ip->i_df.if_flags = 0;
  1005. flags |= XFS_ILOG_DEV;
  1006. break;
  1007. case S_IFREG:
  1008. /*
  1009. * we can't set up filestreams until after the VFS inode
  1010. * is set up properly.
  1011. */
  1012. if (pip && xfs_inode_is_filestream(pip))
  1013. filestreams = 1;
  1014. /* fall through */
  1015. case S_IFDIR:
  1016. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1017. uint di_flags = 0;
  1018. if (S_ISDIR(mode)) {
  1019. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1020. di_flags |= XFS_DIFLAG_RTINHERIT;
  1021. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1022. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1023. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1024. }
  1025. } else if (S_ISREG(mode)) {
  1026. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1027. di_flags |= XFS_DIFLAG_REALTIME;
  1028. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1029. di_flags |= XFS_DIFLAG_EXTSIZE;
  1030. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1031. }
  1032. }
  1033. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1034. xfs_inherit_noatime)
  1035. di_flags |= XFS_DIFLAG_NOATIME;
  1036. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1037. xfs_inherit_nodump)
  1038. di_flags |= XFS_DIFLAG_NODUMP;
  1039. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1040. xfs_inherit_sync)
  1041. di_flags |= XFS_DIFLAG_SYNC;
  1042. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1043. xfs_inherit_nosymlinks)
  1044. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1045. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1046. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1047. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1048. xfs_inherit_nodefrag)
  1049. di_flags |= XFS_DIFLAG_NODEFRAG;
  1050. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1051. di_flags |= XFS_DIFLAG_FILESTREAM;
  1052. ip->i_d.di_flags |= di_flags;
  1053. }
  1054. /* FALLTHROUGH */
  1055. case S_IFLNK:
  1056. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1057. ip->i_df.if_flags = XFS_IFEXTENTS;
  1058. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1059. ip->i_df.if_u1.if_extents = NULL;
  1060. break;
  1061. default:
  1062. ASSERT(0);
  1063. }
  1064. /*
  1065. * Attribute fork settings for new inode.
  1066. */
  1067. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1068. ip->i_d.di_anextents = 0;
  1069. /*
  1070. * Log the new values stuffed into the inode.
  1071. */
  1072. xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
  1073. xfs_trans_log_inode(tp, ip, flags);
  1074. /* now that we have an i_mode we can setup inode ops and unlock */
  1075. xfs_setup_inode(ip);
  1076. /* now we have set up the vfs inode we can associate the filestream */
  1077. if (filestreams) {
  1078. error = xfs_filestream_associate(pip, ip);
  1079. if (error < 0)
  1080. return -error;
  1081. if (!error)
  1082. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1083. }
  1084. *ipp = ip;
  1085. return 0;
  1086. }
  1087. /*
  1088. * Check to make sure that there are no blocks allocated to the
  1089. * file beyond the size of the file. We don't check this for
  1090. * files with fixed size extents or real time extents, but we
  1091. * at least do it for regular files.
  1092. */
  1093. #ifdef DEBUG
  1094. STATIC void
  1095. xfs_isize_check(
  1096. struct xfs_inode *ip,
  1097. xfs_fsize_t isize)
  1098. {
  1099. struct xfs_mount *mp = ip->i_mount;
  1100. xfs_fileoff_t map_first;
  1101. int nimaps;
  1102. xfs_bmbt_irec_t imaps[2];
  1103. if (!S_ISREG(ip->i_d.di_mode))
  1104. return;
  1105. if (XFS_IS_REALTIME_INODE(ip))
  1106. return;
  1107. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1108. return;
  1109. nimaps = 2;
  1110. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1111. /*
  1112. * The filesystem could be shutting down, so bmapi may return
  1113. * an error.
  1114. */
  1115. if (xfs_bmapi(NULL, ip, map_first,
  1116. (XFS_B_TO_FSB(mp,
  1117. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1118. map_first),
  1119. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1120. NULL))
  1121. return;
  1122. ASSERT(nimaps == 1);
  1123. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1124. }
  1125. #else /* DEBUG */
  1126. #define xfs_isize_check(ip, isize)
  1127. #endif /* DEBUG */
  1128. /*
  1129. * Free up the underlying blocks past new_size. The new size must be smaller
  1130. * than the current size. This routine can be used both for the attribute and
  1131. * data fork, and does not modify the inode size, which is left to the caller.
  1132. *
  1133. * The transaction passed to this routine must have made a permanent log
  1134. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1135. * given transaction and start new ones, so make sure everything involved in
  1136. * the transaction is tidy before calling here. Some transaction will be
  1137. * returned to the caller to be committed. The incoming transaction must
  1138. * already include the inode, and both inode locks must be held exclusively.
  1139. * The inode must also be "held" within the transaction. On return the inode
  1140. * will be "held" within the returned transaction. This routine does NOT
  1141. * require any disk space to be reserved for it within the transaction.
  1142. *
  1143. * If we get an error, we must return with the inode locked and linked into the
  1144. * current transaction. This keeps things simple for the higher level code,
  1145. * because it always knows that the inode is locked and held in the transaction
  1146. * that returns to it whether errors occur or not. We don't mark the inode
  1147. * dirty on error so that transactions can be easily aborted if possible.
  1148. */
  1149. int
  1150. xfs_itruncate_extents(
  1151. struct xfs_trans **tpp,
  1152. struct xfs_inode *ip,
  1153. int whichfork,
  1154. xfs_fsize_t new_size)
  1155. {
  1156. struct xfs_mount *mp = ip->i_mount;
  1157. struct xfs_trans *tp = *tpp;
  1158. struct xfs_trans *ntp;
  1159. xfs_bmap_free_t free_list;
  1160. xfs_fsblock_t first_block;
  1161. xfs_fileoff_t first_unmap_block;
  1162. xfs_fileoff_t last_block;
  1163. xfs_filblks_t unmap_len;
  1164. int committed;
  1165. int error = 0;
  1166. int done = 0;
  1167. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1168. ASSERT(new_size <= ip->i_size);
  1169. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  1170. ASSERT(ip->i_itemp != NULL);
  1171. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1172. ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
  1173. /*
  1174. * Since it is possible for space to become allocated beyond
  1175. * the end of the file (in a crash where the space is allocated
  1176. * but the inode size is not yet updated), simply remove any
  1177. * blocks which show up between the new EOF and the maximum
  1178. * possible file size. If the first block to be removed is
  1179. * beyond the maximum file size (ie it is the same as last_block),
  1180. * then there is nothing to do.
  1181. */
  1182. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1183. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1184. if (first_unmap_block == last_block)
  1185. return 0;
  1186. ASSERT(first_unmap_block < last_block);
  1187. unmap_len = last_block - first_unmap_block + 1;
  1188. while (!done) {
  1189. xfs_bmap_init(&free_list, &first_block);
  1190. error = xfs_bunmapi(tp, ip,
  1191. first_unmap_block, unmap_len,
  1192. xfs_bmapi_aflag(whichfork),
  1193. XFS_ITRUNC_MAX_EXTENTS,
  1194. &first_block, &free_list,
  1195. &done);
  1196. if (error)
  1197. goto out_bmap_cancel;
  1198. /*
  1199. * Duplicate the transaction that has the permanent
  1200. * reservation and commit the old transaction.
  1201. */
  1202. error = xfs_bmap_finish(&tp, &free_list, &committed);
  1203. if (committed)
  1204. xfs_trans_ijoin(tp, ip);
  1205. if (error)
  1206. goto out_bmap_cancel;
  1207. if (committed) {
  1208. /*
  1209. * Mark the inode dirty so it will be logged and
  1210. * moved forward in the log as part of every commit.
  1211. */
  1212. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1213. }
  1214. ntp = xfs_trans_dup(tp);
  1215. error = xfs_trans_commit(tp, 0);
  1216. tp = ntp;
  1217. xfs_trans_ijoin(tp, ip);
  1218. if (error)
  1219. goto out;
  1220. /*
  1221. * Transaction commit worked ok so we can drop the extra ticket
  1222. * reference that we gained in xfs_trans_dup()
  1223. */
  1224. xfs_log_ticket_put(tp->t_ticket);
  1225. error = xfs_trans_reserve(tp, 0,
  1226. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1227. XFS_TRANS_PERM_LOG_RES,
  1228. XFS_ITRUNCATE_LOG_COUNT);
  1229. if (error)
  1230. goto out;
  1231. }
  1232. out:
  1233. *tpp = tp;
  1234. return error;
  1235. out_bmap_cancel:
  1236. /*
  1237. * If the bunmapi call encounters an error, return to the caller where
  1238. * the transaction can be properly aborted. We just need to make sure
  1239. * we're not holding any resources that we were not when we came in.
  1240. */
  1241. xfs_bmap_cancel(&free_list);
  1242. goto out;
  1243. }
  1244. int
  1245. xfs_itruncate_data(
  1246. struct xfs_trans **tpp,
  1247. struct xfs_inode *ip,
  1248. xfs_fsize_t new_size)
  1249. {
  1250. int error;
  1251. trace_xfs_itruncate_data_start(ip, new_size);
  1252. /*
  1253. * The first thing we do is set the size to new_size permanently on
  1254. * disk. This way we don't have to worry about anyone ever being able
  1255. * to look at the data being freed even in the face of a crash.
  1256. * What we're getting around here is the case where we free a block, it
  1257. * is allocated to another file, it is written to, and then we crash.
  1258. * If the new data gets written to the file but the log buffers
  1259. * containing the free and reallocation don't, then we'd end up with
  1260. * garbage in the blocks being freed. As long as we make the new_size
  1261. * permanent before actually freeing any blocks it doesn't matter if
  1262. * they get written to.
  1263. */
  1264. if (ip->i_d.di_nextents > 0) {
  1265. /*
  1266. * If we are not changing the file size then do not update
  1267. * the on-disk file size - we may be called from
  1268. * xfs_inactive_free_eofblocks(). If we update the on-disk
  1269. * file size and then the system crashes before the contents
  1270. * of the file are flushed to disk then the files may be
  1271. * full of holes (ie NULL files bug).
  1272. */
  1273. if (ip->i_size != new_size) {
  1274. ip->i_d.di_size = new_size;
  1275. ip->i_size = new_size;
  1276. xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
  1277. }
  1278. }
  1279. error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
  1280. if (error)
  1281. return error;
  1282. /*
  1283. * If we are not changing the file size then do not update the on-disk
  1284. * file size - we may be called from xfs_inactive_free_eofblocks().
  1285. * If we update the on-disk file size and then the system crashes
  1286. * before the contents of the file are flushed to disk then the files
  1287. * may be full of holes (ie NULL files bug).
  1288. */
  1289. xfs_isize_check(ip, new_size);
  1290. if (ip->i_size != new_size) {
  1291. ip->i_d.di_size = new_size;
  1292. ip->i_size = new_size;
  1293. }
  1294. ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
  1295. ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
  1296. /*
  1297. * Always re-log the inode so that our permanent transaction can keep
  1298. * on rolling it forward in the log.
  1299. */
  1300. xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
  1301. trace_xfs_itruncate_data_end(ip, new_size);
  1302. return 0;
  1303. }
  1304. /*
  1305. * This is called when the inode's link count goes to 0.
  1306. * We place the on-disk inode on a list in the AGI. It
  1307. * will be pulled from this list when the inode is freed.
