mmzone.h 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/cache.h>
  9. #include <linux/threads.h>
  10. #include <linux/numa.h>
  11. #include <linux/init.h>
  12. #include <linux/seqlock.h>
  13. #include <linux/nodemask.h>
  14. #include <asm/atomic.h>
  15. #include <asm/page.h>
  16. /* Free memory management - zoned buddy allocator. */
  17. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  18. #define MAX_ORDER 11
  19. #else
  20. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  21. #endif
  22. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  23. struct free_area {
  24. struct list_head free_list;
  25. unsigned long nr_free;
  26. };
  27. struct pglist_data;
  28. /*
  29. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  30. * So add a wild amount of padding here to ensure that they fall into separate
  31. * cachelines. There are very few zone structures in the machine, so space
  32. * consumption is not a concern here.
  33. */
  34. #if defined(CONFIG_SMP)
  35. struct zone_padding {
  36. char x[0];
  37. } ____cacheline_internodealigned_in_smp;
  38. #define ZONE_PADDING(name) struct zone_padding name;
  39. #else
  40. #define ZONE_PADDING(name)
  41. #endif
  42. enum zone_stat_item {
  43. /* First 128 byte cacheline (assuming 64 bit words) */
  44. NR_FREE_PAGES,
  45. NR_INACTIVE,
  46. NR_ACTIVE,
  47. NR_ANON_PAGES, /* Mapped anonymous pages */
  48. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  49. only modified from process context */
  50. NR_FILE_PAGES,
  51. NR_FILE_DIRTY,
  52. NR_WRITEBACK,
  53. /* Second 128 byte cacheline */
  54. NR_SLAB_RECLAIMABLE,
  55. NR_SLAB_UNRECLAIMABLE,
  56. NR_PAGETABLE, /* used for pagetables */
  57. NR_UNSTABLE_NFS, /* NFS unstable pages */
  58. NR_BOUNCE,
  59. NR_VMSCAN_WRITE,
  60. #ifdef CONFIG_NUMA
  61. NUMA_HIT, /* allocated in intended node */
  62. NUMA_MISS, /* allocated in non intended node */
  63. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  64. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  65. NUMA_LOCAL, /* allocation from local node */
  66. NUMA_OTHER, /* allocation from other node */
  67. #endif
  68. NR_VM_ZONE_STAT_ITEMS };
  69. struct per_cpu_pages {
  70. int count; /* number of pages in the list */
  71. int high; /* high watermark, emptying needed */
  72. int batch; /* chunk size for buddy add/remove */
  73. struct list_head list; /* the list of pages */
  74. };
  75. struct per_cpu_pageset {
  76. struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
  77. #ifdef CONFIG_NUMA
  78. s8 expire;
  79. #endif
  80. #ifdef CONFIG_SMP
  81. s8 stat_threshold;
  82. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  83. #endif
  84. } ____cacheline_aligned_in_smp;
  85. #ifdef CONFIG_NUMA
  86. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  87. #else
  88. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  89. #endif
  90. enum zone_type {
  91. #ifdef CONFIG_ZONE_DMA
  92. /*
  93. * ZONE_DMA is used when there are devices that are not able
  94. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  95. * carve out the portion of memory that is needed for these devices.
  96. * The range is arch specific.
  97. *
  98. * Some examples
  99. *
  100. * Architecture Limit
  101. * ---------------------------
  102. * parisc, ia64, sparc <4G
  103. * s390 <2G
  104. * arm26 <48M
  105. * arm Various
  106. * alpha Unlimited or 0-16MB.
  107. *
  108. * i386, x86_64 and multiple other arches
  109. * <16M.
  110. */
  111. ZONE_DMA,
  112. #endif
  113. #ifdef CONFIG_ZONE_DMA32
  114. /*
  115. * x86_64 needs two ZONE_DMAs because it supports devices that are
  116. * only able to do DMA to the lower 16M but also 32 bit devices that
  117. * can only do DMA areas below 4G.
  118. */
  119. ZONE_DMA32,
  120. #endif
  121. /*
  122. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  123. * performed on pages in ZONE_NORMAL if the DMA devices support
  124. * transfers to all addressable memory.
