page-writeback.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * Sleep at most 200ms at a time in balance_dirty_pages().
  39. */
  40. #define MAX_PAUSE max(HZ/5, 1)
  41. /*
  42. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  43. * by raising pause time to max_pause when falls below it.
  44. */
  45. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  46. /*
  47. * Estimate write bandwidth at 200ms intervals.
  48. */
  49. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  50. #define RATELIMIT_CALC_SHIFT 10
  51. /*
  52. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  53. * will look to see if it needs to force writeback or throttling.
  54. */
  55. static long ratelimit_pages = 32;
  56. /* The following parameters are exported via /proc/sys/vm */
  57. /*
  58. * Start background writeback (via writeback threads) at this percentage
  59. */
  60. int dirty_background_ratio = 10;
  61. /*
  62. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  63. * dirty_background_ratio * the amount of dirtyable memory
  64. */
  65. unsigned long dirty_background_bytes;
  66. /*
  67. * free highmem will not be subtracted from the total free memory
  68. * for calculating free ratios if vm_highmem_is_dirtyable is true
  69. */
  70. int vm_highmem_is_dirtyable;
  71. /*
  72. * The generator of dirty data starts writeback at this percentage
  73. */
  74. int vm_dirty_ratio = 20;
  75. /*
  76. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  77. * vm_dirty_ratio * the amount of dirtyable memory
  78. */
  79. unsigned long vm_dirty_bytes;
  80. /*
  81. * The interval between `kupdate'-style writebacks
  82. */
  83. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  84. /*
  85. * The longest time for which data is allowed to remain dirty
  86. */
  87. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  88. /*
  89. * Flag that makes the machine dump writes/reads and block dirtyings.
  90. */
  91. int block_dump;
  92. /*
  93. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  94. * a full sync is triggered after this time elapses without any disk activity.
  95. */
  96. int laptop_mode;
  97. EXPORT_SYMBOL(laptop_mode);
  98. /* End of sysctl-exported parameters */
  99. unsigned long global_dirty_limit;
  100. /*
  101. * Scale the writeback cache size proportional to the relative writeout speeds.
  102. *
  103. * We do this by keeping a floating proportion between BDIs, based on page
  104. * writeback completions [end_page_writeback()]. Those devices that write out
  105. * pages fastest will get the larger share, while the slower will get a smaller
  106. * share.
  107. *
  108. * We use page writeout completions because we are interested in getting rid of
  109. * dirty pages. Having them written out is the primary goal.
  110. *
  111. * We introduce a concept of time, a period over which we measure these events,
  112. * because demand can/will vary over time. The length of this period itself is
  113. * measured in page writeback completions.
  114. *
  115. */
  116. static struct prop_descriptor vm_completions;
  117. /*
  118. * Work out the current dirty-memory clamping and background writeout
  119. * thresholds.
  120. *
  121. * The main aim here is to lower them aggressively if there is a lot of mapped
  122. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  123. * pages. It is better to clamp down on writers than to start swapping, and
  124. * performing lots of scanning.
  125. *
  126. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  127. *
  128. * We don't permit the clamping level to fall below 5% - that is getting rather
  129. * excessive.
  130. *
  131. * We make sure that the background writeout level is below the adjusted
  132. * clamping level.
  133. */
  134. /*
  135. * In a memory zone, there is a certain amount of pages we consider
  136. * available for the page cache, which is essentially the number of
  137. * free and reclaimable pages, minus some zone reserves to protect
  138. * lowmem and the ability to uphold the zone's watermarks without
  139. * requiring writeback.
  140. *
  141. * This number of dirtyable pages is the base value of which the
  142. * user-configurable dirty ratio is the effictive number of pages that
  143. * are allowed to be actually dirtied. Per individual zone, or
  144. * globally by using the sum of dirtyable pages over all zones.
  145. *
  146. * Because the user is allowed to specify the dirty limit globally as
  147. * absolute number of bytes, calculating the per-zone dirty limit can
  148. * require translating the configured limit into a percentage of
  149. * global dirtyable memory first.
  150. */
  151. static unsigned long highmem_dirtyable_memory(unsigned long total)
  152. {
  153. #ifdef CONFIG_HIGHMEM
  154. int node;
  155. unsigned long x = 0;
  156. for_each_node_state(node, N_HIGH_MEMORY) {
  157. struct zone *z =
  158. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  159. x += zone_page_state(z, NR_FREE_PAGES) +
  160. zone_reclaimable_pages(z) - z->dirty_balance_reserve;
  161. }
  162. /*
  163. * Make sure that the number of highmem pages is never larger
  164. * than the number of the total dirtyable memory. This can only
  165. * occur in very strange VM situations but we want to make sure
  166. * that this does not occur.
  167. */
  168. return min(x, total);
  169. #else
  170. return 0;
  171. #endif
  172. }
  173. /**
  174. * global_dirtyable_memory - number of globally dirtyable pages
  175. *
  176. * Returns the global number of pages potentially available for dirty
  177. * page cache. This is the base value for the global dirty limits.
  178. */
  179. unsigned long global_dirtyable_memory(void)
  180. {
  181. unsigned long x;
  182. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
  183. dirty_balance_reserve;
  184. if (!vm_highmem_is_dirtyable)
  185. x -= highmem_dirtyable_memory(x);
  186. return x + 1; /* Ensure that we never return 0 */
  187. }
  188. /*
  189. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  190. *
  191. * Calculate the dirty thresholds based on sysctl parameters
  192. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  193. * - vm.dirty_ratio or vm.dirty_bytes
  194. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  195. * real-time tasks.
  196. */
  197. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  198. {
  199. unsigned long background;
  200. unsigned long dirty;
  201. unsigned long uninitialized_var(available_memory);
  202. struct task_struct *tsk;
  203. if (!vm_dirty_bytes || !dirty_background_bytes)
  204. available_memory = global_dirtyable_memory();
  205. if (vm_dirty_bytes)
  206. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  207. else
  208. dirty = (vm_dirty_ratio * available_memory) / 100;
  209. if (dirty_background_bytes)
  210. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  211. else
  212. background = (dirty_background_ratio * available_memory) / 100;
  213. if (background >= dirty)
  214. background = dirty / 2;
  215. tsk = current;
  216. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  217. background += background / 4;
  218. dirty += dirty / 4;
  219. }
  220. *pbackground = background;
  221. *pdirty = dirty;
  222. trace_global_dirty_state(background, dirty);
  223. }
  224. /**
  225. * zone_dirtyable_memory - number of dirtyable pages in a zone
  226. * @zone: the zone
  227. *
  228. * Returns the zone's number of pages potentially available for dirty
  229. * page cache. This is the base value for the per-zone dirty limits.
  230. */
  231. static unsigned long zone_dirtyable_memory(struct zone *zone)
  232. {
  233. /*
  234. * The effective global number of dirtyable pages may exclude
  235. * highmem as a big-picture measure to keep the ratio between
  236. * dirty memory and lowmem reasonable.
  237. *
  238. * But this function is purely about the individual zone and a
  239. * highmem zone can hold its share of dirty pages, so we don't
  240. * care about vm_highmem_is_dirtyable here.
  241. */
  242. return zone_page_state(zone, NR_FREE_PAGES) +
  243. zone_reclaimable_pages(zone) -
  244. zone->dirty_balance_reserve;
  245. }
  246. /**
  247. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  248. * @zone: the zone
  249. *
  250. * Returns the maximum number of dirty pages allowed in a zone, based
  251. * on the zone's dirtyable memory.
  252. */
  253. static unsigned long zone_dirty_limit(struct zone *zone)
  254. {
  255. unsigned long zone_memory = zone_dirtyable_memory(zone);
  256. struct task_struct *tsk = current;
  257. unsigned long dirty;
  258. if (vm_dirty_bytes)
  259. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  260. zone_memory / global_dirtyable_memory();
  261. else
  262. dirty = vm_dirty_ratio * zone_memory / 100;
  263. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  264. dirty += dirty / 4;
  265. return dirty;
  266. }
  267. /**
  268. * zone_dirty_ok - tells whether a zone is within its dirty limits
  269. * @zone: the zone to check
  270. *
  271. * Returns %true when the dirty pages in @zone are within the zone's
  272. * dirty limit, %false if the limit is exceeded.
