direct.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/task_io_accounting_ops.h>
  48. #include <linux/nfs_fs.h>
  49. #include <linux/nfs_page.h>
  50. #include <linux/sunrpc/clnt.h>
  51. #include <asm/system.h>
  52. #include <asm/uaccess.h>
  53. #include <linux/atomic.h>
  54. #include "internal.h"
  55. #include "iostat.h"
  56. #define NFSDBG_FACILITY NFSDBG_VFS
  57. static struct kmem_cache *nfs_direct_cachep;
  58. /*
  59. * This represents a set of asynchronous requests that we're waiting on
  60. */
  61. struct nfs_direct_req {
  62. struct kref kref; /* release manager */
  63. /* I/O parameters */
  64. struct nfs_open_context *ctx; /* file open context info */
  65. struct nfs_lock_context *l_ctx; /* Lock context info */
  66. struct kiocb * iocb; /* controlling i/o request */
  67. struct inode * inode; /* target file of i/o */
  68. /* completion state */
  69. atomic_t io_count; /* i/os we're waiting for */
  70. spinlock_t lock; /* protect completion state */
  71. ssize_t count, /* bytes actually processed */
  72. error; /* any reported error */
  73. struct completion completion; /* wait for i/o completion */
  74. /* commit state */
  75. struct list_head rewrite_list; /* saved nfs_write_data structs */
  76. struct nfs_write_data * commit_data; /* special write_data for commits */
  77. int flags;
  78. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  79. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  80. struct nfs_writeverf verf; /* unstable write verifier */
  81. };
  82. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  83. static const struct rpc_call_ops nfs_write_direct_ops;
  84. static inline void get_dreq(struct nfs_direct_req *dreq)
  85. {
  86. atomic_inc(&dreq->io_count);
  87. }
  88. static inline int put_dreq(struct nfs_direct_req *dreq)
  89. {
  90. return atomic_dec_and_test(&dreq->io_count);
  91. }
  92. /**
  93. * nfs_direct_IO - NFS address space operation for direct I/O
  94. * @rw: direction (read or write)
  95. * @iocb: target I/O control block
  96. * @iov: array of vectors that define I/O buffer
  97. * @pos: offset in file to begin the operation
  98. * @nr_segs: size of iovec array
  99. *
  100. * The presence of this routine in the address space ops vector means
  101. * the NFS client supports direct I/O. However, we shunt off direct
  102. * read and write requests before the VFS gets them, so this method
  103. * should never be called.
  104. */
  105. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  106. {
  107. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  108. iocb->ki_filp->f_path.dentry->d_name.name,
  109. (long long) pos, nr_segs);
  110. return -EINVAL;
  111. }
  112. static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
  113. {
  114. unsigned int npages;
  115. unsigned int i;
  116. if (count == 0)
  117. return;
  118. pages += (pgbase >> PAGE_SHIFT);
  119. npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  120. for (i = 0; i < npages; i++) {
  121. struct page *page = pages[i];
  122. if (!PageCompound(page))
  123. set_page_dirty(page);
  124. }
  125. }
  126. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  127. {
  128. unsigned int i;
  129. for (i = 0; i < npages; i++)
  130. page_cache_release(pages[i]);
  131. }
  132. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  133. {
  134. struct nfs_direct_req *dreq;
  135. dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
  136. if (!dreq)
  137. return NULL;
  138. kref_init(&dreq->kref);
  139. kref_get(&dreq->kref);
  140. init_completion(&dreq->completion);
  141. INIT_LIST_HEAD(&dreq->rewrite_list);
  142. dreq->iocb = NULL;
  143. dreq->ctx = NULL;
  144. dreq->l_ctx = NULL;
  145. spin_lock_init(&dreq->lock);
  146. atomic_set(&dreq->io_count, 0);
  147. dreq->count = 0;
  148. dreq->error = 0;
  149. dreq->flags = 0;
  150. return dreq;
  151. }
  152. static void nfs_direct_req_free(struct kref *kref)
  153. {
  154. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  155. if (dreq->l_ctx != NULL)
  156. nfs_put_lock_context(dreq->l_ctx);
  157. if (dreq->ctx != NULL)
  158. put_nfs_open_context(dreq->ctx);
  159. kmem_cache_free(nfs_direct_cachep, dreq);
  160. }
  161. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  162. {
  163. kref_put(&dreq->kref, nfs_direct_req_free);
  164. }
  165. /*
  166. * Collects and returns the final error value/byte-count.