  1308. */
  1309. int
  1310. xfs_iunlink(
  1311. xfs_trans_t *tp,
  1312. xfs_inode_t *ip)
  1313. {
  1314. xfs_mount_t *mp;
  1315. xfs_agi_t *agi;
  1316. xfs_dinode_t *dip;
  1317. xfs_buf_t *agibp;
  1318. xfs_buf_t *ibp;
  1319. xfs_agino_t agino;
  1320. short bucket_index;
  1321. int offset;
  1322. int error;
  1323. ASSERT(ip->i_d.di_nlink == 0);
  1324. ASSERT(ip->i_d.di_mode != 0);
  1325. mp = tp->t_mountp;
  1326. /*
  1327. * Get the agi buffer first. It ensures lock ordering
  1328. * on the list.
  1329. */
  1330. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1331. if (error)
  1332. return error;
  1333. agi = XFS_BUF_TO_AGI(agibp);
  1334. /*
  1335. * Get the index into the agi hash table for the
  1336. * list this inode will go on.
  1337. */
  1338. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1339. ASSERT(agino != 0);
  1340. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1341. ASSERT(agi->agi_unlinked[bucket_index]);
  1342. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1343. if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
  1344. /*
  1345. * There is already another inode in the bucket we need
  1346. * to add ourselves to. Add us at the front of the list.
  1347. * Here we put the head pointer into our next pointer,
  1348. * and then we fall through to point the head at us.
  1349. */
  1350. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1351. if (error)
  1352. return error;
  1353. ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
  1354. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1355. offset = ip->i_imap.im_boffset +
  1356. offsetof(xfs_dinode_t, di_next_unlinked);
  1357. xfs_trans_inode_buf(tp, ibp);
  1358. xfs_trans_log_buf(tp, ibp, offset,
  1359. (offset + sizeof(xfs_agino_t) - 1));
  1360. xfs_inobp_check(mp, ibp);
  1361. }
  1362. /*
  1363. * Point the bucket head pointer at the inode being inserted.
  1364. */
  1365. ASSERT(agino != 0);
  1366. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1367. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1368. (sizeof(xfs_agino_t) * bucket_index);
  1369. xfs_trans_log_buf(tp, agibp, offset,
  1370. (offset + sizeof(xfs_agino_t) - 1));
  1371. return 0;
  1372. }
  1373. /*
  1374. * Pull the on-disk inode from the AGI unlinked list.
  1375. */
  1376. STATIC int
  1377. xfs_iunlink_remove(
  1378. xfs_trans_t *tp,
  1379. xfs_inode_t *ip)
  1380. {
  1381. xfs_ino_t next_ino;
  1382. xfs_mount_t *mp;
  1383. xfs_agi_t *agi;
  1384. xfs_dinode_t *dip;
  1385. xfs_buf_t *agibp;
  1386. xfs_buf_t *ibp;
  1387. xfs_agnumber_t agno;
  1388. xfs_agino_t agino;
  1389. xfs_agino_t next_agino;
  1390. xfs_buf_t *last_ibp;
  1391. xfs_dinode_t *last_dip = NULL;
  1392. short bucket_index;
  1393. int offset, last_offset = 0;
  1394. int error;
  1395. mp = tp->t_mountp;
  1396. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1397. /*
  1398. * Get the agi buffer first. It ensures lock ordering
  1399. * on the list.
  1400. */
  1401. error = xfs_read_agi(mp, tp, agno, &agibp);
  1402. if (error)
  1403. return error;
  1404. agi = XFS_BUF_TO_AGI(agibp);
  1405. /*
  1406. * Get the index into the agi hash table for the
  1407. * list this inode will go on.
  1408. */
  1409. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1410. ASSERT(agino != 0);
  1411. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1412. ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
  1413. ASSERT(agi->agi_unlinked[bucket_index]);
  1414. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1415. /*
  1416. * We're at the head of the list. Get the inode's
  1417. * on-disk buffer to see if there is anyone after us
  1418. * on the list. Only modify our next pointer if it
  1419. * is not already NULLAGINO. This saves us the overhead
  1420. * of dealing with the buffer when there is no need to
  1421. * change it.
  1422. */
  1423. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1424. if (error) {
  1425. xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
  1426. __func__, error);
  1427. return error;
  1428. }
  1429. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1430. ASSERT(next_agino != 0);
  1431. if (next_agino != NULLAGINO) {
  1432. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1433. offset = ip->i_imap.im_boffset +
  1434. offsetof(xfs_dinode_t, di_next_unlinked);
  1435. xfs_trans_inode_buf(tp, ibp);
  1436. xfs_trans_log_buf(tp, ibp, offset,
  1437. (offset + sizeof(xfs_agino_t) - 1));
  1438. xfs_inobp_check(mp, ibp);
  1439. } else {
  1440. xfs_trans_brelse(tp, ibp);
  1441. }
  1442. /*
  1443. * Point the bucket head pointer at the next inode.
  1444. */
  1445. ASSERT(next_agino != 0);
  1446. ASSERT(next_agino != agino);
  1447. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1448. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1449. (sizeof(xfs_agino_t) * bucket_index);
  1450. xfs_trans_log_buf(tp, agibp, offset,
  1451. (offset + sizeof(xfs_agino_t) - 1));
  1452. } else {
  1453. /*
  1454. * We need to search the list for the inode being freed.
  1455. */
  1456. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1457. last_ibp = NULL;
  1458. while (next_agino != agino) {
  1459. /*
  1460. * If the last inode wasn't the one pointing to
  1461. * us, then release its buffer since we're not
  1462. * going to do anything with it.
  1463. */
  1464. if (last_ibp != NULL) {
  1465. xfs_trans_brelse(tp, last_ibp);
  1466. }
  1467. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1468. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1469. &last_ibp, &last_offset, 0);
  1470. if (error) {
  1471. xfs_warn(mp,
  1472. "%s: xfs_inotobp() returned error %d.",
  1473. __func__, error);
  1474. return error;
  1475. }
  1476. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1477. ASSERT(next_agino != NULLAGINO);
  1478. ASSERT(next_agino != 0);
  1479. }
  1480. /*
  1481. * Now last_ibp points to the buffer previous to us on
  1482. * the unlinked list. Pull us from the list.
  1483. */
  1484. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1485. if (error) {
  1486. xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
  1487. __func__, error);
  1488. return error;
  1489. }
  1490. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1491. ASSERT(next_agino != 0);
  1492. ASSERT(next_agino != agino);
  1493. if (next_agino != NULLAGINO) {
  1494. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1495. offset = ip->i_imap.im_boffset +
  1496. offsetof(xfs_dinode_t, di_next_unlinked);
  1497. xfs_trans_inode_buf(tp, ibp);
  1498. xfs_trans_log_buf(tp, ibp, offset,
  1499. (offset + sizeof(xfs_agino_t) - 1));
  1500. xfs_inobp_check(mp, ibp);
  1501. } else {
  1502. xfs_trans_brelse(tp, ibp);
  1503. }
  1504. /*
  1505. * Point the previous inode on the list to the next inode.
  1506. */
  1507. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1508. ASSERT(next_agino != 0);
  1509. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1510. xfs_trans_inode_buf(tp, last_ibp);
  1511. xfs_trans_log_buf(tp, last_ibp, offset,
  1512. (offset + sizeof(xfs_agino_t) - 1));
  1513. xfs_inobp_check(mp, last_ibp);
  1514. }
  1515. return 0;
  1516. }
  1517. /*
  1518. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1519. * inodes that are in memory - they all must be marked stale and attached to
  1520. * the cluster buffer.
  1521. */
  1522. STATIC int
  1523. xfs_ifree_cluster(
  1524. xfs_inode_t *free_ip,
  1525. xfs_trans_t *tp,
  1526. xfs_ino_t inum)
  1527. {
  1528. xfs_mount_t *mp = free_ip->i_mount;
  1529. int blks_per_cluster;
  1530. int nbufs;
  1531. int ninodes;
  1532. int i, j;
  1533. xfs_daddr_t blkno;
  1534. xfs_buf_t *bp;
  1535. xfs_inode_t *ip;
  1536. xfs_inode_log_item_t *iip;
  1537. xfs_log_item_t *lip;
  1538. struct xfs_perag *pag;
  1539. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1540. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1541. blks_per_cluster = 1;
  1542. ninodes = mp->m_sb.sb_inopblock;
  1543. nbufs = XFS_IALLOC_BLOCKS(mp);
  1544. } else {
  1545. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1546. mp->m_sb.sb_blocksize;
  1547. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1548. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1549. }
  1550. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1551. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1552. XFS_INO_TO_AGBNO(mp, inum));
  1553. /*
  1554. * We obtain and lock the backing buffer first in the process
  1555. * here, as we have to ensure that any dirty inode that we
  1556. * can't get the flush lock on is attached to the buffer.
  1557. * If we scan the in-memory inodes first, then buffer IO can
  1558. * complete before we get a lock on it, and hence we may fail
  1559. * to mark all the active inodes on the buffer stale.
  1560. */
  1561. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1562. mp->m_bsize * blks_per_cluster,
  1563. XBF_LOCK);
  1564. if (!bp)
  1565. return ENOMEM;
  1566. /*
  1567. * Walk the inodes already attached to the buffer and mark them
  1568. * stale. These will all have the flush locks held, so an
  1569. * in-memory inode walk can't lock them. By marking them all
  1570. * stale first, we will not attempt to lock them in the loop
  1571. * below as the XFS_ISTALE flag will be set.
  1572. */
  1573. lip = bp->b_fspriv;
  1574. while (lip) {
  1575. if (lip->li_type == XFS_LI_INODE) {
  1576. iip = (xfs_inode_log_item_t *)lip;
  1577. ASSERT(iip->ili_logged == 1);
  1578. lip->li_cb = xfs_istale_done;
  1579. xfs_trans_ail_copy_lsn(mp->m_ail,
  1580. &iip->ili_flush_lsn,
  1581. &iip->ili_item.li_lsn);
  1582. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1583. }
  1584. lip = lip->li_bio_list;
  1585. }
  1586. /*
  1587. * For each inode in memory attempt to add it to the inode
  1588. * buffer and set it up for being staled on buffer IO
  1589. * completion. This is safe as we've locked out tail pushing
  1590. * and flushing by locking the buffer.
  1591. *
  1592. * We have already marked every inode that was part of a
  1593. * transaction stale above, which means there is no point in
  1594. * even trying to lock them.
  1595. */
  1596. for (i = 0; i < ninodes; i++) {
  1597. retry:
  1598. rcu_read_lock();
  1599. ip = radix_tree_lookup(&pag->pag_ici_root,
  1600. XFS_INO_TO_AGINO(mp, (inum + i)));
  1601. /* Inode not in memory, nothing to do */
  1602. if (!ip) {
  1603. rcu_read_unlock();
  1604. continue;
  1605. }
  1606. /*
  1607. * because this is an RCU protected lookup, we could
  1608. * find a recently freed or even reallocated inode
  1609. * during the lookup. We need to check under the
  1610. * i_flags_lock for a valid inode here. Skip it if it
  1611. * is not valid, the wrong inode or stale.
  1612. */
  1613. spin_lock(&ip->i_flags_lock);
  1614. if (ip->i_ino != inum + i ||
  1615. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1616. spin_unlock(&ip->i_flags_lock);
  1617. rcu_read_unlock();
  1618. continue;
  1619. }
  1620. spin_unlock(&ip->i_flags_lock);
  1621. /*
  1622. * Don't try to lock/unlock the current inode, but we
  1623. * _cannot_ skip the other inodes that we did not find
  1624. * in the list attached to the buffer and are not
  1625. * already marked stale. If we can't lock it, back off
  1626. * and retry.