  273. */
  274. bool zone_dirty_ok(struct zone *zone)
  275. {
  276. unsigned long limit = zone_dirty_limit(zone);
  277. return zone_page_state(zone, NR_FILE_DIRTY) +
  278. zone_page_state(zone, NR_UNSTABLE_NFS) +
  279. zone_page_state(zone, NR_WRITEBACK) <= limit;
  280. }
  281. /*
  282. * couple the period to the dirty_ratio:
  283. *
  284. * period/2 ~ roundup_pow_of_two(dirty limit)
  285. */
  286. static int calc_period_shift(void)
  287. {
  288. unsigned long dirty_total;
  289. if (vm_dirty_bytes)
  290. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  291. else
  292. dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
  293. 100;
  294. return 2 + ilog2(dirty_total - 1);
  295. }
  296. /*
  297. * update the period when the dirty threshold changes.
  298. */
  299. static void update_completion_period(void)
  300. {
  301. int shift = calc_period_shift();
  302. prop_change_shift(&vm_completions, shift);
  303. writeback_set_ratelimit();
  304. }
  305. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  306. void __user *buffer, size_t *lenp,
  307. loff_t *ppos)
  308. {
  309. int ret;
  310. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  311. if (ret == 0 && write)
  312. dirty_background_bytes = 0;
  313. return ret;
  314. }
  315. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  316. void __user *buffer, size_t *lenp,
  317. loff_t *ppos)
  318. {
  319. int ret;
  320. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  321. if (ret == 0 && write)
  322. dirty_background_ratio = 0;
  323. return ret;
  324. }
  325. int dirty_ratio_handler(struct ctl_table *table, int write,
  326. void __user *buffer, size_t *lenp,
  327. loff_t *ppos)
  328. {
  329. int old_ratio = vm_dirty_ratio;
  330. int ret;
  331. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  332. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  333. update_completion_period();
  334. vm_dirty_bytes = 0;
  335. }
  336. return ret;
  337. }
  338. int dirty_bytes_handler(struct ctl_table *table, int write,
  339. void __user *buffer, size_t *lenp,
  340. loff_t *ppos)
  341. {
  342. unsigned long old_bytes = vm_dirty_bytes;
  343. int ret;
  344. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  345. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  346. update_completion_period();
  347. vm_dirty_ratio = 0;
  348. }
  349. return ret;
  350. }
  351. /*
  352. * Increment the BDI's writeout completion count and the global writeout
  353. * completion count. Called from test_clear_page_writeback().
  354. */
  355. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  356. {
  357. __inc_bdi_stat(bdi, BDI_WRITTEN);
  358. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  359. bdi->max_prop_frac);
  360. }
  361. void bdi_writeout_inc(struct backing_dev_info *bdi)
  362. {
  363. unsigned long flags;
  364. local_irq_save(flags);
  365. __bdi_writeout_inc(bdi);
  366. local_irq_restore(flags);
  367. }
  368. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  369. /*
  370. * Obtain an accurate fraction of the BDI's portion.
  371. */
  372. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  373. long *numerator, long *denominator)
  374. {
  375. prop_fraction_percpu(&vm_completions, &bdi->completions,
  376. numerator, denominator);
  377. }
  378. /*
  379. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  380. * registered backing devices, which, for obvious reasons, can not
  381. * exceed 100%.
  382. */
  383. static unsigned int bdi_min_ratio;
  384. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  385. {
  386. int ret = 0;
  387. spin_lock_bh(&bdi_lock);
  388. if (min_ratio > bdi->max_ratio) {
  389. ret = -EINVAL;
  390. } else {
  391. min_ratio -= bdi->min_ratio;
  392. if (bdi_min_ratio + min_ratio < 100) {
  393. bdi_min_ratio += min_ratio;
  394. bdi->min_ratio += min_ratio;
  395. } else {
  396. ret = -EINVAL;
  397. }
  398. }
  399. spin_unlock_bh(&bdi_lock);
  400. return ret;
  401. }
  402. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  403. {
  404. int ret = 0;
  405. if (max_ratio > 100)
  406. return -EINVAL;
  407. spin_lock_bh(&bdi_lock);
  408. if (bdi->min_ratio > max_ratio) {
  409. ret = -EINVAL;
  410. } else {
  411. bdi->max_ratio = max_ratio;
  412. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  413. }
  414. spin_unlock_bh(&bdi_lock);
  415. return ret;
  416. }
  417. EXPORT_SYMBOL(bdi_set_max_ratio);
  418. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  419. unsigned long bg_thresh)
  420. {
  421. return (thresh + bg_thresh) / 2;
  422. }
  423. static unsigned long hard_dirty_limit(unsigned long thresh)
  424. {
  425. return max(thresh, global_dirty_limit);
  426. }
  427. /**
  428. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  429. * @bdi: the backing_dev_info to query
  430. * @dirty: global dirty limit in pages
  431. *
  432. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  433. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  434. *
  435. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  436. * when sleeping max_pause per page is not enough to keep the dirty pages under
  437. * control. For example, when the device is completely stalled due to some error
  438. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  439. * In the other normal situations, it acts more gently by throttling the tasks
  440. * more (rather than completely block them) when the bdi dirty pages go high.
  441. *
  442. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  443. * - starving fast devices
  444. * - piling up dirty pages (that will take long time to sync) on slow devices
  445. *
  446. * The bdi's share of dirty limit will be adapting to its throughput and
  447. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  448. */
  449. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  450. {
  451. u64 bdi_dirty;
  452. long numerator, denominator;
  453. /*
  454. * Calculate this BDI's share of the dirty ratio.
  455. */
  456. bdi_writeout_fraction(bdi, &numerator, &denominator);
  457. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  458. bdi_dirty *= numerator;
  459. do_div(bdi_dirty, denominator);
  460. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  461. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  462. bdi_dirty = dirty * bdi->max_ratio / 100;
  463. return bdi_dirty;
  464. }
  465. /*
  466. * Dirty position control.
  467. *
  468. * (o) global/bdi setpoints
  469. *
  470. * We want the dirty pages be balanced around the global/bdi setpoints.
  471. * When the number of dirty pages is higher/lower than the setpoint, the
  472. * dirty position control ratio (and hence task dirty ratelimit) will be
  473. * decreased/increased to bring the dirty pages back to the setpoint.
  474. *
  475. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  476. *
  477. * if (dirty < setpoint) scale up pos_ratio
  478. * if (dirty > setpoint) scale down pos_ratio
  479. *
  480. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  481. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  482. *
  483. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  484. *
  485. * (o) global control line
  486. *
  487. * ^ pos_ratio
  488. * |
  489. * | |<===== global dirty control scope ======>|
  490. * 2.0 .............*
  491. * | .*
  492. * | . *
  493. * | . *
  494. * | . *
  495. * | . *
  496. * | . *
  497. * 1.0 ................................*
  498. * | . . *
  499. * | . . *
  500. * | . . *
  501. * | . . *
  502. * | . . *
  503. * 0 +------------.------------------.----------------------*------------->
  504. * freerun^ setpoint^ limit^ dirty pages
  505. *
  506. * (o) bdi control line
  507. *
  508. * ^ pos_ratio
  509. * |
  510. * | *
  511. * | *
  512. * | *
  513. * | *
  514. * | * |<=========== span ============>|
  515. * 1.0 .......................*
  516. * | . *
  517. * | . *
  518. * | . *
  519. * | . *
  520. * | . *
  521. * | . *
  522. * | . *
  523. * | . *
  524. * | . *
  525. * | . *
  526. * | . *
  527. * 1/4 ...............................................* * * * * * * * * * * *
  528. * | . .
  529. * | . .
  530. * | . .
  531. * 0 +----------------------.-------------------------------.------------->
  532. * bdi_setpoint^ x_intercept^
  533. *
  534. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  535. * be smoothly throttled down to normal if it starts high in situations like
  536. * - start writing to a slow SD card and a fast disk at the same time. The SD
  537. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  538. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  539. */
  540. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  541. unsigned long thresh,
  542. unsigned long bg_thresh,
  543. unsigned long dirty,
  544. unsigned long bdi_thresh,
  545. unsigned long bdi_dirty)
  546. {
  547. unsigned long write_bw = bdi->avg_write_bandwidth;
  548. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  549. unsigned long limit = hard_dirty_limit(thresh);
  550. unsigned long x_intercept;
  551. unsigned long setpoint; /* dirty pages' target balance point */
  552. unsigned long bdi_setpoint;
  553. unsigned long span;
  554. long long pos_ratio; /* for scaling up/down the rate limit */
  555. long x;
  556. if (unlikely(dirty >= limit))
  557. return 0;
  558. /*
  559. * global setpoint
  560. *
  561. * setpoint - dirty 3
  562. * f(dirty) := 1.0 + (----------------)
  563. * limit - setpoint
  564. *
  565. * it's a 3rd order polynomial that subjects to
  566. *
  567. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  568. * (2) f(setpoint) = 1.0 => the balance point
  569. * (3) f(limit) = 0 => the hard limit
  570. * (4) df/dx <= 0 => negative feedback control
  571. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  572. * => fast response on large errors; small oscillation near setpoint
  573. */
  574. setpoint = (freerun + limit) / 2;
  575. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  576. limit - setpoint + 1);
  577. pos_ratio = x;
  578. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  579. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  580. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  581. /*
  582. * We have computed basic pos_ratio above based on global situation. If
  583. * the bdi is over/under its share of dirty pages, we want to scale
  584. * pos_ratio further down/up. That is done by the following mechanism.
