security.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. #include <linux/integrity.h>
  19. #include <linux/ima.h>
  20. #include <linux/evm.h>
  21. #include <linux/fsnotify.h>
  22. #include <net/flow.h>
  23. #define MAX_LSM_EVM_XATTR 2
  24. /* Boot-time LSM user choice */
  25. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  26. CONFIG_DEFAULT_SECURITY;
  27. static struct security_operations *security_ops;
  28. static struct security_operations default_security_ops = {
  29. .name = "default",
  30. };
  31. static inline int __init verify(struct security_operations *ops)
  32. {
  33. /* verify the security_operations structure exists */
  34. if (!ops)
  35. return -EINVAL;
  36. security_fixup_ops(ops);
  37. return 0;
  38. }
  39. static void __init do_security_initcalls(void)
  40. {
  41. initcall_t *call;
  42. call = __security_initcall_start;
  43. while (call < __security_initcall_end) {
  44. (*call) ();
  45. call++;
  46. }
  47. }
  48. /**
  49. * security_init - initializes the security framework
  50. *
  51. * This should be called early in the kernel initialization sequence.
  52. */
  53. int __init security_init(void)
  54. {
  55. printk(KERN_INFO "Security Framework initialized\n");
  56. security_fixup_ops(&default_security_ops);
  57. security_ops = &default_security_ops;
  58. do_security_initcalls();
  59. return 0;
  60. }
  61. void reset_security_ops(void)
  62. {
  63. security_ops = &default_security_ops;
  64. }
  65. /* Save user chosen LSM */
  66. static int __init choose_lsm(char *str)
  67. {
  68. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  69. return 1;
  70. }
  71. __setup("security=", choose_lsm);
  72. /**
  73. * security_module_enable - Load given security module on boot ?
  74. * @ops: a pointer to the struct security_operations that is to be checked.
  75. *
  76. * Each LSM must pass this method before registering its own operations
  77. * to avoid security registration races. This method may also be used
  78. * to check if your LSM is currently loaded during kernel initialization.
  79. *
  80. * Return true if:
  81. * -The passed LSM is the one chosen by user at boot time,
  82. * -or the passed LSM is configured as the default and the user did not
  83. * choose an alternate LSM at boot time.
  84. * Otherwise, return false.
  85. */
  86. int __init security_module_enable(struct security_operations *ops)
  87. {
  88. return !strcmp(ops->name, chosen_lsm);
  89. }
  90. /**
  91. * register_security - registers a security framework with the kernel
  92. * @ops: a pointer to the struct security_options that is to be registered
  93. *
  94. * This function allows a security module to register itself with the
  95. * kernel security subsystem. Some rudimentary checking is done on the @ops
  96. * value passed to this function. You'll need to check first if your LSM
  97. * is allowed to register its @ops by calling security_module_enable(@ops).
  98. *
  99. * If there is already a security module registered with the kernel,
  100. * an error will be returned. Otherwise %0 is returned on success.
  101. */
  102. int __init register_security(struct security_operations *ops)
  103. {
  104. if (verify(ops)) {
  105. printk(KERN_DEBUG "%s could not verify "
  106. "security_operations structure.\n", __func__);
  107. return -EINVAL;
  108. }
  109. if (security_ops != &default_security_ops)
  110. return -EAGAIN;
  111. security_ops = ops;
  112. return 0;
  113. }
  114. /* Security operations */
  115. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  116. {
  117. return security_ops->ptrace_access_check(child, mode);
  118. }
  119. int security_ptrace_traceme(struct task_struct *parent)
  120. {
  121. return security_ops->ptrace_traceme(parent);
  122. }
  123. int security_capget(struct task_struct *target,
  124. kernel_cap_t *effective,
  125. kernel_cap_t *inheritable,
  126. kernel_cap_t *permitted)
  127. {
  128. return security_ops->capget(target, effective, inheritable, permitted);
  129. }
  130. int security_capset(struct cred *new, const struct cred *old,
  131. const kernel_cap_t *effective,
  132. const kernel_cap_t *inheritable,
  133. const kernel_cap_t *permitted)
  134. {
  135. return security_ops->capset(new, old,
  136. effective, inheritable, permitted);
  137. }
  138. int security_capable(const struct cred *cred, struct user_namespace *ns,
  139. int cap)
  140. {
  141. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  142. }
  143. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  144. int cap)
  145. {
  146. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  147. }