  125. */
  126. ZONE_NORMAL,
  127. #ifdef CONFIG_HIGHMEM
  128. /*
  129. * A memory area that is only addressable by the kernel through
  130. * mapping portions into its own address space. This is for example
  131. * used by i386 to allow the kernel to address the memory beyond
  132. * 900MB. The kernel will set up special mappings (page
  133. * table entries on i386) for each page that the kernel needs to
  134. * access.
  135. */
  136. ZONE_HIGHMEM,
  137. #endif
  138. ZONE_MOVABLE,
  139. MAX_NR_ZONES
  140. };
  141. /*
  142. * When a memory allocation must conform to specific limitations (such
  143. * as being suitable for DMA) the caller will pass in hints to the
  144. * allocator in the gfp_mask, in the zone modifier bits. These bits
  145. * are used to select a priority ordered list of memory zones which
  146. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  147. */
  148. /*
  149. * Count the active zones. Note that the use of defined(X) outside
  150. * #if and family is not necessarily defined so ensure we cannot use
  151. * it later. Use __ZONE_COUNT to work out how many shift bits we need.
  152. */
  153. #define __ZONE_COUNT ( \
  154. defined(CONFIG_ZONE_DMA) \
  155. + defined(CONFIG_ZONE_DMA32) \
  156. + 1 \
  157. + defined(CONFIG_HIGHMEM) \
  158. + 1 \
  159. )
  160. #if __ZONE_COUNT < 2
  161. #define ZONES_SHIFT 0
  162. #elif __ZONE_COUNT <= 2
  163. #define ZONES_SHIFT 1
  164. #elif __ZONE_COUNT <= 4
  165. #define ZONES_SHIFT 2
  166. #else
  167. #error ZONES_SHIFT -- too many zones configured adjust calculation
  168. #endif
  169. #undef __ZONE_COUNT
  170. struct zone {
  171. /* Fields commonly accessed by the page allocator */
  172. unsigned long pages_min, pages_low, pages_high;
  173. /*
  174. * We don't know if the memory that we're going to allocate will be freeable
  175. * or/and it will be released eventually, so to avoid totally wasting several
  176. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  177. * to run OOM on the lower zones despite there's tons of freeable ram
  178. * on the higher zones). This array is recalculated at runtime if the
  179. * sysctl_lowmem_reserve_ratio sysctl changes.
  180. */
  181. unsigned long lowmem_reserve[MAX_NR_ZONES];
  182. #ifdef CONFIG_NUMA
  183. int node;
  184. /*
  185. * zone reclaim becomes active if more unmapped pages exist.
  186. */
  187. unsigned long min_unmapped_pages;
  188. unsigned long min_slab_pages;
  189. struct per_cpu_pageset *pageset[NR_CPUS];
  190. #else
  191. struct per_cpu_pageset pageset[NR_CPUS];
  192. #endif
  193. /*
  194. * free areas of different sizes
  195. */
  196. spinlock_t lock;
  197. #ifdef CONFIG_MEMORY_HOTPLUG
  198. /* see spanned/present_pages for more description */
  199. seqlock_t span_seqlock;
  200. #endif
  201. struct free_area free_area[MAX_ORDER];
  202. ZONE_PADDING(_pad1_)
  203. /* Fields commonly accessed by the page reclaim scanner */
  204. spinlock_t lru_lock;
  205. struct list_head active_list;
  206. struct list_head inactive_list;
  207. unsigned long nr_scan_active;
  208. unsigned long nr_scan_inactive;
  209. unsigned long pages_scanned; /* since last reclaim */
  210. int all_unreclaimable; /* All pages pinned */
  211. /* A count of how many reclaimers are scanning this zone */
  212. atomic_t reclaim_in_progress;
  213. /* Zone statistics */
  214. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  215. /*
  216. * prev_priority holds the scanning priority for this zone. It is
  217. * defined as the scanning priority at which we achieved our reclaim
  218. * target at the previous try_to_free_pages() or balance_pgdat()
  219. * invokation.
  220. *
  221. * We use prev_priority as a measure of how much stress page reclaim is
  222. * under - it drives the swappiness decision: whether to unmap mapped
  223. * pages.
  224. *
  225. * Access to both this field is quite racy even on uniprocessor. But
  226. * it is expected to average out OK.
