hw.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2013 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../regd.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../pci.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "dm.h"
  40. #include "fw.h"
  41. #include "led.h"
  42. #include "hw.h"
  43. #include "pwrseqcmd.h"
  44. #include "pwrseq.h"
  45. #define LLT_CONFIG 5
  46. static void _rtl88ee_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  47. u8 set_bits, u8 clear_bits)
  48. {
  49. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  50. struct rtl_priv *rtlpriv = rtl_priv(hw);
  51. rtlpci->reg_bcn_ctrl_val |= set_bits;
  52. rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
  53. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
  54. }
  55. static void _rtl88ee_stop_tx_beacon(struct ieee80211_hw *hw)
  56. {
  57. struct rtl_priv *rtlpriv = rtl_priv(hw);
  58. u8 tmp1byte;
  59. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  60. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
  61. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  62. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  63. tmp1byte &= ~(BIT(0));
  64. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  65. }
  66. static void _rtl88ee_resume_tx_beacon(struct ieee80211_hw *hw)
  67. {
  68. struct rtl_priv *rtlpriv = rtl_priv(hw);
  69. u8 tmp1byte;
  70. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  71. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
  72. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  73. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  74. tmp1byte |= BIT(0);
  75. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  76. }
  77. static void _rtl88ee_enable_bcn_sub_func(struct ieee80211_hw *hw)
  78. {
  79. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(1));
  80. }
  81. static void _rtl88ee_return_beacon_queue_skb(struct ieee80211_hw *hw)
  82. {
  83. struct rtl_priv *rtlpriv = rtl_priv(hw);
  84. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  85. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
  86. while (skb_queue_len(&ring->queue)) {
  87. struct rtl_tx_desc *entry = &ring->desc[ring->idx];
  88. struct sk_buff *skb = __skb_dequeue(&ring->queue);
  89. pci_unmap_single(rtlpci->pdev,
  90. rtlpriv->cfg->ops->get_desc(
  91. (u8 *)entry, true, HW_DESC_TXBUFF_ADDR),
  92. skb->len, PCI_DMA_TODEVICE);
  93. kfree_skb(skb);
  94. ring->idx = (ring->idx + 1) % ring->entries;
  95. }
  96. }
  97. static void _rtl88ee_disable_bcn_sub_func(struct ieee80211_hw *hw)
  98. {
  99. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(1), 0);
  100. }
  101. static void _rtl88ee_set_fw_clock_on(struct ieee80211_hw *hw,
  102. u8 rpwm_val, bool need_turn_off_ckk)
  103. {
  104. struct rtl_priv *rtlpriv = rtl_priv(hw);
  105. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  106. bool support_remote_wake_up;
  107. u32 count = 0, isr_regaddr, content;
  108. bool schedule_timer = need_turn_off_ckk;
  109. rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN,
  110. (u8 *)(&support_remote_wake_up));
  111. if (!rtlhal->fw_ready)
  112. return;
  113. if (!rtlpriv->psc.fw_current_inpsmode)
  114. return;
  115. while (1) {
  116. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  117. if (rtlhal->fw_clk_change_in_progress) {
  118. while (rtlhal->fw_clk_change_in_progress) {
  119. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  120. udelay(100);
  121. if (++count > 1000)
  122. return;
  123. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  124. }
  125. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  126. } else {
  127. rtlhal->fw_clk_change_in_progress = false;
  128. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  129. }
  130. }
  131. if (IS_IN_LOW_POWER_STATE_88E(rtlhal->fw_ps_state)) {
  132. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM,
  133. (u8 *)(&rpwm_val));
  134. if (FW_PS_IS_ACK(rpwm_val)) {
  135. isr_regaddr = REG_HISR;
  136. content = rtl_read_dword(rtlpriv, isr_regaddr);
  137. while (!(content & IMR_CPWM) && (count < 500)) {
  138. udelay(50);
  139. count++;
  140. content = rtl_read_dword(rtlpriv, isr_regaddr);
  141. }
  142. if (content & IMR_CPWM) {
  143. rtl_write_word(rtlpriv, isr_regaddr, 0x0100);
  144. rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_88E;
  145. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  146. "Receive CPWM INT!!! Set pHalData->FwPSState = %X\n",
  147. rtlhal->fw_ps_state);
  148. }
  149. }
  150. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  151. rtlhal->fw_clk_change_in_progress = false;
  152. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  153. if (schedule_timer) {
  154. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  155. jiffies + MSECS(10));
  156. }
  157. } else {
  158. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  159. rtlhal->fw_clk_change_in_progress = false;
  160. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  161. }
  162. }
  163. static void _rtl88ee_set_fw_clock_off(struct ieee80211_hw *hw,
  164. u8 rpwm_val)
  165. {
  166. struct rtl_priv *rtlpriv = rtl_priv(hw);
  167. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  168. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  169. struct rtl8192_tx_ring *ring;
  170. enum rf_pwrstate rtstate;
  171. bool schedule_timer = false;
  172. u8 queue;
  173. if (!rtlhal->fw_ready)
  174. return;
  175. if (!rtlpriv->psc.fw_current_inpsmode)
  176. return;
  177. if (!rtlhal->allow_sw_to_change_hwclc)
  178. return;
  179. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate));
  180. if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF)
  181. return;
  182. for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) {
  183. ring = &rtlpci->tx_ring[queue];
  184. if (skb_queue_len(&ring->queue)) {
  185. schedule_timer = true;
  186. break;
  187. }
  188. }
  189. if (schedule_timer) {
  190. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  191. jiffies + MSECS(10));
  192. return;
  193. }
  194. if (FW_PS_STATE(rtlhal->fw_ps_state) !=
  195. FW_PS_STATE_RF_OFF_LOW_PWR_88E) {
  196. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  197. if (!rtlhal->fw_clk_change_in_progress) {
  198. rtlhal->fw_clk_change_in_progress = true;
  199. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  200. rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val);
  201. rtl_write_word(rtlpriv, REG_HISR, 0x0100);
  202. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
  203. (u8 *)(&rpwm_val));
  204. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  205. rtlhal->fw_clk_change_in_progress = false;
  206. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  207. } else {
  208. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  209. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  210. jiffies + MSECS(10));
  211. }
  212. }
  213. }
  214. static void _rtl88ee_set_fw_ps_rf_on(struct ieee80211_hw *hw)
  215. {
  216. u8 rpwm_val = 0;
  217. rpwm_val |= (FW_PS_STATE_RF_OFF_88E | FW_PS_ACK);
  218. _rtl88ee_set_fw_clock_on(hw, rpwm_val, true);
  219. }
  220. static void _rtl88ee_set_fw_ps_rf_off_low_power(struct ieee80211_hw *hw)
  221. {
  222. u8 rpwm_val = 0;
  223. rpwm_val |= FW_PS_STATE_RF_OFF_LOW_PWR_88E;
  224. _rtl88ee_set_fw_clock_off(hw, rpwm_val);
  225. }
  226. void rtl88ee_fw_clk_off_timer_callback(unsigned long data)
  227. {
  228. struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
  229. _rtl88ee_set_fw_ps_rf_off_low_power(hw);
  230. }
  231. static void _rtl88ee_fwlps_leave(struct ieee80211_hw *hw)
  232. {
  233. struct rtl_priv *rtlpriv = rtl_priv(hw);
  234. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  235. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  236. bool fw_current_inps = false;
  237. u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE;
  238. if (ppsc->low_power_enable) {
  239. rpwm_val = (FW_PS_STATE_ALL_ON_88E|FW_PS_ACK);/* RF on */
  240. _rtl88ee_set_fw_clock_on(hw, rpwm_val, false);
  241. rtlhal->allow_sw_to_change_hwclc = false;
  242. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  243. (u8 *)(&fw_pwrmode));
  244. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  245. (u8 *)(&fw_current_inps));
  246. } else {
  247. rpwm_val = FW_PS_STATE_ALL_ON_88E; /* RF on */
  248. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
  249. (u8 *)(&rpwm_val));
  250. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  251. (u8 *)(&fw_pwrmode));
  252. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  253. (u8 *)(&fw_current_inps));
  254. }
  255. }
  256. static void _rtl88ee_fwlps_enter(struct ieee80211_hw *hw)
  257. {
  258. struct rtl_priv *rtlpriv = rtl_priv(hw);
  259. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  260. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  261. bool fw_current_inps = true;
  262. u8 rpwm_val;
  263. if (ppsc->low_power_enable) {
  264. rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR_88E; /* RF off */
  265. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  266. (u8 *)(&fw_current_inps));
  267. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  268. (u8 *)(&ppsc->fwctrl_psmode));
  269. rtlhal->allow_sw_to_change_hwclc = true;
  270. _rtl88ee_set_fw_clock_off(hw, rpwm_val);
  271. } else {
  272. rpwm_val = FW_PS_STATE_RF_OFF_88E; /* RF off */
  273. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  274. (u8 *)(&fw_current_inps));
  275. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  276. (u8 *)(&ppsc->fwctrl_psmode));
  277. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
  278. (u8 *)(&rpwm_val));
  279. }
  280. }
  281. void rtl88ee_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  282. {
  283. struct rtl_priv *rtlpriv = rtl_priv(hw);
  284. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  285. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  286. switch (variable) {
  287. case HW_VAR_RCR:
  288. *((u32 *)(val)) = rtlpci->receive_config;
  289. break;
  290. case HW_VAR_RF_STATE:
  291. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  292. break;
  293. case HW_VAR_FWLPS_RF_ON:{
  294. enum rf_pwrstate rfstate;
  295. u32 val_rcr;
  296. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
  297. (u8 *)(&rfstate));
  298. if (rfstate == ERFOFF) {
  299. *((bool *)(val)) = true;
  300. } else {
  301. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  302. val_rcr &= 0x00070000;
  303. if (val_rcr)
  304. *((bool *)(val)) = false;
  305. else
  306. *((bool *)(val)) = true;
  307. }
  308. break;
  309. }
  310. case HW_VAR_FW_PSMODE_STATUS:
  311. *((bool *)(val)) = ppsc->fw_current_inpsmode;
  312. break;
  313. case HW_VAR_CORRECT_TSF:{
  314. u64 tsf;
  315. u32 *ptsf_low = (u32 *)&tsf;
  316. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  317. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  318. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  319. *((u64 *)(val)) = tsf;
  320. break; }
  321. default:
  322. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  323. "switch case not process %x\n", variable);
  324. break;
  325. }
  326. }
  327. void rtl88ee_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  328. {
  329. struct rtl_priv *rtlpriv = rtl_priv(hw);
  330. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  331. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  332. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  333. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  334. u8 idx;
  335. switch (variable) {
  336. case HW_VAR_ETHER_ADDR:
  337. for (idx = 0; idx < ETH_ALEN; idx++)
  338. rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]);
  339. break;
  340. case HW_VAR_BASIC_RATE:{
  341. u16 rate_cfg = ((u16 *)val)[0];
  342. u8 rate_index = 0;
  343. rate_cfg = rate_cfg & 0x15f;
  344. rate_cfg |= 0x01;