  585. */
  586. /*
  587. * bdi setpoint
  588. *
  589. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  590. *
  591. * x_intercept - bdi_dirty
  592. * := --------------------------
  593. * x_intercept - bdi_setpoint
  594. *
  595. * The main bdi control line is a linear function that subjects to
  596. *
  597. * (1) f(bdi_setpoint) = 1.0
  598. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  599. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  600. *
  601. * For single bdi case, the dirty pages are observed to fluctuate
  602. * regularly within range
  603. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  604. * for various filesystems, where (2) can yield in a reasonable 12.5%
  605. * fluctuation range for pos_ratio.
  606. *
  607. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  608. * own size, so move the slope over accordingly and choose a slope that
  609. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  610. */
  611. if (unlikely(bdi_thresh > thresh))
  612. bdi_thresh = thresh;
  613. /*
  614. * It's very possible that bdi_thresh is close to 0 not because the
  615. * device is slow, but that it has remained inactive for long time.
  616. * Honour such devices a reasonable good (hopefully IO efficient)
  617. * threshold, so that the occasional writes won't be blocked and active
  618. * writes can rampup the threshold quickly.
  619. */
  620. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  621. /*
  622. * scale global setpoint to bdi's:
  623. * bdi_setpoint = setpoint * bdi_thresh / thresh
  624. */
  625. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  626. bdi_setpoint = setpoint * (u64)x >> 16;
  627. /*
  628. * Use span=(8*write_bw) in single bdi case as indicated by
  629. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  630. *
  631. * bdi_thresh thresh - bdi_thresh
  632. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  633. * thresh thresh
  634. */
  635. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  636. x_intercept = bdi_setpoint + span;
  637. if (bdi_dirty < x_intercept - span / 4) {
  638. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  639. x_intercept - bdi_setpoint + 1);
  640. } else
  641. pos_ratio /= 4;
  642. /*
  643. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  644. * It may push the desired control point of global dirty pages higher
  645. * than setpoint.
  646. */
  647. x_intercept = bdi_thresh / 2;
  648. if (bdi_dirty < x_intercept) {
  649. if (bdi_dirty > x_intercept / 8)
  650. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  651. else
  652. pos_ratio *= 8;
  653. }
  654. return pos_ratio;
  655. }
  656. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  657. unsigned long elapsed,
  658. unsigned long written)
  659. {
  660. const unsigned long period = roundup_pow_of_two(3 * HZ);
  661. unsigned long avg = bdi->avg_write_bandwidth;
  662. unsigned long old = bdi->write_bandwidth;
  663. u64 bw;
  664. /*
  665. * bw = written * HZ / elapsed
  666. *
  667. * bw * elapsed + write_bandwidth * (period - elapsed)
  668. * write_bandwidth = ---------------------------------------------------
  669. * period
  670. */
  671. bw = written - bdi->written_stamp;
  672. bw *= HZ;
  673. if (unlikely(elapsed > period)) {
  674. do_div(bw, elapsed);
  675. avg = bw;
  676. goto out;
  677. }
  678. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  679. bw >>= ilog2(period);
  680. /*
  681. * one more level of smoothing, for filtering out sudden spikes
  682. */
  683. if (avg > old && old >= (unsigned long)bw)
  684. avg -= (avg - old) >> 3;
  685. if (avg < old && old <= (unsigned long)bw)
  686. avg += (old - avg) >> 3;
  687. out:
  688. bdi->write_bandwidth = bw;
  689. bdi->avg_write_bandwidth = avg;
  690. }
  691. /*
  692. * The global dirtyable memory and dirty threshold could be suddenly knocked
  693. * down by a large amount (eg. on the startup of KVM in a swapless system).
  694. * This may throw the system into deep dirty exceeded state and throttle
  695. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  696. * global_dirty_limit for tracking slowly down to the knocked down dirty
  697. * threshold.
  698. */
  699. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  700. {
  701. unsigned long limit = global_dirty_limit;
  702. /*
  703. * Follow up in one step.
  704. */
  705. if (limit < thresh) {
  706. limit = thresh;
  707. goto update;
  708. }
  709. /*
  710. * Follow down slowly. Use the higher one as the target, because thresh
  711. * may drop below dirty. This is exactly the reason to introduce
  712. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  713. */
  714. thresh = max(thresh, dirty);
  715. if (limit > thresh) {
  716. limit -= (limit - thresh) >> 5;
  717. goto update;
  718. }
  719. return;
  720. update:
  721. global_dirty_limit = limit;
  722. }
  723. static void global_update_bandwidth(unsigned long thresh,
  724. unsigned long dirty,
  725. unsigned long now)
  726. {
  727. static DEFINE_SPINLOCK(dirty_lock);
  728. static unsigned long update_time;
  729. /*
  730. * check locklessly first to optimize away locking for the most time
  731. */
  732. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  733. return;
  734. spin_lock(&dirty_lock);
  735. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  736. update_dirty_limit(thresh, dirty);
  737. update_time = now;
  738. }
  739. spin_unlock(&dirty_lock);
  740. }
  741. /*
  742. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  743. *
  744. * Normal bdi tasks will be curbed at or below it in long term.
  745. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  746. */
  747. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  748. unsigned long thresh,
  749. unsigned long bg_thresh,
  750. unsigned long dirty,
  751. unsigned long bdi_thresh,
  752. unsigned long bdi_dirty,
  753. unsigned long dirtied,
  754. unsigned long elapsed)
  755. {
  756. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  757. unsigned long limit = hard_dirty_limit(thresh);
  758. unsigned long setpoint = (freerun + limit) / 2;
  759. unsigned long write_bw = bdi->avg_write_bandwidth;
  760. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  761. unsigned long dirty_rate;
  762. unsigned long task_ratelimit;
  763. unsigned long balanced_dirty_ratelimit;
  764. unsigned long pos_ratio;
  765. unsigned long step;
  766. unsigned long x;
  767. /*
  768. * The dirty rate will match the writeout rate in long term, except
  769. * when dirty pages are truncated by userspace or re-dirtied by FS.
  770. */
  771. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  772. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  773. bdi_thresh, bdi_dirty);
  774. /*
  775. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  776. */
  777. task_ratelimit = (u64)dirty_ratelimit *
  778. pos_ratio >> RATELIMIT_CALC_SHIFT;
  779. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  780. /*
  781. * A linear estimation of the "balanced" throttle rate. The theory is,
  782. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  783. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  784. * formula will yield the balanced rate limit (write_bw / N).
  785. *
  786. * Note that the expanded form is not a pure rate feedback:
  787. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  788. * but also takes pos_ratio into account:
  789. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  790. *
  791. * (1) is not realistic because pos_ratio also takes part in balancing
  792. * the dirty rate. Consider the state
  793. * pos_ratio = 0.5 (3)
  794. * rate = 2 * (write_bw / N) (4)
  795. * If (1) is used, it will stuck in that state! Because each dd will
  796. * be throttled at
  797. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  798. * yielding
  799. * dirty_rate = N * task_ratelimit = write_bw (6)
  800. * put (6) into (1) we get
  801. * rate_(i+1) = rate_(i) (7)
  802. *
  803. * So we end up using (2) to always keep
  804. * rate_(i+1) ~= (write_bw / N) (8)
  805. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  806. * pos_ratio is able to drive itself to 1.0, which is not only where
  807. * the dirty count meet the setpoint, but also where the slope of
  808. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  809. */
  810. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  811. dirty_rate | 1);
  812. /*
  813. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  814. */
  815. if (unlikely(balanced_dirty_ratelimit > write_bw))
  816. balanced_dirty_ratelimit = write_bw;
  817. /*
  818. * We could safely do this and return immediately:
  819. *
  820. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  821. *
  822. * However to get a more stable dirty_ratelimit, the below elaborated
  823. * code makes use of task_ratelimit to filter out sigular points and
  824. * limit the step size.
  825. *
  826. * The below code essentially only uses the relative value of
  827. *
  828. * task_ratelimit - dirty_ratelimit
  829. * = (pos_ratio - 1) * dirty_ratelimit
  830. *
  831. * which reflects the direction and size of dirty position error.