  167. */
  168. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  169. {
  170. ssize_t result = -EIOCBQUEUED;
  171. /* Async requests don't wait here */
  172. if (dreq->iocb)
  173. goto out;
  174. result = wait_for_completion_killable(&dreq->completion);
  175. if (!result)
  176. result = dreq->error;
  177. if (!result)
  178. result = dreq->count;
  179. out:
  180. return (ssize_t) result;
  181. }
  182. /*
  183. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  184. * the iocb is still valid here if this is a synchronous request.
  185. */
  186. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  187. {
  188. if (dreq->iocb) {
  189. long res = (long) dreq->error;
  190. if (!res)
  191. res = (long) dreq->count;
  192. aio_complete(dreq->iocb, res, 0);
  193. }
  194. complete_all(&dreq->completion);
  195. nfs_direct_req_release(dreq);
  196. }
  197. /*
  198. * We must hold a reference to all the pages in this direct read request
  199. * until the RPCs complete. This could be long *after* we are woken up in
  200. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  201. */
  202. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  203. {
  204. struct nfs_read_data *data = calldata;
  205. nfs_readpage_result(task, data);
  206. }
  207. static void nfs_direct_read_release(void *calldata)
  208. {
  209. struct nfs_read_data *data = calldata;
  210. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  211. int status = data->task.tk_status;
  212. spin_lock(&dreq->lock);
  213. if (unlikely(status < 0)) {
  214. dreq->error = status;
  215. spin_unlock(&dreq->lock);
  216. } else {
  217. dreq->count += data->res.count;
  218. spin_unlock(&dreq->lock);
  219. nfs_direct_dirty_pages(data->pagevec,
  220. data->args.pgbase,
  221. data->res.count);
  222. }
  223. nfs_direct_release_pages(data->pagevec, data->npages);
  224. if (put_dreq(dreq))
  225. nfs_direct_complete(dreq);
  226. nfs_readdata_free(data);
  227. }
  228. static const struct rpc_call_ops nfs_read_direct_ops = {
  229. .rpc_call_prepare = nfs_read_prepare,
  230. .rpc_call_done = nfs_direct_read_result,
  231. .rpc_release = nfs_direct_read_release,
  232. };
  233. /*
  234. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  235. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  236. * bail and stop sending more reads. Read length accounting is
  237. * handled automatically by nfs_direct_read_result(). Otherwise, if
  238. * no requests have been sent, just return an error.
  239. */
  240. static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
  241. const struct iovec *iov,
  242. loff_t pos)
  243. {
  244. struct nfs_open_context *ctx = dreq->ctx;
  245. struct inode *inode = ctx->dentry->d_inode;
  246. unsigned long user_addr = (unsigned long)iov->iov_base;
  247. size_t count = iov->iov_len;
  248. size_t rsize = NFS_SERVER(inode)->rsize;
  249. struct rpc_task *task;
  250. struct rpc_message msg = {
  251. .rpc_cred = ctx->cred,
  252. };
  253. struct rpc_task_setup task_setup_data = {
  254. .rpc_client = NFS_CLIENT(inode),
  255. .rpc_message = &msg,
  256. .callback_ops = &nfs_read_direct_ops,
  257. .workqueue = nfsiod_workqueue,
  258. .flags = RPC_TASK_ASYNC,
  259. };
  260. unsigned int pgbase;
  261. int result;
  262. ssize_t started = 0;
  263. do {
  264. struct nfs_read_data *data;
  265. size_t bytes;
  266. pgbase = user_addr & ~PAGE_MASK;
  267. bytes = min(rsize,count);
  268. result = -ENOMEM;
  269. data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
  270. if (unlikely(!data))
  271. break;
  272. down_read(&current->mm->mmap_sem);
  273. result = get_user_pages(current, current->mm, user_addr,
  274. data->npages, 1, 0, data->pagevec, NULL);
  275. up_read(&current->mm->mmap_sem);
  276. if (result < 0) {
  277. nfs_readdata_free(data);
  278. break;
  279. }
  280. if ((unsigned)result < data->npages) {
  281. bytes = result * PAGE_SIZE;
  282. if (bytes <= pgbase) {
  283. nfs_direct_release_pages(data->pagevec, result);
  284. nfs_readdata_free(data);
  285. break;
  286. }
  287. bytes -= pgbase;
  288. data->npages = result;
  289. }
  290. get_dreq(dreq);
  291. data->req = (struct nfs_page *) dreq;
  292. data->inode = inode;
  293. data->cred = msg.rpc_cred;