  1627. */
  1628. if (ip != free_ip &&
  1629. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1630. rcu_read_unlock();
  1631. delay(1);
  1632. goto retry;
  1633. }
  1634. rcu_read_unlock();
  1635. xfs_iflock(ip);
  1636. xfs_iflags_set(ip, XFS_ISTALE);
  1637. /*
  1638. * we don't need to attach clean inodes or those only
  1639. * with unlogged changes (which we throw away, anyway).
  1640. */
  1641. iip = ip->i_itemp;
  1642. if (!iip || xfs_inode_clean(ip)) {
  1643. ASSERT(ip != free_ip);
  1644. ip->i_update_core = 0;
  1645. xfs_ifunlock(ip);
  1646. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1647. continue;
  1648. }
  1649. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1650. iip->ili_format.ilf_fields = 0;
  1651. iip->ili_logged = 1;
  1652. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1653. &iip->ili_item.li_lsn);
  1654. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1655. &iip->ili_item);
  1656. if (ip != free_ip)
  1657. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1658. }
  1659. xfs_trans_stale_inode_buf(tp, bp);
  1660. xfs_trans_binval(tp, bp);
  1661. }
  1662. xfs_perag_put(pag);
  1663. return 0;
  1664. }
  1665. /*
  1666. * This is called to return an inode to the inode free list.
  1667. * The inode should already be truncated to 0 length and have
  1668. * no pages associated with it. This routine also assumes that
  1669. * the inode is already a part of the transaction.
  1670. *
  1671. * The on-disk copy of the inode will have been added to the list
  1672. * of unlinked inodes in the AGI. We need to remove the inode from
  1673. * that list atomically with respect to freeing it here.
  1674. */
  1675. int
  1676. xfs_ifree(
  1677. xfs_trans_t *tp,
  1678. xfs_inode_t *ip,
  1679. xfs_bmap_free_t *flist)
  1680. {
  1681. int error;
  1682. int delete;
  1683. xfs_ino_t first_ino;
  1684. xfs_dinode_t *dip;
  1685. xfs_buf_t *ibp;
  1686. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1687. ASSERT(ip->i_d.di_nlink == 0);
  1688. ASSERT(ip->i_d.di_nextents == 0);
  1689. ASSERT(ip->i_d.di_anextents == 0);
  1690. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1691. (!S_ISREG(ip->i_d.di_mode)));
  1692. ASSERT(ip->i_d.di_nblocks == 0);
  1693. /*
  1694. * Pull the on-disk inode from the AGI unlinked list.
  1695. */
  1696. error = xfs_iunlink_remove(tp, ip);
  1697. if (error != 0) {
  1698. return error;
  1699. }
  1700. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1701. if (error != 0) {
  1702. return error;
  1703. }
  1704. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1705. ip->i_d.di_flags = 0;
  1706. ip->i_d.di_dmevmask = 0;
  1707. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1708. ip->i_df.if_ext_max =
  1709. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1710. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1711. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1712. /*
  1713. * Bump the generation count so no one will be confused
  1714. * by reincarnations of this inode.
  1715. */
  1716. ip->i_d.di_gen++;
  1717. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1718. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1719. if (error)
  1720. return error;
  1721. /*
  1722. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1723. * from picking up this inode when it is reclaimed (its incore state
  1724. * initialzed but not flushed to disk yet). The in-core di_mode is
  1725. * already cleared and a corresponding transaction logged.
  1726. * The hack here just synchronizes the in-core to on-disk
  1727. * di_mode value in advance before the actual inode sync to disk.
  1728. * This is OK because the inode is already unlinked and would never
  1729. * change its di_mode again for this inode generation.
  1730. * This is a temporary hack that would require a proper fix
  1731. * in the future.
  1732. */
  1733. dip->di_mode = 0;
  1734. if (delete) {
  1735. error = xfs_ifree_cluster(ip, tp, first_ino);
  1736. }
  1737. return error;
  1738. }
  1739. /*
  1740. * Reallocate the space for if_broot based on the number of records
  1741. * being added or deleted as indicated in rec_diff. Move the records
  1742. * and pointers in if_broot to fit the new size. When shrinking this
  1743. * will eliminate holes between the records and pointers created by
  1744. * the caller. When growing this will create holes to be filled in
  1745. * by the caller.
  1746. *
  1747. * The caller must not request to add more records than would fit in
  1748. * the on-disk inode root. If the if_broot is currently NULL, then
  1749. * if we adding records one will be allocated. The caller must also
  1750. * not request that the number of records go below zero, although
  1751. * it can go to zero.
  1752. *
  1753. * ip -- the inode whose if_broot area is changing
  1754. * ext_diff -- the change in the number of records, positive or negative,
  1755. * requested for the if_broot array.
  1756. */
  1757. void
  1758. xfs_iroot_realloc(
  1759. xfs_inode_t *ip,
  1760. int rec_diff,
  1761. int whichfork)
  1762. {
  1763. struct xfs_mount *mp = ip->i_mount;
  1764. int cur_max;
  1765. xfs_ifork_t *ifp;
  1766. struct xfs_btree_block *new_broot;
  1767. int new_max;
  1768. size_t new_size;
  1769. char *np;
  1770. char *op;
  1771. /*
  1772. * Handle the degenerate case quietly.
  1773. */
  1774. if (rec_diff == 0) {
  1775. return;
  1776. }
  1777. ifp = XFS_IFORK_PTR(ip, whichfork);
  1778. if (rec_diff > 0) {
  1779. /*
  1780. * If there wasn't any memory allocated before, just
  1781. * allocate it now and get out.
  1782. */
  1783. if (ifp->if_broot_bytes == 0) {
  1784. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  1785. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1786. ifp->if_broot_bytes = (int)new_size;
  1787. return;
  1788. }
  1789. /*
  1790. * If there is already an existing if_broot, then we need
  1791. * to realloc() it and shift the pointers to their new
  1792. * location. The records don't change location because
  1793. * they are kept butted up against the btree block header.
  1794. */
  1795. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1796. new_max = cur_max + rec_diff;
  1797. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1798. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  1799. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  1800. KM_SLEEP | KM_NOFS);
  1801. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1802. ifp->if_broot_bytes);
  1803. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1804. (int)new_size);
  1805. ifp->if_broot_bytes = (int)new_size;
  1806. ASSERT(ifp->if_broot_bytes <=
  1807. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1808. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  1809. return;
  1810. }
  1811. /*
  1812. * rec_diff is less than 0. In this case, we are shrinking the
  1813. * if_broot buffer. It must already exist. If we go to zero
  1814. * records, just get rid of the root and clear the status bit.
  1815. */
  1816. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  1817. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1818. new_max = cur_max + rec_diff;
  1819. ASSERT(new_max >= 0);
  1820. if (new_max > 0)
  1821. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1822. else
  1823. new_size = 0;
  1824. if (new_size > 0) {
  1825. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1826. /*
  1827. * First copy over the btree block header.
  1828. */
  1829. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  1830. } else {
  1831. new_broot = NULL;
  1832. ifp->if_flags &= ~XFS_IFBROOT;
  1833. }
  1834. /*
  1835. * Only copy the records and pointers if there are any.
  1836. */
  1837. if (new_max > 0) {
  1838. /*
  1839. * First copy the records.
  1840. */
  1841. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  1842. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  1843. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  1844. /*
  1845. * Then copy the pointers.
  1846. */
  1847. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1848. ifp->if_broot_bytes);
  1849. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  1850. (int)new_size);
  1851. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  1852. }
  1853. kmem_free(ifp->if_broot);
  1854. ifp->if_broot = new_broot;
  1855. ifp->if_broot_bytes = (int)new_size;
  1856. ASSERT(ifp->if_broot_bytes <=
  1857. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1858. return;
  1859. }
  1860. /*
  1861. * This is called when the amount of space needed for if_data
  1862. * is increased or decreased. The change in size is indicated by
  1863. * the number of bytes that need to be added or deleted in the
  1864. * byte_diff parameter.
  1865. *
  1866. * If the amount of space needed has decreased below the size of the
  1867. * inline buffer, then switch to using the inline buffer. Otherwise,
  1868. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  1869. * to what is needed.
  1870. *
  1871. * ip -- the inode whose if_data area is changing
  1872. * byte_diff -- the change in the number of bytes, positive or negative,
  1873. * requested for the if_data array.
  1874. */
  1875. void
  1876. xfs_idata_realloc(
  1877. xfs_inode_t *ip,
  1878. int byte_diff,
  1879. int whichfork)
  1880. {
  1881. xfs_ifork_t *ifp;
  1882. int new_size;
  1883. int real_size;
  1884. if (byte_diff == 0) {
  1885. return;
  1886. }
  1887. ifp = XFS_IFORK_PTR(ip, whichfork);
  1888. new_size = (int)ifp->if_bytes + byte_diff;
  1889. ASSERT(new_size >= 0);
  1890. if (new_size == 0) {
  1891. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1892. kmem_free(ifp->if_u1.if_data);
  1893. }
  1894. ifp->if_u1.if_data = NULL;
  1895. real_size = 0;
  1896. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  1897. /*
  1898. * If the valid extents/data can fit in if_inline_ext/data,
  1899. * copy them from the malloc'd vector and free it.
  1900. */
  1901. if (ifp->if_u1.if_data == NULL) {
  1902. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1903. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1904. ASSERT(ifp->if_real_bytes != 0);
  1905. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  1906. new_size);
  1907. kmem_free(ifp->if_u1.if_data);
  1908. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1909. }
  1910. real_size = 0;
  1911. } else {
  1912. /*
  1913. * Stuck with malloc/realloc.
  1914. * For inline data, the underlying buffer must be
  1915. * a multiple of 4 bytes in size so that it can be
  1916. * logged and stay on word boundaries. We enforce
  1917. * that here.
  1918. */
  1919. real_size = roundup(new_size, 4);
  1920. if (ifp->if_u1.if_data == NULL) {
  1921. ASSERT(ifp->if_real_bytes == 0);
  1922. ifp->if_u1.if_data = kmem_alloc(real_size,
  1923. KM_SLEEP | KM_NOFS);
  1924. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1925. /*
  1926. * Only do the realloc if the underlying size
  1927. * is really changing.
  1928. */
  1929. if (ifp->if_real_bytes != real_size) {
  1930. ifp->if_u1.if_data =
  1931. kmem_realloc(ifp->if_u1.if_data,
  1932. real_size,
  1933. ifp->if_real_bytes,
  1934. KM_SLEEP | KM_NOFS);
  1935. }
  1936. } else {
  1937. ASSERT(ifp->if_real_bytes == 0);
  1938. ifp->if_u1.if_data = kmem_alloc(real_size,
  1939. KM_SLEEP | KM_NOFS);
  1940. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  1941. ifp->if_bytes);
  1942. }
  1943. }
  1944. ifp->if_real_bytes = real_size;
  1945. ifp->if_bytes = new_size;
  1946. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  1947. }
  1948. void
  1949. xfs_idestroy_fork(
  1950. xfs_inode_t *ip,
  1951. int whichfork)
  1952. {
  1953. xfs_ifork_t *ifp;
  1954. ifp = XFS_IFORK_PTR(ip, whichfork);
  1955. if (ifp->if_broot != NULL) {
  1956. kmem_free(ifp->if_broot);
  1957. ifp->if_broot = NULL;
  1958. }
  1959. /*
  1960. * If the format is local, then we can't have an extents
  1961. * array so just look for an inline data array. If we're
  1962. * not local then we may or may not have an extents list,
  1963. * so check and free it up if we do.