  345. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  346. rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff);
  347. while (rate_cfg > 0x1) {
  348. rate_cfg = (rate_cfg >> 1);
  349. rate_index++;
  350. }
  351. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index);
  352. break; }
  353. case HW_VAR_BSSID:
  354. for (idx = 0; idx < ETH_ALEN; idx++)
  355. rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]);
  356. break;
  357. case HW_VAR_SIFS:
  358. rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
  359. rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
  360. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  361. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  362. if (!mac->ht_enable)
  363. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e);
  364. else
  365. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  366. *((u16 *)val));
  367. break;
  368. case HW_VAR_SLOT_TIME:{
  369. u8 e_aci;
  370. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  371. "HW_VAR_SLOT_TIME %x\n", val[0]);
  372. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  373. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  374. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM,
  375. (u8 *)(&e_aci));
  376. }
  377. break; }
  378. case HW_VAR_ACK_PREAMBLE:{
  379. u8 reg_tmp;
  380. u8 short_preamble = (bool) (*(u8 *)val);
  381. reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL+2);
  382. if (short_preamble) {
  383. reg_tmp |= 0x02;
  384. rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
  385. } else {
  386. reg_tmp |= 0xFD;
  387. rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
  388. }
  389. break; }
  390. case HW_VAR_WPA_CONFIG:
  391. rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val));
  392. break;
  393. case HW_VAR_AMPDU_MIN_SPACE:{
  394. u8 min_spacing_to_set;
  395. u8 sec_min_space;
  396. min_spacing_to_set = *((u8 *)val);
  397. if (min_spacing_to_set <= 7) {
  398. sec_min_space = 0;
  399. if (min_spacing_to_set < sec_min_space)
  400. min_spacing_to_set = sec_min_space;
  401. mac->min_space_cfg = ((mac->min_space_cfg &
  402. 0xf8) | min_spacing_to_set);
  403. *val = min_spacing_to_set;
  404. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  405. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  406. mac->min_space_cfg);
  407. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  408. mac->min_space_cfg);
  409. }
  410. break; }
  411. case HW_VAR_SHORTGI_DENSITY:{
  412. u8 density_to_set;
  413. density_to_set = *((u8 *)val);
  414. mac->min_space_cfg |= (density_to_set << 3);
  415. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  416. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  417. mac->min_space_cfg);
  418. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  419. mac->min_space_cfg);
  420. break; }
  421. case HW_VAR_AMPDU_FACTOR:{
  422. u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 };
  423. u8 factor;
  424. u8 *reg = NULL;
  425. u8 id = 0;
  426. reg = regtoset_normal;
  427. factor = *((u8 *)val);
  428. if (factor <= 3) {
  429. factor = (1 << (factor + 2));
  430. if (factor > 0xf)
  431. factor = 0xf;
  432. for (id = 0; id < 4; id++) {
  433. if ((reg[id] & 0xf0) > (factor << 4))
  434. reg[id] = (reg[id] & 0x0f) |
  435. (factor << 4);
  436. if ((reg[id] & 0x0f) > factor)
  437. reg[id] = (reg[id] & 0xf0) | (factor);
  438. rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + id),
  439. reg[id]);
  440. }
  441. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  442. "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor);
  443. }
  444. break; }
  445. case HW_VAR_AC_PARAM:{
  446. u8 e_aci = *((u8 *)val);
  447. rtl88e_dm_init_edca_turbo(hw);
  448. if (rtlpci->acm_method != eAcmWay2_SW)
  449. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
  450. (u8 *)(&e_aci));
  451. break; }
  452. case HW_VAR_ACM_CTRL:{
  453. u8 e_aci = *((u8 *)val);
  454. union aci_aifsn *p_aci_aifsn =
  455. (union aci_aifsn *)(&(mac->ac[0].aifs));
  456. u8 acm = p_aci_aifsn->f.acm;
  457. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  458. acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
  459. if (acm) {
  460. switch (e_aci) {
  461. case AC0_BE:
  462. acm_ctrl |= ACMHW_BEQEN;
  463. break;
  464. case AC2_VI:
  465. acm_ctrl |= ACMHW_VIQEN;
  466. break;
  467. case AC3_VO:
  468. acm_ctrl |= ACMHW_VOQEN;
  469. break;
  470. default:
  471. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  472. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  473. acm);
  474. break;
  475. }
  476. } else {
  477. switch (e_aci) {
  478. case AC0_BE:
  479. acm_ctrl &= (~ACMHW_BEQEN);
  480. break;
  481. case AC2_VI:
  482. acm_ctrl &= (~ACMHW_VIQEN);
  483. break;
  484. case AC3_VO:
  485. acm_ctrl &= (~ACMHW_BEQEN);
  486. break;
  487. default:
  488. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  489. "switch case not process\n");
  490. break;
  491. }
  492. }
  493. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  494. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
  495. acm_ctrl);
  496. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  497. break; }
  498. case HW_VAR_RCR:
  499. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]);
  500. rtlpci->receive_config = ((u32 *)(val))[0];
  501. break;
  502. case HW_VAR_RETRY_LIMIT:{
  503. u8 retry_limit = ((u8 *)(val))[0];
  504. rtl_write_word(rtlpriv, REG_RL,
  505. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  506. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  507. break; }
  508. case HW_VAR_DUAL_TSF_RST:
  509. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  510. break;
  511. case HW_VAR_EFUSE_BYTES:
  512. rtlefuse->efuse_usedbytes = *((u16 *)val);
  513. break;
  514. case HW_VAR_EFUSE_USAGE:
  515. rtlefuse->efuse_usedpercentage = *((u8 *)val);
  516. break;
  517. case HW_VAR_IO_CMD:
  518. rtl88e_phy_set_io_cmd(hw, (*(enum io_type *)val));
  519. break;
  520. case HW_VAR_SET_RPWM:{
  521. u8 rpwm_val;
  522. rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
  523. udelay(1);
  524. if (rpwm_val & BIT(7)) {
  525. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
  526. (*(u8 *)val));
  527. } else {
  528. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
  529. ((*(u8 *)val) | BIT(7)));
  530. }
  531. break; }
  532. case HW_VAR_H2C_FW_PWRMODE:
  533. rtl88e_set_fw_pwrmode_cmd(hw, (*(u8 *)val));
  534. break;
  535. case HW_VAR_FW_PSMODE_STATUS:
  536. ppsc->fw_current_inpsmode = *((bool *)val);
  537. break;
  538. case HW_VAR_RESUME_CLK_ON:
  539. _rtl88ee_set_fw_ps_rf_on(hw);
  540. break;
  541. case HW_VAR_FW_LPS_ACTION:{
  542. bool enter_fwlps = *((bool *)val);
  543. if (enter_fwlps)
  544. _rtl88ee_fwlps_enter(hw);
  545. else
  546. _rtl88ee_fwlps_leave(hw);
  547. break; }
  548. case HW_VAR_H2C_FW_JOINBSSRPT:{
  549. u8 mstatus = (*(u8 *)val);
  550. u8 tmp, tmp_reg422, uval;
  551. u8 count = 0, dlbcn_count = 0;
  552. bool recover = false;
  553. if (mstatus == RT_MEDIA_CONNECT) {
  554. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL);
  555. tmp = rtl_read_byte(rtlpriv, REG_CR + 1);
  556. rtl_write_byte(rtlpriv, REG_CR + 1, (tmp | BIT(0)));
  557. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
  558. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
  559. tmp_reg422 = rtl_read_byte(rtlpriv,
  560. REG_FWHW_TXQ_CTRL + 2);
  561. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  562. tmp_reg422 & (~BIT(6)));
  563. if (tmp_reg422 & BIT(6))
  564. recover = true;
  565. do {
  566. uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2);
  567. rtl_write_byte(rtlpriv, REG_TDECTRL+2,
  568. (uval | BIT(0)));
  569. _rtl88ee_return_beacon_queue_skb(hw);
  570. rtl88e_set_fw_rsvdpagepkt(hw, 0);
  571. uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2);
  572. count = 0;
  573. while (!(uval & BIT(0)) && count < 20) {
  574. count++;
  575. udelay(10);
  576. uval = rtl_read_byte(rtlpriv,
  577. REG_TDECTRL+2);
  578. }
  579. dlbcn_count++;
  580. } while (!(uval & BIT(0)) && dlbcn_count < 5);
  581. if (uval & BIT(0))
  582. rtl_write_byte(rtlpriv, REG_TDECTRL+2, BIT(0));
  583. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
  584. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
  585. if (recover) {
  586. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  587. tmp_reg422);
  588. }
  589. rtl_write_byte(rtlpriv, REG_CR + 1, (tmp & ~(BIT(0))));
  590. }
  591. rtl88e_set_fw_joinbss_report_cmd(hw, (*(u8 *)val));
  592. break; }
  593. case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
  594. rtl88e_set_p2p_ps_offload_cmd(hw, (*(u8 *)val));
  595. break;
  596. case HW_VAR_AID:{
  597. u16 u2btmp;
  598. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  599. u2btmp &= 0xC000;
  600. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
  601. mac->assoc_id));
  602. break; }
  603. case HW_VAR_CORRECT_TSF:{
  604. u8 btype_ibss = ((u8 *)(val))[0];
  605. if (btype_ibss == true)
  606. _rtl88ee_stop_tx_beacon(hw);
  607. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
  608. rtl_write_dword(rtlpriv, REG_TSFTR,
  609. (u32) (mac->tsf & 0xffffffff));
  610. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  611. (u32) ((mac->tsf >> 32) & 0xffffffff));
  612. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
  613. if (btype_ibss == true)
  614. _rtl88ee_resume_tx_beacon(hw);
  615. break; }
  616. default:
  617. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  618. "switch case not process %x\n", variable);
  619. break;
  620. }
  621. }
  622. static bool _rtl88ee_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
  623. {
  624. struct rtl_priv *rtlpriv = rtl_priv(hw);
  625. bool status = true;
  626. long count = 0;
  627. u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) |
  628. _LLT_OP(_LLT_WRITE_ACCESS);
  629. rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
  630. do {
  631. value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
  632. if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
  633. break;
  634. if (count > POLLING_LLT_THRESHOLD) {
  635. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  636. "Failed to polling write LLT done at address %d!\n",
  637. address);
  638. status = false;
  639. break;
  640. }
  641. } while (++count);
  642. return status;
  643. }
  644. static bool _rtl88ee_llt_table_init(struct ieee80211_hw *hw)
  645. {
  646. struct rtl_priv *rtlpriv = rtl_priv(hw);
  647. unsigned short i;
  648. u8 txpktbuf_bndy;
  649. u8 maxpage;
  650. bool status;
  651. maxpage = 0xAF;
  652. txpktbuf_bndy = 0xAB;
  653. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x01);
  654. rtl_write_dword(rtlpriv, REG_RQPN, 0x80730d29);
  655. rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x25FF0000 | txpktbuf_bndy));
  656. rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
  657. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  658. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  659. rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
  660. rtl_write_byte(rtlpriv, REG_PBP, 0x11);
  661. rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
  662. for (i = 0; i < (txpktbuf_bndy - 1); i++) {
  663. status = _rtl88ee_llt_write(hw, i, i + 1);
  664. if (true != status)
  665. return status;
  666. }
  667. status = _rtl88ee_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
  668. if (true != status)
  669. return status;
  670. for (i = txpktbuf_bndy; i < maxpage; i++) {
  671. status = _rtl88ee_llt_write(hw, i, (i + 1));
  672. if (true != status)
  673. return status;
  674. }
  675. status = _rtl88ee_llt_write(hw, maxpage, txpktbuf_bndy);
  676. if (true != status)
  677. return status;
  678. return true;
  679. }
  680. static void _rtl88ee_gen_refresh_led_state(struct ieee80211_hw *hw)
  681. {
  682. struct rtl_priv *rtlpriv = rtl_priv(hw);
