evlist.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include "debugfs.h"
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "evlist.h"
  15. #include "evsel.h"
  16. #include <unistd.h>
  17. #include "parse-events.h"
  18. #include <sys/mman.h>
  19. #include <linux/bitops.h>
  20. #include <linux/hash.h>
  21. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  22. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  23. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  24. struct thread_map *threads)
  25. {
  26. int i;
  27. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  28. INIT_HLIST_HEAD(&evlist->heads[i]);
  29. INIT_LIST_HEAD(&evlist->entries);
  30. perf_evlist__set_maps(evlist, cpus, threads);
  31. evlist->workload.pid = -1;
  32. }
  33. struct perf_evlist *perf_evlist__new(struct cpu_map *cpus,
  34. struct thread_map *threads)
  35. {
  36. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  37. if (evlist != NULL)
  38. perf_evlist__init(evlist, cpus, threads);
  39. return evlist;
  40. }
  41. void perf_evlist__config_attrs(struct perf_evlist *evlist,
  42. struct perf_record_opts *opts)
  43. {
  44. struct perf_evsel *evsel;
  45. if (evlist->cpus->map[0] < 0)
  46. opts->no_inherit = true;
  47. list_for_each_entry(evsel, &evlist->entries, node) {
  48. perf_evsel__config(evsel, opts);
  49. if (evlist->nr_entries > 1)
  50. evsel->attr.sample_type |= PERF_SAMPLE_ID;
  51. }
  52. }
  53. static void perf_evlist__purge(struct perf_evlist *evlist)
  54. {
  55. struct perf_evsel *pos, *n;
  56. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  57. list_del_init(&pos->node);
  58. perf_evsel__delete(pos);
  59. }
  60. evlist->nr_entries = 0;
  61. }
  62. void perf_evlist__exit(struct perf_evlist *evlist)
  63. {
  64. free(evlist->mmap);
  65. free(evlist->pollfd);
  66. evlist->mmap = NULL;
  67. evlist->pollfd = NULL;
  68. }
  69. void perf_evlist__delete(struct perf_evlist *evlist)
  70. {
  71. perf_evlist__purge(evlist);
  72. perf_evlist__exit(evlist);
  73. free(evlist);
  74. }
  75. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  76. {
  77. list_add_tail(&entry->node, &evlist->entries);
  78. ++evlist->nr_entries;
  79. }
  80. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  81. struct list_head *list,
  82. int nr_entries)
  83. {
  84. list_splice_tail(list, &evlist->entries);
  85. evlist->nr_entries += nr_entries;
  86. }
  87. int perf_evlist__add_default(struct perf_evlist *evlist)
  88. {
  89. struct perf_event_attr attr = {
  90. .type = PERF_TYPE_HARDWARE,
  91. .config = PERF_COUNT_HW_CPU_CYCLES,
  92. };
  93. struct perf_evsel *evsel;
  94. event_attr_init(&attr);
  95. evsel = perf_evsel__new(&attr, 0);
  96. if (evsel == NULL)
  97. goto error;
  98. /* use strdup() because free(evsel) assumes name is allocated */
  99. evsel->name = strdup("cycles");
  100. if (!evsel->name)
  101. goto error_free;
  102. perf_evlist__add(evlist, evsel);
  103. return 0;
  104. error_free:
  105. perf_evsel__delete(evsel);
  106. error:
  107. return -ENOMEM;
  108. }
  109. int perf_evlist__add_attrs(struct perf_evlist *evlist,
  110. struct perf_event_attr *attrs, size_t nr_attrs)
  111. {
  112. struct perf_evsel *evsel, *n;
  113. LIST_HEAD(head);
  114. size_t i;
  115. for (i = 0; i < nr_attrs; i++) {
  116. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  117. if (evsel == NULL)
  118. goto out_delete_partial_list;
  119. list_add_tail(&evsel->node, &head);
  120. }
  121. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  122. return 0;
  123. out_delete_partial_list:
  124. list_for_each_entry_safe(evsel, n, &head, node)
  125. perf_evsel__delete(evsel);