  1964. */
  1965. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  1966. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  1967. (ifp->if_u1.if_data != NULL)) {
  1968. ASSERT(ifp->if_real_bytes != 0);
  1969. kmem_free(ifp->if_u1.if_data);
  1970. ifp->if_u1.if_data = NULL;
  1971. ifp->if_real_bytes = 0;
  1972. }
  1973. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  1974. ((ifp->if_flags & XFS_IFEXTIREC) ||
  1975. ((ifp->if_u1.if_extents != NULL) &&
  1976. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  1977. ASSERT(ifp->if_real_bytes != 0);
  1978. xfs_iext_destroy(ifp);
  1979. }
  1980. ASSERT(ifp->if_u1.if_extents == NULL ||
  1981. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  1982. ASSERT(ifp->if_real_bytes == 0);
  1983. if (whichfork == XFS_ATTR_FORK) {
  1984. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  1985. ip->i_afp = NULL;
  1986. }
  1987. }
  1988. /*
  1989. * This is called to unpin an inode. The caller must have the inode locked
  1990. * in at least shared mode so that the buffer cannot be subsequently pinned
  1991. * once someone is waiting for it to be unpinned.
  1992. */
  1993. static void
  1994. xfs_iunpin_nowait(
  1995. struct xfs_inode *ip)
  1996. {
  1997. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  1998. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  1999. /* Give the log a push to start the unpinning I/O */
  2000. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2001. }
  2002. void
  2003. xfs_iunpin_wait(
  2004. struct xfs_inode *ip)
  2005. {
  2006. if (xfs_ipincount(ip)) {
  2007. xfs_iunpin_nowait(ip);
  2008. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2009. }
  2010. }
  2011. /*
  2012. * xfs_iextents_copy()
  2013. *
  2014. * This is called to copy the REAL extents (as opposed to the delayed
  2015. * allocation extents) from the inode into the given buffer. It
  2016. * returns the number of bytes copied into the buffer.
  2017. *
  2018. * If there are no delayed allocation extents, then we can just
  2019. * memcpy() the extents into the buffer. Otherwise, we need to
  2020. * examine each extent in turn and skip those which are delayed.
  2021. */
  2022. int
  2023. xfs_iextents_copy(
  2024. xfs_inode_t *ip,
  2025. xfs_bmbt_rec_t *dp,
  2026. int whichfork)
  2027. {
  2028. int copied;
  2029. int i;
  2030. xfs_ifork_t *ifp;
  2031. int nrecs;
  2032. xfs_fsblock_t start_block;
  2033. ifp = XFS_IFORK_PTR(ip, whichfork);
  2034. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2035. ASSERT(ifp->if_bytes > 0);
  2036. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2037. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2038. ASSERT(nrecs > 0);
  2039. /*
  2040. * There are some delayed allocation extents in the
  2041. * inode, so copy the extents one at a time and skip
  2042. * the delayed ones. There must be at least one
  2043. * non-delayed extent.
  2044. */
  2045. copied = 0;
  2046. for (i = 0; i < nrecs; i++) {
  2047. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2048. start_block = xfs_bmbt_get_startblock(ep);
  2049. if (isnullstartblock(start_block)) {
  2050. /*
  2051. * It's a delayed allocation extent, so skip it.
  2052. */
  2053. continue;
  2054. }
  2055. /* Translate to on disk format */
  2056. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2057. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2058. dp++;
  2059. copied++;
  2060. }
  2061. ASSERT(copied != 0);
  2062. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2063. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2064. }
  2065. /*
  2066. * Each of the following cases stores data into the same region
  2067. * of the on-disk inode, so only one of them can be valid at
  2068. * any given time. While it is possible to have conflicting formats
  2069. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2070. * in EXTENTS format, this can only happen when the fork has
  2071. * changed formats after being modified but before being flushed.
  2072. * In these cases, the format always takes precedence, because the
  2073. * format indicates the current state of the fork.
  2074. */
  2075. /*ARGSUSED*/
  2076. STATIC void
  2077. xfs_iflush_fork(
  2078. xfs_inode_t *ip,
  2079. xfs_dinode_t *dip,
  2080. xfs_inode_log_item_t *iip,
  2081. int whichfork,
  2082. xfs_buf_t *bp)
  2083. {
  2084. char *cp;
  2085. xfs_ifork_t *ifp;
  2086. xfs_mount_t *mp;
  2087. #ifdef XFS_TRANS_DEBUG
  2088. int first;
  2089. #endif
  2090. static const short brootflag[2] =
  2091. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2092. static const short dataflag[2] =
  2093. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2094. static const short extflag[2] =
  2095. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2096. if (!iip)
  2097. return;
  2098. ifp = XFS_IFORK_PTR(ip, whichfork);
  2099. /*
  2100. * This can happen if we gave up in iformat in an error path,
  2101. * for the attribute fork.
  2102. */
  2103. if (!ifp) {
  2104. ASSERT(whichfork == XFS_ATTR_FORK);
  2105. return;
  2106. }
  2107. cp = XFS_DFORK_PTR(dip, whichfork);
  2108. mp = ip->i_mount;
  2109. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2110. case XFS_DINODE_FMT_LOCAL:
  2111. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2112. (ifp->if_bytes > 0)) {
  2113. ASSERT(ifp->if_u1.if_data != NULL);
  2114. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2115. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2116. }
  2117. break;
  2118. case XFS_DINODE_FMT_EXTENTS:
  2119. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2120. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2121. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2122. (ifp->if_bytes > 0)) {
  2123. ASSERT(xfs_iext_get_ext(ifp, 0));
  2124. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2125. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2126. whichfork);
  2127. }
  2128. break;
  2129. case XFS_DINODE_FMT_BTREE:
  2130. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2131. (ifp->if_broot_bytes > 0)) {
  2132. ASSERT(ifp->if_broot != NULL);
  2133. ASSERT(ifp->if_broot_bytes <=
  2134. (XFS_IFORK_SIZE(ip, whichfork) +
  2135. XFS_BROOT_SIZE_ADJ));
  2136. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2137. (xfs_bmdr_block_t *)cp,
  2138. XFS_DFORK_SIZE(dip, mp, whichfork));
  2139. }
  2140. break;
  2141. case XFS_DINODE_FMT_DEV:
  2142. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2143. ASSERT(whichfork == XFS_DATA_FORK);
  2144. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2145. }
  2146. break;
  2147. case XFS_DINODE_FMT_UUID:
  2148. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2149. ASSERT(whichfork == XFS_DATA_FORK);
  2150. memcpy(XFS_DFORK_DPTR(dip),
  2151. &ip->i_df.if_u2.if_uuid,
  2152. sizeof(uuid_t));
  2153. }
  2154. break;
  2155. default:
  2156. ASSERT(0);
  2157. break;
  2158. }
  2159. }
  2160. STATIC int
  2161. xfs_iflush_cluster(
  2162. xfs_inode_t *ip,
  2163. xfs_buf_t *bp)
  2164. {
  2165. xfs_mount_t *mp = ip->i_mount;
  2166. struct xfs_perag *pag;
  2167. unsigned long first_index, mask;
  2168. unsigned long inodes_per_cluster;
  2169. int ilist_size;
  2170. xfs_inode_t **ilist;
  2171. xfs_inode_t *iq;
  2172. int nr_found;
  2173. int clcount = 0;
  2174. int bufwasdelwri;
  2175. int i;
  2176. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2177. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2178. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2179. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2180. if (!ilist)
  2181. goto out_put;
  2182. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2183. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2184. rcu_read_lock();
  2185. /* really need a gang lookup range call here */
  2186. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2187. first_index, inodes_per_cluster);
  2188. if (nr_found == 0)
  2189. goto out_free;
  2190. for (i = 0; i < nr_found; i++) {
  2191. iq = ilist[i];
  2192. if (iq == ip)
  2193. continue;
  2194. /*
  2195. * because this is an RCU protected lookup, we could find a
  2196. * recently freed or even reallocated inode during the lookup.
  2197. * We need to check under the i_flags_lock for a valid inode
  2198. * here. Skip it if it is not valid or the wrong inode.
  2199. */
  2200. spin_lock(&ip->i_flags_lock);
  2201. if (!ip->i_ino ||
  2202. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2203. spin_unlock(&ip->i_flags_lock);
  2204. continue;
  2205. }
  2206. spin_unlock(&ip->i_flags_lock);
  2207. /*
  2208. * Do an un-protected check to see if the inode is dirty and
  2209. * is a candidate for flushing. These checks will be repeated
  2210. * later after the appropriate locks are acquired.
  2211. */
  2212. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2213. continue;
  2214. /*
  2215. * Try to get locks. If any are unavailable or it is pinned,
  2216. * then this inode cannot be flushed and is skipped.
  2217. */
  2218. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2219. continue;
  2220. if (!xfs_iflock_nowait(iq)) {
  2221. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2222. continue;
  2223. }
  2224. if (xfs_ipincount(iq)) {
  2225. xfs_ifunlock(iq);
  2226. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2227. continue;
  2228. }
  2229. /*
  2230. * arriving here means that this inode can be flushed. First
  2231. * re-check that it's dirty before flushing.
  2232. */
  2233. if (!xfs_inode_clean(iq)) {
  2234. int error;
  2235. error = xfs_iflush_int(iq, bp);
  2236. if (error) {
  2237. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2238. goto cluster_corrupt_out;
  2239. }
  2240. clcount++;
  2241. } else {
  2242. xfs_ifunlock(iq);
  2243. }
  2244. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2245. }
  2246. if (clcount) {
  2247. XFS_STATS_INC(xs_icluster_flushcnt);
  2248. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2249. }
  2250. out_free:
  2251. rcu_read_unlock();
  2252. kmem_free(ilist);
  2253. out_put:
  2254. xfs_perag_put(pag);
  2255. return 0;
  2256. cluster_corrupt_out:
  2257. /*
  2258. * Corruption detected in the clustering loop. Invalidate the
  2259. * inode buffer and shut down the filesystem.
  2260. */
  2261. rcu_read_unlock();
  2262. /*
  2263. * Clean up the buffer. If it was B_DELWRI, just release it --
  2264. * brelse can handle it with no problems. If not, shut down the
  2265. * filesystem before releasing the buffer.
  2266. */
  2267. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2268. if (bufwasdelwri)
  2269. xfs_buf_relse(bp);
  2270. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2271. if (!bufwasdelwri) {
  2272. /*
  2273. * Just like incore_relse: if we have b_iodone functions,
  2274. * mark the buffer as an error and call them. Otherwise
  2275. * mark it as stale and brelse.
  2276. */
  2277. if (bp->b_iodone) {
  2278. XFS_BUF_UNDONE(bp);
  2279. XFS_BUF_STALE(bp);
  2280. xfs_buf_ioerror(bp, EIO);
  2281. xfs_buf_ioend(bp, 0);
  2282. } else {
  2283. XFS_BUF_STALE(bp);
  2284. xfs_buf_relse(bp);
  2285. }
  2286. }
  2287. /*
  2288. * Unlocks the flush lock
  2289. */
  2290. xfs_iflush_abort(iq);
  2291. kmem_free(ilist);
  2292. xfs_perag_put(pag);
  2293. return XFS_ERROR(EFSCORRUPTED);
  2294. }
  2295. /*
  2296. * xfs_iflush() will write a modified inode's changes out to the
  2297. * inode's on disk home. The caller must have the inode lock held
  2298. * in at least shared mode and the inode flush completion must be
  2299. * active as well. The inode lock will still be held upon return from
  2300. * the call and the caller is free to unlock it.
