inode.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/fs.h>
  25. #include <linux/time.h>
  26. #include <linux/ext3_jbd.h>
  27. #include <linux/jbd.h>
  28. #include <linux/highuid.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/quotaops.h>
  31. #include <linux/string.h>
  32. #include <linux/buffer_head.h>
  33. #include <linux/writeback.h>
  34. #include <linux/mpage.h>
  35. #include <linux/uio.h>
  36. #include <linux/bio.h>
  37. #include <linux/fiemap.h>
  38. #include <linux/namei.h>
  39. #include <trace/events/ext3.h>
  40. #include "xattr.h"
  41. #include "acl.h"
  42. static int ext3_writepage_trans_blocks(struct inode *inode);
  43. static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  44. /*
  45. * Test whether an inode is a fast symlink.
  46. */
  47. static int ext3_inode_is_fast_symlink(struct inode *inode)
  48. {
  49. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  50. (inode->i_sb->s_blocksize >> 9) : 0;
  51. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  52. }
  53. /*
  54. * The ext3 forget function must perform a revoke if we are freeing data
  55. * which has been journaled. Metadata (eg. indirect blocks) must be
  56. * revoked in all cases.
  57. *
  58. * "bh" may be NULL: a metadata block may have been freed from memory
  59. * but there may still be a record of it in the journal, and that record
  60. * still needs to be revoked.
  61. */
  62. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  63. struct buffer_head *bh, ext3_fsblk_t blocknr)
  64. {
  65. int err;
  66. might_sleep();
  67. trace_ext3_forget(inode, is_metadata, blocknr);
  68. BUFFER_TRACE(bh, "enter");
  69. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  70. "data mode %lx\n",
  71. bh, is_metadata, inode->i_mode,
  72. test_opt(inode->i_sb, DATA_FLAGS));
  73. /* Never use the revoke function if we are doing full data
  74. * journaling: there is no need to, and a V1 superblock won't
  75. * support it. Otherwise, only skip the revoke on un-journaled
  76. * data blocks. */
  77. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  78. (!is_metadata && !ext3_should_journal_data(inode))) {
  79. if (bh) {
  80. BUFFER_TRACE(bh, "call journal_forget");
  81. return ext3_journal_forget(handle, bh);
  82. }
  83. return 0;
  84. }
  85. /*
  86. * data!=journal && (is_metadata || should_journal_data(inode))
  87. */
  88. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  89. err = ext3_journal_revoke(handle, blocknr, bh);
  90. if (err)
  91. ext3_abort(inode->i_sb, __func__,
  92. "error %d when attempting revoke", err);
  93. BUFFER_TRACE(bh, "exit");
  94. return err;
  95. }
  96. /*
  97. * Work out how many blocks we need to proceed with the next chunk of a
  98. * truncate transaction.
  99. */
  100. static unsigned long blocks_for_truncate(struct inode *inode)
  101. {
  102. unsigned long needed;
  103. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  104. /* Give ourselves just enough room to cope with inodes in which
  105. * i_blocks is corrupt: we've seen disk corruptions in the past
  106. * which resulted in random data in an inode which looked enough
  107. * like a regular file for ext3 to try to delete it. Things
  108. * will go a bit crazy if that happens, but at least we should
  109. * try not to panic the whole kernel. */
  110. if (needed < 2)
  111. needed = 2;
  112. /* But we need to bound the transaction so we don't overflow the
  113. * journal. */
  114. if (needed > EXT3_MAX_TRANS_DATA)
  115. needed = EXT3_MAX_TRANS_DATA;
  116. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  117. }
  118. /*
  119. * Truncate transactions can be complex and absolutely huge. So we need to
  120. * be able to restart the transaction at a conventient checkpoint to make
  121. * sure we don't overflow the journal.
  122. *
  123. * start_transaction gets us a new handle for a truncate transaction,
  124. * and extend_transaction tries to extend the existing one a bit. If
  125. * extend fails, we need to propagate the failure up and restart the
  126. * transaction in the top-level truncate loop. --sct
  127. */
  128. static handle_t *start_transaction(struct inode *inode)
  129. {
  130. handle_t *result;
  131. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  132. if (!IS_ERR(result))
  133. return result;
  134. ext3_std_error(inode->i_sb, PTR_ERR(result));
  135. return result;
  136. }
  137. /*
  138. * Try to extend this transaction for the purposes of truncation.
  139. *
  140. * Returns 0 if we managed to create more room. If we can't create more
  141. * room, and the transaction must be restarted we return 1.
  142. */
  143. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  144. {
  145. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  146. return 0;
  147. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  148. return 0;
  149. return 1;
  150. }
  151. /*
  152. * Restart the transaction associated with *handle. This does a commit,
  153. * so before we call here everything must be consistently dirtied against
  154. * this transaction.