  683. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  684. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  685. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  686. if (rtlpriv->rtlhal.up_first_time)
  687. return;
  688. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  689. rtl88ee_sw_led_on(hw, pLed0);
  690. else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
  691. rtl88ee_sw_led_on(hw, pLed0);
  692. else
  693. rtl88ee_sw_led_off(hw, pLed0);
  694. }
  695. static bool _rtl88ee_init_mac(struct ieee80211_hw *hw)
  696. {
  697. struct rtl_priv *rtlpriv = rtl_priv(hw);
  698. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  699. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  700. u8 bytetmp;
  701. u16 wordtmp;
  702. /*Disable XTAL OUTPUT for power saving. YJ, add, 111206. */
  703. bytetmp = rtl_read_byte(rtlpriv, REG_XCK_OUT_CTRL) & (~BIT(0));
  704. rtl_write_byte(rtlpriv, REG_XCK_OUT_CTRL, bytetmp);
  705. /*Auto Power Down to CHIP-off State*/
  706. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7));
  707. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
  708. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
  709. /* HW Power on sequence */
  710. if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
  711. PWR_INTF_PCI_MSK,
  712. Rtl8188E_NIC_ENABLE_FLOW)) {
  713. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  714. "init MAC Fail as rtl_hal_pwrseqcmdparsing\n");
  715. return false;
  716. }
  717. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4);
  718. rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp);
  719. bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+2);
  720. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+2, bytetmp|BIT(2));
  721. bytetmp = rtl_read_byte(rtlpriv, REG_WATCH_DOG+1);
  722. rtl_write_byte(rtlpriv, REG_WATCH_DOG+1, bytetmp|BIT(7));
  723. bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1);
  724. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1, bytetmp|BIT(1));
  725. bytetmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL);
  726. rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, bytetmp|BIT(1)|BIT(0));
  727. rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL+1, 2);
  728. rtl_write_word(rtlpriv, REG_TX_RPT_TIME, 0xcdf0);
  729. /*Add for wake up online*/
  730. bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR);
  731. rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp|BIT(3));
  732. bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG+1);
  733. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+1, (bytetmp & (~BIT(4))));
  734. rtl_write_byte(rtlpriv, 0x367, 0x80);
  735. rtl_write_word(rtlpriv, REG_CR, 0x2ff);
  736. rtl_write_byte(rtlpriv, REG_CR+1, 0x06);
  737. rtl_write_byte(rtlpriv, REG_CR+2, 0x00);
  738. if (!rtlhal->mac_func_enable) {
  739. if (_rtl88ee_llt_table_init(hw) == false) {
  740. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  741. "LLT table init fail\n");
  742. return false;
  743. }
  744. }
  745. rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
  746. rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff);
  747. wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
  748. wordtmp &= 0xf;
  749. wordtmp |= 0xE771;
  750. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
  751. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  752. rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xffff);
  753. rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
  754. rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
  755. ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
  756. DMA_BIT_MASK(32));
  757. rtl_write_dword(rtlpriv, REG_MGQ_DESA,
  758. (u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
  759. DMA_BIT_MASK(32));
  760. rtl_write_dword(rtlpriv, REG_VOQ_DESA,
  761. (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
  762. rtl_write_dword(rtlpriv, REG_VIQ_DESA,
  763. (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
  764. rtl_write_dword(rtlpriv, REG_BEQ_DESA,
  765. (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
  766. rtl_write_dword(rtlpriv, REG_BKQ_DESA,
  767. (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
  768. rtl_write_dword(rtlpriv, REG_HQ_DESA,
  769. (u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
  770. DMA_BIT_MASK(32));
  771. rtl_write_dword(rtlpriv, REG_RX_DESA,
  772. (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
  773. DMA_BIT_MASK(32));
  774. /* if we want to support 64 bit DMA, we should set it here,
  775. * but at the moment we do not support 64 bit DMA
  776. */
  777. rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
  778. rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
  779. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0);/*Enable RX DMA */
  780. if (rtlhal->earlymode_enable) {/*Early mode enable*/
  781. bytetmp = rtl_read_byte(rtlpriv, REG_EARLY_MODE_CONTROL);
  782. bytetmp |= 0x1f;
  783. rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL, bytetmp);
  784. rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL+3, 0x81);
  785. }
  786. _rtl88ee_gen_refresh_led_state(hw);
  787. return true;
  788. }
  789. static void _rtl88ee_hw_configure(struct ieee80211_hw *hw)
  790. {
  791. struct rtl_priv *rtlpriv = rtl_priv(hw);
  792. u32 reg_prsr;
  793. reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  794. rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
  795. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  796. }
  797. static void _rtl88ee_enable_aspm_back_door(struct ieee80211_hw *hw)
  798. {
  799. struct rtl_priv *rtlpriv = rtl_priv(hw);
  800. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  801. u8 tmp1byte = 0;
  802. u32 tmp4Byte = 0, count;
  803. rtl_write_word(rtlpriv, 0x354, 0x8104);
  804. rtl_write_word(rtlpriv, 0x358, 0x24);
  805. rtl_write_word(rtlpriv, 0x350, 0x70c);
  806. rtl_write_byte(rtlpriv, 0x352, 0x2);
  807. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  808. count = 0;
  809. while (tmp1byte && count < 20) {
  810. udelay(10);
  811. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  812. count++;
  813. }
  814. if (0 == tmp1byte) {
  815. tmp4Byte = rtl_read_dword(rtlpriv, 0x34c);
  816. rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(31));
  817. rtl_write_word(rtlpriv, 0x350, 0xf70c);
  818. rtl_write_byte(rtlpriv, 0x352, 0x1);
  819. }
  820. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  821. count = 0;
  822. while (tmp1byte && count < 20) {
  823. udelay(10);
  824. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  825. count++;
  826. }
  827. rtl_write_word(rtlpriv, 0x350, 0x718);
  828. rtl_write_byte(rtlpriv, 0x352, 0x2);
  829. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  830. count = 0;
  831. while (tmp1byte && count < 20) {
  832. udelay(10);
  833. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  834. count++;
  835. }
  836. if (ppsc->support_backdoor || (0 == tmp1byte)) {
  837. tmp4Byte = rtl_read_dword(rtlpriv, 0x34c);
  838. rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(11)|BIT(12));
  839. rtl_write_word(rtlpriv, 0x350, 0xf718);
  840. rtl_write_byte(rtlpriv, 0x352, 0x1);
  841. }
  842. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  843. count = 0;
  844. while (tmp1byte && count < 20) {
  845. udelay(10);
  846. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  847. count++;
  848. }
  849. }
  850. void rtl88ee_enable_hw_security_config(struct ieee80211_hw *hw)
  851. {
  852. struct rtl_priv *rtlpriv = rtl_priv(hw);
  853. u8 sec_reg_value;
  854. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  855. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  856. rtlpriv->sec.pairwise_enc_algorithm,
  857. rtlpriv->sec.group_enc_algorithm);
  858. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  859. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  860. "not open hw encryption\n");
  861. return;
  862. }
  863. sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE;
  864. if (rtlpriv->sec.use_defaultkey) {
  865. sec_reg_value |= SCR_TXUSEDK;
  866. sec_reg_value |= SCR_RXUSEDK;
  867. }
  868. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  869. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  870. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  871. "The SECR-value %x\n", sec_reg_value);
  872. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  873. }
  874. int rtl88ee_hw_init(struct ieee80211_hw *hw)
  875. {
  876. struct rtl_priv *rtlpriv = rtl_priv(hw);
  877. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  878. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  879. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  880. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  881. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  882. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  883. bool rtstatus = true;
  884. int err = 0;
  885. u8 tmp_u1b, u1byte;
  886. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Rtl8188EE hw init\n");
  887. rtlpriv->rtlhal.being_init_adapter = true;
  888. rtlpriv->intf_ops->disable_aspm(hw);
  889. tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CLKR+1);
  890. u1byte = rtl_read_byte(rtlpriv, REG_CR);
  891. if ((tmp_u1b & BIT(3)) && (u1byte != 0 && u1byte != 0xEA)) {
  892. rtlhal->mac_func_enable = true;
  893. } else {
  894. rtlhal->mac_func_enable = false;
  895. rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E;
  896. }
  897. rtstatus = _rtl88ee_init_mac(hw);
  898. if (rtstatus != true) {
  899. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
  900. err = 1;
  901. return err;
  902. }
  903. err = rtl88e_download_fw(hw, false);
  904. if (err) {
  905. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  906. "Failed to download FW. Init HW without FW now..\n");
  907. err = 1;
  908. rtlhal->fw_ready = false;
  909. return err;
  910. } else {
  911. rtlhal->fw_ready = true;
  912. }
  913. /*fw related variable initialize */
  914. rtlhal->last_hmeboxnum = 0;
  915. rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E;
  916. rtlhal->fw_clk_change_in_progress = false;
  917. rtlhal->allow_sw_to_change_hwclc = false;
  918. ppsc->fw_current_inpsmode = false;
  919. rtl88e_phy_mac_config(hw);
  920. /* because last function modifies RCR, we update
  921. * rcr var here, or TP will be unstable for receive_config
  922. * is wrong, RX RCR_ACRC32 will cause TP unstable & Rx
  923. * RCR_APP_ICV will cause mac80211 disassoc for cisco 1252
  924. */
  925. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  926. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  927. rtl88e_phy_bb_config(hw);
  928. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  929. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  930. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  931. rtl88e_phy_rf_config(hw);
  932. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  933. RF_CHNLBW, RFREG_OFFSET_MASK);
  934. rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] & 0xfff00fff;
  935. _rtl88ee_hw_configure(hw);
  936. rtl_cam_reset_all_entry(hw);
  937. rtl88ee_enable_hw_security_config(hw);
  938. rtlhal->mac_func_enable = true;
  939. ppsc->rfpwr_state = ERFON;
  940. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  941. _rtl88ee_enable_aspm_back_door(hw);
  942. rtlpriv->intf_ops->enable_aspm(hw);
  943. if (ppsc->rfpwr_state == ERFON) {
  944. if ((rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV) ||
  945. ((rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV) &&
  946. (rtlhal->oem_id == RT_CID_819x_HP))) {
  947. rtl88e_phy_set_rfpath_switch(hw, true);
  948. rtlpriv->dm.fat_table.rx_idle_ant = MAIN_ANT;
  949. } else {
  950. rtl88e_phy_set_rfpath_switch(hw, false);
  951. rtlpriv->dm.fat_table.rx_idle_ant = AUX_ANT;
  952. }
  953. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  954. "rx idle ant %s\n",
  955. (rtlpriv->dm.fat_table.rx_idle_ant == MAIN_ANT) ?