  294. data->args.fh = NFS_FH(inode);
  295. data->args.context = ctx;
  296. data->args.lock_context = dreq->l_ctx;
  297. data->args.offset = pos;
  298. data->args.pgbase = pgbase;
  299. data->args.pages = data->pagevec;
  300. data->args.count = bytes;
  301. data->res.fattr = &data->fattr;
  302. data->res.eof = 0;
  303. data->res.count = bytes;
  304. nfs_fattr_init(&data->fattr);
  305. msg.rpc_argp = &data->args;
  306. msg.rpc_resp = &data->res;
  307. task_setup_data.task = &data->task;
  308. task_setup_data.callback_data = data;
  309. NFS_PROTO(inode)->read_setup(data, &msg);
  310. task = rpc_run_task(&task_setup_data);
  311. if (IS_ERR(task))
  312. break;
  313. rpc_put_task(task);
  314. dprintk("NFS: %5u initiated direct read call "
  315. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  316. data->task.tk_pid,
  317. inode->i_sb->s_id,
  318. (long long)NFS_FILEID(inode),
  319. bytes,
  320. (unsigned long long)data->args.offset);
  321. started += bytes;
  322. user_addr += bytes;
  323. pos += bytes;
  324. /* FIXME: Remove this unnecessary math from final patch */
  325. pgbase += bytes;
  326. pgbase &= ~PAGE_MASK;
  327. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  328. count -= bytes;
  329. } while (count != 0);
  330. if (started)
  331. return started;
  332. return result < 0 ? (ssize_t) result : -EFAULT;
  333. }
  334. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  335. const struct iovec *iov,
  336. unsigned long nr_segs,
  337. loff_t pos)
  338. {
  339. ssize_t result = -EINVAL;
  340. size_t requested_bytes = 0;
  341. unsigned long seg;
  342. get_dreq(dreq);
  343. for (seg = 0; seg < nr_segs; seg++) {
  344. const struct iovec *vec = &iov[seg];
  345. result = nfs_direct_read_schedule_segment(dreq, vec, pos);
  346. if (result < 0)
  347. break;
  348. requested_bytes += result;
  349. if ((size_t)result < vec->iov_len)
  350. break;
  351. pos += vec->iov_len;
  352. }
  353. /*
  354. * If no bytes were started, return the error, and let the
  355. * generic layer handle the completion.
  356. */
  357. if (requested_bytes == 0) {
  358. nfs_direct_req_release(dreq);
  359. return result < 0 ? result : -EIO;
  360. }
  361. if (put_dreq(dreq))
  362. nfs_direct_complete(dreq);
  363. return 0;
  364. }
  365. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  366. unsigned long nr_segs, loff_t pos)
  367. {
  368. ssize_t result = -ENOMEM;
  369. struct inode *inode = iocb->ki_filp->f_mapping->host;
  370. struct nfs_direct_req *dreq;
  371. dreq = nfs_direct_req_alloc();
  372. if (dreq == NULL)
  373. goto out;
  374. dreq->inode = inode;
  375. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  376. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  377. if (dreq->l_ctx == NULL)
  378. goto out_release;
  379. if (!is_sync_kiocb(iocb))
  380. dreq->iocb = iocb;
  381. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  382. if (!result)
  383. result = nfs_direct_wait(dreq);
  384. out_release:
  385. nfs_direct_req_release(dreq);
  386. out:
  387. return result;
  388. }
  389. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  390. {
  391. while (!list_empty(&dreq->rewrite_list)) {
  392. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  393. list_del(&data->pages);
  394. nfs_direct_release_pages(data->pagevec, data->npages);
  395. nfs_writedata_free(data);
  396. }
  397. }
  398. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  399. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  400. {
  401. struct inode *inode = dreq->inode;
  402. struct list_head *p;
  403. struct nfs_write_data *data;
  404. struct rpc_task *task;
  405. struct rpc_message msg = {
  406. .rpc_cred = dreq->ctx->cred,
  407. };
  408. struct rpc_task_setup task_setup_data = {
  409. .rpc_client = NFS_CLIENT(inode),
  410. .rpc_message = &msg,
  411. .callback_ops = &nfs_write_direct_ops,
  412. .workqueue = nfsiod_workqueue,
  413. .flags = RPC_TASK_ASYNC,
  414. };
  415. dreq->count = 0;
  416. get_dreq(dreq);
  417. list_for_each(p, &dreq->rewrite_list) {
  418. data = list_entry(p, struct nfs_write_data, pages);
  419. get_dreq(dreq);
  420. /* Use stable writes */
  421. data->args.stable = NFS_FILE_SYNC;
  422. /*
  423. * Reset data->res.