  155. */
  156. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  157. {
  158. int ret;
  159. jbd_debug(2, "restarting handle %p\n", handle);
  160. /*
  161. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  162. * At this moment, get_block can be called only for blocks inside
  163. * i_size since page cache has been already dropped and writes are
  164. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  165. */
  166. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  167. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  168. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  169. return ret;
  170. }
  171. /*
  172. * Called at inode eviction from icache
  173. */
  174. void ext3_evict_inode (struct inode *inode)
  175. {
  176. struct ext3_inode_info *ei = EXT3_I(inode);
  177. struct ext3_block_alloc_info *rsv;
  178. handle_t *handle;
  179. int want_delete = 0;
  180. trace_ext3_evict_inode(inode);
  181. if (!inode->i_nlink && !is_bad_inode(inode)) {
  182. dquot_initialize(inode);
  183. want_delete = 1;
  184. }
  185. /*
  186. * When journalling data dirty buffers are tracked only in the journal.
  187. * So although mm thinks everything is clean and ready for reaping the
  188. * inode might still have some pages to write in the running
  189. * transaction or waiting to be checkpointed. Thus calling
  190. * journal_invalidatepage() (via truncate_inode_pages()) to discard
  191. * these buffers can cause data loss. Also even if we did not discard
  192. * these buffers, we would have no way to find them after the inode
  193. * is reaped and thus user could see stale data if he tries to read
  194. * them before the transaction is checkpointed. So be careful and
  195. * force everything to disk here... We use ei->i_datasync_tid to
  196. * store the newest transaction containing inode's data.
  197. *
  198. * Note that directories do not have this problem because they don't
  199. * use page cache.
  200. *
  201. * The s_journal check handles the case when ext3_get_journal() fails
  202. * and puts the journal inode.
  203. */
  204. if (inode->i_nlink && ext3_should_journal_data(inode) &&
  205. EXT3_SB(inode->i_sb)->s_journal &&
  206. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
  207. tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  208. journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  209. log_start_commit(journal, commit_tid);
  210. log_wait_commit(journal, commit_tid);
  211. filemap_write_and_wait(&inode->i_data);
  212. }
  213. truncate_inode_pages(&inode->i_data, 0);
  214. ext3_discard_reservation(inode);
  215. rsv = ei->i_block_alloc_info;
  216. ei->i_block_alloc_info = NULL;
  217. if (unlikely(rsv))
  218. kfree(rsv);
  219. if (!want_delete)
  220. goto no_delete;
  221. handle = start_transaction(inode);
  222. if (IS_ERR(handle)) {
  223. /*
  224. * If we're going to skip the normal cleanup, we still need to
  225. * make sure that the in-core orphan linked list is properly
  226. * cleaned up.
  227. */
  228. ext3_orphan_del(NULL, inode);
  229. goto no_delete;
  230. }
  231. if (IS_SYNC(inode))
  232. handle->h_sync = 1;
  233. inode->i_size = 0;
  234. if (inode->i_blocks)
  235. ext3_truncate(inode);
  236. /*
  237. * Kill off the orphan record created when the inode lost the last
  238. * link. Note that ext3_orphan_del() has to be able to cope with the
  239. * deletion of a non-existent orphan - ext3_truncate() could
  240. * have removed the record.
  241. */
  242. ext3_orphan_del(handle, inode);
  243. ei->i_dtime = get_seconds();
  244. /*
  245. * One subtle ordering requirement: if anything has gone wrong
  246. * (transaction abort, IO errors, whatever), then we can still
  247. * do these next steps (the fs will already have been marked as
  248. * having errors), but we can't free the inode if the mark_dirty
  249. * fails.
  250. */
  251. if (ext3_mark_inode_dirty(handle, inode)) {
  252. /* If that failed, just dquot_drop() and be done with that */
  253. dquot_drop(inode);
  254. end_writeback(inode);
  255. } else {
  256. ext3_xattr_delete_inode(handle, inode);
  257. dquot_free_inode(inode);
  258. dquot_drop(inode);
  259. end_writeback(inode);
  260. ext3_free_inode(handle, inode);
  261. }
  262. ext3_journal_stop(handle);
  263. return;
  264. no_delete:
  265. end_writeback(inode);
  266. dquot_drop(inode);
  267. }
  268. typedef struct {
  269. __le32 *p;
  270. __le32 key;
  271. struct buffer_head *bh;
  272. } Indirect;
  273. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  274. {
  275. p->key = *(p->p = v);
  276. p->bh = bh;
  277. }
  278. static int verify_chain(Indirect *from, Indirect *to)
  279. {
  280. while (from <= to && from->key == *from->p)
  281. from++;
  282. return (from > to);
  283. }
  284. /**
  285. * ext3_block_to_path - parse the block number into array of offsets
  286. * @inode: inode in question (we are only interested in its superblock)
  287. * @i_block: block number to be parsed
  288. * @offsets: array to store the offsets in
  289. * @boundary: set this non-zero if the referred-to block is likely to be
  290. * followed (on disk) by an indirect block.
  291. *
  292. * To store the locations of file's data ext3 uses a data structure common
  293. * for UNIX filesystems - tree of pointers anchored in the inode, with
  294. * data blocks at leaves and indirect blocks in intermediate nodes.
  295. * This function translates the block number into path in that tree -
  296. * return value is the path length and @offsets[n] is the offset of
  297. * pointer to (n+1)th node in the nth one. If @block is out of range
  298. * (negative or too large) warning is printed and zero returned.
  299. *
  300. * Note: function doesn't find node addresses, so no IO is needed. All
  301. * we need to know is the capacity of indirect blocks (taken from the
  302. * inode->i_sb).