  126. return -1;
  127. }
  128. static int trace_event__id(const char *evname)
  129. {
  130. char *filename, *colon;
  131. int err = -1, fd;
  132. if (asprintf(&filename, "%s/%s/id", tracing_events_path, evname) < 0)
  133. return -1;
  134. colon = strrchr(filename, ':');
  135. if (colon != NULL)
  136. *colon = '/';
  137. fd = open(filename, O_RDONLY);
  138. if (fd >= 0) {
  139. char id[16];
  140. if (read(fd, id, sizeof(id)) > 0)
  141. err = atoi(id);
  142. close(fd);
  143. }
  144. free(filename);
  145. return err;
  146. }
  147. int perf_evlist__add_tracepoints(struct perf_evlist *evlist,
  148. const char *tracepoints[],
  149. size_t nr_tracepoints)
  150. {
  151. int err;
  152. size_t i;
  153. struct perf_event_attr *attrs = zalloc(nr_tracepoints * sizeof(*attrs));
  154. if (attrs == NULL)
  155. return -1;
  156. for (i = 0; i < nr_tracepoints; i++) {
  157. err = trace_event__id(tracepoints[i]);
  158. if (err < 0)
  159. goto out_free_attrs;
  160. attrs[i].type = PERF_TYPE_TRACEPOINT;
  161. attrs[i].config = err;
  162. attrs[i].sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
  163. PERF_SAMPLE_CPU);
  164. attrs[i].sample_period = 1;
  165. }
  166. err = perf_evlist__add_attrs(evlist, attrs, nr_tracepoints);
  167. out_free_attrs:
  168. free(attrs);
  169. return err;
  170. }
  171. static struct perf_evsel *
  172. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  173. {
  174. struct perf_evsel *evsel;
  175. list_for_each_entry(evsel, &evlist->entries, node) {
  176. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  177. (int)evsel->attr.config == id)
  178. return evsel;
  179. }
  180. return NULL;
  181. }
  182. int perf_evlist__set_tracepoints_handlers(struct perf_evlist *evlist,
  183. const struct perf_evsel_str_handler *assocs,
  184. size_t nr_assocs)
  185. {
  186. struct perf_evsel *evsel;
  187. int err;
  188. size_t i;
  189. for (i = 0; i < nr_assocs; i++) {
  190. err = trace_event__id(assocs[i].name);
  191. if (err < 0)
  192. goto out;
  193. evsel = perf_evlist__find_tracepoint_by_id(evlist, err);
  194. if (evsel == NULL)
  195. continue;
  196. err = -EEXIST;
  197. if (evsel->handler.func != NULL)
  198. goto out;
  199. evsel->handler.func = assocs[i].handler;
  200. }
  201. err = 0;
  202. out:
  203. return err;
  204. }
  205. void perf_evlist__disable(struct perf_evlist *evlist)
  206. {
  207. int cpu, thread;
  208. struct perf_evsel *pos;
  209. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  210. list_for_each_entry(pos, &evlist->entries, node) {
  211. for (thread = 0; thread < evlist->threads->nr; thread++)
  212. ioctl(FD(pos, cpu, thread), PERF_EVENT_IOC_DISABLE);
  213. }
  214. }
  215. }
  216. void perf_evlist__enable(struct perf_evlist *evlist)
  217. {
  218. int cpu, thread;
  219. struct perf_evsel *pos;
  220. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  221. list_for_each_entry(pos, &evlist->entries, node) {
  222. for (thread = 0; thread < evlist->threads->nr; thread++)
  223. ioctl(FD(pos, cpu, thread), PERF_EVENT_IOC_ENABLE);
  224. }
  225. }
  226. }
  227. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  228. {
  229. int nfds = evlist->cpus->nr * evlist->threads->nr * evlist->nr_entries;
  230. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  231. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  232. }
  233. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  234. {
  235. fcntl(fd, F_SETFL, O_NONBLOCK);
  236. evlist->pollfd[evlist->nr_fds].fd = fd;
  237. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  238. evlist->nr_fds++;
  239. }
  240. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  241. struct perf_evsel *evsel,