  424. */
  425. nfs_fattr_init(&data->fattr);
  426. data->res.count = data->args.count;
  427. memset(&data->verf, 0, sizeof(data->verf));
  428. /*
  429. * Reuse data->task; data->args should not have changed
  430. * since the original request was sent.
  431. */
  432. task_setup_data.task = &data->task;
  433. task_setup_data.callback_data = data;
  434. msg.rpc_argp = &data->args;
  435. msg.rpc_resp = &data->res;
  436. NFS_PROTO(inode)->write_setup(data, &msg);
  437. /*
  438. * We're called via an RPC callback, so BKL is already held.
  439. */
  440. task = rpc_run_task(&task_setup_data);
  441. if (!IS_ERR(task))
  442. rpc_put_task(task);
  443. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  444. data->task.tk_pid,
  445. inode->i_sb->s_id,
  446. (long long)NFS_FILEID(inode),
  447. data->args.count,
  448. (unsigned long long)data->args.offset);
  449. }
  450. if (put_dreq(dreq))
  451. nfs_direct_write_complete(dreq, inode);
  452. }
  453. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  454. {
  455. struct nfs_write_data *data = calldata;
  456. /* Call the NFS version-specific code */
  457. NFS_PROTO(data->inode)->commit_done(task, data);
  458. }
  459. static void nfs_direct_commit_release(void *calldata)
  460. {
  461. struct nfs_write_data *data = calldata;
  462. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  463. int status = data->task.tk_status;
  464. if (status < 0) {
  465. dprintk("NFS: %5u commit failed with error %d.\n",
  466. data->task.tk_pid, status);
  467. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  468. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  469. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  470. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  471. }
  472. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  473. nfs_direct_write_complete(dreq, data->inode);
  474. nfs_commit_free(data);
  475. }
  476. static const struct rpc_call_ops nfs_commit_direct_ops = {
  477. .rpc_call_prepare = nfs_write_prepare,
  478. .rpc_call_done = nfs_direct_commit_result,
  479. .rpc_release = nfs_direct_commit_release,
  480. };
  481. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  482. {
  483. struct nfs_write_data *data = dreq->commit_data;
  484. struct rpc_task *task;
  485. struct rpc_message msg = {
  486. .rpc_argp = &data->args,
  487. .rpc_resp = &data->res,
  488. .rpc_cred = dreq->ctx->cred,
  489. };
  490. struct rpc_task_setup task_setup_data = {
  491. .task = &data->task,
  492. .rpc_client = NFS_CLIENT(dreq->inode),
  493. .rpc_message = &msg,
  494. .callback_ops = &nfs_commit_direct_ops,
  495. .callback_data = data,
  496. .workqueue = nfsiod_workqueue,
  497. .flags = RPC_TASK_ASYNC,
  498. };
  499. data->inode = dreq->inode;
  500. data->cred = msg.rpc_cred;
  501. data->args.fh = NFS_FH(data->inode);
  502. data->args.offset = 0;
  503. data->args.count = 0;
  504. data->args.context = dreq->ctx;
  505. data->args.lock_context = dreq->l_ctx;
  506. data->res.count = 0;
  507. data->res.fattr = &data->fattr;
  508. data->res.verf = &data->verf;
  509. nfs_fattr_init(&data->fattr);
  510. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  511. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  512. dreq->commit_data = NULL;
  513. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  514. task = rpc_run_task(&task_setup_data);
  515. if (!IS_ERR(task))
  516. rpc_put_task(task);
  517. }
  518. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  519. {
  520. int flags = dreq->flags;
  521. dreq->flags = 0;
  522. switch (flags) {
  523. case NFS_ODIRECT_DO_COMMIT:
  524. nfs_direct_commit_schedule(dreq);
  525. break;
  526. case NFS_ODIRECT_RESCHED_WRITES:
  527. nfs_direct_write_reschedule(dreq);
  528. break;
  529. default:
  530. if (dreq->commit_data != NULL)
  531. nfs_commit_free(dreq->commit_data);
  532. nfs_direct_free_writedata(dreq);
  533. nfs_zap_mapping(inode, inode->i_mapping);
  534. nfs_direct_complete(dreq);
  535. }
  536. }
  537. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  538. {
  539. dreq->commit_data = nfs_commitdata_alloc();
  540. if (dreq->commit_data != NULL)
  541. dreq->commit_data->req = (struct nfs_page *) dreq;
  542. }
  543. #else
  544. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  545. {
  546. dreq->commit_data = NULL;
  547. }
  548. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  549. {
  550. nfs_direct_free_writedata(dreq);
  551. nfs_zap_mapping(inode, inode->i_mapping);
  552. nfs_direct_complete(dreq);
  553. }
  554. #endif
  555. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  556. {
  557. struct nfs_write_data *data = calldata;
  558. nfs_writeback_done(task, data);
  559. }
  560. /*
  561. * NB: Return the value of the first error return code. Subsequent
  562. * errors after the first one are ignored.