  303. */
  304. /*
  305. * Portability note: the last comparison (check that we fit into triple
  306. * indirect block) is spelled differently, because otherwise on an
  307. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  308. * if our filesystem had 8Kb blocks. We might use long long, but that would
  309. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  310. * i_block would have to be negative in the very beginning, so we would not
  311. * get there at all.
  312. */
  313. static int ext3_block_to_path(struct inode *inode,
  314. long i_block, int offsets[4], int *boundary)
  315. {
  316. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  317. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  318. const long direct_blocks = EXT3_NDIR_BLOCKS,
  319. indirect_blocks = ptrs,
  320. double_blocks = (1 << (ptrs_bits * 2));
  321. int n = 0;
  322. int final = 0;
  323. if (i_block < 0) {
  324. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  325. } else if (i_block < direct_blocks) {
  326. offsets[n++] = i_block;
  327. final = direct_blocks;
  328. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  329. offsets[n++] = EXT3_IND_BLOCK;
  330. offsets[n++] = i_block;
  331. final = ptrs;
  332. } else if ((i_block -= indirect_blocks) < double_blocks) {
  333. offsets[n++] = EXT3_DIND_BLOCK;
  334. offsets[n++] = i_block >> ptrs_bits;
  335. offsets[n++] = i_block & (ptrs - 1);
  336. final = ptrs;
  337. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  338. offsets[n++] = EXT3_TIND_BLOCK;
  339. offsets[n++] = i_block >> (ptrs_bits * 2);
  340. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  341. offsets[n++] = i_block & (ptrs - 1);
  342. final = ptrs;
  343. } else {
  344. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  345. }
  346. if (boundary)
  347. *boundary = final - 1 - (i_block & (ptrs - 1));
  348. return n;
  349. }
  350. /**
  351. * ext3_get_branch - read the chain of indirect blocks leading to data
  352. * @inode: inode in question
  353. * @depth: depth of the chain (1 - direct pointer, etc.)
  354. * @offsets: offsets of pointers in inode/indirect blocks
  355. * @chain: place to store the result
  356. * @err: here we store the error value
  357. *
  358. * Function fills the array of triples <key, p, bh> and returns %NULL
  359. * if everything went OK or the pointer to the last filled triple
  360. * (incomplete one) otherwise. Upon the return chain[i].key contains
  361. * the number of (i+1)-th block in the chain (as it is stored in memory,
  362. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  363. * number (it points into struct inode for i==0 and into the bh->b_data
  364. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  365. * block for i>0 and NULL for i==0. In other words, it holds the block
  366. * numbers of the chain, addresses they were taken from (and where we can
  367. * verify that chain did not change) and buffer_heads hosting these
  368. * numbers.
  369. *
  370. * Function stops when it stumbles upon zero pointer (absent block)
  371. * (pointer to last triple returned, *@err == 0)
  372. * or when it gets an IO error reading an indirect block
  373. * (ditto, *@err == -EIO)
  374. * or when it notices that chain had been changed while it was reading
  375. * (ditto, *@err == -EAGAIN)
  376. * or when it reads all @depth-1 indirect blocks successfully and finds
  377. * the whole chain, all way to the data (returns %NULL, *err == 0).
  378. */
  379. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  380. Indirect chain[4], int *err)
  381. {
  382. struct super_block *sb = inode->i_sb;
  383. Indirect *p = chain;
  384. struct buffer_head *bh;
  385. *err = 0;
  386. /* i_data is not going away, no lock needed */
  387. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  388. if (!p->key)
  389. goto no_block;
  390. while (--depth) {
  391. bh = sb_bread(sb, le32_to_cpu(p->key));
  392. if (!bh)
  393. goto failure;
  394. /* Reader: pointers */
  395. if (!verify_chain(chain, p))
  396. goto changed;
  397. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  398. /* Reader: end */
  399. if (!p->key)
  400. goto no_block;
  401. }
  402. return NULL;
  403. changed:
  404. brelse(bh);
  405. *err = -EAGAIN;
  406. goto no_block;
  407. failure:
  408. *err = -EIO;
  409. no_block:
  410. return p;
  411. }
  412. /**
  413. * ext3_find_near - find a place for allocation with sufficient locality
  414. * @inode: owner
  415. * @ind: descriptor of indirect block.
  416. *
  417. * This function returns the preferred place for block allocation.
  418. * It is used when heuristic for sequential allocation fails.
  419. * Rules are:
  420. * + if there is a block to the left of our position - allocate near it.
  421. * + if pointer will live in indirect block - allocate near that block.
  422. * + if pointer will live in inode - allocate in the same
  423. * cylinder group.
  424. *
  425. * In the latter case we colour the starting block by the callers PID to
  426. * prevent it from clashing with concurrent allocations for a different inode
  427. * in the same block group. The PID is used here so that functionally related
  428. * files will be close-by on-disk.
  429. *
  430. * Caller must make sure that @ind is valid and will stay that way.