  832. */
  833. /*
  834. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  835. * task_ratelimit is on the same side of dirty_ratelimit, too.
  836. * For example, when
  837. * - dirty_ratelimit > balanced_dirty_ratelimit
  838. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  839. * lowering dirty_ratelimit will help meet both the position and rate
  840. * control targets. Otherwise, don't update dirty_ratelimit if it will
  841. * only help meet the rate target. After all, what the users ultimately
  842. * feel and care are stable dirty rate and small position error.
  843. *
  844. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  845. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  846. * keeps jumping around randomly and can even leap far away at times
  847. * due to the small 200ms estimation period of dirty_rate (we want to
  848. * keep that period small to reduce time lags).
  849. */
  850. step = 0;
  851. if (dirty < setpoint) {
  852. x = min(bdi->balanced_dirty_ratelimit,
  853. min(balanced_dirty_ratelimit, task_ratelimit));
  854. if (dirty_ratelimit < x)
  855. step = x - dirty_ratelimit;
  856. } else {
  857. x = max(bdi->balanced_dirty_ratelimit,
  858. max(balanced_dirty_ratelimit, task_ratelimit));
  859. if (dirty_ratelimit > x)
  860. step = dirty_ratelimit - x;
  861. }
  862. /*
  863. * Don't pursue 100% rate matching. It's impossible since the balanced
  864. * rate itself is constantly fluctuating. So decrease the track speed
  865. * when it gets close to the target. Helps eliminate pointless tremors.
  866. */
  867. step >>= dirty_ratelimit / (2 * step + 1);
  868. /*
  869. * Limit the tracking speed to avoid overshooting.
  870. */
  871. step = (step + 7) / 8;
  872. if (dirty_ratelimit < balanced_dirty_ratelimit)
  873. dirty_ratelimit += step;
  874. else
  875. dirty_ratelimit -= step;
  876. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  877. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  878. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  879. }
  880. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  881. unsigned long thresh,
  882. unsigned long bg_thresh,
  883. unsigned long dirty,
  884. unsigned long bdi_thresh,
  885. unsigned long bdi_dirty,
  886. unsigned long start_time)
  887. {
  888. unsigned long now = jiffies;
  889. unsigned long elapsed = now - bdi->bw_time_stamp;
  890. unsigned long dirtied;
  891. unsigned long written;
  892. /*
  893. * rate-limit, only update once every 200ms.
  894. */
  895. if (elapsed < BANDWIDTH_INTERVAL)
  896. return;
  897. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  898. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  899. /*
  900. * Skip quiet periods when disk bandwidth is under-utilized.
  901. * (at least 1s idle time between two flusher runs)
  902. */
  903. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  904. goto snapshot;
  905. if (thresh) {
  906. global_update_bandwidth(thresh, dirty, now);
  907. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  908. bdi_thresh, bdi_dirty,
  909. dirtied, elapsed);
  910. }
  911. bdi_update_write_bandwidth(bdi, elapsed, written);
  912. snapshot:
  913. bdi->dirtied_stamp = dirtied;
  914. bdi->written_stamp = written;
  915. bdi->bw_time_stamp = now;
  916. }
  917. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  918. unsigned long thresh,
  919. unsigned long bg_thresh,
  920. unsigned long dirty,
  921. unsigned long bdi_thresh,
  922. unsigned long bdi_dirty,
  923. unsigned long start_time)
  924. {
  925. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  926. return;
  927. spin_lock(&bdi->wb.list_lock);
  928. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  929. bdi_thresh, bdi_dirty, start_time);
  930. spin_unlock(&bdi->wb.list_lock);
  931. }
  932. /*
  933. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  934. * will look to see if it needs to start dirty throttling.
  935. *
  936. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  937. * global_page_state() too often. So scale it near-sqrt to the safety margin
  938. * (the number of pages we may dirty without exceeding the dirty limits).
  939. */
  940. static unsigned long dirty_poll_interval(unsigned long dirty,
  941. unsigned long thresh)
  942. {
  943. if (thresh > dirty)
  944. return 1UL << (ilog2(thresh - dirty) >> 1);
  945. return 1;
  946. }
  947. static long bdi_max_pause(struct backing_dev_info *bdi,
  948. unsigned long bdi_dirty)
  949. {
  950. long bw = bdi->avg_write_bandwidth;
  951. long t;
  952. /*
  953. * Limit pause time for small memory systems. If sleeping for too long
  954. * time, a small pool of dirty/writeback pages may go empty and disk go
  955. * idle.
  956. *
  957. * 8 serves as the safety ratio.
  958. */
  959. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  960. t++;
  961. return min_t(long, t, MAX_PAUSE);
  962. }
  963. static long bdi_min_pause(struct backing_dev_info *bdi,
  964. long max_pause,
  965. unsigned long task_ratelimit,
  966. unsigned long dirty_ratelimit,
  967. int *nr_dirtied_pause)
  968. {
  969. long hi = ilog2(bdi->avg_write_bandwidth);
  970. long lo = ilog2(bdi->dirty_ratelimit);
  971. long t; /* target pause */
  972. long pause; /* estimated next pause */
  973. int pages; /* target nr_dirtied_pause */
  974. /* target for 10ms pause on 1-dd case */
  975. t = max(1, HZ / 100);
  976. /*
  977. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  978. * overheads.
  979. *
  980. * (N * 10ms) on 2^N concurrent tasks.
  981. */
  982. if (hi > lo)
  983. t += (hi - lo) * (10 * HZ) / 1024;
  984. /*
  985. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  986. * on the much more stable dirty_ratelimit. However the next pause time
  987. * will be computed based on task_ratelimit and the two rate limits may
  988. * depart considerably at some time. Especially if task_ratelimit goes
  989. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  990. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  991. * result task_ratelimit won't be executed faithfully, which could
  992. * eventually bring down dirty_ratelimit.
  993. *
  994. * We apply two rules to fix it up:
  995. * 1) try to estimate the next pause time and if necessary, use a lower
  996. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  997. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  998. * 2) limit the target pause time to max_pause/2, so that the normal
  999. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1000. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1001. */
  1002. t = min(t, 1 + max_pause / 2);
  1003. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1004. /*
  1005. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1006. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1007. * When the 16 consecutive reads are often interrupted by some dirty
  1008. * throttling pause during the async writes, cfq will go into idles
  1009. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1010. * until reaches DIRTY_POLL_THRESH=32 pages.
  1011. */
  1012. if (pages < DIRTY_POLL_THRESH) {
  1013. t = max_pause;
  1014. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1015. if (pages > DIRTY_POLL_THRESH) {
  1016. pages = DIRTY_POLL_THRESH;
  1017. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1018. }
  1019. }
  1020. pause = HZ * pages / (task_ratelimit + 1);
  1021. if (pause > max_pause) {
  1022. t = max_pause;
  1023. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1024. }
  1025. *nr_dirtied_pause = pages;
  1026. /*
  1027. * The minimal pause time will normally be half the target pause time.
  1028. */
  1029. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1030. }
  1031. /*
  1032. * balance_dirty_pages() must be called by processes which are generating dirty
  1033. * data. It looks at the number of dirty pages in the machine and will force
  1034. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1035. * If we're over `background_thresh' then the writeback threads are woken to
  1036. * perform some writeout.
  1037. */
  1038. static void balance_dirty_pages(struct address_space *mapping,
  1039. unsigned long pages_dirtied)
  1040. {
  1041. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1042. unsigned long bdi_reclaimable;
  1043. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1044. unsigned long bdi_dirty;
  1045. unsigned long freerun;
  1046. unsigned long background_thresh;
  1047. unsigned long dirty_thresh;
  1048. unsigned long bdi_thresh;
  1049. long period;
  1050. long pause;
  1051. long max_pause;
  1052. long min_pause;
  1053. int nr_dirtied_pause;
  1054. bool dirty_exceeded = false;
  1055. unsigned long task_ratelimit;
  1056. unsigned long dirty_ratelimit;
  1057. unsigned long pos_ratio;
  1058. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1059. unsigned long start_time = jiffies;
  1060. for (;;) {
  1061. unsigned long now = jiffies;
  1062. /*
  1063. * Unstable writes are a feature of certain networked
  1064. * filesystems (i.e. NFS) in which data may have been
  1065. * written to the server's write cache, but has not yet
  1066. * been flushed to permanent storage.
  1067. */
  1068. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1069. global_page_state(NR_UNSTABLE_NFS);
  1070. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1071. global_dirty_limits(&background_thresh, &dirty_thresh);
  1072. /*
  1073. * Throttle it only when the background writeback cannot
  1074. * catch-up. This avoids (excessively) small writeouts
  1075. * when the bdi limits are ramping up.