  242. int cpu, int thread, u64 id)
  243. {
  244. int hash;
  245. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  246. sid->id = id;
  247. sid->evsel = evsel;
  248. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  249. hlist_add_head(&sid->node, &evlist->heads[hash]);
  250. }
  251. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  252. int cpu, int thread, u64 id)
  253. {
  254. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  255. evsel->id[evsel->ids++] = id;
  256. }
  257. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  258. struct perf_evsel *evsel,
  259. int cpu, int thread, int fd)
  260. {
  261. u64 read_data[4] = { 0, };
  262. int id_idx = 1; /* The first entry is the counter value */
  263. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  264. read(fd, &read_data, sizeof(read_data)) == -1)
  265. return -1;
  266. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  267. ++id_idx;
  268. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  269. ++id_idx;
  270. perf_evlist__id_add(evlist, evsel, cpu, thread, read_data[id_idx]);
  271. return 0;
  272. }
  273. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  274. {
  275. struct hlist_head *head;
  276. struct hlist_node *pos;
  277. struct perf_sample_id *sid;
  278. int hash;
  279. if (evlist->nr_entries == 1)
  280. return list_entry(evlist->entries.next, struct perf_evsel, node);
  281. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  282. head = &evlist->heads[hash];
  283. hlist_for_each_entry(sid, pos, head, node)
  284. if (sid->id == id)
  285. return sid->evsel;
  286. if (!perf_evlist__sample_id_all(evlist))
  287. return list_entry(evlist->entries.next, struct perf_evsel, node);
  288. return NULL;
  289. }
  290. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  291. {
  292. /* XXX Move this to perf.c, making it generally available */
  293. unsigned int page_size = sysconf(_SC_PAGE_SIZE);
  294. struct perf_mmap *md = &evlist->mmap[idx];
  295. unsigned int head = perf_mmap__read_head(md);
  296. unsigned int old = md->prev;
  297. unsigned char *data = md->base + page_size;
  298. union perf_event *event = NULL;
  299. if (evlist->overwrite) {
  300. /*
  301. * If we're further behind than half the buffer, there's a chance
  302. * the writer will bite our tail and mess up the samples under us.
  303. *
  304. * If we somehow ended up ahead of the head, we got messed up.
  305. *
  306. * In either case, truncate and restart at head.
  307. */
  308. int diff = head - old;
  309. if (diff > md->mask / 2 || diff < 0) {
  310. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  311. /*
  312. * head points to a known good entry, start there.
  313. */
  314. old = head;
  315. }
  316. }
  317. if (old != head) {
  318. size_t size;
  319. event = (union perf_event *)&data[old & md->mask];
  320. size = event->header.size;
  321. /*
  322. * Event straddles the mmap boundary -- header should always
  323. * be inside due to u64 alignment of output.
  324. */
  325. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  326. unsigned int offset = old;
  327. unsigned int len = min(sizeof(*event), size), cpy;
  328. void *dst = &evlist->event_copy;
  329. do {
  330. cpy = min(md->mask + 1 - (offset & md->mask), len);
  331. memcpy(dst, &data[offset & md->mask], cpy);
  332. offset += cpy;
  333. dst += cpy;
  334. len -= cpy;
  335. } while (len);
  336. event = &evlist->event_copy;
  337. }
  338. old += size;
  339. }
  340. md->prev = old;
  341. if (!evlist->overwrite)
  342. perf_mmap__write_tail(md, old);
  343. return event;
  344. }