  431. */
  432. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  433. {
  434. struct ext3_inode_info *ei = EXT3_I(inode);
  435. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  436. __le32 *p;
  437. ext3_fsblk_t bg_start;
  438. ext3_grpblk_t colour;
  439. /* Try to find previous block */
  440. for (p = ind->p - 1; p >= start; p--) {
  441. if (*p)
  442. return le32_to_cpu(*p);
  443. }
  444. /* No such thing, so let's try location of indirect block */
  445. if (ind->bh)
  446. return ind->bh->b_blocknr;
  447. /*
  448. * It is going to be referred to from the inode itself? OK, just put it
  449. * into the same cylinder group then.
  450. */
  451. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  452. colour = (current->pid % 16) *
  453. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  454. return bg_start + colour;
  455. }
  456. /**
  457. * ext3_find_goal - find a preferred place for allocation.
  458. * @inode: owner
  459. * @block: block we want
  460. * @partial: pointer to the last triple within a chain
  461. *
  462. * Normally this function find the preferred place for block allocation,
  463. * returns it.
  464. */
  465. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  466. Indirect *partial)
  467. {
  468. struct ext3_block_alloc_info *block_i;
  469. block_i = EXT3_I(inode)->i_block_alloc_info;
  470. /*
  471. * try the heuristic for sequential allocation,
  472. * failing that at least try to get decent locality.
  473. */
  474. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  475. && (block_i->last_alloc_physical_block != 0)) {
  476. return block_i->last_alloc_physical_block + 1;
  477. }
  478. return ext3_find_near(inode, partial);
  479. }
  480. /**
  481. * ext3_blks_to_allocate - Look up the block map and count the number
  482. * of direct blocks need to be allocated for the given branch.
  483. *
  484. * @branch: chain of indirect blocks
  485. * @k: number of blocks need for indirect blocks
  486. * @blks: number of data blocks to be mapped.
  487. * @blocks_to_boundary: the offset in the indirect block
  488. *
  489. * return the total number of blocks to be allocate, including the
  490. * direct and indirect blocks.
  491. */
  492. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  493. int blocks_to_boundary)
  494. {
  495. unsigned long count = 0;
  496. /*
  497. * Simple case, [t,d]Indirect block(s) has not allocated yet
  498. * then it's clear blocks on that path have not allocated
  499. */
  500. if (k > 0) {
  501. /* right now we don't handle cross boundary allocation */
  502. if (blks < blocks_to_boundary + 1)
  503. count += blks;
  504. else
  505. count += blocks_to_boundary + 1;
  506. return count;
  507. }
  508. count++;
  509. while (count < blks && count <= blocks_to_boundary &&
  510. le32_to_cpu(*(branch[0].p + count)) == 0) {
  511. count++;
  512. }
  513. return count;
  514. }
  515. /**
  516. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  517. * @handle: handle for this transaction
  518. * @inode: owner
  519. * @goal: preferred place for allocation
  520. * @indirect_blks: the number of blocks need to allocate for indirect
  521. * blocks
  522. * @blks: number of blocks need to allocated for direct blocks
  523. * @new_blocks: on return it will store the new block numbers for
  524. * the indirect blocks(if needed) and the first direct block,
  525. * @err: here we store the error value
  526. *
  527. * return the number of direct blocks allocated
  528. */
  529. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  530. ext3_fsblk_t goal, int indirect_blks, int blks,
  531. ext3_fsblk_t new_blocks[4], int *err)
  532. {
  533. int target, i;
  534. unsigned long count = 0;
  535. int index = 0;
  536. ext3_fsblk_t current_block = 0;
  537. int ret = 0;
  538. /*
  539. * Here we try to allocate the requested multiple blocks at once,
  540. * on a best-effort basis.
  541. * To build a branch, we should allocate blocks for
  542. * the indirect blocks(if not allocated yet), and at least
  543. * the first direct block of this branch. That's the
  544. * minimum number of blocks need to allocate(required)
  545. */
  546. target = blks + indirect_blks;
  547. while (1) {
  548. count = target;
  549. /* allocating blocks for indirect blocks and direct blocks */
  550. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  551. if (*err)
  552. goto failed_out;
  553. target -= count;
  554. /* allocate blocks for indirect blocks */
  555. while (index < indirect_blks && count) {
  556. new_blocks[index++] = current_block++;
  557. count--;
  558. }
  559. if (count > 0)
  560. break;
  561. }
  562. /* save the new block number for the first direct block */
  563. new_blocks[index] = current_block;
  564. /* total number of blocks allocated for direct blocks */
  565. ret = count;
  566. *err = 0;
  567. return ret;
  568. failed_out:
  569. for (i = 0; i <index; i++)
  570. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  571. return ret;
  572. }
  573. /**
  574. * ext3_alloc_branch - allocate and set up a chain of blocks.
  575. * @handle: handle for this transaction
  576. * @inode: owner
  577. * @indirect_blks: number of allocated indirect blocks
  578. * @blks: number of allocated direct blocks
  579. * @goal: preferred place for allocation
  580. * @offsets: offsets (in the blocks) to store the pointers to next.
  581. * @branch: place to store the chain in.
  582. *
  583. * This function allocates blocks, zeroes out all but the last one,
  584. * links them into chain and (if we are synchronous) writes them to disk.