  2301. * The inode flush will be completed when the inode reaches the disk.
  2302. * The flags indicate how the inode's buffer should be written out.
  2303. */
  2304. int
  2305. xfs_iflush(
  2306. xfs_inode_t *ip,
  2307. uint flags)
  2308. {
  2309. xfs_inode_log_item_t *iip;
  2310. xfs_buf_t *bp;
  2311. xfs_dinode_t *dip;
  2312. xfs_mount_t *mp;
  2313. int error;
  2314. XFS_STATS_INC(xs_iflush_count);
  2315. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2316. ASSERT(!completion_done(&ip->i_flush));
  2317. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2318. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2319. iip = ip->i_itemp;
  2320. mp = ip->i_mount;
  2321. /*
  2322. * We can't flush the inode until it is unpinned, so wait for it if we
  2323. * are allowed to block. We know no one new can pin it, because we are
  2324. * holding the inode lock shared and you need to hold it exclusively to
  2325. * pin the inode.
  2326. *
  2327. * If we are not allowed to block, force the log out asynchronously so
  2328. * that when we come back the inode will be unpinned. If other inodes
  2329. * in the same cluster are dirty, they will probably write the inode
  2330. * out for us if they occur after the log force completes.
  2331. */
  2332. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2333. xfs_iunpin_nowait(ip);
  2334. xfs_ifunlock(ip);
  2335. return EAGAIN;
  2336. }
  2337. xfs_iunpin_wait(ip);
  2338. /*
  2339. * For stale inodes we cannot rely on the backing buffer remaining
  2340. * stale in cache for the remaining life of the stale inode and so
  2341. * xfs_itobp() below may give us a buffer that no longer contains
  2342. * inodes below. We have to check this after ensuring the inode is
  2343. * unpinned so that it is safe to reclaim the stale inode after the
  2344. * flush call.
  2345. */
  2346. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2347. xfs_ifunlock(ip);
  2348. return 0;
  2349. }
  2350. /*
  2351. * This may have been unpinned because the filesystem is shutting
  2352. * down forcibly. If that's the case we must not write this inode
  2353. * to disk, because the log record didn't make it to disk!
  2354. */
  2355. if (XFS_FORCED_SHUTDOWN(mp)) {
  2356. ip->i_update_core = 0;
  2357. if (iip)
  2358. iip->ili_format.ilf_fields = 0;
  2359. xfs_ifunlock(ip);
  2360. return XFS_ERROR(EIO);
  2361. }
  2362. /*
  2363. * Get the buffer containing the on-disk inode.
  2364. */
  2365. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2366. (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
  2367. if (error || !bp) {
  2368. xfs_ifunlock(ip);
  2369. return error;
  2370. }
  2371. /*
  2372. * First flush out the inode that xfs_iflush was called with.
  2373. */
  2374. error = xfs_iflush_int(ip, bp);
  2375. if (error)
  2376. goto corrupt_out;
  2377. /*
  2378. * If the buffer is pinned then push on the log now so we won't
  2379. * get stuck waiting in the write for too long.
  2380. */
  2381. if (xfs_buf_ispinned(bp))
  2382. xfs_log_force(mp, 0);
  2383. /*
  2384. * inode clustering:
  2385. * see if other inodes can be gathered into this write
  2386. */
  2387. error = xfs_iflush_cluster(ip, bp);
  2388. if (error)
  2389. goto cluster_corrupt_out;
  2390. if (flags & SYNC_WAIT)
  2391. error = xfs_bwrite(bp);
  2392. else
  2393. xfs_buf_delwri_queue(bp);
  2394. xfs_buf_relse(bp);
  2395. return error;
  2396. corrupt_out:
  2397. xfs_buf_relse(bp);
  2398. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2399. cluster_corrupt_out:
  2400. /*
  2401. * Unlocks the flush lock
  2402. */
  2403. xfs_iflush_abort(ip);
  2404. return XFS_ERROR(EFSCORRUPTED);
  2405. }
  2406. STATIC int
  2407. xfs_iflush_int(
  2408. xfs_inode_t *ip,
  2409. xfs_buf_t *bp)
  2410. {
  2411. xfs_inode_log_item_t *iip;
  2412. xfs_dinode_t *dip;
  2413. xfs_mount_t *mp;
  2414. #ifdef XFS_TRANS_DEBUG
  2415. int first;
  2416. #endif
  2417. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2418. ASSERT(!completion_done(&ip->i_flush));
  2419. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2420. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2421. iip = ip->i_itemp;
  2422. mp = ip->i_mount;
  2423. /* set *dip = inode's place in the buffer */
  2424. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2425. /*
  2426. * Clear i_update_core before copying out the data.
  2427. * This is for coordination with our timestamp updates
  2428. * that don't hold the inode lock. They will always
  2429. * update the timestamps BEFORE setting i_update_core,
  2430. * so if we clear i_update_core after they set it we
  2431. * are guaranteed to see their updates to the timestamps.
  2432. * I believe that this depends on strongly ordered memory
  2433. * semantics, but we have that. We use the SYNCHRONIZE
  2434. * macro to make sure that the compiler does not reorder
  2435. * the i_update_core access below the data copy below.
  2436. */
  2437. ip->i_update_core = 0;
  2438. SYNCHRONIZE();
  2439. /*
  2440. * Make sure to get the latest timestamps from the Linux inode.
  2441. */
  2442. xfs_synchronize_times(ip);
  2443. if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
  2444. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2445. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2446. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2447. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2448. goto corrupt_out;
  2449. }
  2450. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2451. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2452. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2453. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2454. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2455. goto corrupt_out;
  2456. }
  2457. if (S_ISREG(ip->i_d.di_mode)) {
  2458. if (XFS_TEST_ERROR(
  2459. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2460. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2461. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2462. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2463. "%s: Bad regular inode %Lu, ptr 0x%p",
  2464. __func__, ip->i_ino, ip);
  2465. goto corrupt_out;
  2466. }
  2467. } else if (S_ISDIR(ip->i_d.di_mode)) {
  2468. if (XFS_TEST_ERROR(
  2469. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2470. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2471. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2472. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2473. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2474. "%s: Bad directory inode %Lu, ptr 0x%p",
  2475. __func__, ip->i_ino, ip);
  2476. goto corrupt_out;
  2477. }
  2478. }
  2479. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2480. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2481. XFS_RANDOM_IFLUSH_5)) {
  2482. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2483. "%s: detected corrupt incore inode %Lu, "
  2484. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2485. __func__, ip->i_ino,
  2486. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2487. ip->i_d.di_nblocks, ip);
  2488. goto corrupt_out;
  2489. }
  2490. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2491. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2492. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2493. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2494. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2495. goto corrupt_out;
  2496. }
  2497. /*
  2498. * bump the flush iteration count, used to detect flushes which
  2499. * postdate a log record during recovery.
  2500. */
  2501. ip->i_d.di_flushiter++;
  2502. /*
  2503. * Copy the dirty parts of the inode into the on-disk
  2504. * inode. We always copy out the core of the inode,
  2505. * because if the inode is dirty at all the core must
  2506. * be.
  2507. */
  2508. xfs_dinode_to_disk(dip, &ip->i_d);
  2509. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2510. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2511. ip->i_d.di_flushiter = 0;
  2512. /*
  2513. * If this is really an old format inode and the superblock version
  2514. * has not been updated to support only new format inodes, then
  2515. * convert back to the old inode format. If the superblock version
  2516. * has been updated, then make the conversion permanent.
  2517. */
  2518. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2519. if (ip->i_d.di_version == 1) {
  2520. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2521. /*
  2522. * Convert it back.
  2523. */
  2524. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2525. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2526. } else {
  2527. /*
  2528. * The superblock version has already been bumped,
  2529. * so just make the conversion to the new inode
  2530. * format permanent.
  2531. */
  2532. ip->i_d.di_version = 2;
  2533. dip->di_version = 2;
  2534. ip->i_d.di_onlink = 0;
  2535. dip->di_onlink = 0;
  2536. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2537. memset(&(dip->di_pad[0]), 0,
  2538. sizeof(dip->di_pad));
  2539. ASSERT(xfs_get_projid(ip) == 0);
  2540. }
  2541. }
  2542. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2543. if (XFS_IFORK_Q(ip))
  2544. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2545. xfs_inobp_check(mp, bp);
  2546. /*
  2547. * We've recorded everything logged in the inode, so we'd
  2548. * like to clear the ilf_fields bits so we don't log and
  2549. * flush things unnecessarily. However, we can't stop
  2550. * logging all this information until the data we've copied
  2551. * into the disk buffer is written to disk. If we did we might
  2552. * overwrite the copy of the inode in the log with all the
  2553. * data after re-logging only part of it, and in the face of
  2554. * a crash we wouldn't have all the data we need to recover.
  2555. *
  2556. * What we do is move the bits to the ili_last_fields field.
  2557. * When logging the inode, these bits are moved back to the
  2558. * ilf_fields field. In the xfs_iflush_done() routine we
  2559. * clear ili_last_fields, since we know that the information
  2560. * those bits represent is permanently on disk. As long as
  2561. * the flush completes before the inode is logged again, then
  2562. * both ilf_fields and ili_last_fields will be cleared.
  2563. *
  2564. * We can play with the ilf_fields bits here, because the inode
  2565. * lock must be held exclusively in order to set bits there
  2566. * and the flush lock protects the ili_last_fields bits.
  2567. * Set ili_logged so the flush done
  2568. * routine can tell whether or not to look in the AIL.
  2569. * Also, store the current LSN of the inode so that we can tell
  2570. * whether the item has moved in the AIL from xfs_iflush_done().
  2571. * In order to read the lsn we need the AIL lock, because
  2572. * it is a 64 bit value that cannot be read atomically.
  2573. */
  2574. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2575. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2576. iip->ili_format.ilf_fields = 0;
  2577. iip->ili_logged = 1;
  2578. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2579. &iip->ili_item.li_lsn);
  2580. /*
  2581. * Attach the function xfs_iflush_done to the inode's
  2582. * buffer. This will remove the inode from the AIL
  2583. * and unlock the inode's flush lock when the inode is
  2584. * completely written to disk.
  2585. */
  2586. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2587. ASSERT(bp->b_fspriv != NULL);
  2588. ASSERT(bp->b_iodone != NULL);
  2589. } else {
  2590. /*
  2591. * We're flushing an inode which is not in the AIL and has
  2592. * not been logged but has i_update_core set. For this
  2593. * case we can use a B_DELWRI flush and immediately drop
  2594. * the inode flush lock because we can avoid the whole
  2595. * AIL state thing. It's OK to drop the flush lock now,
  2596. * because we've already locked the buffer and to do anything
  2597. * you really need both.
  2598. */
  2599. if (iip != NULL) {
  2600. ASSERT(iip->ili_logged == 0);
  2601. ASSERT(iip->ili_last_fields == 0);
  2602. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2603. }
  2604. xfs_ifunlock(ip);
  2605. }
  2606. return 0;
  2607. corrupt_out:
  2608. return XFS_ERROR(EFSCORRUPTED);
  2609. }
  2610. /*
  2611. * Return a pointer to the extent record at file index idx.