  345. void perf_evlist__munmap(struct perf_evlist *evlist)
  346. {
  347. int i;
  348. for (i = 0; i < evlist->nr_mmaps; i++) {
  349. if (evlist->mmap[i].base != NULL) {
  350. munmap(evlist->mmap[i].base, evlist->mmap_len);
  351. evlist->mmap[i].base = NULL;
  352. }
  353. }
  354. free(evlist->mmap);
  355. evlist->mmap = NULL;
  356. }
  357. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  358. {
  359. evlist->nr_mmaps = evlist->cpus->nr;
  360. if (evlist->cpus->map[0] == -1)
  361. evlist->nr_mmaps = evlist->threads->nr;
  362. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  363. return evlist->mmap != NULL ? 0 : -ENOMEM;
  364. }
  365. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  366. int idx, int prot, int mask, int fd)
  367. {
  368. evlist->mmap[idx].prev = 0;
  369. evlist->mmap[idx].mask = mask;
  370. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  371. MAP_SHARED, fd, 0);
  372. if (evlist->mmap[idx].base == MAP_FAILED) {
  373. evlist->mmap[idx].base = NULL;
  374. return -1;
  375. }
  376. perf_evlist__add_pollfd(evlist, fd);
  377. return 0;
  378. }
  379. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  380. {
  381. struct perf_evsel *evsel;
  382. int cpu, thread;
  383. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  384. int output = -1;
  385. for (thread = 0; thread < evlist->threads->nr; thread++) {
  386. list_for_each_entry(evsel, &evlist->entries, node) {
  387. int fd = FD(evsel, cpu, thread);
  388. if (output == -1) {
  389. output = fd;
  390. if (__perf_evlist__mmap(evlist, cpu,
  391. prot, mask, output) < 0)
  392. goto out_unmap;
  393. } else {
  394. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  395. goto out_unmap;
  396. }
  397. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  398. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  399. goto out_unmap;
  400. }
  401. }
  402. }
  403. return 0;
  404. out_unmap:
  405. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  406. if (evlist->mmap[cpu].base != NULL) {
  407. munmap(evlist->mmap[cpu].base, evlist->mmap_len);
  408. evlist->mmap[cpu].base = NULL;
  409. }
  410. }
  411. return -1;
  412. }
  413. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  414. {
  415. struct perf_evsel *evsel;
  416. int thread;
  417. for (thread = 0; thread < evlist->threads->nr; thread++) {
  418. int output = -1;
  419. list_for_each_entry(evsel, &evlist->entries, node) {
  420. int fd = FD(evsel, 0, thread);
  421. if (output == -1) {
  422. output = fd;
  423. if (__perf_evlist__mmap(evlist, thread,
  424. prot, mask, output) < 0)
  425. goto out_unmap;
  426. } else {
  427. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  428. goto out_unmap;
  429. }
  430. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  431. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  432. goto out_unmap;
  433. }
  434. }
  435. return 0;
  436. out_unmap:
  437. for (thread = 0; thread < evlist->threads->nr; thread++) {
  438. if (evlist->mmap[thread].base != NULL) {
  439. munmap(evlist->mmap[thread].base, evlist->mmap_len);
  440. evlist->mmap[thread].base = NULL;
  441. }
  442. }
  443. return -1;
  444. }
  445. /** perf_evlist__mmap - Create per cpu maps to receive events
  446. *
  447. * @evlist - list of events
  448. * @pages - map length in pages
  449. * @overwrite - overwrite older events?
  450. *
  451. * If overwrite is false the user needs to signal event consuption using:
  452. *
  453. * struct perf_mmap *m = &evlist->mmap[cpu];
  454. * unsigned int head = perf_mmap__read_head(m);
  455. *
  456. * perf_mmap__write_tail(m, head)
  457. *
  458. * Using perf_evlist__read_on_cpu does this automatically.