  563. */
  564. static void nfs_direct_write_release(void *calldata)
  565. {
  566. struct nfs_write_data *data = calldata;
  567. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  568. int status = data->task.tk_status;
  569. spin_lock(&dreq->lock);
  570. if (unlikely(status < 0)) {
  571. /* An error has occurred, so we should not commit */
  572. dreq->flags = 0;
  573. dreq->error = status;
  574. }
  575. if (unlikely(dreq->error != 0))
  576. goto out_unlock;
  577. dreq->count += data->res.count;
  578. if (data->res.verf->committed != NFS_FILE_SYNC) {
  579. switch (dreq->flags) {
  580. case 0:
  581. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  582. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  583. break;
  584. case NFS_ODIRECT_DO_COMMIT:
  585. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  586. dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
  587. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  588. }
  589. }
  590. }
  591. out_unlock:
  592. spin_unlock(&dreq->lock);
  593. if (put_dreq(dreq))
  594. nfs_direct_write_complete(dreq, data->inode);
  595. }
  596. static const struct rpc_call_ops nfs_write_direct_ops = {
  597. .rpc_call_prepare = nfs_write_prepare,
  598. .rpc_call_done = nfs_direct_write_result,
  599. .rpc_release = nfs_direct_write_release,
  600. };
  601. /*
  602. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  603. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  604. * bail and stop sending more writes. Write length accounting is
  605. * handled automatically by nfs_direct_write_result(). Otherwise, if
  606. * no requests have been sent, just return an error.
  607. */
  608. static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
  609. const struct iovec *iov,
  610. loff_t pos, int sync)
  611. {
  612. struct nfs_open_context *ctx = dreq->ctx;
  613. struct inode *inode = ctx->dentry->d_inode;
  614. unsigned long user_addr = (unsigned long)iov->iov_base;
  615. size_t count = iov->iov_len;
  616. struct rpc_task *task;
  617. struct rpc_message msg = {
  618. .rpc_cred = ctx->cred,
  619. };
  620. struct rpc_task_setup task_setup_data = {
  621. .rpc_client = NFS_CLIENT(inode),
  622. .rpc_message = &msg,
  623. .callback_ops = &nfs_write_direct_ops,
  624. .workqueue = nfsiod_workqueue,
  625. .flags = RPC_TASK_ASYNC,
  626. };
  627. size_t wsize = NFS_SERVER(inode)->wsize;
  628. unsigned int pgbase;
  629. int result;
  630. ssize_t started = 0;
  631. do {
  632. struct nfs_write_data *data;
  633. size_t bytes;
  634. pgbase = user_addr & ~PAGE_MASK;
  635. bytes = min(wsize,count);
  636. result = -ENOMEM;
  637. data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
  638. if (unlikely(!data))
  639. break;
  640. down_read(&current->mm->mmap_sem);
  641. result = get_user_pages(current, current->mm, user_addr,
  642. data->npages, 0, 0, data->pagevec, NULL);
  643. up_read(&current->mm->mmap_sem);
  644. if (result < 0) {
  645. nfs_writedata_free(data);
  646. break;
  647. }
  648. if ((unsigned)result < data->npages) {
  649. bytes = result * PAGE_SIZE;
  650. if (bytes <= pgbase) {
  651. nfs_direct_release_pages(data->pagevec, result);
  652. nfs_writedata_free(data);
  653. break;
  654. }
  655. bytes -= pgbase;
  656. data->npages = result;
  657. }
  658. get_dreq(dreq);
  659. list_move_tail(&data->pages, &dreq->rewrite_list);
  660. data->req = (struct nfs_page *) dreq;
  661. data->inode = inode;
  662. data->cred = msg.rpc_cred;
  663. data->args.fh = NFS_FH(inode);
  664. data->args.context = ctx;
  665. data->args.lock_context = dreq->l_ctx;
  666. data->args.offset = pos;
  667. data->args.pgbase = pgbase;
  668. data->args.pages = data->pagevec;
  669. data->args.count = bytes;
  670. data->args.stable = sync;
  671. data->res.fattr = &data->fattr;
  672. data->res.count = bytes;