  148. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  149. {
  150. return security_ops->quotactl(cmds, type, id, sb);
  151. }
  152. int security_quota_on(struct dentry *dentry)
  153. {
  154. return security_ops->quota_on(dentry);
  155. }
  156. int security_syslog(int type)
  157. {
  158. return security_ops->syslog(type);
  159. }
  160. int security_settime(const struct timespec *ts, const struct timezone *tz)
  161. {
  162. return security_ops->settime(ts, tz);
  163. }
  164. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  165. {
  166. return security_ops->vm_enough_memory(mm, pages);
  167. }
  168. int security_bprm_set_creds(struct linux_binprm *bprm)
  169. {
  170. return security_ops->bprm_set_creds(bprm);
  171. }
  172. int security_bprm_check(struct linux_binprm *bprm)
  173. {
  174. int ret;
  175. ret = security_ops->bprm_check_security(bprm);
  176. if (ret)
  177. return ret;
  178. return ima_bprm_check(bprm);
  179. }
  180. void security_bprm_committing_creds(struct linux_binprm *bprm)
  181. {
  182. security_ops->bprm_committing_creds(bprm);
  183. }
  184. void security_bprm_committed_creds(struct linux_binprm *bprm)
  185. {
  186. security_ops->bprm_committed_creds(bprm);
  187. }
  188. int security_bprm_secureexec(struct linux_binprm *bprm)
  189. {
  190. return security_ops->bprm_secureexec(bprm);
  191. }
  192. int security_sb_alloc(struct super_block *sb)
  193. {
  194. return security_ops->sb_alloc_security(sb);
  195. }
  196. void security_sb_free(struct super_block *sb)
  197. {
  198. security_ops->sb_free_security(sb);
  199. }
  200. int security_sb_copy_data(char *orig, char *copy)
  201. {
  202. return security_ops->sb_copy_data(orig, copy);
  203. }
  204. EXPORT_SYMBOL(security_sb_copy_data);
  205. int security_sb_remount(struct super_block *sb, void *data)
  206. {
  207. return security_ops->sb_remount(sb, data);
  208. }
  209. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  210. {
  211. return security_ops->sb_kern_mount(sb, flags, data);
  212. }
  213. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  214. {
  215. return security_ops->sb_show_options(m, sb);
  216. }
  217. int security_sb_statfs(struct dentry *dentry)
  218. {
  219. return security_ops->sb_statfs(dentry);
  220. }
  221. int security_sb_mount(char *dev_name, struct path *path,
  222. char *type, unsigned long flags, void *data)
  223. {
  224. return security_ops->sb_mount(dev_name, path, type, flags, data);
  225. }
  226. int security_sb_umount(struct vfsmount *mnt, int flags)
  227. {
  228. return security_ops->sb_umount(mnt, flags);
  229. }
  230. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  231. {
  232. return security_ops->sb_pivotroot(old_path, new_path);
  233. }
  234. int security_sb_set_mnt_opts(struct super_block *sb,
  235. struct security_mnt_opts *opts)
  236. {
  237. return security_ops->sb_set_mnt_opts(sb, opts);
  238. }
  239. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  240. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  241. struct super_block *newsb)
  242. {
  243. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  244. }
  245. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  246. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  247. {
  248. return security_ops->sb_parse_opts_str(options, opts);
  249. }
  250. EXPORT_SYMBOL(security_sb_parse_opts_str);
  251. int security_inode_alloc(struct inode *inode)
  252. {
  253. inode->i_security = NULL;
  254. return security_ops->inode_alloc_security(inode);
  255. }
  256. void security_inode_free(struct inode *inode)
  257. {
  258. integrity_inode_free(inode);
  259. security_ops->inode_free_security(inode);
  260. }
  261. int security_inode_init_security(struct inode *inode, struct inode *dir,
  262. const struct qstr *qstr,
  263. const initxattrs initxattrs, void *fs_data)
  264. {
  265. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  266. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  267. int ret;
  268. if (unlikely(IS_PRIVATE(inode)))
  269. return 0;
  270. memset(new_xattrs, 0, sizeof new_xattrs);
  271. if (!initxattrs)
  272. return security_ops->inode_init_security(inode, dir, qstr,
  273. NULL, NULL, NULL);
  274. lsm_xattr = new_xattrs;
  275. ret = security_ops->inode_init_security(inode, dir, qstr,
  276. &lsm_xattr->name,
  277. &lsm_xattr->value,
  278. &lsm_xattr->value_len);
  279. if (ret)
  280. goto out;
  281. evm_xattr = lsm_xattr + 1;
  282. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  283. if (ret)
  284. goto out;
  285. ret = initxattrs(inode, new_xattrs, fs_data);
  286. out:
  287. for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
  288. kfree(xattr->name);
  289. kfree(xattr->value);
  290. }
  291. return (ret == -EOPNOTSUPP) ? 0 : ret;
  292. }
  293. EXPORT_SYMBOL(security_inode_init_security);
  294. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  295. const struct qstr *qstr, char **name,
  296. void **value, size_t *len)
  297. {
  298. if (unlikely(IS_PRIVATE(inode)))
  299. return -EOPNOTSUPP;
  300. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  301. len);
  302. }
  303. EXPORT_SYMBOL(security_old_inode_init_security);
  304. #ifdef CONFIG_SECURITY_PATH
  305. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  306. unsigned int dev)
  307. {
  308. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  309. return 0;
  310. return security_ops->path_mknod(dir, dentry, mode, dev);
  311. }
  312. EXPORT_SYMBOL(security_path_mknod);
  313. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  314. {
  315. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  316. return 0;
  317. return security_ops->path_mkdir(dir, dentry, mode);
  318. }
  319. EXPORT_SYMBOL(security_path_mkdir);
  320. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  321. {
  322. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  323. return 0;
  324. return security_ops->path_rmdir(dir, dentry);
  325. }
  326. int security_path_unlink(struct path *dir, struct dentry *dentry)
  327. {
  328. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  329. return 0;
  330. return security_ops->path_unlink(dir, dentry);
  331. }
  332. EXPORT_SYMBOL(security_path_unlink);
  333. int security_path_symlink(struct path *dir, struct dentry *dentry,
  334. const char *old_name)
  335. {
  336. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  337. return 0;
  338. return security_ops->path_symlink(dir, dentry, old_name);
  339. }
  340. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  341. struct dentry *new_dentry)
  342. {
  343. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  344. return 0;
  345. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  346. }
  347. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  348. struct path *new_dir, struct dentry *new_dentry)
  349. {
  350. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  351. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  352. return 0;
  353. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  354. new_dentry);
  355. }
  356. EXPORT_SYMBOL(security_path_rename);
  357. int security_path_truncate(struct path *path)
  358. {
  359. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  360. return 0;
  361. return security_ops->path_truncate(path);
  362. }
  363. int security_path_chmod(struct path *path, umode_t mode)
  364. {
  365. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  366. return 0;
  367. return security_ops->path_chmod(path, mode);
  368. }
  369. int security_path_chown(struct path *path, uid_t uid, gid_t gid)
  370. {
  371. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  372. return 0;
  373. return security_ops->path_chown(path, uid, gid);
  374. }
  375. int security_path_chroot(struct path *path)
  376. {
  377. return security_ops->path_chroot(path);
  378. }
  379. #endif
  380. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  381. {
  382. if (unlikely(IS_PRIVATE(dir)))
  383. return 0;
  384. return security_ops->inode_create(dir, dentry, mode);
  385. }
  386. EXPORT_SYMBOL_GPL(security_inode_create);
  387. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  388. struct dentry *new_dentry)
  389. {
  390. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  391. return 0;
  392. return security_ops->inode_link(old_dentry, dir, new_dentry);
  393. }
  394. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  395. {
  396. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  397. return 0;
  398. return security_ops->inode_unlink(dir, dentry);
  399. }
  400. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  401. const char *old_name)
  402. {
  403. if (unlikely(IS_PRIVATE(dir)))
  404. return 0;
  405. return security_ops->inode_symlink(dir, dentry, old_name);
  406. }
  407. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  408. {
  409. if (unlikely(IS_PRIVATE(dir)))
  410. return 0;
  411. return security_ops->inode_mkdir(dir, dentry, mode);
  412. }
  413. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  414. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  415. {
  416. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  417. return 0;
  418. return security_ops->inode_rmdir(dir, dentry);
  419. }