  227. */
  228. int prev_priority;
  229. ZONE_PADDING(_pad2_)
  230. /* Rarely used or read-mostly fields */
  231. /*
  232. * wait_table -- the array holding the hash table
  233. * wait_table_hash_nr_entries -- the size of the hash table array
  234. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  235. *
  236. * The purpose of all these is to keep track of the people
  237. * waiting for a page to become available and make them
  238. * runnable again when possible. The trouble is that this
  239. * consumes a lot of space, especially when so few things
  240. * wait on pages at a given time. So instead of using
  241. * per-page waitqueues, we use a waitqueue hash table.
  242. *
  243. * The bucket discipline is to sleep on the same queue when
  244. * colliding and wake all in that wait queue when removing.
  245. * When something wakes, it must check to be sure its page is
  246. * truly available, a la thundering herd. The cost of a
  247. * collision is great, but given the expected load of the
  248. * table, they should be so rare as to be outweighed by the
  249. * benefits from the saved space.
  250. *
  251. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  252. * primary users of these fields, and in mm/page_alloc.c
  253. * free_area_init_core() performs the initialization of them.
  254. */
  255. wait_queue_head_t * wait_table;
  256. unsigned long wait_table_hash_nr_entries;
  257. unsigned long wait_table_bits;
  258. /*
  259. * Discontig memory support fields.
  260. */
  261. struct pglist_data *zone_pgdat;
  262. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  263. unsigned long zone_start_pfn;
  264. /*
  265. * zone_start_pfn, spanned_pages and present_pages are all
  266. * protected by span_seqlock. It is a seqlock because it has
  267. * to be read outside of zone->lock, and it is done in the main
  268. * allocator path. But, it is written quite infrequently.
  269. *
  270. * The lock is declared along with zone->lock because it is
  271. * frequently read in proximity to zone->lock. It's good to
  272. * give them a chance of being in the same cacheline.
  273. */
  274. unsigned long spanned_pages; /* total size, including holes */
  275. unsigned long present_pages; /* amount of memory (excluding holes) */
  276. /*
  277. * rarely used fields:
  278. */
  279. const char *name;
  280. } ____cacheline_internodealigned_in_smp;
  281. /*
  282. * The "priority" of VM scanning is how much of the queues we will scan in one
  283. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  284. * queues ("queue_length >> 12") during an aging round.
  285. */
  286. #define DEF_PRIORITY 12
  287. /* Maximum number of zones on a zonelist */
  288. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  289. #ifdef CONFIG_NUMA
  290. /*
  291. * We cache key information from each zonelist for smaller cache
  292. * footprint when scanning for free pages in get_page_from_freelist().
  293. *
  294. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  295. * up short of free memory since the last time (last_fullzone_zap)
  296. * we zero'd fullzones.
  297. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  298. * id, so that we can efficiently evaluate whether that node is
  299. * set in the current tasks mems_allowed.
  300. *
  301. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  302. * indexed by a zones offset in the zonelist zones[] array.
  303. *
  304. * The get_page_from_freelist() routine does two scans. During the
  305. * first scan, we skip zones whose corresponding bit in 'fullzones'
  306. * is set or whose corresponding node in current->mems_allowed (which
  307. * comes from cpusets) is not set. During the second scan, we bypass
  308. * this zonelist_cache, to ensure we look methodically at each zone.
  309. *
  310. * Once per second, we zero out (zap) fullzones, forcing us to
  311. * reconsider nodes that might have regained more free memory.
  312. * The field last_full_zap is the time we last zapped fullzones.
  313. *
  314. * This mechanism reduces the amount of time we waste repeatedly
  315. * reexaming zones for free memory when they just came up low on
  316. * memory momentarilly ago.
  317. *
  318. * The zonelist_cache struct members logically belong in struct
  319. * zonelist. However, the mempolicy zonelists constructed for
  320. * MPOL_BIND are intentionally variable length (and usually much
  321. * shorter). A general purpose mechanism for handling structs with
  322. * multiple variable length members is more mechanism than we want
  323. * here. We resort to some special case hackery instead.
  324. *
  325. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  326. * part because they are shorter), so we put the fixed length stuff
  327. * at the front of the zonelist struct, ending in a variable length
  328. * zones[], as is needed by MPOL_BIND.