  956. ("MAIN_ANT") : ("AUX_ANT"));
  957. if (rtlphy->iqk_initialized) {
  958. rtl88e_phy_iq_calibrate(hw, true);
  959. } else {
  960. rtl88e_phy_iq_calibrate(hw, false);
  961. rtlphy->iqk_initialized = true;
  962. }
  963. rtl88e_dm_check_txpower_tracking(hw);
  964. rtl88e_phy_lc_calibrate(hw);
  965. }
  966. tmp_u1b = efuse_read_1byte(hw, 0x1FA);
  967. if (!(tmp_u1b & BIT(0))) {
  968. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
  969. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path A\n");
  970. }
  971. if (!(tmp_u1b & BIT(4))) {
  972. tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
  973. tmp_u1b &= 0x0F;
  974. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
  975. udelay(10);
  976. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
  977. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "under 1.5V\n");
  978. }
  979. rtl_write_byte(rtlpriv, REG_NAV_CTRL+2, ((30000+127)/128));
  980. rtl88e_dm_init(hw);
  981. rtlpriv->rtlhal.being_init_adapter = false;
  982. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "end of Rtl8188EE hw init %x\n",
  983. err);
  984. return 0;
  985. }
  986. static enum version_8188e _rtl88ee_read_chip_version(struct ieee80211_hw *hw)
  987. {
  988. struct rtl_priv *rtlpriv = rtl_priv(hw);
  989. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  990. enum version_8188e version = VERSION_UNKNOWN;
  991. u32 value32;
  992. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
  993. if (value32 & TRP_VAUX_EN) {
  994. version = (enum version_8188e) VERSION_TEST_CHIP_88E;
  995. } else {
  996. version = NORMAL_CHIP;
  997. version = version | ((value32 & TYPE_ID) ? RF_TYPE_2T2R : 0);
  998. version = version | ((value32 & VENDOR_ID) ?
  999. CHIP_VENDOR_UMC : 0);
  1000. }
  1001. rtlphy->rf_type = RF_1T1R;
  1002. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1003. "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ?
  1004. "RF_2T2R" : "RF_1T1R");
  1005. return version;
  1006. }
  1007. static int _rtl88ee_set_media_status(struct ieee80211_hw *hw,
  1008. enum nl80211_iftype type)
  1009. {
  1010. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1011. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  1012. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  1013. bt_msr &= 0xfc;
  1014. if (type == NL80211_IFTYPE_UNSPECIFIED ||
  1015. type == NL80211_IFTYPE_STATION) {
  1016. _rtl88ee_stop_tx_beacon(hw);
  1017. _rtl88ee_enable_bcn_sub_func(hw);
  1018. } else if (type == NL80211_IFTYPE_ADHOC ||
  1019. type == NL80211_IFTYPE_AP ||
  1020. type == NL80211_IFTYPE_MESH_POINT) {
  1021. _rtl88ee_resume_tx_beacon(hw);
  1022. _rtl88ee_disable_bcn_sub_func(hw);
  1023. } else {
  1024. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1025. "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n",
  1026. type);
  1027. }
  1028. switch (type) {
  1029. case NL80211_IFTYPE_UNSPECIFIED:
  1030. bt_msr |= MSR_NOLINK;
  1031. ledaction = LED_CTL_LINK;
  1032. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1033. "Set Network type to NO LINK!\n");
  1034. break;
  1035. case NL80211_IFTYPE_ADHOC:
  1036. bt_msr |= MSR_ADHOC;
  1037. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1038. "Set Network type to Ad Hoc!\n");
  1039. break;
  1040. case NL80211_IFTYPE_STATION:
  1041. bt_msr |= MSR_INFRA;
  1042. ledaction = LED_CTL_LINK;
  1043. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1044. "Set Network type to STA!\n");
  1045. break;
  1046. case NL80211_IFTYPE_AP:
  1047. bt_msr |= MSR_AP;
  1048. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1049. "Set Network type to AP!\n");
  1050. break;
  1051. case NL80211_IFTYPE_MESH_POINT:
  1052. bt_msr |= MSR_ADHOC;
  1053. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1054. "Set Network type to Mesh Point!\n");
  1055. break;
  1056. default:
  1057. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1058. "Network type %d not support!\n", type);
  1059. return 1;
  1060. }
  1061. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1062. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1063. if ((bt_msr & 0xfc) == MSR_AP)
  1064. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1065. else
  1066. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1067. return 0;
  1068. }
  1069. void rtl88ee_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1070. {
  1071. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1072. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1073. u32 reg_rcr = rtlpci->receive_config;
  1074. if (rtlpriv->psc.rfpwr_state != ERFON)
  1075. return;
  1076. if (check_bssid == true) {
  1077. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1078. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1079. (u8 *)(&reg_rcr));
  1080. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1081. } else if (check_bssid == false) {
  1082. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1083. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1084. rtlpriv->cfg->ops->set_hw_reg(hw,
  1085. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1086. }
  1087. }
  1088. int rtl88ee_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1089. {
  1090. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1091. if (_rtl88ee_set_media_status(hw, type))
  1092. return -EOPNOTSUPP;
  1093. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1094. if (type != NL80211_IFTYPE_AP &&
  1095. type != NL80211_IFTYPE_MESH_POINT)
  1096. rtl88ee_set_check_bssid(hw, true);
  1097. } else {
  1098. rtl88ee_set_check_bssid(hw, false);
  1099. }
  1100. return 0;
  1101. }
  1102. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  1103. void rtl88ee_set_qos(struct ieee80211_hw *hw, int aci)
  1104. {
  1105. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1106. rtl88e_dm_init_edca_turbo(hw);
  1107. switch (aci) {
  1108. case AC1_BK:
  1109. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
  1110. break;
  1111. case AC0_BE:
  1112. break;
  1113. case AC2_VI:
  1114. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
  1115. break;
  1116. case AC3_VO:
  1117. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
  1118. break;
  1119. default:
  1120. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1121. break;
  1122. }
  1123. }
  1124. void rtl88ee_enable_interrupt(struct ieee80211_hw *hw)
  1125. {
  1126. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1127. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1128. rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
  1129. rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
  1130. rtlpci->irq_enabled = true;
  1131. /* there are some C2H CMDs have been sent before system interrupt
  1132. * is enabled, e.g., C2H, CPWM.
  1133. * So we need to clear all C2H events that FW has notified, otherwise
  1134. * FW won't schedule any commands anymore.