  459. */
  460. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  461. bool overwrite)
  462. {
  463. unsigned int page_size = sysconf(_SC_PAGE_SIZE);
  464. struct perf_evsel *evsel;
  465. const struct cpu_map *cpus = evlist->cpus;
  466. const struct thread_map *threads = evlist->threads;
  467. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  468. /* 512 kiB: default amount of unprivileged mlocked memory */
  469. if (pages == UINT_MAX)
  470. pages = (512 * 1024) / page_size;
  471. else if (!is_power_of_2(pages))
  472. return -EINVAL;
  473. mask = pages * page_size - 1;
  474. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  475. return -ENOMEM;
  476. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  477. return -ENOMEM;
  478. evlist->overwrite = overwrite;
  479. evlist->mmap_len = (pages + 1) * page_size;
  480. list_for_each_entry(evsel, &evlist->entries, node) {
  481. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  482. evsel->sample_id == NULL &&
  483. perf_evsel__alloc_id(evsel, cpus->nr, threads->nr) < 0)
  484. return -ENOMEM;
  485. }
  486. if (evlist->cpus->map[0] == -1)
  487. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  488. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  489. }
  490. int perf_evlist__create_maps(struct perf_evlist *evlist, const char *target_pid,
  491. const char *target_tid, uid_t uid, const char *cpu_list)
  492. {
  493. evlist->threads = thread_map__new_str(target_pid, target_tid, uid);
  494. if (evlist->threads == NULL)
  495. return -1;
  496. if (uid != UINT_MAX || (cpu_list == NULL && target_tid))
  497. evlist->cpus = cpu_map__dummy_new();
  498. else
  499. evlist->cpus = cpu_map__new(cpu_list);
  500. if (evlist->cpus == NULL)
  501. goto out_delete_threads;
  502. return 0;
  503. out_delete_threads:
  504. thread_map__delete(evlist->threads);
  505. return -1;
  506. }
  507. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  508. {
  509. cpu_map__delete(evlist->cpus);
  510. thread_map__delete(evlist->threads);
  511. evlist->cpus = NULL;
  512. evlist->threads = NULL;
  513. }
  514. int perf_evlist__set_filters(struct perf_evlist *evlist)
  515. {
  516. const struct thread_map *threads = evlist->threads;
  517. const struct cpu_map *cpus = evlist->cpus;
  518. struct perf_evsel *evsel;
  519. char *filter;
  520. int thread;
  521. int cpu;
  522. int err;
  523. int fd;
  524. list_for_each_entry(evsel, &evlist->entries, node) {
  525. filter = evsel->filter;
  526. if (!filter)
  527. continue;
  528. for (cpu = 0; cpu < cpus->nr; cpu++) {
  529. for (thread = 0; thread < threads->nr; thread++) {
  530. fd = FD(evsel, cpu, thread);
  531. err = ioctl(fd, PERF_EVENT_IOC_SET_FILTER, filter);
  532. if (err)
  533. return err;
  534. }
  535. }
  536. }
  537. return 0;
  538. }
  539. bool perf_evlist__valid_sample_type(const struct perf_evlist *evlist)
  540. {
  541. struct perf_evsel *pos, *first;
  542. pos = first = list_entry(evlist->entries.next, struct perf_evsel, node);
  543. list_for_each_entry_continue(pos, &evlist->entries, node) {
  544. if (first->attr.sample_type != pos->attr.sample_type)
  545. return false;
  546. }
  547. return true;
  548. }
  549. u64 perf_evlist__sample_type(const struct perf_evlist *evlist)
  550. {
  551. struct perf_evsel *first;
  552. first = list_entry(evlist->entries.next, struct perf_evsel, node);
  553. return first->attr.sample_type;
  554. }
  555. u16 perf_evlist__id_hdr_size(const struct perf_evlist *evlist)
  556. {
  557. struct perf_evsel *first;
  558. struct perf_sample *data;
  559. u64 sample_type;
  560. u16 size = 0;
  561. first = list_entry(evlist->entries.next, struct perf_evsel, node);
  562. if (!first->attr.sample_id_all)
  563. goto out;
  564. sample_type = first->attr.sample_type;
  565. if (sample_type & PERF_SAMPLE_TID)
  566. size += sizeof(data->tid) * 2;
  567. if (sample_type & PERF_SAMPLE_TIME)
  568. size += sizeof(data->time);
  569. if (sample_type & PERF_SAMPLE_ID)
  570. size += sizeof(data->id);