  420. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  421. {
  422. if (unlikely(IS_PRIVATE(dir)))
  423. return 0;
  424. return security_ops->inode_mknod(dir, dentry, mode, dev);
  425. }
  426. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  427. struct inode *new_dir, struct dentry *new_dentry)
  428. {
  429. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  430. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  431. return 0;
  432. return security_ops->inode_rename(old_dir, old_dentry,
  433. new_dir, new_dentry);
  434. }
  435. int security_inode_readlink(struct dentry *dentry)
  436. {
  437. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  438. return 0;
  439. return security_ops->inode_readlink(dentry);
  440. }
  441. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  442. {
  443. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  444. return 0;
  445. return security_ops->inode_follow_link(dentry, nd);
  446. }
  447. int security_inode_permission(struct inode *inode, int mask)
  448. {
  449. if (unlikely(IS_PRIVATE(inode)))
  450. return 0;
  451. return security_ops->inode_permission(inode, mask);
  452. }
  453. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  454. {
  455. int ret;
  456. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  457. return 0;
  458. ret = security_ops->inode_setattr(dentry, attr);
  459. if (ret)
  460. return ret;
  461. return evm_inode_setattr(dentry, attr);
  462. }
  463. EXPORT_SYMBOL_GPL(security_inode_setattr);
  464. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  465. {
  466. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  467. return 0;
  468. return security_ops->inode_getattr(mnt, dentry);
  469. }
  470. int security_inode_setxattr(struct dentry *dentry, const char *name,
  471. const void *value, size_t size, int flags)
  472. {
  473. int ret;
  474. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  475. return 0;
  476. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  477. if (ret)
  478. return ret;
  479. return evm_inode_setxattr(dentry, name, value, size);
  480. }
  481. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  482. const void *value, size_t size, int flags)
  483. {
  484. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  485. return;
  486. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  487. evm_inode_post_setxattr(dentry, name, value, size);
  488. }
  489. int security_inode_getxattr(struct dentry *dentry, const char *name)
  490. {
  491. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  492. return 0;
  493. return security_ops->inode_getxattr(dentry, name);
  494. }
  495. int security_inode_listxattr(struct dentry *dentry)
  496. {
  497. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  498. return 0;
  499. return security_ops->inode_listxattr(dentry);
  500. }
  501. int security_inode_removexattr(struct dentry *dentry, const char *name)
  502. {
  503. int ret;
  504. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  505. return 0;
  506. ret = security_ops->inode_removexattr(dentry, name);
  507. if (ret)
  508. return ret;
  509. return evm_inode_removexattr(dentry, name);
  510. }
  511. int security_inode_need_killpriv(struct dentry *dentry)
  512. {
  513. return security_ops->inode_need_killpriv(dentry);
  514. }
  515. int security_inode_killpriv(struct dentry *dentry)
  516. {
  517. return security_ops->inode_killpriv(dentry);
  518. }
  519. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  520. {
  521. if (unlikely(IS_PRIVATE(inode)))
  522. return -EOPNOTSUPP;
  523. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  524. }
  525. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  526. {
  527. if (unlikely(IS_PRIVATE(inode)))
  528. return -EOPNOTSUPP;
  529. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  530. }
  531. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  532. {
  533. if (unlikely(IS_PRIVATE(inode)))
  534. return 0;
  535. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  536. }
  537. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  538. {
  539. security_ops->inode_getsecid(inode, secid);
  540. }
  541. int security_file_permission(struct file *file, int mask)
  542. {
  543. int ret;
  544. ret = security_ops->file_permission(file, mask);
  545. if (ret)
  546. return ret;
  547. return fsnotify_perm(file, mask);
  548. }
  549. int security_file_alloc(struct file *file)
  550. {
  551. return security_ops->file_alloc_security(file);
  552. }
  553. void security_file_free(struct file *file)
  554. {
  555. security_ops->file_free_security(file);
  556. }