  2612. */
  2613. xfs_bmbt_rec_host_t *
  2614. xfs_iext_get_ext(
  2615. xfs_ifork_t *ifp, /* inode fork pointer */
  2616. xfs_extnum_t idx) /* index of target extent */
  2617. {
  2618. ASSERT(idx >= 0);
  2619. ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  2620. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2621. return ifp->if_u1.if_ext_irec->er_extbuf;
  2622. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2623. xfs_ext_irec_t *erp; /* irec pointer */
  2624. int erp_idx = 0; /* irec index */
  2625. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2626. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2627. return &erp->er_extbuf[page_idx];
  2628. } else if (ifp->if_bytes) {
  2629. return &ifp->if_u1.if_extents[idx];
  2630. } else {
  2631. return NULL;
  2632. }
  2633. }
  2634. /*
  2635. * Insert new item(s) into the extent records for incore inode
  2636. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2637. */
  2638. void
  2639. xfs_iext_insert(
  2640. xfs_inode_t *ip, /* incore inode pointer */
  2641. xfs_extnum_t idx, /* starting index of new items */
  2642. xfs_extnum_t count, /* number of inserted items */
  2643. xfs_bmbt_irec_t *new, /* items to insert */
  2644. int state) /* type of extent conversion */
  2645. {
  2646. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2647. xfs_extnum_t i; /* extent record index */
  2648. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2649. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2650. xfs_iext_add(ifp, idx, count);
  2651. for (i = idx; i < idx + count; i++, new++)
  2652. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2653. }
  2654. /*
  2655. * This is called when the amount of space required for incore file
  2656. * extents needs to be increased. The ext_diff parameter stores the
  2657. * number of new extents being added and the idx parameter contains
  2658. * the extent index where the new extents will be added. If the new
  2659. * extents are being appended, then we just need to (re)allocate and
  2660. * initialize the space. Otherwise, if the new extents are being
  2661. * inserted into the middle of the existing entries, a bit more work
  2662. * is required to make room for the new extents to be inserted. The
  2663. * caller is responsible for filling in the new extent entries upon
  2664. * return.
  2665. */
  2666. void
  2667. xfs_iext_add(
  2668. xfs_ifork_t *ifp, /* inode fork pointer */
  2669. xfs_extnum_t idx, /* index to begin adding exts */
  2670. int ext_diff) /* number of extents to add */
  2671. {
  2672. int byte_diff; /* new bytes being added */
  2673. int new_size; /* size of extents after adding */
  2674. xfs_extnum_t nextents; /* number of extents in file */
  2675. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2676. ASSERT((idx >= 0) && (idx <= nextents));
  2677. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2678. new_size = ifp->if_bytes + byte_diff;
  2679. /*
  2680. * If the new number of extents (nextents + ext_diff)
  2681. * fits inside the inode, then continue to use the inline
  2682. * extent buffer.
  2683. */
  2684. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2685. if (idx < nextents) {
  2686. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2687. &ifp->if_u2.if_inline_ext[idx],
  2688. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2689. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2690. }
  2691. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2692. ifp->if_real_bytes = 0;
  2693. }
  2694. /*
  2695. * Otherwise use a linear (direct) extent list.
  2696. * If the extents are currently inside the inode,
  2697. * xfs_iext_realloc_direct will switch us from
  2698. * inline to direct extent allocation mode.
  2699. */
  2700. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2701. xfs_iext_realloc_direct(ifp, new_size);
  2702. if (idx < nextents) {
  2703. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2704. &ifp->if_u1.if_extents[idx],
  2705. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2706. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2707. }
  2708. }
  2709. /* Indirection array */
  2710. else {
  2711. xfs_ext_irec_t *erp;
  2712. int erp_idx = 0;
  2713. int page_idx = idx;
  2714. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2715. if (ifp->if_flags & XFS_IFEXTIREC) {
  2716. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2717. } else {
  2718. xfs_iext_irec_init(ifp);
  2719. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2720. erp = ifp->if_u1.if_ext_irec;
  2721. }
  2722. /* Extents fit in target extent page */
  2723. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2724. if (page_idx < erp->er_extcount) {
  2725. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2726. &erp->er_extbuf[page_idx],
  2727. (erp->er_extcount - page_idx) *
  2728. sizeof(xfs_bmbt_rec_t));
  2729. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2730. }
  2731. erp->er_extcount += ext_diff;
  2732. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2733. }
  2734. /* Insert a new extent page */
  2735. else if (erp) {
  2736. xfs_iext_add_indirect_multi(ifp,
  2737. erp_idx, page_idx, ext_diff);
  2738. }
  2739. /*
  2740. * If extent(s) are being appended to the last page in
  2741. * the indirection array and the new extent(s) don't fit
  2742. * in the page, then erp is NULL and erp_idx is set to
  2743. * the next index needed in the indirection array.
  2744. */
  2745. else {
  2746. int count = ext_diff;
  2747. while (count) {
  2748. erp = xfs_iext_irec_new(ifp, erp_idx);
  2749. erp->er_extcount = count;
  2750. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2751. if (count) {
  2752. erp_idx++;
  2753. }
  2754. }
  2755. }
  2756. }
  2757. ifp->if_bytes = new_size;
  2758. }
  2759. /*
  2760. * This is called when incore extents are being added to the indirection
  2761. * array and the new extents do not fit in the target extent list. The
  2762. * erp_idx parameter contains the irec index for the target extent list
  2763. * in the indirection array, and the idx parameter contains the extent
  2764. * index within the list. The number of extents being added is stored
  2765. * in the count parameter.
  2766. *
  2767. * |-------| |-------|
  2768. * | | | | idx - number of extents before idx
  2769. * | idx | | count |
  2770. * | | | | count - number of extents being inserted at idx
  2771. * |-------| |-------|
  2772. * | count | | nex2 | nex2 - number of extents after idx + count
  2773. * |-------| |-------|
  2774. */
  2775. void
  2776. xfs_iext_add_indirect_multi(
  2777. xfs_ifork_t *ifp, /* inode fork pointer */
  2778. int erp_idx, /* target extent irec index */
  2779. xfs_extnum_t idx, /* index within target list */
  2780. int count) /* new extents being added */
  2781. {
  2782. int byte_diff; /* new bytes being added */
  2783. xfs_ext_irec_t *erp; /* pointer to irec entry */
  2784. xfs_extnum_t ext_diff; /* number of extents to add */
  2785. xfs_extnum_t ext_cnt; /* new extents still needed */
  2786. xfs_extnum_t nex2; /* extents after idx + count */
  2787. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  2788. int nlists; /* number of irec's (lists) */
  2789. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2790. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2791. nex2 = erp->er_extcount - idx;
  2792. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  2793. /*
  2794. * Save second part of target extent list
  2795. * (all extents past */
  2796. if (nex2) {
  2797. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2798. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  2799. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  2800. erp->er_extcount -= nex2;
  2801. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  2802. memset(&erp->er_extbuf[idx], 0, byte_diff);
  2803. }
  2804. /*
  2805. * Add the new extents to the end of the target
  2806. * list, then allocate new irec record(s) and
  2807. * extent buffer(s) as needed to store the rest
  2808. * of the new extents.
  2809. */
  2810. ext_cnt = count;
  2811. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  2812. if (ext_diff) {
  2813. erp->er_extcount += ext_diff;
  2814. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2815. ext_cnt -= ext_diff;
  2816. }
  2817. while (ext_cnt) {
  2818. erp_idx++;
  2819. erp = xfs_iext_irec_new(ifp, erp_idx);
  2820. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  2821. erp->er_extcount = ext_diff;
  2822. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2823. ext_cnt -= ext_diff;
  2824. }
  2825. /* Add nex2 extents back to indirection array */
  2826. if (nex2) {
  2827. xfs_extnum_t ext_avail;
  2828. int i;
  2829. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2830. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  2831. i = 0;
  2832. /*
  2833. * If nex2 extents fit in the current page, append
  2834. * nex2_ep after the new extents.
  2835. */
  2836. if (nex2 <= ext_avail) {
  2837. i = erp->er_extcount;
  2838. }
  2839. /*
  2840. * Otherwise, check if space is available in the
  2841. * next page.
  2842. */
  2843. else if ((erp_idx < nlists - 1) &&
  2844. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  2845. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  2846. erp_idx++;
  2847. erp++;
  2848. /* Create a hole for nex2 extents */
  2849. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  2850. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  2851. }
  2852. /*
  2853. * Final choice, create a new extent page for
  2854. * nex2 extents.
  2855. */
  2856. else {
  2857. erp_idx++;
  2858. erp = xfs_iext_irec_new(ifp, erp_idx);
  2859. }
  2860. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  2861. kmem_free(nex2_ep);
  2862. erp->er_extcount += nex2;
  2863. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  2864. }
  2865. }
  2866. /*
  2867. * This is called when the amount of space required for incore file
  2868. * extents needs to be decreased. The ext_diff parameter stores the
  2869. * number of extents to be removed and the idx parameter contains
  2870. * the extent index where the extents will be removed from.
  2871. *
  2872. * If the amount of space needed has decreased below the linear
  2873. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  2874. * extent array. Otherwise, use kmem_realloc() to adjust the
  2875. * size to what is needed.
  2876. */
  2877. void
  2878. xfs_iext_remove(
  2879. xfs_inode_t *ip, /* incore inode pointer */
  2880. xfs_extnum_t idx, /* index to begin removing exts */
  2881. int ext_diff, /* number of extents to remove */
  2882. int state) /* type of extent conversion */
  2883. {
  2884. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2885. xfs_extnum_t nextents; /* number of extents in file */
  2886. int new_size; /* size of extents after removal */
  2887. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  2888. ASSERT(ext_diff > 0);
  2889. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2890. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  2891. if (new_size == 0) {
  2892. xfs_iext_destroy(ifp);
  2893. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2894. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  2895. } else if (ifp->if_real_bytes) {
  2896. xfs_iext_remove_direct(ifp, idx, ext_diff);
  2897. } else {
  2898. xfs_iext_remove_inline(ifp, idx, ext_diff);
  2899. }
  2900. ifp->if_bytes = new_size;
  2901. }
  2902. /*
  2903. * This removes ext_diff extents from the inline buffer, beginning
  2904. * at extent index idx.
  2905. */
  2906. void
  2907. xfs_iext_remove_inline(
  2908. xfs_ifork_t *ifp, /* inode fork pointer */
  2909. xfs_extnum_t idx, /* index to begin removing exts */
  2910. int ext_diff) /* number of extents to remove */
  2911. {
  2912. int nextents; /* number of extents in file */
  2913. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2914. ASSERT(idx < XFS_INLINE_EXTS);
  2915. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2916. ASSERT(((nextents - ext_diff) > 0) &&
  2917. (nextents - ext_diff) < XFS_INLINE_EXTS);
  2918. if (idx + ext_diff < nextents) {
  2919. memmove(&ifp->if_u2.if_inline_ext[idx],
  2920. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  2921. (nextents - (idx + ext_diff)) *
  2922. sizeof(xfs_bmbt_rec_t));
  2923. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  2924. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2925. } else {
  2926. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  2927. ext_diff * sizeof(xfs_bmbt_rec_t));
  2928. }
  2929. }
  2930. /*
  2931. * This removes ext_diff extents from a linear (direct) extent list,
  2932. * beginning at extent index idx. If the extents are being removed
  2933. * from the end of the list (ie. truncate) then we just need to re-
  2934. * allocate the list to remove the extra space. Otherwise, if the
  2935. * extents are being removed from the middle of the existing extent
  2936. * entries, then we first need to move the extent records beginning
  2937. * at idx + ext_diff up in the list to overwrite the records being
  2938. * removed, then remove the extra space via kmem_realloc.