  1076. */
  1077. freerun = dirty_freerun_ceiling(dirty_thresh,
  1078. background_thresh);
  1079. if (nr_dirty <= freerun) {
  1080. current->dirty_paused_when = now;
  1081. current->nr_dirtied = 0;
  1082. current->nr_dirtied_pause =
  1083. dirty_poll_interval(nr_dirty, dirty_thresh);
  1084. break;
  1085. }
  1086. if (unlikely(!writeback_in_progress(bdi)))
  1087. bdi_start_background_writeback(bdi);
  1088. /*
  1089. * bdi_thresh is not treated as some limiting factor as
  1090. * dirty_thresh, due to reasons
  1091. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1092. * - in a system with HDD and USB key, the USB key may somehow
  1093. * go into state (bdi_dirty >> bdi_thresh) either because
  1094. * bdi_dirty starts high, or because bdi_thresh drops low.
  1095. * In this case we don't want to hard throttle the USB key
  1096. * dirtiers for 100 seconds until bdi_dirty drops under
  1097. * bdi_thresh. Instead the auxiliary bdi control line in
  1098. * bdi_position_ratio() will let the dirtier task progress
  1099. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1100. */
  1101. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1102. /*
  1103. * In order to avoid the stacked BDI deadlock we need
  1104. * to ensure we accurately count the 'dirty' pages when
  1105. * the threshold is low.
  1106. *
  1107. * Otherwise it would be possible to get thresh+n pages
  1108. * reported dirty, even though there are thresh-m pages
  1109. * actually dirty; with m+n sitting in the percpu
  1110. * deltas.
  1111. */
  1112. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1113. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1114. bdi_dirty = bdi_reclaimable +
  1115. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1116. } else {
  1117. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1118. bdi_dirty = bdi_reclaimable +
  1119. bdi_stat(bdi, BDI_WRITEBACK);
  1120. }
  1121. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1122. (nr_dirty > dirty_thresh);
  1123. if (dirty_exceeded && !bdi->dirty_exceeded)
  1124. bdi->dirty_exceeded = 1;
  1125. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1126. nr_dirty, bdi_thresh, bdi_dirty,
  1127. start_time);
  1128. dirty_ratelimit = bdi->dirty_ratelimit;
  1129. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1130. background_thresh, nr_dirty,
  1131. bdi_thresh, bdi_dirty);
  1132. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1133. RATELIMIT_CALC_SHIFT;
  1134. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1135. min_pause = bdi_min_pause(bdi, max_pause,
  1136. task_ratelimit, dirty_ratelimit,
  1137. &nr_dirtied_pause);
  1138. if (unlikely(task_ratelimit == 0)) {
  1139. period = max_pause;
  1140. pause = max_pause;
  1141. goto pause;
  1142. }
  1143. period = HZ * pages_dirtied / task_ratelimit;
  1144. pause = period;
  1145. if (current->dirty_paused_when)
  1146. pause -= now - current->dirty_paused_when;
  1147. /*
  1148. * For less than 1s think time (ext3/4 may block the dirtier
  1149. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1150. * however at much less frequency), try to compensate it in
  1151. * future periods by updating the virtual time; otherwise just
  1152. * do a reset, as it may be a light dirtier.
  1153. */
  1154. if (pause < min_pause) {
  1155. trace_balance_dirty_pages(bdi,
  1156. dirty_thresh,
  1157. background_thresh,
  1158. nr_dirty,
  1159. bdi_thresh,
  1160. bdi_dirty,
  1161. dirty_ratelimit,
  1162. task_ratelimit,
  1163. pages_dirtied,
  1164. period,
  1165. min(pause, 0L),
  1166. start_time);
  1167. if (pause < -HZ) {
  1168. current->dirty_paused_when = now;
  1169. current->nr_dirtied = 0;
  1170. } else if (period) {
  1171. current->dirty_paused_when += period;
  1172. current->nr_dirtied = 0;
  1173. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1174. current->nr_dirtied_pause += pages_dirtied;
  1175. break;
  1176. }
  1177. if (unlikely(pause > max_pause)) {
  1178. /* for occasional dropped task_ratelimit */
  1179. now += min(pause - max_pause, max_pause);
  1180. pause = max_pause;
  1181. }
  1182. pause:
  1183. trace_balance_dirty_pages(bdi,
  1184. dirty_thresh,
  1185. background_thresh,
  1186. nr_dirty,
  1187. bdi_thresh,
  1188. bdi_dirty,
  1189. dirty_ratelimit,
  1190. task_ratelimit,
  1191. pages_dirtied,
  1192. period,
  1193. pause,
  1194. start_time);
  1195. __set_current_state(TASK_KILLABLE);
  1196. io_schedule_timeout(pause);
  1197. current->dirty_paused_when = now + pause;
  1198. current->nr_dirtied = 0;
  1199. current->nr_dirtied_pause = nr_dirtied_pause;
  1200. /*
  1201. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1202. * also keep "1000+ dd on a slow USB stick" under control.
  1203. */
  1204. if (task_ratelimit)
  1205. break;
  1206. /*
  1207. * In the case of an unresponding NFS server and the NFS dirty
  1208. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1209. * to go through, so that tasks on them still remain responsive.
  1210. *
  1211. * In theory 1 page is enough to keep the comsumer-producer
  1212. * pipe going: the flusher cleans 1 page => the task dirties 1
  1213. * more page. However bdi_dirty has accounting errors. So use
  1214. * the larger and more IO friendly bdi_stat_error.
  1215. */
  1216. if (bdi_dirty <= bdi_stat_error(bdi))
  1217. break;
  1218. if (fatal_signal_pending(current))
  1219. break;
  1220. }
  1221. if (!dirty_exceeded && bdi->dirty_exceeded)
  1222. bdi->dirty_exceeded = 0;
  1223. if (writeback_in_progress(bdi))
  1224. return;
  1225. /*
  1226. * In laptop mode, we wait until hitting the higher threshold before
  1227. * starting background writeout, and then write out all the way down
  1228. * to the lower threshold. So slow writers cause minimal disk activity.
  1229. *
  1230. * In normal mode, we start background writeout at the lower
  1231. * background_thresh, to keep the amount of dirty memory low.
  1232. */
  1233. if (laptop_mode)
  1234. return;
  1235. if (nr_reclaimable > background_thresh)
  1236. bdi_start_background_writeback(bdi);
  1237. }
  1238. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1239. {
  1240. if (set_page_dirty(page) || page_mkwrite) {
  1241. struct address_space *mapping = page_mapping(page);
  1242. if (mapping)
  1243. balance_dirty_pages_ratelimited(mapping);
  1244. }
  1245. }
  1246. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1247. /*
  1248. * Normal tasks are throttled by
  1249. * loop {
  1250. * dirty tsk->nr_dirtied_pause pages;
  1251. * take a snap in balance_dirty_pages();
  1252. * }
  1253. * However there is a worst case. If every task exit immediately when dirtied
  1254. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1255. * called to throttle the page dirties. The solution is to save the not yet
  1256. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1257. * randomly into the running tasks. This works well for the above worst case,
  1258. * as the new task will pick up and accumulate the old task's leaked dirty
  1259. * count and eventually get throttled.
  1260. */
  1261. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1262. /**
  1263. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1264. * @mapping: address_space which was dirtied
  1265. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1266. *
  1267. * Processes which are dirtying memory should call in here once for each page
  1268. * which was newly dirtied. The function will periodically check the system's
  1269. * dirty state and will initiate writeback if needed.
  1270. *
  1271. * On really big machines, get_writeback_state is expensive, so try to avoid
  1272. * calling it too often (ratelimiting). But once we're over the dirty memory
  1273. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1274. * from overshooting the limit by (ratelimit_pages) each.
  1275. */
  1276. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1277. unsigned long nr_pages_dirtied)
  1278. {
  1279. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1280. int ratelimit;
  1281. int *p;
  1282. if (!bdi_cap_account_dirty(bdi))
  1283. return;
  1284. ratelimit = current->nr_dirtied_pause;
  1285. if (bdi->dirty_exceeded)
  1286. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1287. preempt_disable();
  1288. /*
  1289. * This prevents one CPU to accumulate too many dirtied pages without
  1290. * calling into balance_dirty_pages(), which can happen when there are
  1291. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1292. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1293. */
  1294. p = &__get_cpu_var(bdp_ratelimits);
  1295. if (unlikely(current->nr_dirtied >= ratelimit))
  1296. *p = 0;
  1297. else if (unlikely(*p >= ratelimit_pages)) {
  1298. *p = 0;
  1299. ratelimit = 0;
  1300. }
  1301. /*
  1302. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1303. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1304. * the dirty throttling and livelock other long-run dirtiers.