  329. *
  330. * Then we put the optional zonelist cache on the end of the zonelist
  331. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  332. * the fixed length portion at the front of the struct. This pointer
  333. * both enables us to find the zonelist cache, and in the case of
  334. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  335. * to know that the zonelist cache is not there.
  336. *
  337. * The end result is that struct zonelists come in two flavors:
  338. * 1) The full, fixed length version, shown below, and
  339. * 2) The custom zonelists for MPOL_BIND.
  340. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  341. *
  342. * Even though there may be multiple CPU cores on a node modifying
  343. * fullzones or last_full_zap in the same zonelist_cache at the same
  344. * time, we don't lock it. This is just hint data - if it is wrong now
  345. * and then, the allocator will still function, perhaps a bit slower.
  346. */
  347. struct zonelist_cache {
  348. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  349. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  350. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  351. };
  352. #else
  353. struct zonelist_cache;
  354. #endif
  355. /*
  356. * One allocation request operates on a zonelist. A zonelist
  357. * is a list of zones, the first one is the 'goal' of the
  358. * allocation, the other zones are fallback zones, in decreasing
  359. * priority.
  360. *
  361. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  362. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  363. */
  364. struct zonelist {
  365. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  366. struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
  367. #ifdef CONFIG_NUMA
  368. struct zonelist_cache zlcache; // optional ...
  369. #endif
  370. };
  371. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  372. struct node_active_region {
  373. unsigned long start_pfn;
  374. unsigned long end_pfn;
  375. int nid;
  376. };
  377. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  378. #ifndef CONFIG_DISCONTIGMEM
  379. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  380. extern struct page *mem_map;
  381. #endif
  382. /*
  383. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  384. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  385. * zone denotes.
  386. *
  387. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  388. * it's memory layout.
  389. *
  390. * Memory statistics and page replacement data structures are maintained on a
  391. * per-zone basis.
  392. */
  393. struct bootmem_data;
  394. typedef struct pglist_data {
  395. struct zone node_zones[MAX_NR_ZONES];
  396. struct zonelist node_zonelists[MAX_NR_ZONES];
  397. int nr_zones;
  398. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  399. struct page *node_mem_map;
  400. #endif
  401. struct bootmem_data *bdata;
  402. #ifdef CONFIG_MEMORY_HOTPLUG
  403. /*
  404. * Must be held any time you expect node_start_pfn, node_present_pages
  405. * or node_spanned_pages stay constant. Holding this will also
  406. * guarantee that any pfn_valid() stays that way.
  407. *
  408. * Nests above zone->lock and zone->size_seqlock.
  409. */
  410. spinlock_t node_size_lock;
  411. #endif
  412. unsigned long node_start_pfn;
  413. unsigned long node_present_pages; /* total number of physical pages */
  414. unsigned long node_spanned_pages; /* total size of physical page
  415. range, including holes */
  416. int node_id;
  417. wait_queue_head_t kswapd_wait;
  418. struct task_struct *kswapd;
  419. int kswapd_max_order;
  420. } pg_data_t;
  421. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  422. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  423. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  424. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  425. #else
  426. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  427. #endif
  428. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  429. #include <linux/memory_hotplug.h>
  430. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  431. unsigned long *free);
  432. void build_all_zonelists(void);
  433. void wakeup_kswapd(struct zone *zone, int order);
  434. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  435. int classzone_idx, int alloc_flags);
  436. enum memmap_context {
  437. MEMMAP_EARLY,
  438. MEMMAP_HOTPLUG,
  439. };
  440. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  441. unsigned long size,
  442. enum memmap_context context);
  443. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  444. void memory_present(int nid, unsigned long start, unsigned long end);
  445. #else
  446. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  447. #endif