  585. * In other words, it prepares a branch that can be spliced onto the
  586. * inode. It stores the information about that chain in the branch[], in
  587. * the same format as ext3_get_branch() would do. We are calling it after
  588. * we had read the existing part of chain and partial points to the last
  589. * triple of that (one with zero ->key). Upon the exit we have the same
  590. * picture as after the successful ext3_get_block(), except that in one
  591. * place chain is disconnected - *branch->p is still zero (we did not
  592. * set the last link), but branch->key contains the number that should
  593. * be placed into *branch->p to fill that gap.
  594. *
  595. * If allocation fails we free all blocks we've allocated (and forget
  596. * their buffer_heads) and return the error value the from failed
  597. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  598. * as described above and return 0.
  599. */
  600. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  601. int indirect_blks, int *blks, ext3_fsblk_t goal,
  602. int *offsets, Indirect *branch)
  603. {
  604. int blocksize = inode->i_sb->s_blocksize;
  605. int i, n = 0;
  606. int err = 0;
  607. struct buffer_head *bh;
  608. int num;
  609. ext3_fsblk_t new_blocks[4];
  610. ext3_fsblk_t current_block;
  611. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  612. *blks, new_blocks, &err);
  613. if (err)
  614. return err;
  615. branch[0].key = cpu_to_le32(new_blocks[0]);
  616. /*
  617. * metadata blocks and data blocks are allocated.
  618. */
  619. for (n = 1; n <= indirect_blks; n++) {
  620. /*
  621. * Get buffer_head for parent block, zero it out
  622. * and set the pointer to new one, then send
  623. * parent to disk.
  624. */
  625. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  626. branch[n].bh = bh;
  627. lock_buffer(bh);
  628. BUFFER_TRACE(bh, "call get_create_access");
  629. err = ext3_journal_get_create_access(handle, bh);
  630. if (err) {
  631. unlock_buffer(bh);
  632. brelse(bh);
  633. goto failed;
  634. }
  635. memset(bh->b_data, 0, blocksize);
  636. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  637. branch[n].key = cpu_to_le32(new_blocks[n]);
  638. *branch[n].p = branch[n].key;
  639. if ( n == indirect_blks) {
  640. current_block = new_blocks[n];
  641. /*
  642. * End of chain, update the last new metablock of
  643. * the chain to point to the new allocated
  644. * data blocks numbers
  645. */
  646. for (i=1; i < num; i++)
  647. *(branch[n].p + i) = cpu_to_le32(++current_block);
  648. }
  649. BUFFER_TRACE(bh, "marking uptodate");
  650. set_buffer_uptodate(bh);
  651. unlock_buffer(bh);
  652. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  653. err = ext3_journal_dirty_metadata(handle, bh);
  654. if (err)
  655. goto failed;
  656. }
  657. *blks = num;
  658. return err;
  659. failed:
  660. /* Allocation failed, free what we already allocated */
  661. for (i = 1; i <= n ; i++) {
  662. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  663. ext3_journal_forget(handle, branch[i].bh);
  664. }
  665. for (i = 0; i <indirect_blks; i++)
  666. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  667. ext3_free_blocks(handle, inode, new_blocks[i], num);
  668. return err;
  669. }
  670. /**
  671. * ext3_splice_branch - splice the allocated branch onto inode.
  672. * @handle: handle for this transaction
  673. * @inode: owner
  674. * @block: (logical) number of block we are adding
  675. * @where: location of missing link
  676. * @num: number of indirect blocks we are adding
  677. * @blks: number of direct blocks we are adding
  678. *
  679. * This function fills the missing link and does all housekeeping needed in
  680. * inode (->i_blocks, etc.). In case of success we end up with the full
  681. * chain to new block and return 0.
  682. */
  683. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  684. long block, Indirect *where, int num, int blks)
  685. {
  686. int i;
  687. int err = 0;
  688. struct ext3_block_alloc_info *block_i;
  689. ext3_fsblk_t current_block;
  690. struct ext3_inode_info *ei = EXT3_I(inode);
  691. block_i = ei->i_block_alloc_info;
  692. /*
  693. * If we're splicing into a [td]indirect block (as opposed to the
  694. * inode) then we need to get write access to the [td]indirect block
  695. * before the splice.
  696. */
  697. if (where->bh) {
  698. BUFFER_TRACE(where->bh, "get_write_access");
  699. err = ext3_journal_get_write_access(handle, where->bh);
  700. if (err)
  701. goto err_out;
  702. }
  703. /* That's it */
  704. *where->p = where->key;
  705. /*
  706. * Update the host buffer_head or inode to point to more just allocated
  707. * direct blocks blocks
  708. */
  709. if (num == 0 && blks > 1) {
  710. current_block = le32_to_cpu(where->key) + 1;
  711. for (i = 1; i < blks; i++)
  712. *(where->p + i ) = cpu_to_le32(current_block++);
  713. }
  714. /*
  715. * update the most recently allocated logical & physical block
  716. * in i_block_alloc_info, to assist find the proper goal block for next
  717. * allocation
  718. */
  719. if (block_i) {
  720. block_i->last_alloc_logical_block = block + blks - 1;
  721. block_i->last_alloc_physical_block =
  722. le32_to_cpu(where[num].key) + blks - 1;
  723. }
  724. /* We are done with atomic stuff, now do the rest of housekeeping */
  725. inode->i_ctime = CURRENT_TIME_SEC;
  726. ext3_mark_inode_dirty(handle, inode);
  727. /* ext3_mark_inode_dirty already updated i_sync_tid */
  728. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  729. /* had we spliced it onto indirect block? */
  730. if (where->bh) {
  731. /*
  732. * If we spliced it onto an indirect block, we haven't
  733. * altered the inode. Note however that if it is being spliced
  734. * onto an indirect block at the very end of the file (the
  735. * file is growing) then we *will* alter the inode to reflect
  736. * the new i_size. But that is not done here - it is done in
  737. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  738. */
  739. jbd_debug(5, "splicing indirect only\n");
  740. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  741. err = ext3_journal_dirty_metadata(handle, where->bh);
  742. if (err)
  743. goto err_out;
  744. } else {
  745. /*
  746. * OK, we spliced it into the inode itself on a direct block.