  1135. */
  1136. rtl_write_byte(rtlpriv, REG_C2HEVT_CLEAR, 0);
  1137. /*enable system interrupt*/
  1138. rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF);
  1139. }
  1140. void rtl88ee_disable_interrupt(struct ieee80211_hw *hw)
  1141. {
  1142. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1143. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1144. rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED);
  1145. rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED);
  1146. rtlpci->irq_enabled = false;
  1147. synchronize_irq(rtlpci->pdev->irq);
  1148. }
  1149. static void _rtl88ee_poweroff_adapter(struct ieee80211_hw *hw)
  1150. {
  1151. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1152. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1153. u8 u1b_tmp;
  1154. u32 count = 0;
  1155. rtlhal->mac_func_enable = false;
  1156. rtlpriv->intf_ops->enable_aspm(hw);
  1157. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "POWER OFF adapter\n");
  1158. u1b_tmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL);
  1159. rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, u1b_tmp & (~BIT(1)));
  1160. u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
  1161. while (!(u1b_tmp & BIT(1)) && (count++ < 100)) {
  1162. udelay(10);
  1163. u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
  1164. count++;
  1165. }
  1166. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0xFF);
  1167. rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
  1168. PWR_INTF_PCI_MSK, Rtl8188E_NIC_LPS_ENTER_FLOW);
  1169. rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
  1170. if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready)
  1171. rtl88e_firmware_selfreset(hw);
  1172. u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN+1);
  1173. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2))));
  1174. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
  1175. u1b_tmp = rtl_read_byte(rtlpriv, REG_32K_CTRL);
  1176. rtl_write_byte(rtlpriv, REG_32K_CTRL, (u1b_tmp & (~BIT(0))));
  1177. rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
  1178. PWR_INTF_PCI_MSK, Rtl8188E_NIC_DISABLE_FLOW);
  1179. u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1);
  1180. rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp & (~BIT(3))));
  1181. u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1);
  1182. rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp | BIT(3)));
  1183. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
  1184. u1b_tmp = rtl_read_byte(rtlpriv, GPIO_IN);
  1185. rtl_write_byte(rtlpriv, GPIO_OUT, u1b_tmp);
  1186. rtl_write_byte(rtlpriv, GPIO_IO_SEL, 0x7F);
  1187. u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  1188. rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL, (u1b_tmp << 4) | u1b_tmp);
  1189. u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL+1);
  1190. rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL+1, u1b_tmp | 0x0F);
  1191. rtl_write_dword(rtlpriv, REG_GPIO_IO_SEL_2+2, 0x00080808);
  1192. }
  1193. void rtl88ee_card_disable(struct ieee80211_hw *hw)
  1194. {
  1195. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1196. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1197. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1198. enum nl80211_iftype opmode;
  1199. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "RTL8188ee card disable\n");
  1200. mac->link_state = MAC80211_NOLINK;
  1201. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1202. _rtl88ee_set_media_status(hw, opmode);
  1203. if (rtlpriv->rtlhal.driver_is_goingto_unload ||
  1204. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1205. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1206. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1207. _rtl88ee_poweroff_adapter(hw);
  1208. /* after power off we should do iqk again */
  1209. rtlpriv->phy.iqk_initialized = false;
  1210. }
  1211. void rtl88ee_interrupt_recognized(struct ieee80211_hw *hw,
  1212. u32 *p_inta, u32 *p_intb)
  1213. {
  1214. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1215. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1216. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1217. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1218. *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
  1219. rtl_write_dword(rtlpriv, REG_HISRE, *p_intb);
  1220. }
  1221. void rtl88ee_set_beacon_related_registers(struct ieee80211_hw *hw)
  1222. {
  1223. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1224. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1225. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1226. u16 bcn_interval, atim_window;
  1227. bcn_interval = mac->beacon_interval;
  1228. atim_window = 2; /*FIX MERGE */
  1229. rtl88ee_disable_interrupt(hw);
  1230. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1231. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1232. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
  1233. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
  1234. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
  1235. rtl_write_byte(rtlpriv, 0x606, 0x30);
  1236. rtlpci->reg_bcn_ctrl_val |= BIT(3);
  1237. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
  1238. /*rtl88ee_enable_interrupt(hw);*/
  1239. }
  1240. void rtl88ee_set_beacon_interval(struct ieee80211_hw *hw)
  1241. {
  1242. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1243. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1244. u16 bcn_interval = mac->beacon_interval;
  1245. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1246. "beacon_interval:%d\n", bcn_interval);
  1247. /*rtl88ee_disable_interrupt(hw);*/
  1248. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1249. /*rtl88ee_enable_interrupt(hw);*/
  1250. }
  1251. void rtl88ee_update_interrupt_mask(struct ieee80211_hw *hw,
  1252. u32 add_msr, u32 rm_msr)
  1253. {
  1254. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1255. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1256. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
  1257. "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr);
  1258. rtl88ee_disable_interrupt(hw);
  1259. if (add_msr)
  1260. rtlpci->irq_mask[0] |= add_msr;
  1261. if (rm_msr)
  1262. rtlpci->irq_mask[0] &= (~rm_msr);
  1263. rtl88ee_enable_interrupt(hw);
  1264. }
  1265. static inline u8 get_chnl_group(u8 chnl)
  1266. {
  1267. u8 group;
  1268. group = chnl / 3;
  1269. if (chnl == 14)
  1270. group = 5;
  1271. return group;
  1272. }
  1273. static void set_diff0_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path,
  1274. u32 i, u32 eadr)
  1275. {
  1276. pwr2g->bw40_diff[path][i] = 0;
  1277. if (hwinfo[eadr] == 0xFF) {
  1278. pwr2g->bw20_diff[path][i] = 0x02;
  1279. } else {
  1280. pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1281. /*bit sign number to 8 bit sign number*/
  1282. if (pwr2g->bw20_diff[path][i] & BIT(3))
  1283. pwr2g->bw20_diff[path][i] |= 0xF0;
  1284. }
  1285. if (hwinfo[eadr] == 0xFF) {
  1286. pwr2g->ofdm_diff[path][i] = 0x04;
  1287. } else {
  1288. pwr2g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f);
  1289. /*bit sign number to 8 bit sign number*/
  1290. if (pwr2g->ofdm_diff[path][i] & BIT(3))
  1291. pwr2g->ofdm_diff[path][i] |= 0xF0;
  1292. }
  1293. pwr2g->cck_diff[path][i] = 0;
  1294. }
  1295. static void set_diff0_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path,
  1296. u32 i, u32 eadr)
  1297. {
  1298. pwr5g->bw40_diff[path][i] = 0;
  1299. if (hwinfo[eadr] == 0xFF) {
  1300. pwr5g->bw20_diff[path][i] = 0;
  1301. } else {
  1302. pwr5g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1303. /*bit sign number to 8 bit sign number*/
  1304. if (pwr5g->bw20_diff[path][i] & BIT(3))
  1305. pwr5g->bw20_diff[path][i] |= 0xF0;
  1306. }
  1307. if (hwinfo[eadr] == 0xFF) {
  1308. pwr5g->ofdm_diff[path][i] = 0x04;
  1309. } else {
  1310. pwr5g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f);
  1311. /*bit sign number to 8 bit sign number*/
  1312. if (pwr5g->ofdm_diff[path][i] & BIT(3))
  1313. pwr5g->ofdm_diff[path][i] |= 0xF0;
  1314. }
  1315. }
  1316. static void set_diff1_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path,
  1317. u32 i, u32 eadr)
  1318. {
  1319. if (hwinfo[eadr] == 0xFF) {
  1320. pwr2g->bw40_diff[path][i] = 0xFE;
  1321. } else {
  1322. pwr2g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1323. if (pwr2g->bw40_diff[path][i] & BIT(3))
  1324. pwr2g->bw40_diff[path][i] |= 0xF0;
  1325. }
  1326. if (hwinfo[eadr] == 0xFF) {
  1327. pwr2g->bw20_diff[path][i] = 0xFE;
  1328. } else {
  1329. pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0x0f);
  1330. if (pwr2g->bw20_diff[path][i] & BIT(3))
  1331. pwr2g->bw20_diff[path][i] |= 0xF0;
  1332. }
  1333. }
  1334. static void set_diff1_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path,
  1335. u32 i, u32 eadr)
  1336. {
  1337. if (hwinfo[eadr] == 0xFF) {
  1338. pwr5g->bw40_diff[path][i] = 0xFE;
  1339. } else {
  1340. pwr5g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1341. if (pwr5g->bw40_diff[path][i] & BIT(3))
  1342. pwr5g->bw40_diff[path][i] |= 0xF0;
  1343. }
  1344. if (hwinfo[eadr] == 0xFF) {
  1345. pwr5g->bw20_diff[path][i] = 0xFE;
  1346. } else {
  1347. pwr5g->bw20_diff[path][i] = (hwinfo[eadr] & 0x0f);
  1348. if (pwr5g->bw20_diff[path][i] & BIT(3))
  1349. pwr5g->bw20_diff[path][i] |= 0xF0;
  1350. }
  1351. }
  1352. static void set_diff2_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path,
  1353. u32 i, u32 eadr)
  1354. {
  1355. if (hwinfo[eadr] == 0xFF) {
  1356. pwr2g->ofdm_diff[path][i] = 0xFE;
  1357. } else {
  1358. pwr2g->ofdm_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1359. if (pwr2g->ofdm_diff[path][i] & BIT(3))
  1360. pwr2g->ofdm_diff[path][i] |= 0xF0;
  1361. }
  1362. if (hwinfo[eadr] == 0xFF) {
  1363. pwr2g->cck_diff[path][i] = 0xFE;
  1364. } else {
  1365. pwr2g->cck_diff[path][i] = (hwinfo[eadr]&0x0f);
  1366. if (pwr2g->cck_diff[path][i] & BIT(3))
  1367. pwr2g->cck_diff[path][i] |= 0xF0;
  1368. }
  1369. }
  1370. static void _rtl8188e_read_power_value_fromprom(struct ieee80211_hw *hw,
  1371. struct txpower_info_2g *pwr2g,
  1372. struct txpower_info_5g *pwr5g,
  1373. bool autoload_fail,
  1374. u8 *hwinfo)
  1375. {
  1376. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1377. u32 path, eadr = EEPROM_TX_PWR_INX, i;