  557. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  558. {
  559. return security_ops->file_ioctl(file, cmd, arg);
  560. }
  561. int security_file_mmap(struct file *file, unsigned long reqprot,
  562. unsigned long prot, unsigned long flags,
  563. unsigned long addr, unsigned long addr_only)
  564. {
  565. int ret;
  566. ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  567. if (ret)
  568. return ret;
  569. return ima_file_mmap(file, prot);
  570. }
  571. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  572. unsigned long prot)
  573. {
  574. return security_ops->file_mprotect(vma, reqprot, prot);
  575. }
  576. int security_file_lock(struct file *file, unsigned int cmd)
  577. {
  578. return security_ops->file_lock(file, cmd);
  579. }
  580. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  581. {
  582. return security_ops->file_fcntl(file, cmd, arg);
  583. }
  584. int security_file_set_fowner(struct file *file)
  585. {
  586. return security_ops->file_set_fowner(file);
  587. }
  588. int security_file_send_sigiotask(struct task_struct *tsk,
  589. struct fown_struct *fown, int sig)
  590. {
  591. return security_ops->file_send_sigiotask(tsk, fown, sig);
  592. }
  593. int security_file_receive(struct file *file)
  594. {
  595. return security_ops->file_receive(file);
  596. }
  597. int security_dentry_open(struct file *file, const struct cred *cred)
  598. {
  599. int ret;
  600. ret = security_ops->dentry_open(file, cred);
  601. if (ret)
  602. return ret;
  603. return fsnotify_perm(file, MAY_OPEN);
  604. }
  605. int security_task_create(unsigned long clone_flags)
  606. {
  607. return security_ops->task_create(clone_flags);
  608. }
  609. void security_task_free(struct task_struct *task)
  610. {
  611. security_ops->task_free(task);
  612. }
  613. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  614. {
  615. return security_ops->cred_alloc_blank(cred, gfp);
  616. }
  617. void security_cred_free(struct cred *cred)
  618. {
  619. security_ops->cred_free(cred);
  620. }
  621. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  622. {
  623. return security_ops->cred_prepare(new, old, gfp);
  624. }
  625. void security_transfer_creds(struct cred *new, const struct cred *old)
  626. {
  627. security_ops->cred_transfer(new, old);
  628. }
  629. int security_kernel_act_as(struct cred *new, u32 secid)
  630. {
  631. return security_ops->kernel_act_as(new, secid);
  632. }
  633. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  634. {
  635. return security_ops->kernel_create_files_as(new, inode);
  636. }
  637. int security_kernel_module_request(char *kmod_name)
  638. {
  639. return security_ops->kernel_module_request(kmod_name);
  640. }
  641. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  642. int flags)
  643. {
  644. return security_ops->task_fix_setuid(new, old, flags);
  645. }
  646. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  647. {
  648. return security_ops->task_setpgid(p, pgid);
  649. }
  650. int security_task_getpgid(struct task_struct *p)
  651. {
  652. return security_ops->task_getpgid(p);
  653. }
  654. int security_task_getsid(struct task_struct *p)
  655. {
  656. return security_ops->task_getsid(p);
  657. }
  658. void security_task_getsecid(struct task_struct *p, u32 *secid)
  659. {
  660. security_ops->task_getsecid(p, secid);
  661. }
  662. EXPORT_SYMBOL(security_task_getsecid);
  663. int security_task_setnice(struct task_struct *p, int nice)
  664. {
  665. return security_ops->task_setnice(p, nice);
  666. }
  667. int security_task_setioprio(struct task_struct *p, int ioprio)
  668. {
  669. return security_ops->task_setioprio(p, ioprio);
  670. }
  671. int security_task_getioprio(struct task_struct *p)
  672. {
  673. return security_ops->task_getioprio(p);
  674. }
  675. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  676. struct rlimit *new_rlim)
  677. {
  678. return security_ops->task_setrlimit(p, resource, new_rlim);
  679. }
  680. int security_task_setscheduler(struct task_struct *p)
  681. {
  682. return security_ops->task_setscheduler(p);
  683. }
  684. int security_task_getscheduler(struct task_struct *p)
  685. {
  686. return security_ops->task_getscheduler(p);
  687. }
  688. int security_task_movememory(struct task_struct *p)
  689. {
  690. return security_ops->task_movememory(p);
  691. }
  692. int security_task_kill(struct task_struct *p, struct siginfo *info,
  693. int sig, u32 secid)
  694. {
  695. return security_ops->task_kill(p, info, sig, secid);
  696. }
  697. int security_task_wait(struct task_struct *p)
  698. {
  699. return security_ops->task_wait(p);