  2939. */
  2940. void
  2941. xfs_iext_remove_direct(
  2942. xfs_ifork_t *ifp, /* inode fork pointer */
  2943. xfs_extnum_t idx, /* index to begin removing exts */
  2944. int ext_diff) /* number of extents to remove */
  2945. {
  2946. xfs_extnum_t nextents; /* number of extents in file */
  2947. int new_size; /* size of extents after removal */
  2948. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2949. new_size = ifp->if_bytes -
  2950. (ext_diff * sizeof(xfs_bmbt_rec_t));
  2951. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2952. if (new_size == 0) {
  2953. xfs_iext_destroy(ifp);
  2954. return;
  2955. }
  2956. /* Move extents up in the list (if needed) */
  2957. if (idx + ext_diff < nextents) {
  2958. memmove(&ifp->if_u1.if_extents[idx],
  2959. &ifp->if_u1.if_extents[idx + ext_diff],
  2960. (nextents - (idx + ext_diff)) *
  2961. sizeof(xfs_bmbt_rec_t));
  2962. }
  2963. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  2964. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2965. /*
  2966. * Reallocate the direct extent list. If the extents
  2967. * will fit inside the inode then xfs_iext_realloc_direct
  2968. * will switch from direct to inline extent allocation
  2969. * mode for us.
  2970. */
  2971. xfs_iext_realloc_direct(ifp, new_size);
  2972. ifp->if_bytes = new_size;
  2973. }
  2974. /*
  2975. * This is called when incore extents are being removed from the
  2976. * indirection array and the extents being removed span multiple extent
  2977. * buffers. The idx parameter contains the file extent index where we
  2978. * want to begin removing extents, and the count parameter contains
  2979. * how many extents need to be removed.
  2980. *
  2981. * |-------| |-------|
  2982. * | nex1 | | | nex1 - number of extents before idx
  2983. * |-------| | count |
  2984. * | | | | count - number of extents being removed at idx
  2985. * | count | |-------|
  2986. * | | | nex2 | nex2 - number of extents after idx + count
  2987. * |-------| |-------|
  2988. */
  2989. void
  2990. xfs_iext_remove_indirect(
  2991. xfs_ifork_t *ifp, /* inode fork pointer */
  2992. xfs_extnum_t idx, /* index to begin removing extents */
  2993. int count) /* number of extents to remove */
  2994. {
  2995. xfs_ext_irec_t *erp; /* indirection array pointer */
  2996. int erp_idx = 0; /* indirection array index */
  2997. xfs_extnum_t ext_cnt; /* extents left to remove */
  2998. xfs_extnum_t ext_diff; /* extents to remove in current list */
  2999. xfs_extnum_t nex1; /* number of extents before idx */
  3000. xfs_extnum_t nex2; /* extents after idx + count */
  3001. int page_idx = idx; /* index in target extent list */
  3002. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3003. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3004. ASSERT(erp != NULL);
  3005. nex1 = page_idx;
  3006. ext_cnt = count;
  3007. while (ext_cnt) {
  3008. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3009. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3010. /*
  3011. * Check for deletion of entire list;
  3012. * xfs_iext_irec_remove() updates extent offsets.
  3013. */
  3014. if (ext_diff == erp->er_extcount) {
  3015. xfs_iext_irec_remove(ifp, erp_idx);
  3016. ext_cnt -= ext_diff;
  3017. nex1 = 0;
  3018. if (ext_cnt) {
  3019. ASSERT(erp_idx < ifp->if_real_bytes /
  3020. XFS_IEXT_BUFSZ);
  3021. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3022. nex1 = 0;
  3023. continue;
  3024. } else {
  3025. break;
  3026. }
  3027. }
  3028. /* Move extents up (if needed) */
  3029. if (nex2) {
  3030. memmove(&erp->er_extbuf[nex1],
  3031. &erp->er_extbuf[nex1 + ext_diff],
  3032. nex2 * sizeof(xfs_bmbt_rec_t));
  3033. }
  3034. /* Zero out rest of page */
  3035. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3036. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3037. /* Update remaining counters */
  3038. erp->er_extcount -= ext_diff;
  3039. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3040. ext_cnt -= ext_diff;
  3041. nex1 = 0;
  3042. erp_idx++;
  3043. erp++;
  3044. }
  3045. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3046. xfs_iext_irec_compact(ifp);
  3047. }
  3048. /*
  3049. * Create, destroy, or resize a linear (direct) block of extents.
  3050. */
  3051. void
  3052. xfs_iext_realloc_direct(
  3053. xfs_ifork_t *ifp, /* inode fork pointer */
  3054. int new_size) /* new size of extents */
  3055. {
  3056. int rnew_size; /* real new size of extents */
  3057. rnew_size = new_size;
  3058. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3059. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3060. (new_size != ifp->if_real_bytes)));
  3061. /* Free extent records */
  3062. if (new_size == 0) {
  3063. xfs_iext_destroy(ifp);
  3064. }
  3065. /* Resize direct extent list and zero any new bytes */
  3066. else if (ifp->if_real_bytes) {
  3067. /* Check if extents will fit inside the inode */
  3068. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3069. xfs_iext_direct_to_inline(ifp, new_size /
  3070. (uint)sizeof(xfs_bmbt_rec_t));
  3071. ifp->if_bytes = new_size;
  3072. return;
  3073. }
  3074. if (!is_power_of_2(new_size)){
  3075. rnew_size = roundup_pow_of_two(new_size);
  3076. }
  3077. if (rnew_size != ifp->if_real_bytes) {
  3078. ifp->if_u1.if_extents =
  3079. kmem_realloc(ifp->if_u1.if_extents,
  3080. rnew_size,
  3081. ifp->if_real_bytes, KM_NOFS);
  3082. }
  3083. if (rnew_size > ifp->if_real_bytes) {
  3084. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3085. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3086. rnew_size - ifp->if_real_bytes);
  3087. }
  3088. }
  3089. /*
  3090. * Switch from the inline extent buffer to a direct
  3091. * extent list. Be sure to include the inline extent
  3092. * bytes in new_size.
  3093. */
  3094. else {
  3095. new_size += ifp->if_bytes;
  3096. if (!is_power_of_2(new_size)) {
  3097. rnew_size = roundup_pow_of_two(new_size);
  3098. }
  3099. xfs_iext_inline_to_direct(ifp, rnew_size);
  3100. }
  3101. ifp->if_real_bytes = rnew_size;
  3102. ifp->if_bytes = new_size;
  3103. }
  3104. /*
  3105. * Switch from linear (direct) extent records to inline buffer.
  3106. */
  3107. void
  3108. xfs_iext_direct_to_inline(
  3109. xfs_ifork_t *ifp, /* inode fork pointer */
  3110. xfs_extnum_t nextents) /* number of extents in file */
  3111. {
  3112. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3113. ASSERT(nextents <= XFS_INLINE_EXTS);
  3114. /*
  3115. * The inline buffer was zeroed when we switched
  3116. * from inline to direct extent allocation mode,
  3117. * so we don't need to clear it here.
  3118. */
  3119. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3120. nextents * sizeof(xfs_bmbt_rec_t));
  3121. kmem_free(ifp->if_u1.if_extents);
  3122. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3123. ifp->if_real_bytes = 0;
  3124. }
  3125. /*
  3126. * Switch from inline buffer to linear (direct) extent records.
  3127. * new_size should already be rounded up to the next power of 2
  3128. * by the caller (when appropriate), so use new_size as it is.
  3129. * However, since new_size may be rounded up, we can't update
  3130. * if_bytes here. It is the caller's responsibility to update
  3131. * if_bytes upon return.
  3132. */
  3133. void
  3134. xfs_iext_inline_to_direct(
  3135. xfs_ifork_t *ifp, /* inode fork pointer */
  3136. int new_size) /* number of extents in file */
  3137. {
  3138. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3139. memset(ifp->if_u1.if_extents, 0, new_size);
  3140. if (ifp->if_bytes) {
  3141. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3142. ifp->if_bytes);
  3143. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3144. sizeof(xfs_bmbt_rec_t));
  3145. }
  3146. ifp->if_real_bytes = new_size;
  3147. }
  3148. /*
  3149. * Resize an extent indirection array to new_size bytes.
  3150. */
  3151. STATIC void
  3152. xfs_iext_realloc_indirect(
  3153. xfs_ifork_t *ifp, /* inode fork pointer */
  3154. int new_size) /* new indirection array size */
  3155. {
  3156. int nlists; /* number of irec's (ex lists) */
  3157. int size; /* current indirection array size */
  3158. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3159. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3160. size = nlists * sizeof(xfs_ext_irec_t);
  3161. ASSERT(ifp->if_real_bytes);
  3162. ASSERT((new_size >= 0) && (new_size != size));
  3163. if (new_size == 0) {
  3164. xfs_iext_destroy(ifp);
  3165. } else {
  3166. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3167. kmem_realloc(ifp->if_u1.if_ext_irec,
  3168. new_size, size, KM_NOFS);
  3169. }
  3170. }
  3171. /*
  3172. * Switch from indirection array to linear (direct) extent allocations.
  3173. */
  3174. STATIC void
  3175. xfs_iext_indirect_to_direct(
  3176. xfs_ifork_t *ifp) /* inode fork pointer */
  3177. {
  3178. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3179. xfs_extnum_t nextents; /* number of extents in file */
  3180. int size; /* size of file extents */
  3181. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3182. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3183. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3184. size = nextents * sizeof(xfs_bmbt_rec_t);
  3185. xfs_iext_irec_compact_pages(ifp);
  3186. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3187. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3188. kmem_free(ifp->if_u1.if_ext_irec);
  3189. ifp->if_flags &= ~XFS_IFEXTIREC;
  3190. ifp->if_u1.if_extents = ep;
  3191. ifp->if_bytes = size;
  3192. if (nextents < XFS_LINEAR_EXTS) {
  3193. xfs_iext_realloc_direct(ifp, size);
  3194. }
  3195. }
  3196. /*
  3197. * Free incore file extents.
  3198. */
  3199. void
  3200. xfs_iext_destroy(
  3201. xfs_ifork_t *ifp) /* inode fork pointer */
  3202. {
  3203. if (ifp->if_flags & XFS_IFEXTIREC) {
  3204. int erp_idx;
  3205. int nlists;
  3206. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3207. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3208. xfs_iext_irec_remove(ifp, erp_idx);
  3209. }
  3210. ifp->if_flags &= ~XFS_IFEXTIREC;
  3211. } else if (ifp->if_real_bytes) {
  3212. kmem_free(ifp->if_u1.if_extents);
  3213. } else if (ifp->if_bytes) {
  3214. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3215. sizeof(xfs_bmbt_rec_t));
  3216. }
  3217. ifp->if_u1.if_extents = NULL;
  3218. ifp->if_real_bytes = 0;
  3219. ifp->if_bytes = 0;
  3220. }
  3221. /*
  3222. * Return a pointer to the extent record for file system block bno.