  1378. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1379. "hal_ReadPowerValueFromPROM88E(): PROMContent[0x%x]= 0x%x\n",
  1380. (eadr+1), hwinfo[eadr+1]);
  1381. if (0xFF == hwinfo[eadr+1])
  1382. autoload_fail = true;
  1383. if (autoload_fail) {
  1384. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1385. "auto load fail : Use Default value!\n");
  1386. for (path = 0; path < MAX_RF_PATH; path++) {
  1387. /* 2.4G default value */
  1388. for (i = 0; i < MAX_CHNL_GROUP_24G; i++) {
  1389. pwr2g->index_cck_base[path][i] = 0x2D;
  1390. pwr2g->index_bw40_base[path][i] = 0x2D;
  1391. }
  1392. for (i = 0; i < MAX_TX_COUNT; i++) {
  1393. if (i == 0) {
  1394. pwr2g->bw20_diff[path][0] = 0x02;
  1395. pwr2g->ofdm_diff[path][0] = 0x04;
  1396. } else {
  1397. pwr2g->bw20_diff[path][i] = 0xFE;
  1398. pwr2g->bw40_diff[path][i] = 0xFE;
  1399. pwr2g->cck_diff[path][i] = 0xFE;
  1400. pwr2g->ofdm_diff[path][i] = 0xFE;
  1401. }
  1402. }
  1403. }
  1404. return;
  1405. }
  1406. for (path = 0; path < MAX_RF_PATH; path++) {
  1407. /*2.4G default value*/
  1408. for (i = 0; i < MAX_CHNL_GROUP_24G; i++) {
  1409. pwr2g->index_cck_base[path][i] = hwinfo[eadr++];
  1410. if (pwr2g->index_cck_base[path][i] == 0xFF)
  1411. pwr2g->index_cck_base[path][i] = 0x2D;
  1412. }
  1413. for (i = 0; i < MAX_CHNL_GROUP_24G-1; i++) {
  1414. pwr2g->index_bw40_base[path][i] = hwinfo[eadr++];
  1415. if (pwr2g->index_bw40_base[path][i] == 0xFF)
  1416. pwr2g->index_bw40_base[path][i] = 0x2D;
  1417. }
  1418. for (i = 0; i < MAX_TX_COUNT; i++) {
  1419. if (i == 0) {
  1420. set_diff0_2g(pwr2g, hwinfo, path, i, eadr);
  1421. eadr++;
  1422. } else {
  1423. set_diff1_2g(pwr2g, hwinfo, path, i, eadr);
  1424. eadr++;
  1425. set_diff2_2g(pwr2g, hwinfo, path, i, eadr);
  1426. eadr++;
  1427. }
  1428. }
  1429. /*5G default value*/
  1430. for (i = 0; i < MAX_CHNL_GROUP_5G; i++) {
  1431. pwr5g->index_bw40_base[path][i] = hwinfo[eadr++];
  1432. if (pwr5g->index_bw40_base[path][i] == 0xFF)
  1433. pwr5g->index_bw40_base[path][i] = 0xFE;
  1434. }
  1435. for (i = 0; i < MAX_TX_COUNT; i++) {
  1436. if (i == 0) {
  1437. set_diff0_5g(pwr5g, hwinfo, path, i, eadr);
  1438. eadr++;
  1439. } else {
  1440. set_diff1_5g(pwr5g, hwinfo, path, i, eadr);
  1441. eadr++;
  1442. }
  1443. }
  1444. if (hwinfo[eadr] == 0xFF) {
  1445. pwr5g->ofdm_diff[path][1] = 0xFE;
  1446. pwr5g->ofdm_diff[path][2] = 0xFE;
  1447. } else {
  1448. pwr5g->ofdm_diff[path][1] = (hwinfo[eadr] & 0xf0) >> 4;
  1449. pwr5g->ofdm_diff[path][2] = (hwinfo[eadr] & 0x0f);
  1450. }
  1451. eadr++;
  1452. if (hwinfo[eadr] == 0xFF)
  1453. pwr5g->ofdm_diff[path][3] = 0xFE;
  1454. else
  1455. pwr5g->ofdm_diff[path][3] = (hwinfo[eadr]&0x0f);
  1456. eadr++;
  1457. for (i = 1; i < MAX_TX_COUNT; i++) {
  1458. if (pwr5g->ofdm_diff[path][i] == 0xFF)
  1459. pwr5g->ofdm_diff[path][i] = 0xFE;
  1460. else if (pwr5g->ofdm_diff[path][i] & BIT(3))
  1461. pwr5g->ofdm_diff[path][i] |= 0xF0;
  1462. }
  1463. }
  1464. }
  1465. static void _rtl88ee_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  1466. bool autoload_fail,
  1467. u8 *hwinfo)
  1468. {
  1469. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1470. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1471. struct txpower_info_2g pwrinfo24g;
  1472. struct txpower_info_5g pwrinfo5g;
  1473. u8 rf_path, index;
  1474. u8 i;
  1475. int jj = EEPROM_RF_BOARD_OPTION_88E;
  1476. int kk = EEPROM_THERMAL_METER_88E;
  1477. _rtl8188e_read_power_value_fromprom(hw, &pwrinfo24g, &pwrinfo5g,
  1478. autoload_fail, hwinfo);
  1479. for (rf_path = 0; rf_path < 2; rf_path++) {
  1480. for (i = 0; i < 14; i++) {
  1481. index = get_chnl_group(i+1);
  1482. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1483. pwrinfo24g.index_cck_base[rf_path][index];
  1484. if (i == 13)
  1485. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1486. pwrinfo24g.index_bw40_base[rf_path][4];
  1487. else
  1488. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1489. pwrinfo24g.index_bw40_base[rf_path][index];
  1490. rtlefuse->txpwr_ht20diff[rf_path][i] =
  1491. pwrinfo24g.bw20_diff[rf_path][0];
  1492. rtlefuse->txpwr_legacyhtdiff[rf_path][i] =
  1493. pwrinfo24g.ofdm_diff[rf_path][0];
  1494. }
  1495. for (i = 0; i < 14; i++) {
  1496. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1497. "RF(%d)-Ch(%d) [CCK / HT40_1S ] = "
  1498. "[0x%x / 0x%x ]\n", rf_path, i,
  1499. rtlefuse->txpwrlevel_cck[rf_path][i],
  1500. rtlefuse->txpwrlevel_ht40_1s[rf_path][i]);
  1501. }
  1502. }
  1503. if (!autoload_fail)
  1504. rtlefuse->eeprom_thermalmeter = hwinfo[kk];
  1505. else
  1506. rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
  1507. if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) {
  1508. rtlefuse->apk_thermalmeterignore = true;
  1509. rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
  1510. }
  1511. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  1512. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1513. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1514. if (!autoload_fail) {
  1515. rtlefuse->eeprom_regulatory = hwinfo[jj] & 0x07;/*bit0~2*/
  1516. if (hwinfo[jj] == 0xFF)
  1517. rtlefuse->eeprom_regulatory = 0;
  1518. } else {
  1519. rtlefuse->eeprom_regulatory = 0;
  1520. }
  1521. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1522. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1523. }
  1524. static void _rtl88ee_read_adapter_info(struct ieee80211_hw *hw)
  1525. {
  1526. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1527. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1528. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1529. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  1530. u16 i, usvalue;
  1531. u8 hwinfo[HWSET_MAX_SIZE];
  1532. u16 eeprom_id;
  1533. int jj = EEPROM_RF_BOARD_OPTION_88E;
  1534. int kk = EEPROM_RF_FEATURE_OPTION_88E;
  1535. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1536. rtl_efuse_shadow_map_update(hw);
  1537. memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1538. HWSET_MAX_SIZE);
  1539. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  1540. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1541. "RTL819X Not boot from eeprom, check it !!");
  1542. }
  1543. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"),
  1544. hwinfo, HWSET_MAX_SIZE);
  1545. eeprom_id = *((u16 *)&hwinfo[0]);
  1546. if (eeprom_id != RTL8188E_EEPROM_ID) {
  1547. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1548. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1549. rtlefuse->autoload_failflag = true;
  1550. } else {
  1551. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1552. rtlefuse->autoload_failflag = false;
  1553. }
  1554. if (rtlefuse->autoload_failflag == true)
  1555. return;
  1556. /*VID DID SVID SDID*/
  1557. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1558. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1559. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1560. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1561. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1562. "EEPROMId = 0x%4x\n", eeprom_id);
  1563. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1564. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1565. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1566. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1567. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1568. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1569. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1570. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1571. /*customer ID*/
  1572. rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
  1573. if (rtlefuse->eeprom_oemid == 0xFF)
  1574. rtlefuse->eeprom_oemid = 0;
  1575. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1576. "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
  1577. /*EEPROM version*/
  1578. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1579. /*mac address*/
  1580. for (i = 0; i < 6; i += 2) {
  1581. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1582. *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
  1583. }
  1584. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1585. "dev_addr: %pM\n", rtlefuse->dev_addr);
  1586. /*channel plan */
  1587. rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
  1588. /* set channel paln to world wide 13 */
  1589. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1590. /*tx power*/
  1591. _rtl88ee_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag,
  1592. hwinfo);
  1593. rtlefuse->txpwr_fromeprom = true;
  1594. rtl8188ee_read_bt_coexist_info_from_hwpg(hw,
  1595. rtlefuse->autoload_failflag,
  1596. hwinfo);
  1597. /*board type*/
  1598. rtlefuse->board_type = (((*(u8 *)&hwinfo[jj]) & 0xE0) >> 5);
  1599. /*Wake on wlan*/
  1600. rtlefuse->wowlan_enable = ((hwinfo[kk] & 0x40) >> 6);
  1601. /*parse xtal*/
  1602. rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_88E];
  1603. if (hwinfo[EEPROM_XTAL_88E])
  1604. rtlefuse->crystalcap = 0x20;
  1605. /*antenna diversity*/
  1606. rtlefuse->antenna_div_cfg = (hwinfo[jj] & 0x18) >> 3;
  1607. if (hwinfo[jj] == 0xFF)
  1608. rtlefuse->antenna_div_cfg = 0;
  1609. if (rppriv->bt_coexist.eeprom_bt_coexist != 0 &&
  1610. rppriv->bt_coexist.eeprom_bt_ant_num == ANT_X1)
  1611. rtlefuse->antenna_div_cfg = 0;
  1612. rtlefuse->antenna_div_type = hwinfo[EEPROM_RF_ANTENNA_OPT_88E];
  1613. if (rtlefuse->antenna_div_type == 0xFF)
  1614. rtlefuse->antenna_div_type = 0x01;
  1615. if (rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV ||
  1616. rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
  1617. rtlefuse->antenna_div_cfg = 1;
  1618. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  1619. switch (rtlefuse->eeprom_oemid) {
  1620. case EEPROM_CID_DEFAULT:
  1621. if (rtlefuse->eeprom_did == 0x8179) {
  1622. if (rtlefuse->eeprom_svid == 0x1025) {
  1623. rtlhal->oem_id = RT_CID_819x_Acer;
  1624. } else if ((rtlefuse->eeprom_svid == 0x10EC &&
  1625. rtlefuse->eeprom_smid == 0x0179) ||
  1626. (rtlefuse->eeprom_svid == 0x17AA &&
  1627. rtlefuse->eeprom_smid == 0x0179)) {
  1628. rtlhal->oem_id = RT_CID_819x_Lenovo;
  1629. } else if (rtlefuse->eeprom_svid == 0x103c &&
  1630. rtlefuse->eeprom_smid == 0x197d) {
  1631. rtlhal->oem_id = RT_CID_819x_HP;
  1632. } else {
  1633. rtlhal->oem_id = RT_CID_DEFAULT;
  1634. }