  1305. */
  1306. p = &__get_cpu_var(dirty_throttle_leaks);
  1307. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1308. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1309. *p -= nr_pages_dirtied;
  1310. current->nr_dirtied += nr_pages_dirtied;
  1311. }
  1312. preempt_enable();
  1313. if (unlikely(current->nr_dirtied >= ratelimit))
  1314. balance_dirty_pages(mapping, current->nr_dirtied);
  1315. }
  1316. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1317. void throttle_vm_writeout(gfp_t gfp_mask)
  1318. {
  1319. unsigned long background_thresh;
  1320. unsigned long dirty_thresh;
  1321. for ( ; ; ) {
  1322. global_dirty_limits(&background_thresh, &dirty_thresh);
  1323. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1324. /*
  1325. * Boost the allowable dirty threshold a bit for page
  1326. * allocators so they don't get DoS'ed by heavy writers
  1327. */
  1328. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1329. if (global_page_state(NR_UNSTABLE_NFS) +
  1330. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1331. break;
  1332. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1333. /*
  1334. * The caller might hold locks which can prevent IO completion
  1335. * or progress in the filesystem. So we cannot just sit here
  1336. * waiting for IO to complete.
  1337. */
  1338. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1339. break;
  1340. }
  1341. }
  1342. /*
  1343. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1344. */
  1345. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1346. void __user *buffer, size_t *length, loff_t *ppos)
  1347. {
  1348. proc_dointvec(table, write, buffer, length, ppos);
  1349. bdi_arm_supers_timer();
  1350. return 0;
  1351. }
  1352. #ifdef CONFIG_BLOCK
  1353. void laptop_mode_timer_fn(unsigned long data)
  1354. {
  1355. struct request_queue *q = (struct request_queue *)data;
  1356. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1357. global_page_state(NR_UNSTABLE_NFS);
  1358. /*
  1359. * We want to write everything out, not just down to the dirty
  1360. * threshold
  1361. */
  1362. if (bdi_has_dirty_io(&q->backing_dev_info))
  1363. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1364. WB_REASON_LAPTOP_TIMER);
  1365. }
  1366. /*
  1367. * We've spun up the disk and we're in laptop mode: schedule writeback
  1368. * of all dirty data a few seconds from now. If the flush is already scheduled
  1369. * then push it back - the user is still using the disk.
  1370. */
  1371. void laptop_io_completion(struct backing_dev_info *info)
  1372. {
  1373. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1374. }
  1375. /*
  1376. * We're in laptop mode and we've just synced. The sync's writes will have
  1377. * caused another writeback to be scheduled by laptop_io_completion.
  1378. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1379. */
  1380. void laptop_sync_completion(void)
  1381. {
  1382. struct backing_dev_info *bdi;
  1383. rcu_read_lock();
  1384. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1385. del_timer(&bdi->laptop_mode_wb_timer);
  1386. rcu_read_unlock();
  1387. }
  1388. #endif
  1389. /*
  1390. * If ratelimit_pages is too high then we can get into dirty-data overload
  1391. * if a large number of processes all perform writes at the same time.
  1392. * If it is too low then SMP machines will call the (expensive)
  1393. * get_writeback_state too often.
  1394. *
  1395. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1396. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1397. * thresholds.
  1398. */
  1399. void writeback_set_ratelimit(void)
  1400. {
  1401. unsigned long background_thresh;
  1402. unsigned long dirty_thresh;
  1403. global_dirty_limits(&background_thresh, &dirty_thresh);
  1404. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1405. if (ratelimit_pages < 16)
  1406. ratelimit_pages = 16;
  1407. }
  1408. static int __cpuinit
  1409. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1410. {
  1411. writeback_set_ratelimit();
  1412. return NOTIFY_DONE;
  1413. }
  1414. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1415. .notifier_call = ratelimit_handler,
  1416. .next = NULL,
  1417. };
  1418. /*
  1419. * Called early on to tune the page writeback dirty limits.
  1420. *
  1421. * We used to scale dirty pages according to how total memory
  1422. * related to pages that could be allocated for buffers (by
  1423. * comparing nr_free_buffer_pages() to vm_total_pages.
  1424. *
  1425. * However, that was when we used "dirty_ratio" to scale with
  1426. * all memory, and we don't do that any more. "dirty_ratio"
  1427. * is now applied to total non-HIGHPAGE memory (by subtracting
  1428. * totalhigh_pages from vm_total_pages), and as such we can't
  1429. * get into the old insane situation any more where we had
  1430. * large amounts of dirty pages compared to a small amount of
  1431. * non-HIGHMEM memory.
  1432. *
  1433. * But we might still want to scale the dirty_ratio by how
  1434. * much memory the box has..
  1435. */
  1436. void __init page_writeback_init(void)
  1437. {
  1438. int shift;
  1439. writeback_set_ratelimit();
  1440. register_cpu_notifier(&ratelimit_nb);
  1441. shift = calc_period_shift();
  1442. prop_descriptor_init(&vm_completions, shift);
  1443. }
  1444. /**
  1445. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1446. * @mapping: address space structure to write
  1447. * @start: starting page index
  1448. * @end: ending page index (inclusive)
  1449. *
  1450. * This function scans the page range from @start to @end (inclusive) and tags
  1451. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1452. * that write_cache_pages (or whoever calls this function) will then use
  1453. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1454. * used to avoid livelocking of writeback by a process steadily creating new
  1455. * dirty pages in the file (thus it is important for this function to be quick
  1456. * so that it can tag pages faster than a dirtying process can create them).
  1457. */
  1458. /*
  1459. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1460. */
  1461. void tag_pages_for_writeback(struct address_space *mapping,
  1462. pgoff_t start, pgoff_t end)
  1463. {
  1464. #define WRITEBACK_TAG_BATCH 4096
  1465. unsigned long tagged;
  1466. do {
  1467. spin_lock_irq(&mapping->tree_lock);
  1468. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1469. &start, end, WRITEBACK_TAG_BATCH,
  1470. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1471. spin_unlock_irq(&mapping->tree_lock);
  1472. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1473. cond_resched();
  1474. /* We check 'start' to handle wrapping when end == ~0UL */
  1475. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1476. }
  1477. EXPORT_SYMBOL(tag_pages_for_writeback);
  1478. /**
  1479. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1480. * @mapping: address space structure to write
  1481. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1482. * @writepage: function called for each page
  1483. * @data: data passed to writepage function
  1484. *
  1485. * If a page is already under I/O, write_cache_pages() skips it, even
  1486. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1487. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1488. * and msync() need to guarantee that all the data which was dirty at the time
  1489. * the call was made get new I/O started against them. If wbc->sync_mode is
  1490. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1491. * existing IO to complete.
  1492. *
  1493. * To avoid livelocks (when other process dirties new pages), we first tag
  1494. * pages which should be written back with TOWRITE tag and only then start
  1495. * writing them. For data-integrity sync we have to be careful so that we do
  1496. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1497. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1498. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1499. */
  1500. int write_cache_pages(struct address_space *mapping,
  1501. struct writeback_control *wbc, writepage_t writepage,
  1502. void *data)
  1503. {
  1504. int ret = 0;
  1505. int done = 0;
  1506. struct pagevec pvec;
  1507. int nr_pages;
  1508. pgoff_t uninitialized_var(writeback_index);
  1509. pgoff_t index;
  1510. pgoff_t end; /* Inclusive */
  1511. pgoff_t done_index;
  1512. int cycled;
  1513. int range_whole = 0;
  1514. int tag;
  1515. pagevec_init(&pvec, 0);
  1516. if (wbc->range_cyclic) {
  1517. writeback_index = mapping->writeback_index; /* prev offset */
  1518. index = writeback_index;
  1519. if (index == 0)
  1520. cycled = 1;
  1521. else
  1522. cycled = 0;
  1523. end = -1;
  1524. } else {
  1525. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1526. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1527. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1528. range_whole = 1;
  1529. cycled = 1; /* ignore range_cyclic tests */
  1530. }
  1531. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1532. tag = PAGECACHE_TAG_TOWRITE;
  1533. else
  1534. tag = PAGECACHE_TAG_DIRTY;
  1535. retry:
  1536. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1537. tag_pages_for_writeback(mapping, index, end);
  1538. done_index = index;
  1539. while (!done && (index <= end)) {
  1540. int i;
  1541. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1542. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1543. if (nr_pages == 0)
  1544. break;
  1545. for (i = 0; i < nr_pages; i++) {
  1546. struct page *page = pvec.pages[i];
  1547. /*
  1548. * At this point, the page may be truncated or
  1549. * invalidated (changing page->mapping to NULL), or
  1550. * even swizzled back from swapper_space to tmpfs file
  1551. * mapping. However, page->index will not change
  1552. * because we have a reference on the page.