  3223. */
  3224. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3225. xfs_iext_bno_to_ext(
  3226. xfs_ifork_t *ifp, /* inode fork pointer */
  3227. xfs_fileoff_t bno, /* block number to search for */
  3228. xfs_extnum_t *idxp) /* index of target extent */
  3229. {
  3230. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3231. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3232. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3233. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3234. int high; /* upper boundary in search */
  3235. xfs_extnum_t idx = 0; /* index of target extent */
  3236. int low; /* lower boundary in search */
  3237. xfs_extnum_t nextents; /* number of file extents */
  3238. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3239. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3240. if (nextents == 0) {
  3241. *idxp = 0;
  3242. return NULL;
  3243. }
  3244. low = 0;
  3245. if (ifp->if_flags & XFS_IFEXTIREC) {
  3246. /* Find target extent list */
  3247. int erp_idx = 0;
  3248. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3249. base = erp->er_extbuf;
  3250. high = erp->er_extcount - 1;
  3251. } else {
  3252. base = ifp->if_u1.if_extents;
  3253. high = nextents - 1;
  3254. }
  3255. /* Binary search extent records */
  3256. while (low <= high) {
  3257. idx = (low + high) >> 1;
  3258. ep = base + idx;
  3259. startoff = xfs_bmbt_get_startoff(ep);
  3260. blockcount = xfs_bmbt_get_blockcount(ep);
  3261. if (bno < startoff) {
  3262. high = idx - 1;
  3263. } else if (bno >= startoff + blockcount) {
  3264. low = idx + 1;
  3265. } else {
  3266. /* Convert back to file-based extent index */
  3267. if (ifp->if_flags & XFS_IFEXTIREC) {
  3268. idx += erp->er_extoff;
  3269. }
  3270. *idxp = idx;
  3271. return ep;
  3272. }
  3273. }
  3274. /* Convert back to file-based extent index */
  3275. if (ifp->if_flags & XFS_IFEXTIREC) {
  3276. idx += erp->er_extoff;
  3277. }
  3278. if (bno >= startoff + blockcount) {
  3279. if (++idx == nextents) {
  3280. ep = NULL;
  3281. } else {
  3282. ep = xfs_iext_get_ext(ifp, idx);
  3283. }
  3284. }
  3285. *idxp = idx;
  3286. return ep;
  3287. }
  3288. /*
  3289. * Return a pointer to the indirection array entry containing the
  3290. * extent record for filesystem block bno. Store the index of the
  3291. * target irec in *erp_idxp.
  3292. */
  3293. xfs_ext_irec_t * /* pointer to found extent record */
  3294. xfs_iext_bno_to_irec(
  3295. xfs_ifork_t *ifp, /* inode fork pointer */
  3296. xfs_fileoff_t bno, /* block number to search for */
  3297. int *erp_idxp) /* irec index of target ext list */
  3298. {
  3299. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3300. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3301. int erp_idx; /* indirection array index */
  3302. int nlists; /* number of extent irec's (lists) */
  3303. int high; /* binary search upper limit */
  3304. int low; /* binary search lower limit */
  3305. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3306. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3307. erp_idx = 0;
  3308. low = 0;
  3309. high = nlists - 1;
  3310. while (low <= high) {
  3311. erp_idx = (low + high) >> 1;
  3312. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3313. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3314. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3315. high = erp_idx - 1;
  3316. } else if (erp_next && bno >=
  3317. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3318. low = erp_idx + 1;
  3319. } else {
  3320. break;
  3321. }
  3322. }
  3323. *erp_idxp = erp_idx;
  3324. return erp;
  3325. }
  3326. /*
  3327. * Return a pointer to the indirection array entry containing the
  3328. * extent record at file extent index *idxp. Store the index of the
  3329. * target irec in *erp_idxp and store the page index of the target
  3330. * extent record in *idxp.
  3331. */
  3332. xfs_ext_irec_t *
  3333. xfs_iext_idx_to_irec(
  3334. xfs_ifork_t *ifp, /* inode fork pointer */
  3335. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3336. int *erp_idxp, /* pointer to target irec */
  3337. int realloc) /* new bytes were just added */
  3338. {
  3339. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3340. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3341. int erp_idx; /* indirection array index */
  3342. int nlists; /* number of irec's (ex lists) */
  3343. int high; /* binary search upper limit */
  3344. int low; /* binary search lower limit */
  3345. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3346. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3347. ASSERT(page_idx >= 0);
  3348. ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  3349. ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
  3350. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3351. erp_idx = 0;
  3352. low = 0;
  3353. high = nlists - 1;
  3354. /* Binary search extent irec's */
  3355. while (low <= high) {
  3356. erp_idx = (low + high) >> 1;
  3357. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3358. prev = erp_idx > 0 ? erp - 1 : NULL;
  3359. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3360. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3361. high = erp_idx - 1;
  3362. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3363. (page_idx == erp->er_extoff + erp->er_extcount &&
  3364. !realloc)) {
  3365. low = erp_idx + 1;
  3366. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3367. erp->er_extcount == XFS_LINEAR_EXTS) {
  3368. ASSERT(realloc);
  3369. page_idx = 0;
  3370. erp_idx++;
  3371. erp = erp_idx < nlists ? erp + 1 : NULL;
  3372. break;
  3373. } else {
  3374. page_idx -= erp->er_extoff;
  3375. break;
  3376. }
  3377. }
  3378. *idxp = page_idx;
  3379. *erp_idxp = erp_idx;
  3380. return(erp);
  3381. }
  3382. /*
  3383. * Allocate and initialize an indirection array once the space needed
  3384. * for incore extents increases above XFS_IEXT_BUFSZ.
  3385. */
  3386. void
  3387. xfs_iext_irec_init(
  3388. xfs_ifork_t *ifp) /* inode fork pointer */
  3389. {
  3390. xfs_ext_irec_t *erp; /* indirection array pointer */
  3391. xfs_extnum_t nextents; /* number of extents in file */
  3392. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3393. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3394. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3395. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3396. if (nextents == 0) {
  3397. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3398. } else if (!ifp->if_real_bytes) {
  3399. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3400. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3401. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3402. }
  3403. erp->er_extbuf = ifp->if_u1.if_extents;
  3404. erp->er_extcount = nextents;
  3405. erp->er_extoff = 0;
  3406. ifp->if_flags |= XFS_IFEXTIREC;
  3407. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3408. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3409. ifp->if_u1.if_ext_irec = erp;
  3410. return;
  3411. }
  3412. /*
  3413. * Allocate and initialize a new entry in the indirection array.
  3414. */
  3415. xfs_ext_irec_t *
  3416. xfs_iext_irec_new(
  3417. xfs_ifork_t *ifp, /* inode fork pointer */
  3418. int erp_idx) /* index for new irec */
  3419. {
  3420. xfs_ext_irec_t *erp; /* indirection array pointer */
  3421. int i; /* loop counter */
  3422. int nlists; /* number of irec's (ex lists) */
  3423. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3424. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3425. /* Resize indirection array */
  3426. xfs_iext_realloc_indirect(ifp, ++nlists *
  3427. sizeof(xfs_ext_irec_t));
  3428. /*
  3429. * Move records down in the array so the
  3430. * new page can use erp_idx.
  3431. */
  3432. erp = ifp->if_u1.if_ext_irec;
  3433. for (i = nlists - 1; i > erp_idx; i--) {
  3434. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3435. }
  3436. ASSERT(i == erp_idx);
  3437. /* Initialize new extent record */
  3438. erp = ifp->if_u1.if_ext_irec;
  3439. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3440. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3441. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3442. erp[erp_idx].er_extcount = 0;
  3443. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3444. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3445. return (&erp[erp_idx]);
  3446. }
  3447. /*
  3448. * Remove a record from the indirection array.
  3449. */
  3450. void
  3451. xfs_iext_irec_remove(
  3452. xfs_ifork_t *ifp, /* inode fork pointer */
  3453. int erp_idx) /* irec index to remove */
  3454. {
  3455. xfs_ext_irec_t *erp; /* indirection array pointer */
  3456. int i; /* loop counter */
  3457. int nlists; /* number of irec's (ex lists) */
  3458. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3459. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3460. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3461. if (erp->er_extbuf) {
  3462. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3463. -erp->er_extcount);
  3464. kmem_free(erp->er_extbuf);
  3465. }
  3466. /* Compact extent records */
  3467. erp = ifp->if_u1.if_ext_irec;
  3468. for (i = erp_idx; i < nlists - 1; i++) {
  3469. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3470. }
  3471. /*
  3472. * Manually free the last extent record from the indirection
  3473. * array. A call to xfs_iext_realloc_indirect() with a size
  3474. * of zero would result in a call to xfs_iext_destroy() which
  3475. * would in turn call this function again, creating a nasty
  3476. * infinite loop.
  3477. */
  3478. if (--nlists) {
  3479. xfs_iext_realloc_indirect(ifp,
  3480. nlists * sizeof(xfs_ext_irec_t));
  3481. } else {
  3482. kmem_free(ifp->if_u1.if_ext_irec);
  3483. }
  3484. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3485. }
  3486. /*
  3487. * This is called to clean up large amounts of unused memory allocated
  3488. * by the indirection array. Before compacting anything though, verify
  3489. * that the indirection array is still needed and switch back to the
  3490. * linear extent list (or even the inline buffer) if possible. The
  3491. * compaction policy is as follows:
  3492. *
  3493. * Full Compaction: Extents fit into a single page (or inline buffer)
  3494. * Partial Compaction: Extents occupy less than 50% of allocated space
  3495. * No Compaction: Extents occupy at least 50% of allocated space
  3496. */
  3497. void
  3498. xfs_iext_irec_compact(
  3499. xfs_ifork_t *ifp) /* inode fork pointer */
  3500. {
  3501. xfs_extnum_t nextents; /* number of extents in file */
  3502. int nlists; /* number of irec's (ex lists) */
  3503. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3504. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3505. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3506. if (nextents == 0) {
  3507. xfs_iext_destroy(ifp);
  3508. } else if (nextents <= XFS_INLINE_EXTS) {
  3509. xfs_iext_indirect_to_direct(ifp);
  3510. xfs_iext_direct_to_inline(ifp, nextents);
  3511. } else if (nextents <= XFS_LINEAR_EXTS) {
  3512. xfs_iext_indirect_to_direct(ifp);
  3513. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3514. xfs_iext_irec_compact_pages(ifp);
  3515. }
  3516. }
  3517. /*
  3518. * Combine extents from neighboring extent pages.
  3519. */
  3520. void
  3521. xfs_iext_irec_compact_pages(
  3522. xfs_ifork_t *ifp) /* inode fork pointer */
  3523. {
  3524. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3525. int erp_idx = 0; /* indirection array index */
  3526. int nlists; /* number of irec's (ex lists) */
  3527. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3528. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3529. while (erp_idx < nlists - 1) {
  3530. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3531. erp_next = erp + 1;
  3532. if (erp_next->er_extcount <=
  3533. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3534. memcpy(&erp->er_extbuf[erp->er_extcount],
  3535. erp_next->er_extbuf, erp_next->er_extcount *
  3536. sizeof(xfs_bmbt_rec_t));
  3537. erp->er_extcount += erp_next->er_extcount;
  3538. /*
  3539. * Free page before removing extent record
  3540. * so er_extoffs don't get modified in
  3541. * xfs_iext_irec_remove.
  3542. */
  3543. kmem_free(erp_next->er_extbuf);
  3544. erp_next->er_extbuf = NULL;
  3545. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3546. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3547. } else {
  3548. erp_idx++;
  3549. }
  3550. }
  3551. }
  3552. /*
  3553. * This is called to update the er_extoff field in the indirection
  3554. * array when extents have been added or removed from one of the
  3555. * extent lists. erp_idx contains the irec index to begin updating
  3556. * at and ext_diff contains the number of extents that were added
  3557. * or removed.
  3558. */
  3559. void
  3560. xfs_iext_irec_update_extoffs(
  3561. xfs_ifork_t *ifp, /* inode fork pointer */
  3562. int erp_idx, /* irec index to update */
  3563. int ext_diff) /* number of new extents */
  3564. {
  3565. int i; /* loop counter */
  3566. int nlists; /* number of irec's (ex lists */
  3567. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3568. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3569. for (i = erp_idx; i < nlists; i++) {
  3570. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3571. }
  3572. }