  1635. } else {
  1636. rtlhal->oem_id = RT_CID_DEFAULT;
  1637. }
  1638. break;
  1639. case EEPROM_CID_TOSHIBA:
  1640. rtlhal->oem_id = RT_CID_TOSHIBA;
  1641. break;
  1642. case EEPROM_CID_QMI:
  1643. rtlhal->oem_id = RT_CID_819x_QMI;
  1644. break;
  1645. case EEPROM_CID_WHQL:
  1646. default:
  1647. rtlhal->oem_id = RT_CID_DEFAULT;
  1648. break;
  1649. }
  1650. }
  1651. }
  1652. static void _rtl88ee_hal_customized_behavior(struct ieee80211_hw *hw)
  1653. {
  1654. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1655. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1656. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1657. pcipriv->ledctl.led_opendrain = true;
  1658. switch (rtlhal->oem_id) {
  1659. case RT_CID_819x_HP:
  1660. pcipriv->ledctl.led_opendrain = true;
  1661. break;
  1662. case RT_CID_819x_Lenovo:
  1663. case RT_CID_DEFAULT:
  1664. case RT_CID_TOSHIBA:
  1665. case RT_CID_CCX:
  1666. case RT_CID_819x_Acer:
  1667. case RT_CID_WHQL:
  1668. default:
  1669. break;
  1670. }
  1671. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1672. "RT Customized ID: 0x%02X\n", rtlhal->oem_id);
  1673. }
  1674. void rtl88ee_read_eeprom_info(struct ieee80211_hw *hw)
  1675. {
  1676. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1677. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1678. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1679. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1680. u8 tmp_u1b;
  1681. rtlhal->version = _rtl88ee_read_chip_version(hw);
  1682. if (get_rf_type(rtlphy) == RF_1T1R) {
  1683. rtlpriv->dm.rfpath_rxenable[0] = true;
  1684. } else {
  1685. rtlpriv->dm.rfpath_rxenable[0] = true;
  1686. rtlpriv->dm.rfpath_rxenable[1] = true;
  1687. }
  1688. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
  1689. rtlhal->version);
  1690. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  1691. if (tmp_u1b & BIT(4)) {
  1692. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1693. rtlefuse->epromtype = EEPROM_93C46;
  1694. } else {
  1695. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1696. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1697. }
  1698. if (tmp_u1b & BIT(5)) {
  1699. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1700. rtlefuse->autoload_failflag = false;
  1701. _rtl88ee_read_adapter_info(hw);
  1702. } else {
  1703. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1704. }
  1705. _rtl88ee_hal_customized_behavior(hw);
  1706. }
  1707. static void rtl88ee_update_hal_rate_table(struct ieee80211_hw *hw,
  1708. struct ieee80211_sta *sta)
  1709. {
  1710. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1711. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  1712. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1713. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1714. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1715. u32 ratr_value;
  1716. u8 ratr_index = 0;
  1717. u8 nmode = mac->ht_enable;
  1718. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1719. u16 shortgi_rate;
  1720. u32 tmp_ratr_value;
  1721. u8 ctx40 = mac->bw_40;
  1722. u16 cap = sta->ht_cap.cap;
  1723. u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0;
  1724. u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0;
  1725. enum wireless_mode wirelessmode = mac->mode;
  1726. if (rtlhal->current_bandtype == BAND_ON_5G)
  1727. ratr_value = sta->supp_rates[1] << 4;
  1728. else
  1729. ratr_value = sta->supp_rates[0];
  1730. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1731. ratr_value = 0xfff;
  1732. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1733. sta->ht_cap.mcs.rx_mask[0] << 12);
  1734. switch (wirelessmode) {
  1735. case WIRELESS_MODE_B:
  1736. if (ratr_value & 0x0000000c)
  1737. ratr_value &= 0x0000000d;
  1738. else
  1739. ratr_value &= 0x0000000f;
  1740. break;
  1741. case WIRELESS_MODE_G:
  1742. ratr_value &= 0x00000FF5;
  1743. break;
  1744. case WIRELESS_MODE_N_24G:
  1745. case WIRELESS_MODE_N_5G:
  1746. nmode = 1;
  1747. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1748. ratr_value &= 0x0007F005;
  1749. } else {
  1750. u32 ratr_mask;
  1751. if (get_rf_type(rtlphy) == RF_1T2R ||
  1752. get_rf_type(rtlphy) == RF_1T1R)
  1753. ratr_mask = 0x000ff005;
  1754. else
  1755. ratr_mask = 0x0f0ff005;
  1756. ratr_value &= ratr_mask;
  1757. }
  1758. break;
  1759. default:
  1760. if (rtlphy->rf_type == RF_1T2R)
  1761. ratr_value &= 0x000ff0ff;
  1762. else
  1763. ratr_value &= 0x0f0ff0ff;
  1764. break;
  1765. }
  1766. if ((rppriv->bt_coexist.bt_coexistence) &&
  1767. (rppriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) &&
  1768. (rppriv->bt_coexist.bt_cur_state) &&
  1769. (rppriv->bt_coexist.bt_ant_isolation) &&
  1770. ((rppriv->bt_coexist.bt_service == BT_SCO) ||
  1771. (rppriv->bt_coexist.bt_service == BT_BUSY)))
  1772. ratr_value &= 0x0fffcfc0;
  1773. else
  1774. ratr_value &= 0x0FFFFFFF;
  1775. if (nmode && ((ctx40 && short40) ||
  1776. (!ctx40 && short20))) {
  1777. ratr_value |= 0x10000000;
  1778. tmp_ratr_value = (ratr_value >> 12);
  1779. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1780. if ((1 << shortgi_rate) & tmp_ratr_value)
  1781. break;
  1782. }
  1783. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1784. (shortgi_rate << 4) | (shortgi_rate);
  1785. }
  1786. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  1787. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1788. "%x\n", rtl_read_dword(rtlpriv, REG_ARFR0));
  1789. }
  1790. static void rtl88ee_update_hal_rate_mask(struct ieee80211_hw *hw,
  1791. struct ieee80211_sta *sta, u8 rssi)
  1792. {
  1793. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1794. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1795. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1796. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1797. struct rtl_sta_info *sta_entry = NULL;
  1798. u32 ratr_bitmap;
  1799. u8 ratr_index;
  1800. u16 cap = sta->ht_cap.cap;
  1801. u8 ctx40 = (cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0;
  1802. u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0;
  1803. u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0;
  1804. enum wireless_mode wirelessmode = 0;
  1805. bool shortgi = false;
  1806. u8 rate_mask[5];
  1807. u8 macid = 0;
  1808. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1809. sta_entry = (struct rtl_sta_info *)sta->drv_priv;
  1810. wirelessmode = sta_entry->wireless_mode;
  1811. if (mac->opmode == NL80211_IFTYPE_STATION ||
  1812. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1813. ctx40 = mac->bw_40;
  1814. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1815. mac->opmode == NL80211_IFTYPE_ADHOC)
  1816. macid = sta->aid + 1;
  1817. if (rtlhal->current_bandtype == BAND_ON_5G)
  1818. ratr_bitmap = sta->supp_rates[1] << 4;
  1819. else
  1820. ratr_bitmap = sta->supp_rates[0];
  1821. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1822. ratr_bitmap = 0xfff;
  1823. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1824. sta->ht_cap.mcs.rx_mask[0] << 12);
  1825. switch (wirelessmode) {
  1826. case WIRELESS_MODE_B:
  1827. ratr_index = RATR_INX_WIRELESS_B;
  1828. if (ratr_bitmap & 0x0000000c)
  1829. ratr_bitmap &= 0x0000000d;
  1830. else
  1831. ratr_bitmap &= 0x0000000f;
  1832. break;
  1833. case WIRELESS_MODE_G:
  1834. ratr_index = RATR_INX_WIRELESS_GB;
  1835. if (rssi == 1)
  1836. ratr_bitmap &= 0x00000f00;
  1837. else if (rssi == 2)
  1838. ratr_bitmap &= 0x00000ff0;
  1839. else
  1840. ratr_bitmap &= 0x00000ff5;
  1841. break;
  1842. case WIRELESS_MODE_A:
  1843. ratr_index = RATR_INX_WIRELESS_A;
  1844. ratr_bitmap &= 0x00000ff0;
  1845. break;
  1846. case WIRELESS_MODE_N_24G:
  1847. case WIRELESS_MODE_N_5G:
  1848. ratr_index = RATR_INX_WIRELESS_NGB;
  1849. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1850. if (rssi == 1)
  1851. ratr_bitmap &= 0x00070000;
  1852. else if (rssi == 2)
  1853. ratr_bitmap &= 0x0007f000;
  1854. else
  1855. ratr_bitmap &= 0x0007f005;
  1856. } else {
  1857. if (rtlphy->rf_type == RF_1T2R ||
  1858. rtlphy->rf_type == RF_1T1R) {
  1859. if (ctx40) {
  1860. if (rssi == 1)
  1861. ratr_bitmap &= 0x000f0000;
  1862. else if (rssi == 2)
  1863. ratr_bitmap &= 0x000ff000;
  1864. else
  1865. ratr_bitmap &= 0x000ff015;
  1866. } else {
  1867. if (rssi == 1)
  1868. ratr_bitmap &= 0x000f0000;
  1869. else if (rssi == 2)
  1870. ratr_bitmap &= 0x000ff000;
  1871. else
  1872. ratr_bitmap &= 0x000ff005;
  1873. }
  1874. } else {
  1875. if (ctx40) {
  1876. if (rssi == 1)
  1877. ratr_bitmap &= 0x0f8f0000;
  1878. else if (rssi == 2)
  1879. ratr_bitmap &= 0x0f8ff000;
  1880. else
  1881. ratr_bitmap &= 0x0f8ff015;
  1882. } else {
  1883. if (rssi == 1)
  1884. ratr_bitmap &= 0x0f8f0000;
  1885. else if (rssi == 2)
  1886. ratr_bitmap &= 0x0f8ff000;
  1887. else
  1888. ratr_bitmap &= 0x0f8ff005;
  1889. }
  1890. }
  1891. }
  1892. if ((ctx40 && short40) || (!ctx40 && short20)) {
  1893. if (macid == 0)
  1894. shortgi = true;
  1895. else if (macid == 1)
  1896. shortgi = false;
  1897. }
  1898. break;
  1899. default:
  1900. ratr_index = RATR_INX_WIRELESS_NGB;
  1901. if (rtlphy->rf_type == RF_1T2R)
  1902. ratr_bitmap &= 0x000ff0ff;
  1903. else
  1904. ratr_bitmap &= 0x0f0ff0ff;
  1905. break;
  1906. }
  1907. sta_entry->ratr_index = ratr_index;
  1908. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1909. "ratr_bitmap :%x\n", ratr_bitmap);
  1910. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
  1911. (ratr_index << 28);
  1912. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  1913. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1914. "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n",
  1915. ratr_index, ratr_bitmap, rate_mask[0], rate_mask[1],
  1916. rate_mask[2], rate_mask[3], rate_mask[4]);
  1917. rtl88e_fill_h2c_cmd(hw, H2C_88E_RA_MASK, 5, rate_mask);
  1918. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
  1919. }
  1920. void rtl88ee_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1921. struct ieee80211_sta *sta, u8 rssi)
  1922. {
  1923. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1924. if (rtlpriv->dm.useramask)
  1925. rtl88ee_update_hal_rate_mask(hw, sta, rssi);
  1926. else
  1927. rtl88ee_update_hal_rate_table(hw, sta);
  1928. }
  1929. void rtl88ee_update_channel_access_setting(struct ieee80211_hw *hw)
  1930. {