  571. if (sample_type & PERF_SAMPLE_STREAM_ID)
  572. size += sizeof(data->stream_id);
  573. if (sample_type & PERF_SAMPLE_CPU)
  574. size += sizeof(data->cpu) * 2;
  575. out:
  576. return size;
  577. }
  578. bool perf_evlist__valid_sample_id_all(const struct perf_evlist *evlist)
  579. {
  580. struct perf_evsel *pos, *first;
  581. pos = first = list_entry(evlist->entries.next, struct perf_evsel, node);
  582. list_for_each_entry_continue(pos, &evlist->entries, node) {
  583. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  584. return false;
  585. }
  586. return true;
  587. }
  588. bool perf_evlist__sample_id_all(const struct perf_evlist *evlist)
  589. {
  590. struct perf_evsel *first;
  591. first = list_entry(evlist->entries.next, struct perf_evsel, node);
  592. return first->attr.sample_id_all;
  593. }
  594. void perf_evlist__set_selected(struct perf_evlist *evlist,
  595. struct perf_evsel *evsel)
  596. {
  597. evlist->selected = evsel;
  598. }
  599. int perf_evlist__open(struct perf_evlist *evlist, bool group)
  600. {
  601. struct perf_evsel *evsel, *first;
  602. int err, ncpus, nthreads;
  603. first = list_entry(evlist->entries.next, struct perf_evsel, node);
  604. list_for_each_entry(evsel, &evlist->entries, node) {
  605. struct xyarray *group_fd = NULL;
  606. if (group && evsel != first)
  607. group_fd = first->fd;
  608. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads,
  609. group, group_fd);
  610. if (err < 0)
  611. goto out_err;
  612. }
  613. return 0;
  614. out_err:
  615. ncpus = evlist->cpus ? evlist->cpus->nr : 1;
  616. nthreads = evlist->threads ? evlist->threads->nr : 1;
  617. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  618. perf_evsel__close(evsel, ncpus, nthreads);
  619. errno = -err;
  620. return err;
  621. }
  622. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  623. struct perf_record_opts *opts,
  624. const char *argv[])
  625. {
  626. int child_ready_pipe[2], go_pipe[2];
  627. char bf;
  628. if (pipe(child_ready_pipe) < 0) {
  629. perror("failed to create 'ready' pipe");
  630. return -1;
  631. }
  632. if (pipe(go_pipe) < 0) {
  633. perror("failed to create 'go' pipe");
  634. goto out_close_ready_pipe;
  635. }
  636. evlist->workload.pid = fork();
  637. if (evlist->workload.pid < 0) {
  638. perror("failed to fork");
  639. goto out_close_pipes;
  640. }
  641. if (!evlist->workload.pid) {
  642. if (opts->pipe_output)
  643. dup2(2, 1);
  644. close(child_ready_pipe[0]);
  645. close(go_pipe[1]);
  646. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  647. /*
  648. * Do a dummy execvp to get the PLT entry resolved,
  649. * so we avoid the resolver overhead on the real
  650. * execvp call.
  651. */
  652. execvp("", (char **)argv);
  653. /*
  654. * Tell the parent we're ready to go
  655. */
  656. close(child_ready_pipe[1]);
  657. /*
  658. * Wait until the parent tells us to go.
  659. */
  660. if (read(go_pipe[0], &bf, 1) == -1)
  661. perror("unable to read pipe");
  662. execvp(argv[0], (char **)argv);
  663. perror(argv[0]);
  664. kill(getppid(), SIGUSR1);
  665. exit(-1);
  666. }
  667. if (!opts->system_wide && !opts->target_tid && !opts->target_pid)
  668. evlist->threads->map[0] = evlist->workload.pid;
  669. close(child_ready_pipe[1]);
  670. close(go_pipe[0]);
  671. /*
  672. * wait for child to settle
  673. */
  674. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  675. perror("unable to read pipe");
  676. goto out_close_pipes;
  677. }
  678. evlist->workload.cork_fd = go_pipe[1];
  679. close(child_ready_pipe[0]);
  680. return 0;
  681. out_close_pipes:
  682. close(go_pipe[0]);
  683. close(go_pipe[1]);
  684. out_close_ready_pipe:
  685. close(child_ready_pipe[0]);
  686. close(child_ready_pipe[1]);
  687. return -1;
  688. }
  689. int perf_evlist__start_workload(struct perf_evlist *evlist)
  690. {
  691. if (evlist->workload.cork_fd > 0) {
  692. /*
  693. * Remove the cork, let it rip!
  694. */
  695. return close(evlist->workload.cork_fd);
  696. }
  697. return 0;
  698. }