  673. data->res.verf = &data->verf;
  674. nfs_fattr_init(&data->fattr);
  675. task_setup_data.task = &data->task;
  676. task_setup_data.callback_data = data;
  677. msg.rpc_argp = &data->args;
  678. msg.rpc_resp = &data->res;
  679. NFS_PROTO(inode)->write_setup(data, &msg);
  680. task = rpc_run_task(&task_setup_data);
  681. if (IS_ERR(task))
  682. break;
  683. rpc_put_task(task);
  684. dprintk("NFS: %5u initiated direct write call "
  685. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  686. data->task.tk_pid,
  687. inode->i_sb->s_id,
  688. (long long)NFS_FILEID(inode),
  689. bytes,
  690. (unsigned long long)data->args.offset);
  691. started += bytes;
  692. user_addr += bytes;
  693. pos += bytes;
  694. /* FIXME: Remove this useless math from the final patch */
  695. pgbase += bytes;
  696. pgbase &= ~PAGE_MASK;
  697. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  698. count -= bytes;
  699. } while (count != 0);
  700. if (started)
  701. return started;
  702. return result < 0 ? (ssize_t) result : -EFAULT;
  703. }
  704. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  705. const struct iovec *iov,
  706. unsigned long nr_segs,
  707. loff_t pos, int sync)
  708. {
  709. ssize_t result = 0;
  710. size_t requested_bytes = 0;
  711. unsigned long seg;
  712. get_dreq(dreq);
  713. for (seg = 0; seg < nr_segs; seg++) {
  714. const struct iovec *vec = &iov[seg];
  715. result = nfs_direct_write_schedule_segment(dreq, vec,
  716. pos, sync);
  717. if (result < 0)
  718. break;
  719. requested_bytes += result;
  720. if ((size_t)result < vec->iov_len)
  721. break;
  722. pos += vec->iov_len;
  723. }
  724. /*
  725. * If no bytes were started, return the error, and let the
  726. * generic layer handle the completion.
  727. */
  728. if (requested_bytes == 0) {
  729. nfs_direct_req_release(dreq);
  730. return result < 0 ? result : -EIO;
  731. }
  732. if (put_dreq(dreq))
  733. nfs_direct_write_complete(dreq, dreq->inode);
  734. return 0;
  735. }
  736. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  737. unsigned long nr_segs, loff_t pos,
  738. size_t count)
  739. {
  740. ssize_t result = -ENOMEM;
  741. struct inode *inode = iocb->ki_filp->f_mapping->host;
  742. struct nfs_direct_req *dreq;
  743. size_t wsize = NFS_SERVER(inode)->wsize;
  744. int sync = NFS_UNSTABLE;
  745. dreq = nfs_direct_req_alloc();
  746. if (!dreq)
  747. goto out;
  748. nfs_alloc_commit_data(dreq);
  749. if (dreq->commit_data == NULL || count <= wsize)
  750. sync = NFS_FILE_SYNC;
  751. dreq->inode = inode;
  752. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  753. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  754. if (dreq->l_ctx == NULL)
  755. goto out_release;
  756. if (!is_sync_kiocb(iocb))
  757. dreq->iocb = iocb;
  758. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
  759. if (!result)
  760. result = nfs_direct_wait(dreq);
  761. out_release:
  762. nfs_direct_req_release(dreq);
  763. out:
  764. return result;
  765. }
  766. /**
  767. * nfs_file_direct_read - file direct read operation for NFS files
  768. * @iocb: target I/O control block
  769. * @iov: vector of user buffers into which to read data
  770. * @nr_segs: size of iov vector
  771. * @pos: byte offset in file where reading starts
  772. *
  773. * We use this function for direct reads instead of calling
  774. * generic_file_aio_read() in order to avoid gfar's check to see if
  775. * the request starts before the end of the file. For that check
  776. * to work, we must generate a GETATTR before each direct read, and
  777. * even then there is a window between the GETATTR and the subsequent
  778. * READ where the file size could change. Our preference is simply
  779. * to do all reads the application wants, and the server will take
  780. * care of managing the end of file boundary.