  1931. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1932. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1933. u16 sifs_timer;
  1934. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1935. (u8 *)&mac->slot_time);
  1936. if (!mac->ht_enable)
  1937. sifs_timer = 0x0a0a;
  1938. else
  1939. sifs_timer = 0x0e0e;
  1940. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1941. }
  1942. bool rtl88ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1943. {
  1944. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1945. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1946. enum rf_pwrstate state_toset;
  1947. u32 u4tmp;
  1948. bool actuallyset = false;
  1949. if (rtlpriv->rtlhal.being_init_adapter)
  1950. return false;
  1951. if (ppsc->swrf_processing)
  1952. return false;
  1953. spin_lock(&rtlpriv->locks.rf_ps_lock);
  1954. if (ppsc->rfchange_inprogress) {
  1955. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  1956. return false;
  1957. } else {
  1958. ppsc->rfchange_inprogress = true;
  1959. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  1960. }
  1961. u4tmp = rtl_read_dword(rtlpriv, REG_GPIO_OUTPUT);
  1962. state_toset = (u4tmp & BIT(31)) ? ERFON : ERFOFF;
  1963. if ((ppsc->hwradiooff == true) && (state_toset == ERFON)) {
  1964. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1965. "GPIOChangeRF - HW Radio ON, RF ON\n");
  1966. state_toset = ERFON;
  1967. ppsc->hwradiooff = false;
  1968. actuallyset = true;
  1969. } else if ((ppsc->hwradiooff == false) && (state_toset == ERFOFF)) {
  1970. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1971. "GPIOChangeRF - HW Radio OFF, RF OFF\n");
  1972. state_toset = ERFOFF;
  1973. ppsc->hwradiooff = true;
  1974. actuallyset = true;
  1975. }
  1976. if (actuallyset) {
  1977. spin_lock(&rtlpriv->locks.rf_ps_lock);
  1978. ppsc->rfchange_inprogress = false;
  1979. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  1980. } else {
  1981. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
  1982. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1983. spin_lock(&rtlpriv->locks.rf_ps_lock);
  1984. ppsc->rfchange_inprogress = false;
  1985. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  1986. }
  1987. *valid = 1;
  1988. return !ppsc->hwradiooff;
  1989. }
  1990. static void add_one_key(struct ieee80211_hw *hw, u8 *macaddr,
  1991. struct rtl_mac *mac, u32 key, u32 id,
  1992. u8 enc_algo, bool is_pairwise)
  1993. {
  1994. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1995. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1996. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n");
  1997. if (is_pairwise) {
  1998. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n");
  1999. rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo,
  2000. CAM_CONFIG_NO_USEDK,
  2001. rtlpriv->sec.key_buf[key]);
  2002. } else {
  2003. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n");
  2004. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  2005. rtl_cam_add_one_entry(hw, rtlefuse->dev_addr,
  2006. PAIRWISE_KEYIDX,
  2007. CAM_PAIRWISE_KEY_POSITION,
  2008. enc_algo,
  2009. CAM_CONFIG_NO_USEDK,
  2010. rtlpriv->sec.key_buf[id]);
  2011. }
  2012. rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo,
  2013. CAM_CONFIG_NO_USEDK,
  2014. rtlpriv->sec.key_buf[id]);
  2015. }
  2016. }
  2017. void rtl88ee_set_key(struct ieee80211_hw *hw, u32 key,
  2018. u8 *mac_ad, bool is_group, u8 enc_algo,
  2019. bool is_wepkey, bool clear_all)
  2020. {
  2021. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2022. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2023. u8 *macaddr = mac_ad;
  2024. u32 id = 0;
  2025. bool is_pairwise = false;
  2026. static u8 cam_const_addr[4][6] = {
  2027. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  2028. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  2029. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  2030. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  2031. };
  2032. static u8 cam_const_broad[] = {
  2033. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  2034. };
  2035. if (clear_all) {
  2036. u8 idx = 0;
  2037. u8 cam_offset = 0;
  2038. u8 clear_number = 5;
  2039. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  2040. for (idx = 0; idx < clear_number; idx++) {
  2041. rtl_cam_mark_invalid(hw, cam_offset + idx);
  2042. rtl_cam_empty_entry(hw, cam_offset + idx);
  2043. if (idx < 5) {
  2044. memset(rtlpriv->sec.key_buf[idx], 0,
  2045. MAX_KEY_LEN);
  2046. rtlpriv->sec.key_len[idx] = 0;
  2047. }
  2048. }
  2049. } else {
  2050. switch (enc_algo) {
  2051. case WEP40_ENCRYPTION:
  2052. enc_algo = CAM_WEP40;
  2053. break;
  2054. case WEP104_ENCRYPTION:
  2055. enc_algo = CAM_WEP104;
  2056. break;
  2057. case TKIP_ENCRYPTION:
  2058. enc_algo = CAM_TKIP;
  2059. break;
  2060. case AESCCMP_ENCRYPTION:
  2061. enc_algo = CAM_AES;
  2062. break;
  2063. default:
  2064. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2065. "switch case not processed\n");
  2066. enc_algo = CAM_TKIP;
  2067. break;
  2068. }
  2069. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  2070. macaddr = cam_const_addr[key];
  2071. id = key;
  2072. } else {
  2073. if (is_group) {
  2074. macaddr = cam_const_broad;
  2075. id = key;
  2076. } else {
  2077. if (mac->opmode == NL80211_IFTYPE_AP ||
  2078. mac->opmode == NL80211_IFTYPE_MESH_POINT) {
  2079. id = rtl_cam_get_free_entry(hw, mac_ad);
  2080. if (id >= TOTAL_CAM_ENTRY) {
  2081. RT_TRACE(rtlpriv, COMP_SEC,
  2082. DBG_EMERG,
  2083. "Can not find free hw security cam entry\n");
  2084. return;
  2085. }
  2086. } else {
  2087. id = CAM_PAIRWISE_KEY_POSITION;
  2088. }
  2089. key = PAIRWISE_KEYIDX;
  2090. is_pairwise = true;
  2091. }
  2092. }
  2093. if (rtlpriv->sec.key_len[key] == 0) {
  2094. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2095. "delete one entry, id is %d\n", id);
  2096. if (mac->opmode == NL80211_IFTYPE_AP ||
  2097. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  2098. rtl_cam_del_entry(hw, mac_ad);
  2099. rtl_cam_delete_one_entry(hw, mac_ad, id);
  2100. } else {
  2101. add_one_key(hw, macaddr, mac, key, id, enc_algo,
  2102. is_pairwise);
  2103. }
  2104. }
  2105. }
  2106. static void rtl8188ee_bt_var_init(struct ieee80211_hw *hw)
  2107. {
  2108. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  2109. struct bt_coexist_info coexist = rppriv->bt_coexist;
  2110. coexist.bt_coexistence = rppriv->bt_coexist.eeprom_bt_coexist;
  2111. coexist.bt_ant_num = coexist.eeprom_bt_ant_num;
  2112. coexist.bt_coexist_type = coexist.eeprom_bt_type;
  2113. if (coexist.reg_bt_iso == 2)
  2114. coexist.bt_ant_isolation = coexist.eeprom_bt_ant_isol;
  2115. else
  2116. coexist.bt_ant_isolation = coexist.reg_bt_iso;
  2117. coexist.bt_radio_shared_type = coexist.eeprom_bt_radio_shared;
  2118. if (coexist.bt_coexistence) {
  2119. if (coexist.reg_bt_sco == 1)
  2120. coexist.bt_service = BT_OTHER_ACTION;
  2121. else if (coexist.reg_bt_sco == 2)
  2122. coexist.bt_service = BT_SCO;
  2123. else if (coexist.reg_bt_sco == 4)
  2124. coexist.bt_service = BT_BUSY;
  2125. else if (coexist.reg_bt_sco == 5)
  2126. coexist.bt_service = BT_OTHERBUSY;
  2127. else
  2128. coexist.bt_service = BT_IDLE;
  2129. coexist.bt_edca_ul = 0;
  2130. coexist.bt_edca_dl = 0;
  2131. coexist.bt_rssi_state = 0xff;
  2132. }
  2133. }
  2134. void rtl8188ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
  2135. bool auto_load_fail, u8 *hwinfo)
  2136. {
  2137. rtl8188ee_bt_var_init(hw);
  2138. }
  2139. void rtl8188ee_bt_reg_init(struct ieee80211_hw *hw)
  2140. {
  2141. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  2142. /* 0:Low, 1:High, 2:From Efuse. */
  2143. rppriv->bt_coexist.reg_bt_iso = 2;
  2144. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
  2145. rppriv->bt_coexist.reg_bt_sco = 3;
  2146. /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
  2147. rppriv->bt_coexist.reg_bt_sco = 0;
  2148. }
  2149. void rtl8188ee_bt_hw_init(struct ieee80211_hw *hw)
  2150. {
  2151. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2152. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2153. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  2154. struct bt_coexist_info coexist = rppriv->bt_coexist;
  2155. u8 u1_tmp;
  2156. if (coexist.bt_coexistence &&
  2157. ((coexist.bt_coexist_type == BT_CSR_BC4) ||
  2158. coexist.bt_coexist_type == BT_CSR_BC8)) {
  2159. if (coexist.bt_ant_isolation)
  2160. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
  2161. u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) &
  2162. BIT_OFFSET_LEN_MASK_32(0, 1);
  2163. u1_tmp = u1_tmp | ((coexist.bt_ant_isolation == 1) ?
  2164. 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) |
  2165. ((coexist.bt_service == BT_SCO) ?
  2166. 0 : BIT_OFFSET_LEN_MASK_32(2, 1));
  2167. rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
  2168. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
  2169. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
  2170. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
  2171. /* Config to 1T1R. */
  2172. if (rtlphy->rf_type == RF_1T1R) {
  2173. u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
  2174. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2175. rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
  2176. u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
  2177. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2178. rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
  2179. }
  2180. }
  2181. }
  2182. void rtl88ee_suspend(struct ieee80211_hw *hw)
  2183. {
  2184. }
  2185. void rtl88ee_resume(struct ieee80211_hw *hw)
  2186. {
  2187. }
  2188. /* Turn on AAP (RCR:bit 0) for promicuous mode. */
  2189. void rtl88ee_allow_all_destaddr(struct ieee80211_hw *hw,
  2190. bool allow_all_da, bool write_into_reg)
  2191. {
  2192. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2193. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2194. if (allow_all_da) /* Set BIT0 */
  2195. rtlpci->receive_config |= RCR_AAP;
  2196. else /* Clear BIT0 */
  2197. rtlpci->receive_config &= ~RCR_AAP;
  2198. if (write_into_reg)
  2199. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  2200. RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD,
  2201. "receive_config = 0x%08X, write_into_reg =%d\n",
  2202. rtlpci->receive_config, write_into_reg);
  2203. }