  448. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  449. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  450. #endif
  451. /*
  452. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  453. */
  454. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  455. static inline int populated_zone(struct zone *zone)
  456. {
  457. return (!!zone->present_pages);
  458. }
  459. extern int movable_zone;
  460. static inline int zone_movable_is_highmem(void)
  461. {
  462. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  463. return movable_zone == ZONE_HIGHMEM;
  464. #else
  465. return 0;
  466. #endif
  467. }
  468. static inline int is_highmem_idx(enum zone_type idx)
  469. {
  470. #ifdef CONFIG_HIGHMEM
  471. return (idx == ZONE_HIGHMEM ||
  472. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  473. #else
  474. return 0;
  475. #endif
  476. }
  477. static inline int is_normal_idx(enum zone_type idx)
  478. {
  479. return (idx == ZONE_NORMAL);
  480. }
  481. /**
  482. * is_highmem - helper function to quickly check if a struct zone is a
  483. * highmem zone or not. This is an attempt to keep references
  484. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  485. * @zone - pointer to struct zone variable
  486. */
  487. static inline int is_highmem(struct zone *zone)
  488. {
  489. #ifdef CONFIG_HIGHMEM
  490. int zone_idx = zone - zone->zone_pgdat->node_zones;
  491. return zone_idx == ZONE_HIGHMEM ||
  492. (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
  493. #else
  494. return 0;
  495. #endif
  496. }
  497. static inline int is_normal(struct zone *zone)
  498. {
  499. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  500. }
  501. static inline int is_dma32(struct zone *zone)
  502. {
  503. #ifdef CONFIG_ZONE_DMA32
  504. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  505. #else
  506. return 0;
  507. #endif
  508. }
  509. static inline int is_dma(struct zone *zone)
  510. {
  511. #ifdef CONFIG_ZONE_DMA
  512. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  513. #else
  514. return 0;
  515. #endif
  516. }
  517. /* These two functions are used to setup the per zone pages min values */
  518. struct ctl_table;
  519. struct file;
  520. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  521. void __user *, size_t *, loff_t *);
  522. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  523. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  524. void __user *, size_t *, loff_t *);
  525. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  526. void __user *, size_t *, loff_t *);
  527. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  528. struct file *, void __user *, size_t *, loff_t *);
  529. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  530. struct file *, void __user *, size_t *, loff_t *);
  531. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  532. struct file *, void __user *, size_t *, loff_t *);
  533. extern char numa_zonelist_order[];
  534. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  535. #include <linux/topology.h>
  536. /* Returns the number of the current Node. */
  537. #ifndef numa_node_id
  538. #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
  539. #endif
  540. #ifndef CONFIG_NEED_MULTIPLE_NODES
  541. extern struct pglist_data contig_page_data;
  542. #define NODE_DATA(nid) (&contig_page_data)
  543. #define NODE_MEM_MAP(nid) mem_map
  544. #define MAX_NODES_SHIFT 1
  545. #else /* CONFIG_NEED_MULTIPLE_NODES */
  546. #include <asm/mmzone.h>
  547. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  548. extern struct pglist_data *first_online_pgdat(void);
  549. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  550. extern struct zone *next_zone(struct zone *zone);
  551. /**
  552. * for_each_pgdat - helper macro to iterate over all nodes
  553. * @pgdat - pointer to a pg_data_t variable
  554. */
  555. #define for_each_online_pgdat(pgdat) \
  556. for (pgdat = first_online_pgdat(); \
  557. pgdat; \
  558. pgdat = next_online_pgdat(pgdat))
  559. /**
  560. * for_each_zone - helper macro to iterate over all memory zones
  561. * @zone - pointer to struct zone variable
  562. *
  563. * The user only needs to declare the zone variable, for_each_zone
  564. * fills it in.
  565. */
  566. #define for_each_zone(zone) \
  567. for (zone = (first_online_pgdat())->node_zones; \
  568. zone; \
  569. zone = next_zone(zone))
  570. #ifdef CONFIG_SPARSEMEM
  571. #include <asm/sparsemem.h>
  572. #endif
  573. #if BITS_PER_LONG == 32
  574. /*
  575. * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
  576. * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
  577. */
  578. #define FLAGS_RESERVED 9
  579. #elif BITS_PER_LONG == 64
  580. /*
  581. * with 64 bit flags field, there's plenty of room.