  700. }
  701. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  702. unsigned long arg4, unsigned long arg5)
  703. {
  704. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  705. }
  706. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  707. {
  708. security_ops->task_to_inode(p, inode);
  709. }
  710. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  711. {
  712. return security_ops->ipc_permission(ipcp, flag);
  713. }
  714. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  715. {
  716. security_ops->ipc_getsecid(ipcp, secid);
  717. }
  718. int security_msg_msg_alloc(struct msg_msg *msg)
  719. {
  720. return security_ops->msg_msg_alloc_security(msg);
  721. }
  722. void security_msg_msg_free(struct msg_msg *msg)
  723. {
  724. security_ops->msg_msg_free_security(msg);
  725. }
  726. int security_msg_queue_alloc(struct msg_queue *msq)
  727. {
  728. return security_ops->msg_queue_alloc_security(msq);
  729. }
  730. void security_msg_queue_free(struct msg_queue *msq)
  731. {
  732. security_ops->msg_queue_free_security(msq);
  733. }
  734. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  735. {
  736. return security_ops->msg_queue_associate(msq, msqflg);
  737. }
  738. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  739. {
  740. return security_ops->msg_queue_msgctl(msq, cmd);
  741. }
  742. int security_msg_queue_msgsnd(struct msg_queue *msq,
  743. struct msg_msg *msg, int msqflg)
  744. {
  745. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  746. }
  747. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  748. struct task_struct *target, long type, int mode)
  749. {
  750. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  751. }
  752. int security_shm_alloc(struct shmid_kernel *shp)
  753. {
  754. return security_ops->shm_alloc_security(shp);
  755. }
  756. void security_shm_free(struct shmid_kernel *shp)
  757. {
  758. security_ops->shm_free_security(shp);
  759. }
  760. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  761. {
  762. return security_ops->shm_associate(shp, shmflg);
  763. }
  764. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  765. {
  766. return security_ops->shm_shmctl(shp, cmd);
  767. }
  768. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  769. {
  770. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  771. }
  772. int security_sem_alloc(struct sem_array *sma)
  773. {
  774. return security_ops->sem_alloc_security(sma);
  775. }
  776. void security_sem_free(struct sem_array *sma)
  777. {
  778. security_ops->sem_free_security(sma);
  779. }
  780. int security_sem_associate(struct sem_array *sma, int semflg)
  781. {
  782. return security_ops->sem_associate(sma, semflg);
  783. }
  784. int security_sem_semctl(struct sem_array *sma, int cmd)
  785. {
  786. return security_ops->sem_semctl(sma, cmd);
  787. }
  788. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  789. unsigned nsops, int alter)
  790. {
  791. return security_ops->sem_semop(sma, sops, nsops, alter);
  792. }
  793. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  794. {
  795. if (unlikely(inode && IS_PRIVATE(inode)))
  796. return;
  797. security_ops->d_instantiate(dentry, inode);
  798. }
  799. EXPORT_SYMBOL(security_d_instantiate);
  800. int security_getprocattr(struct task_struct *p, char *name, char **value)
  801. {
  802. return security_ops->getprocattr(p, name, value);
  803. }
  804. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  805. {
  806. return security_ops->setprocattr(p, name, value, size);
  807. }
  808. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  809. {
  810. return security_ops->netlink_send(sk, skb);
  811. }
  812. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  813. {
  814. return security_ops->secid_to_secctx(secid, secdata, seclen);
  815. }
  816. EXPORT_SYMBOL(security_secid_to_secctx);
  817. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  818. {
  819. return security_ops->secctx_to_secid(secdata, seclen, secid);
  820. }
  821. EXPORT_SYMBOL(security_secctx_to_secid);
  822. void security_release_secctx(char *secdata, u32 seclen)
  823. {
  824. security_ops->release_secctx(secdata, seclen);
  825. }
  826. EXPORT_SYMBOL(security_release_secctx);
  827. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  828. {
  829. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  830. }
  831. EXPORT_SYMBOL(security_inode_notifysecctx);
  832. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  833. {
  834. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  835. }
  836. EXPORT_SYMBOL(security_inode_setsecctx);