  781. *
  782. * This function also eliminates unnecessarily updating the file's
  783. * atime locally, as the NFS server sets the file's atime, and this
  784. * client must read the updated atime from the server back into its
  785. * cache.
  786. */
  787. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  788. unsigned long nr_segs, loff_t pos)
  789. {
  790. ssize_t retval = -EINVAL;
  791. struct file *file = iocb->ki_filp;
  792. struct address_space *mapping = file->f_mapping;
  793. size_t count;
  794. count = iov_length(iov, nr_segs);
  795. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  796. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  797. file->f_path.dentry->d_parent->d_name.name,
  798. file->f_path.dentry->d_name.name,
  799. count, (long long) pos);
  800. retval = 0;
  801. if (!count)
  802. goto out;
  803. retval = nfs_sync_mapping(mapping);
  804. if (retval)
  805. goto out;
  806. task_io_account_read(count);
  807. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  808. if (retval > 0)
  809. iocb->ki_pos = pos + retval;
  810. out:
  811. return retval;
  812. }
  813. /**
  814. * nfs_file_direct_write - file direct write operation for NFS files
  815. * @iocb: target I/O control block
  816. * @iov: vector of user buffers from which to write data
  817. * @nr_segs: size of iov vector
  818. * @pos: byte offset in file where writing starts
  819. *
  820. * We use this function for direct writes instead of calling
  821. * generic_file_aio_write() in order to avoid taking the inode
  822. * semaphore and updating the i_size. The NFS server will set
  823. * the new i_size and this client must read the updated size
  824. * back into its cache. We let the server do generic write
  825. * parameter checking and report problems.
  826. *
  827. * We eliminate local atime updates, see direct read above.
  828. *
  829. * We avoid unnecessary page cache invalidations for normal cached
  830. * readers of this file.
  831. *
  832. * Note that O_APPEND is not supported for NFS direct writes, as there
  833. * is no atomic O_APPEND write facility in the NFS protocol.
  834. */
  835. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  836. unsigned long nr_segs, loff_t pos)
  837. {
  838. ssize_t retval = -EINVAL;
  839. struct file *file = iocb->ki_filp;
  840. struct address_space *mapping = file->f_mapping;
  841. size_t count;
  842. count = iov_length(iov, nr_segs);
  843. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  844. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  845. file->f_path.dentry->d_parent->d_name.name,
  846. file->f_path.dentry->d_name.name,
  847. count, (long long) pos);
  848. retval = generic_write_checks(file, &pos, &count, 0);
  849. if (retval)
  850. goto out;
  851. retval = -EINVAL;
  852. if ((ssize_t) count < 0)
  853. goto out;
  854. retval = 0;
  855. if (!count)
  856. goto out;
  857. retval = nfs_sync_mapping(mapping);
  858. if (retval)
  859. goto out;
  860. task_io_account_write(count);
  861. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  862. if (retval > 0)
  863. iocb->ki_pos = pos + retval;
  864. out:
  865. return retval;
  866. }
  867. /**
  868. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  869. *
  870. */
  871. int __init nfs_init_directcache(void)
  872. {
  873. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  874. sizeof(struct nfs_direct_req),
  875. 0, (SLAB_RECLAIM_ACCOUNT|
  876. SLAB_MEM_SPREAD),
  877. NULL);
  878. if (nfs_direct_cachep == NULL)
  879. return -ENOMEM;
  880. return 0;
  881. }
  882. /**
  883. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  884. *
  885. */
  886. void nfs_destroy_directcache(void)
  887. {
  888. kmem_cache_destroy(nfs_direct_cachep);
  889. }