  582. */
  583. #define FLAGS_RESERVED 32
  584. #else
  585. #error BITS_PER_LONG not defined
  586. #endif
  587. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  588. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  589. #define early_pfn_to_nid(nid) (0UL)
  590. #endif
  591. #ifdef CONFIG_FLATMEM
  592. #define pfn_to_nid(pfn) (0)
  593. #endif
  594. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  595. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  596. #ifdef CONFIG_SPARSEMEM
  597. /*
  598. * SECTION_SHIFT #bits space required to store a section #
  599. *
  600. * PA_SECTION_SHIFT physical address to/from section number
  601. * PFN_SECTION_SHIFT pfn to/from section number
  602. */
  603. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  604. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  605. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  606. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  607. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  608. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  609. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  610. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  611. #endif
  612. struct page;
  613. struct mem_section {
  614. /*
  615. * This is, logically, a pointer to an array of struct
  616. * pages. However, it is stored with some other magic.
  617. * (see sparse.c::sparse_init_one_section())
  618. *
  619. * Additionally during early boot we encode node id of
  620. * the location of the section here to guide allocation.
  621. * (see sparse.c::memory_present())
  622. *
  623. * Making it a UL at least makes someone do a cast
  624. * before using it wrong.
  625. */
  626. unsigned long section_mem_map;
  627. };
  628. #ifdef CONFIG_SPARSEMEM_EXTREME
  629. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  630. #else
  631. #define SECTIONS_PER_ROOT 1
  632. #endif
  633. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  634. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  635. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  636. #ifdef CONFIG_SPARSEMEM_EXTREME
  637. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  638. #else
  639. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  640. #endif
  641. static inline struct mem_section *__nr_to_section(unsigned long nr)
  642. {
  643. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  644. return NULL;
  645. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  646. }
  647. extern int __section_nr(struct mem_section* ms);
  648. /*
  649. * We use the lower bits of the mem_map pointer to store
  650. * a little bit of information. There should be at least
  651. * 3 bits here due to 32-bit alignment.
  652. */
  653. #define SECTION_MARKED_PRESENT (1UL<<0)
  654. #define SECTION_HAS_MEM_MAP (1UL<<1)
  655. #define SECTION_MAP_LAST_BIT (1UL<<2)
  656. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  657. #define SECTION_NID_SHIFT 2
  658. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  659. {
  660. unsigned long map = section->section_mem_map;
  661. map &= SECTION_MAP_MASK;
  662. return (struct page *)map;
  663. }
  664. static inline int valid_section(struct mem_section *section)
  665. {
  666. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  667. }
  668. static inline int section_has_mem_map(struct mem_section *section)
  669. {
  670. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  671. }
  672. static inline int valid_section_nr(unsigned long nr)
  673. {
  674. return valid_section(__nr_to_section(nr));
  675. }
  676. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  677. {
  678. return __nr_to_section(pfn_to_section_nr(pfn));
  679. }
  680. static inline int pfn_valid(unsigned long pfn)
  681. {
  682. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  683. return 0;
  684. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  685. }
  686. /*
  687. * These are _only_ used during initialisation, therefore they
  688. * can use __initdata ... They could have names to indicate
  689. * this restriction.
  690. */
  691. #ifdef CONFIG_NUMA
  692. #define pfn_to_nid(pfn) \
  693. ({ \
  694. unsigned long __pfn_to_nid_pfn = (pfn); \
  695. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  696. })
  697. #else
  698. #define pfn_to_nid(pfn) (0)
  699. #endif
  700. #define early_pfn_valid(pfn) pfn_valid(pfn)
  701. void sparse_init(void);
  702. #else
  703. #define sparse_init() do {} while (0)
  704. #define sparse_index_init(_sec, _nid) do {} while (0)
  705. #endif /* CONFIG_SPARSEMEM */
  706. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  707. #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
  708. #else
  709. #define early_pfn_in_nid(pfn, nid) (1)
  710. #endif
  711. #ifndef early_pfn_valid
  712. #define early_pfn_valid(pfn) (1)
  713. #endif
  714. void memory_present(int nid, unsigned long start, unsigned long end);
  715. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  716. /*
  717. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  718. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  719. * pfn_valid_within() should be used in this case; we optimise this away
  720. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  721. */
  722. #ifdef CONFIG_HOLES_IN_ZONE
  723. #define pfn_valid_within(pfn) pfn_valid(pfn)
  724. #else
  725. #define pfn_valid_within(pfn) (1)
  726. #endif
  727. #endif /* !__ASSEMBLY__ */
  728. #endif /* __KERNEL__ */
  729. #endif /* _LINUX_MMZONE_H */