  747. * Inode was dirtied above.
  748. */
  749. jbd_debug(5, "splicing direct\n");
  750. }
  751. return err;
  752. err_out:
  753. for (i = 1; i <= num; i++) {
  754. BUFFER_TRACE(where[i].bh, "call journal_forget");
  755. ext3_journal_forget(handle, where[i].bh);
  756. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  757. }
  758. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  759. return err;
  760. }
  761. /*
  762. * Allocation strategy is simple: if we have to allocate something, we will
  763. * have to go the whole way to leaf. So let's do it before attaching anything
  764. * to tree, set linkage between the newborn blocks, write them if sync is
  765. * required, recheck the path, free and repeat if check fails, otherwise
  766. * set the last missing link (that will protect us from any truncate-generated
  767. * removals - all blocks on the path are immune now) and possibly force the
  768. * write on the parent block.
  769. * That has a nice additional property: no special recovery from the failed
  770. * allocations is needed - we simply release blocks and do not touch anything
  771. * reachable from inode.
  772. *
  773. * `handle' can be NULL if create == 0.
  774. *
  775. * The BKL may not be held on entry here. Be sure to take it early.
  776. * return > 0, # of blocks mapped or allocated.
  777. * return = 0, if plain lookup failed.
  778. * return < 0, error case.
  779. */
  780. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  781. sector_t iblock, unsigned long maxblocks,
  782. struct buffer_head *bh_result,
  783. int create)
  784. {
  785. int err = -EIO;
  786. int offsets[4];
  787. Indirect chain[4];
  788. Indirect *partial;
  789. ext3_fsblk_t goal;
  790. int indirect_blks;
  791. int blocks_to_boundary = 0;
  792. int depth;
  793. struct ext3_inode_info *ei = EXT3_I(inode);
  794. int count = 0;
  795. ext3_fsblk_t first_block = 0;
  796. trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  797. J_ASSERT(handle != NULL || create == 0);
  798. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  799. if (depth == 0)
  800. goto out;
  801. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  802. /* Simplest case - block found, no allocation needed */
  803. if (!partial) {
  804. first_block = le32_to_cpu(chain[depth - 1].key);
  805. clear_buffer_new(bh_result);
  806. count++;
  807. /*map more blocks*/
  808. while (count < maxblocks && count <= blocks_to_boundary) {
  809. ext3_fsblk_t blk;
  810. if (!verify_chain(chain, chain + depth - 1)) {
  811. /*
  812. * Indirect block might be removed by
  813. * truncate while we were reading it.
  814. * Handling of that case: forget what we've
  815. * got now. Flag the err as EAGAIN, so it
  816. * will reread.
  817. */
  818. err = -EAGAIN;
  819. count = 0;
  820. break;
  821. }
  822. blk = le32_to_cpu(*(chain[depth-1].p + count));
  823. if (blk == first_block + count)
  824. count++;
  825. else
  826. break;
  827. }
  828. if (err != -EAGAIN)
  829. goto got_it;
  830. }
  831. /* Next simple case - plain lookup or failed read of indirect block */
  832. if (!create || err == -EIO)
  833. goto cleanup;
  834. /*
  835. * Block out ext3_truncate while we alter the tree
  836. */
  837. mutex_lock(&ei->truncate_mutex);
  838. /*
  839. * If the indirect block is missing while we are reading
  840. * the chain(ext3_get_branch() returns -EAGAIN err), or
  841. * if the chain has been changed after we grab the semaphore,
  842. * (either because another process truncated this branch, or
  843. * another get_block allocated this branch) re-grab the chain to see if
  844. * the request block has been allocated or not.
  845. *
  846. * Since we already block the truncate/other get_block
  847. * at this point, we will have the current copy of the chain when we
  848. * splice the branch into the tree.
  849. */
  850. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  851. while (partial > chain) {
  852. brelse(partial->bh);
  853. partial--;
  854. }
  855. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  856. if (!partial) {
  857. count++;
  858. mutex_unlock(&ei->truncate_mutex);
  859. if (err)
  860. goto cleanup;
  861. clear_buffer_new(bh_result);
  862. goto got_it;
  863. }
  864. }
  865. /*
  866. * Okay, we need to do block allocation. Lazily initialize the block
  867. * allocation info here if necessary
  868. */
  869. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  870. ext3_init_block_alloc_info(inode);
  871. goal = ext3_find_goal(inode, iblock, partial);
  872. /* the number of blocks need to allocate for [d,t]indirect blocks */
  873. indirect_blks = (chain + depth) - partial - 1;
  874. /*
  875. * Next look up the indirect map to count the totoal number of
  876. * direct blocks to allocate for this branch.