  837. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  838. {
  839. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  840. }
  841. EXPORT_SYMBOL(security_inode_getsecctx);
  842. #ifdef CONFIG_SECURITY_NETWORK
  843. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  844. {
  845. return security_ops->unix_stream_connect(sock, other, newsk);
  846. }
  847. EXPORT_SYMBOL(security_unix_stream_connect);
  848. int security_unix_may_send(struct socket *sock, struct socket *other)
  849. {
  850. return security_ops->unix_may_send(sock, other);
  851. }
  852. EXPORT_SYMBOL(security_unix_may_send);
  853. int security_socket_create(int family, int type, int protocol, int kern)
  854. {
  855. return security_ops->socket_create(family, type, protocol, kern);
  856. }
  857. int security_socket_post_create(struct socket *sock, int family,
  858. int type, int protocol, int kern)
  859. {
  860. return security_ops->socket_post_create(sock, family, type,
  861. protocol, kern);
  862. }
  863. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  864. {
  865. return security_ops->socket_bind(sock, address, addrlen);
  866. }
  867. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  868. {
  869. return security_ops->socket_connect(sock, address, addrlen);
  870. }
  871. int security_socket_listen(struct socket *sock, int backlog)
  872. {
  873. return security_ops->socket_listen(sock, backlog);
  874. }
  875. int security_socket_accept(struct socket *sock, struct socket *newsock)
  876. {
  877. return security_ops->socket_accept(sock, newsock);
  878. }
  879. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  880. {
  881. return security_ops->socket_sendmsg(sock, msg, size);
  882. }
  883. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  884. int size, int flags)
  885. {
  886. return security_ops->socket_recvmsg(sock, msg, size, flags);
  887. }
  888. int security_socket_getsockname(struct socket *sock)
  889. {
  890. return security_ops->socket_getsockname(sock);
  891. }
  892. int security_socket_getpeername(struct socket *sock)
  893. {
  894. return security_ops->socket_getpeername(sock);
  895. }
  896. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  897. {
  898. return security_ops->socket_getsockopt(sock, level, optname);
  899. }
  900. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  901. {
  902. return security_ops->socket_setsockopt(sock, level, optname);
  903. }
  904. int security_socket_shutdown(struct socket *sock, int how)
  905. {
  906. return security_ops->socket_shutdown(sock, how);
  907. }
  908. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  909. {
  910. return security_ops->socket_sock_rcv_skb(sk, skb);
  911. }
  912. EXPORT_SYMBOL(security_sock_rcv_skb);
  913. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  914. int __user *optlen, unsigned len)
  915. {
  916. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  917. }
  918. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  919. {
  920. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  921. }
  922. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  923. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  924. {
  925. return security_ops->sk_alloc_security(sk, family, priority);
  926. }
  927. void security_sk_free(struct sock *sk)
  928. {
  929. security_ops->sk_free_security(sk);
  930. }
  931. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  932. {
  933. security_ops->sk_clone_security(sk, newsk);
  934. }
  935. EXPORT_SYMBOL(security_sk_clone);
  936. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  937. {
  938. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  939. }
  940. EXPORT_SYMBOL(security_sk_classify_flow);
  941. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  942. {
  943. security_ops->req_classify_flow(req, fl);
  944. }
  945. EXPORT_SYMBOL(security_req_classify_flow);
  946. void security_sock_graft(struct sock *sk, struct socket *parent)
  947. {
  948. security_ops->sock_graft(sk, parent);
  949. }
  950. EXPORT_SYMBOL(security_sock_graft);
  951. int security_inet_conn_request(struct sock *sk,
  952. struct sk_buff *skb, struct request_sock *req)
  953. {
  954. return security_ops->inet_conn_request(sk, skb, req);
  955. }
  956. EXPORT_SYMBOL(security_inet_conn_request);
  957. void security_inet_csk_clone(struct sock *newsk,
  958. const struct request_sock *req)
  959. {
  960. security_ops->inet_csk_clone(newsk, req);
  961. }
  962. void security_inet_conn_established(struct sock *sk,
  963. struct sk_buff *skb)
  964. {
  965. security_ops->inet_conn_established(sk, skb);
  966. }
  967. int security_secmark_relabel_packet(u32 secid)