  1553. */
  1554. if (page->index > end) {
  1555. /*
  1556. * can't be range_cyclic (1st pass) because
  1557. * end == -1 in that case.
  1558. */
  1559. done = 1;
  1560. break;
  1561. }
  1562. done_index = page->index;
  1563. lock_page(page);
  1564. /*
  1565. * Page truncated or invalidated. We can freely skip it
  1566. * then, even for data integrity operations: the page
  1567. * has disappeared concurrently, so there could be no
  1568. * real expectation of this data interity operation
  1569. * even if there is now a new, dirty page at the same
  1570. * pagecache address.
  1571. */
  1572. if (unlikely(page->mapping != mapping)) {
  1573. continue_unlock:
  1574. unlock_page(page);
  1575. continue;
  1576. }
  1577. if (!PageDirty(page)) {
  1578. /* someone wrote it for us */
  1579. goto continue_unlock;
  1580. }
  1581. if (PageWriteback(page)) {
  1582. if (wbc->sync_mode != WB_SYNC_NONE)
  1583. wait_on_page_writeback(page);
  1584. else
  1585. goto continue_unlock;
  1586. }
  1587. BUG_ON(PageWriteback(page));
  1588. if (!clear_page_dirty_for_io(page))
  1589. goto continue_unlock;
  1590. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1591. ret = (*writepage)(page, wbc, data);
  1592. if (unlikely(ret)) {
  1593. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1594. unlock_page(page);
  1595. ret = 0;
  1596. } else {
  1597. /*
  1598. * done_index is set past this page,
  1599. * so media errors will not choke
  1600. * background writeout for the entire
  1601. * file. This has consequences for
  1602. * range_cyclic semantics (ie. it may
  1603. * not be suitable for data integrity
  1604. * writeout).
  1605. */
  1606. done_index = page->index + 1;
  1607. done = 1;
  1608. break;
  1609. }
  1610. }
  1611. /*
  1612. * We stop writing back only if we are not doing
  1613. * integrity sync. In case of integrity sync we have to
  1614. * keep going until we have written all the pages
  1615. * we tagged for writeback prior to entering this loop.
  1616. */
  1617. if (--wbc->nr_to_write <= 0 &&
  1618. wbc->sync_mode == WB_SYNC_NONE) {
  1619. done = 1;
  1620. break;
  1621. }
  1622. }
  1623. pagevec_release(&pvec);
  1624. cond_resched();
  1625. }
  1626. if (!cycled && !done) {
  1627. /*
  1628. * range_cyclic:
  1629. * We hit the last page and there is more work to be done: wrap
  1630. * back to the start of the file
  1631. */
  1632. cycled = 1;
  1633. index = 0;
  1634. end = writeback_index - 1;
  1635. goto retry;
  1636. }
  1637. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1638. mapping->writeback_index = done_index;
  1639. return ret;
  1640. }
  1641. EXPORT_SYMBOL(write_cache_pages);
  1642. /*
  1643. * Function used by generic_writepages to call the real writepage
  1644. * function and set the mapping flags on error
  1645. */
  1646. static int __writepage(struct page *page, struct writeback_control *wbc,
  1647. void *data)
  1648. {
  1649. struct address_space *mapping = data;
  1650. int ret = mapping->a_ops->writepage(page, wbc);
  1651. mapping_set_error(mapping, ret);
  1652. return ret;
  1653. }
  1654. /**
  1655. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1656. * @mapping: address space structure to write
  1657. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1658. *
  1659. * This is a library function, which implements the writepages()
  1660. * address_space_operation.
  1661. */
  1662. int generic_writepages(struct address_space *mapping,
  1663. struct writeback_control *wbc)
  1664. {
  1665. struct blk_plug plug;
  1666. int ret;
  1667. /* deal with chardevs and other special file */
  1668. if (!mapping->a_ops->writepage)
  1669. return 0;
  1670. blk_start_plug(&plug);
  1671. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1672. blk_finish_plug(&plug);
  1673. return ret;
  1674. }
  1675. EXPORT_SYMBOL(generic_writepages);
  1676. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1677. {
  1678. int ret;
  1679. if (wbc->nr_to_write <= 0)
  1680. return 0;
  1681. if (mapping->a_ops->writepages)
  1682. ret = mapping->a_ops->writepages(mapping, wbc);
  1683. else
  1684. ret = generic_writepages(mapping, wbc);
  1685. return ret;
  1686. }
  1687. /**
  1688. * write_one_page - write out a single page and optionally wait on I/O
  1689. * @page: the page to write
  1690. * @wait: if true, wait on writeout
  1691. *
  1692. * The page must be locked by the caller and will be unlocked upon return.
  1693. *
  1694. * write_one_page() returns a negative error code if I/O failed.
  1695. */
  1696. int write_one_page(struct page *page, int wait)
  1697. {
  1698. struct address_space *mapping = page->mapping;
  1699. int ret = 0;
  1700. struct writeback_control wbc = {
  1701. .sync_mode = WB_SYNC_ALL,
  1702. .nr_to_write = 1,
  1703. };
  1704. BUG_ON(!PageLocked(page));
  1705. if (wait)
  1706. wait_on_page_writeback(page);
  1707. if (clear_page_dirty_for_io(page)) {
  1708. page_cache_get(page);
  1709. ret = mapping->a_ops->writepage(page, &wbc);
  1710. if (ret == 0 && wait) {
  1711. wait_on_page_writeback(page);
  1712. if (PageError(page))
  1713. ret = -EIO;
  1714. }
  1715. page_cache_release(page);
  1716. } else {
  1717. unlock_page(page);
  1718. }
  1719. return ret;
  1720. }
  1721. EXPORT_SYMBOL(write_one_page);
  1722. /*
  1723. * For address_spaces which do not use buffers nor write back.
  1724. */
  1725. int __set_page_dirty_no_writeback(struct page *page)
  1726. {
  1727. if (!PageDirty(page))
  1728. return !TestSetPageDirty(page);
  1729. return 0;
  1730. }
  1731. /*
  1732. * Helper function for set_page_dirty family.
  1733. * NOTE: This relies on being atomic wrt interrupts.
  1734. */
  1735. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1736. {
  1737. if (mapping_cap_account_dirty(mapping)) {
  1738. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1739. __inc_zone_page_state(page, NR_DIRTIED);
  1740. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1741. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1742. task_io_account_write(PAGE_CACHE_SIZE);
  1743. current->nr_dirtied++;
  1744. this_cpu_inc(bdp_ratelimits);
  1745. }
  1746. }
  1747. EXPORT_SYMBOL(account_page_dirtied);
  1748. /*
  1749. * Helper function for set_page_writeback family.
  1750. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1751. * wrt interrupts.
  1752. */
  1753. void account_page_writeback(struct page *page)
  1754. {
  1755. inc_zone_page_state(page, NR_WRITEBACK);
  1756. }
  1757. EXPORT_SYMBOL(account_page_writeback);
  1758. /*
  1759. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1760. * its radix tree.
  1761. *
  1762. * This is also used when a single buffer is being dirtied: we want to set the
  1763. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1764. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1765. *
  1766. * Most callers have locked the page, which pins the address_space in memory.
  1767. * But zap_pte_range() does not lock the page, however in that case the
  1768. * mapping is pinned by the vma's ->vm_file reference.
  1769. *
  1770. * We take care to handle the case where the page was truncated from the
  1771. * mapping by re-checking page_mapping() inside tree_lock.
  1772. */
  1773. int __set_page_dirty_nobuffers(struct page *page)
  1774. {
  1775. if (!TestSetPageDirty(page)) {
  1776. struct address_space *mapping = page_mapping(page);
  1777. struct address_space *mapping2;
  1778. if (!mapping)
  1779. return 1;
  1780. spin_lock_irq(&mapping->tree_lock);
  1781. mapping2 = page_mapping(page);
  1782. if (mapping2) { /* Race with truncate? */
  1783. BUG_ON(mapping2 != mapping);
  1784. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1785. account_page_dirtied(page, mapping);
  1786. radix_tree_tag_set(&mapping->page_tree,
  1787. page_index(page), PAGECACHE_TAG_DIRTY);
  1788. }
  1789. spin_unlock_irq(&mapping->tree_lock);
  1790. if (mapping->host) {
  1791. /* !PageAnon && !swapper_space */
  1792. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1793. }
  1794. return 1;
  1795. }
  1796. return 0;
  1797. }
  1798. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1799. /*
  1800. * Call this whenever redirtying a page, to de-account the dirty counters
  1801. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1802. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1803. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1804. * control.