  877. */
  878. count = ext3_blks_to_allocate(partial, indirect_blks,
  879. maxblocks, blocks_to_boundary);
  880. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  881. offsets + (partial - chain), partial);
  882. /*
  883. * The ext3_splice_branch call will free and forget any buffers
  884. * on the new chain if there is a failure, but that risks using
  885. * up transaction credits, especially for bitmaps where the
  886. * credits cannot be returned. Can we handle this somehow? We
  887. * may need to return -EAGAIN upwards in the worst case. --sct
  888. */
  889. if (!err)
  890. err = ext3_splice_branch(handle, inode, iblock,
  891. partial, indirect_blks, count);
  892. mutex_unlock(&ei->truncate_mutex);
  893. if (err)
  894. goto cleanup;
  895. set_buffer_new(bh_result);
  896. got_it:
  897. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  898. if (count > blocks_to_boundary)
  899. set_buffer_boundary(bh_result);
  900. err = count;
  901. /* Clean up and exit */
  902. partial = chain + depth - 1; /* the whole chain */
  903. cleanup:
  904. while (partial > chain) {
  905. BUFFER_TRACE(partial->bh, "call brelse");
  906. brelse(partial->bh);
  907. partial--;
  908. }
  909. BUFFER_TRACE(bh_result, "returned");
  910. out:
  911. trace_ext3_get_blocks_exit(inode, iblock,
  912. depth ? le32_to_cpu(chain[depth-1].key) : 0,
  913. count, err);
  914. return err;
  915. }
  916. /* Maximum number of blocks we map for direct IO at once. */
  917. #define DIO_MAX_BLOCKS 4096
  918. /*
  919. * Number of credits we need for writing DIO_MAX_BLOCKS:
  920. * We need sb + group descriptor + bitmap + inode -> 4
  921. * For B blocks with A block pointers per block we need:
  922. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  923. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  924. */
  925. #define DIO_CREDITS 25
  926. static int ext3_get_block(struct inode *inode, sector_t iblock,
  927. struct buffer_head *bh_result, int create)
  928. {
  929. handle_t *handle = ext3_journal_current_handle();
  930. int ret = 0, started = 0;
  931. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  932. if (create && !handle) { /* Direct IO write... */
  933. if (max_blocks > DIO_MAX_BLOCKS)
  934. max_blocks = DIO_MAX_BLOCKS;
  935. handle = ext3_journal_start(inode, DIO_CREDITS +
  936. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  937. if (IS_ERR(handle)) {
  938. ret = PTR_ERR(handle);
  939. goto out;
  940. }
  941. started = 1;
  942. }
  943. ret = ext3_get_blocks_handle(handle, inode, iblock,
  944. max_blocks, bh_result, create);
  945. if (ret > 0) {
  946. bh_result->b_size = (ret << inode->i_blkbits);
  947. ret = 0;
  948. }
  949. if (started)
  950. ext3_journal_stop(handle);
  951. out:
  952. return ret;
  953. }
  954. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  955. u64 start, u64 len)
  956. {
  957. return generic_block_fiemap(inode, fieinfo, start, len,
  958. ext3_get_block);
  959. }
  960. /*
  961. * `handle' can be NULL if create is zero
  962. */
  963. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  964. long block, int create, int *errp)
  965. {
  966. struct buffer_head dummy;
  967. int fatal = 0, err;
  968. J_ASSERT(handle != NULL || create == 0);
  969. dummy.b_state = 0;
  970. dummy.b_blocknr = -1000;
  971. buffer_trace_init(&dummy.b_history);
  972. err = ext3_get_blocks_handle(handle, inode, block, 1,
  973. &dummy, create);
  974. /*
  975. * ext3_get_blocks_handle() returns number of blocks
  976. * mapped. 0 in case of a HOLE.
  977. */
  978. if (err > 0) {
  979. if (err > 1)
  980. WARN_ON(1);
  981. err = 0;
  982. }
  983. *errp = err;
  984. if (!err && buffer_mapped(&dummy)) {
  985. struct buffer_head *bh;
  986. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  987. if (!bh) {
  988. *errp = -EIO;
  989. goto err;
  990. }
  991. if (buffer_new(&dummy)) {
  992. J_ASSERT(create != 0);
  993. J_ASSERT(handle != NULL);
  994. /*
  995. * Now that we do not always journal data, we should
  996. * keep in mind whether this should always journal the
  997. * new buffer as metadata. For now, regular file
  998. * writes use ext3_get_block instead, so it's not a
  999. * problem.