  968. {
  969. return security_ops->secmark_relabel_packet(secid);
  970. }
  971. EXPORT_SYMBOL(security_secmark_relabel_packet);
  972. void security_secmark_refcount_inc(void)
  973. {
  974. security_ops->secmark_refcount_inc();
  975. }
  976. EXPORT_SYMBOL(security_secmark_refcount_inc);
  977. void security_secmark_refcount_dec(void)
  978. {
  979. security_ops->secmark_refcount_dec();
  980. }
  981. EXPORT_SYMBOL(security_secmark_refcount_dec);
  982. int security_tun_dev_create(void)
  983. {
  984. return security_ops->tun_dev_create();
  985. }
  986. EXPORT_SYMBOL(security_tun_dev_create);
  987. void security_tun_dev_post_create(struct sock *sk)
  988. {
  989. return security_ops->tun_dev_post_create(sk);
  990. }
  991. EXPORT_SYMBOL(security_tun_dev_post_create);
  992. int security_tun_dev_attach(struct sock *sk)
  993. {
  994. return security_ops->tun_dev_attach(sk);
  995. }
  996. EXPORT_SYMBOL(security_tun_dev_attach);
  997. #endif /* CONFIG_SECURITY_NETWORK */
  998. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  999. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  1000. {
  1001. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  1002. }
  1003. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1004. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1005. struct xfrm_sec_ctx **new_ctxp)
  1006. {
  1007. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1008. }
  1009. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1010. {
  1011. security_ops->xfrm_policy_free_security(ctx);
  1012. }
  1013. EXPORT_SYMBOL(security_xfrm_policy_free);
  1014. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1015. {
  1016. return security_ops->xfrm_policy_delete_security(ctx);
  1017. }
  1018. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1019. {
  1020. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1021. }
  1022. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1023. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1024. struct xfrm_sec_ctx *polsec, u32 secid)
  1025. {
  1026. if (!polsec)
  1027. return 0;
  1028. /*
  1029. * We want the context to be taken from secid which is usually
  1030. * from the sock.
  1031. */
  1032. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1033. }
  1034. int security_xfrm_state_delete(struct xfrm_state *x)
  1035. {
  1036. return security_ops->xfrm_state_delete_security(x);
  1037. }
  1038. EXPORT_SYMBOL(security_xfrm_state_delete);
  1039. void security_xfrm_state_free(struct xfrm_state *x)
  1040. {
  1041. security_ops->xfrm_state_free_security(x);
  1042. }
  1043. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1044. {
  1045. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1046. }
  1047. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1048. struct xfrm_policy *xp,
  1049. const struct flowi *fl)
  1050. {
  1051. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1052. }
  1053. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1054. {
  1055. return security_ops->xfrm_decode_session(skb, secid, 1);
  1056. }
  1057. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1058. {
  1059. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1060. BUG_ON(rc);
  1061. }
  1062. EXPORT_SYMBOL(security_skb_classify_flow);
  1063. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1064. #ifdef CONFIG_KEYS
  1065. int security_key_alloc(struct key *key, const struct cred *cred,
  1066. unsigned long flags)
  1067. {
  1068. return security_ops->key_alloc(key, cred, flags);
  1069. }
  1070. void security_key_free(struct key *key)
  1071. {
  1072. security_ops->key_free(key);
  1073. }
  1074. int security_key_permission(key_ref_t key_ref,
  1075. const struct cred *cred, key_perm_t perm)
  1076. {
  1077. return security_ops->key_permission(key_ref, cred, perm);
  1078. }
  1079. int security_key_getsecurity(struct key *key, char **_buffer)
  1080. {
  1081. return security_ops->key_getsecurity(key, _buffer);
  1082. }
  1083. #endif /* CONFIG_KEYS */
  1084. #ifdef CONFIG_AUDIT
  1085. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1086. {
  1087. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1088. }
  1089. int security_audit_rule_known(struct audit_krule *krule)
  1090. {
  1091. return security_ops->audit_rule_known(krule);
  1092. }
  1093. void security_audit_rule_free(void *lsmrule)
  1094. {
  1095. security_ops->audit_rule_free(lsmrule);
  1096. }
  1097. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1098. struct audit_context *actx)
  1099. {
  1100. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1101. }
  1102. #endif /* CONFIG_AUDIT */