  1805. */
  1806. void account_page_redirty(struct page *page)
  1807. {
  1808. struct address_space *mapping = page->mapping;
  1809. if (mapping && mapping_cap_account_dirty(mapping)) {
  1810. current->nr_dirtied--;
  1811. dec_zone_page_state(page, NR_DIRTIED);
  1812. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1813. }
  1814. }
  1815. EXPORT_SYMBOL(account_page_redirty);
  1816. /*
  1817. * When a writepage implementation decides that it doesn't want to write this
  1818. * page for some reason, it should redirty the locked page via
  1819. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1820. */
  1821. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1822. {
  1823. wbc->pages_skipped++;
  1824. account_page_redirty(page);
  1825. return __set_page_dirty_nobuffers(page);
  1826. }
  1827. EXPORT_SYMBOL(redirty_page_for_writepage);
  1828. /*
  1829. * Dirty a page.
  1830. *
  1831. * For pages with a mapping this should be done under the page lock
  1832. * for the benefit of asynchronous memory errors who prefer a consistent
  1833. * dirty state. This rule can be broken in some special cases,
  1834. * but should be better not to.
  1835. *
  1836. * If the mapping doesn't provide a set_page_dirty a_op, then
  1837. * just fall through and assume that it wants buffer_heads.
  1838. */
  1839. int set_page_dirty(struct page *page)
  1840. {
  1841. struct address_space *mapping = page_mapping(page);
  1842. if (likely(mapping)) {
  1843. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1844. /*
  1845. * readahead/lru_deactivate_page could remain
  1846. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1847. * About readahead, if the page is written, the flags would be
  1848. * reset. So no problem.
  1849. * About lru_deactivate_page, if the page is redirty, the flag
  1850. * will be reset. So no problem. but if the page is used by readahead
  1851. * it will confuse readahead and make it restart the size rampup
  1852. * process. But it's a trivial problem.
  1853. */
  1854. ClearPageReclaim(page);
  1855. #ifdef CONFIG_BLOCK
  1856. if (!spd)
  1857. spd = __set_page_dirty_buffers;
  1858. #endif
  1859. return (*spd)(page);
  1860. }
  1861. if (!PageDirty(page)) {
  1862. if (!TestSetPageDirty(page))
  1863. return 1;
  1864. }
  1865. return 0;
  1866. }
  1867. EXPORT_SYMBOL(set_page_dirty);
  1868. /*
  1869. * set_page_dirty() is racy if the caller has no reference against
  1870. * page->mapping->host, and if the page is unlocked. This is because another
  1871. * CPU could truncate the page off the mapping and then free the mapping.
  1872. *
  1873. * Usually, the page _is_ locked, or the caller is a user-space process which
  1874. * holds a reference on the inode by having an open file.
  1875. *
  1876. * In other cases, the page should be locked before running set_page_dirty().
  1877. */
  1878. int set_page_dirty_lock(struct page *page)
  1879. {
  1880. int ret;
  1881. lock_page(page);
  1882. ret = set_page_dirty(page);
  1883. unlock_page(page);
  1884. return ret;
  1885. }
  1886. EXPORT_SYMBOL(set_page_dirty_lock);
  1887. /*
  1888. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1889. * Returns true if the page was previously dirty.
  1890. *
  1891. * This is for preparing to put the page under writeout. We leave the page
  1892. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1893. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1894. * implementation will run either set_page_writeback() or set_page_dirty(),
  1895. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1896. * back into sync.
  1897. *
  1898. * This incoherency between the page's dirty flag and radix-tree tag is
  1899. * unfortunate, but it only exists while the page is locked.
  1900. */
  1901. int clear_page_dirty_for_io(struct page *page)
  1902. {
  1903. struct address_space *mapping = page_mapping(page);
  1904. BUG_ON(!PageLocked(page));
  1905. if (mapping && mapping_cap_account_dirty(mapping)) {
  1906. /*
  1907. * Yes, Virginia, this is indeed insane.
  1908. *
  1909. * We use this sequence to make sure that
  1910. * (a) we account for dirty stats properly
  1911. * (b) we tell the low-level filesystem to
  1912. * mark the whole page dirty if it was
  1913. * dirty in a pagetable. Only to then
  1914. * (c) clean the page again and return 1 to
  1915. * cause the writeback.
  1916. *
  1917. * This way we avoid all nasty races with the
  1918. * dirty bit in multiple places and clearing
  1919. * them concurrently from different threads.
  1920. *
  1921. * Note! Normally the "set_page_dirty(page)"
  1922. * has no effect on the actual dirty bit - since
  1923. * that will already usually be set. But we
  1924. * need the side effects, and it can help us
  1925. * avoid races.
  1926. *
  1927. * We basically use the page "master dirty bit"
  1928. * as a serialization point for all the different
  1929. * threads doing their things.
  1930. */
  1931. if (page_mkclean(page))
  1932. set_page_dirty(page);
  1933. /*
  1934. * We carefully synchronise fault handlers against
  1935. * installing a dirty pte and marking the page dirty
  1936. * at this point. We do this by having them hold the
  1937. * page lock at some point after installing their
  1938. * pte, but before marking the page dirty.
  1939. * Pages are always locked coming in here, so we get
  1940. * the desired exclusion. See mm/memory.c:do_wp_page()
  1941. * for more comments.
  1942. */
  1943. if (TestClearPageDirty(page)) {
  1944. dec_zone_page_state(page, NR_FILE_DIRTY);
  1945. dec_bdi_stat(mapping->backing_dev_info,
  1946. BDI_RECLAIMABLE);
  1947. return 1;
  1948. }
  1949. return 0;
  1950. }
  1951. return TestClearPageDirty(page);
  1952. }
  1953. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1954. int test_clear_page_writeback(struct page *page)
  1955. {
  1956. struct address_space *mapping = page_mapping(page);
  1957. int ret;
  1958. if (mapping) {
  1959. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1960. unsigned long flags;
  1961. spin_lock_irqsave(&mapping->tree_lock, flags);
  1962. ret = TestClearPageWriteback(page);
  1963. if (ret) {
  1964. radix_tree_tag_clear(&mapping->page_tree,
  1965. page_index(page),
  1966. PAGECACHE_TAG_WRITEBACK);
  1967. if (bdi_cap_account_writeback(bdi)) {
  1968. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1969. __bdi_writeout_inc(bdi);
  1970. }
  1971. }
  1972. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1973. } else {
  1974. ret = TestClearPageWriteback(page);
  1975. }
  1976. if (ret) {
  1977. dec_zone_page_state(page, NR_WRITEBACK);
  1978. inc_zone_page_state(page, NR_WRITTEN);
  1979. }
  1980. return ret;
  1981. }
  1982. int test_set_page_writeback(struct page *page)
  1983. {
  1984. struct address_space *mapping = page_mapping(page);
  1985. int ret;
  1986. if (mapping) {
  1987. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1988. unsigned long flags;
  1989. spin_lock_irqsave(&mapping->tree_lock, flags);
  1990. ret = TestSetPageWriteback(page);
  1991. if (!ret) {
  1992. radix_tree_tag_set(&mapping->page_tree,
  1993. page_index(page),
  1994. PAGECACHE_TAG_WRITEBACK);
  1995. if (bdi_cap_account_writeback(bdi))
  1996. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1997. }
  1998. if (!PageDirty(page))
  1999. radix_tree_tag_clear(&mapping->page_tree,
  2000. page_index(page),
  2001. PAGECACHE_TAG_DIRTY);
  2002. radix_tree_tag_clear(&mapping->page_tree,
  2003. page_index(page),
  2004. PAGECACHE_TAG_TOWRITE);
  2005. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2006. } else {
  2007. ret = TestSetPageWriteback(page);
  2008. }
  2009. if (!ret)
  2010. account_page_writeback(page);
  2011. return ret;
  2012. }
  2013. EXPORT_SYMBOL(test_set_page_writeback);
  2014. /*
  2015. * Return true if any of the pages in the mapping are marked with the
  2016. * passed tag.
  2017. */
  2018. int mapping_tagged(struct address_space *mapping, int tag)
  2019. {
  2020. return radix_tree_tagged(&mapping->page_tree, tag);
  2021. }
  2022. EXPORT_SYMBOL(mapping_tagged);