  1000. */
  1001. lock_buffer(bh);
  1002. BUFFER_TRACE(bh, "call get_create_access");
  1003. fatal = ext3_journal_get_create_access(handle, bh);
  1004. if (!fatal && !buffer_uptodate(bh)) {
  1005. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1006. set_buffer_uptodate(bh);
  1007. }
  1008. unlock_buffer(bh);
  1009. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1010. err = ext3_journal_dirty_metadata(handle, bh);
  1011. if (!fatal)
  1012. fatal = err;
  1013. } else {
  1014. BUFFER_TRACE(bh, "not a new buffer");
  1015. }
  1016. if (fatal) {
  1017. *errp = fatal;
  1018. brelse(bh);
  1019. bh = NULL;
  1020. }
  1021. return bh;
  1022. }
  1023. err:
  1024. return NULL;
  1025. }
  1026. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  1027. int block, int create, int *err)
  1028. {
  1029. struct buffer_head * bh;
  1030. bh = ext3_getblk(handle, inode, block, create, err);
  1031. if (!bh)
  1032. return bh;
  1033. if (bh_uptodate_or_lock(bh))
  1034. return bh;
  1035. get_bh(bh);
  1036. bh->b_end_io = end_buffer_read_sync;
  1037. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  1038. wait_on_buffer(bh);
  1039. if (buffer_uptodate(bh))
  1040. return bh;
  1041. put_bh(bh);
  1042. *err = -EIO;
  1043. return NULL;
  1044. }
  1045. static int walk_page_buffers( handle_t *handle,
  1046. struct buffer_head *head,
  1047. unsigned from,
  1048. unsigned to,
  1049. int *partial,
  1050. int (*fn)( handle_t *handle,
  1051. struct buffer_head *bh))
  1052. {
  1053. struct buffer_head *bh;
  1054. unsigned block_start, block_end;
  1055. unsigned blocksize = head->b_size;
  1056. int err, ret = 0;
  1057. struct buffer_head *next;
  1058. for ( bh = head, block_start = 0;
  1059. ret == 0 && (bh != head || !block_start);
  1060. block_start = block_end, bh = next)
  1061. {
  1062. next = bh->b_this_page;
  1063. block_end = block_start + blocksize;
  1064. if (block_end <= from || block_start >= to) {
  1065. if (partial && !buffer_uptodate(bh))
  1066. *partial = 1;
  1067. continue;
  1068. }
  1069. err = (*fn)(handle, bh);
  1070. if (!ret)
  1071. ret = err;
  1072. }
  1073. return ret;
  1074. }
  1075. /*
  1076. * To preserve ordering, it is essential that the hole instantiation and
  1077. * the data write be encapsulated in a single transaction. We cannot
  1078. * close off a transaction and start a new one between the ext3_get_block()
  1079. * and the commit_write(). So doing the journal_start at the start of
  1080. * prepare_write() is the right place.
  1081. *
  1082. * Also, this function can nest inside ext3_writepage() ->
  1083. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1084. * has generated enough buffer credits to do the whole page. So we won't
  1085. * block on the journal in that case, which is good, because the caller may
  1086. * be PF_MEMALLOC.
  1087. *
  1088. * By accident, ext3 can be reentered when a transaction is open via
  1089. * quota file writes. If we were to commit the transaction while thus
  1090. * reentered, there can be a deadlock - we would be holding a quota
  1091. * lock, and the commit would never complete if another thread had a
  1092. * transaction open and was blocking on the quota lock - a ranking
  1093. * violation.
  1094. *
  1095. * So what we do is to rely on the fact that journal_stop/journal_start
  1096. * will _not_ run commit under these circumstances because handle->h_ref
  1097. * is elevated. We'll still have enough credits for the tiny quotafile
  1098. * write.
  1099. */
  1100. static int do_journal_get_write_access(handle_t *handle,
  1101. struct buffer_head *bh)
  1102. {
  1103. int dirty = buffer_dirty(bh);
  1104. int ret;
  1105. if (!buffer_mapped(bh) || buffer_freed(bh))
  1106. return 0;
  1107. /*
  1108. * __block_prepare_write() could have dirtied some buffers. Clean
  1109. * the dirty bit as jbd2_journal_get_write_access() could complain
  1110. * otherwise about fs integrity issues. Setting of the dirty bit
  1111. * by __block_prepare_write() isn't a real problem here as we clear
  1112. * the bit before releasing a page lock and thus writeback cannot
  1113. * ever write the buffer.
  1114. */
  1115. if (dirty)
  1116. clear_buffer_dirty(bh);
  1117. ret = ext3_journal_get_write_access(handle, bh);
  1118. if (!ret && dirty)
  1119. ret = ext3_journal_dirty_metadata(handle, bh);
  1120. return ret;
  1121. }
  1122. /*
  1123. * Truncate blocks that were not used by write. We have to truncate the
  1124. * pagecache as well so that corresponding buffers get properly unmapped.
  1125. */
  1126. static void ext3_truncate_failed_write(struct inode *inode)
  1127. {
  1128. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1129. ext3_truncate(inode);
  1130. }
  1131. /*
  1132. * Truncate blocks that were not used by direct IO write. We have to zero out
  1133. * the last file block as well because direct IO might have written to it.
  1134. */
  1135. static void ext3_truncate_failed_direct_write(struct inode *inode)
  1136. {
  1137. ext3_block_truncate_page(inode, inode->i_size);
  1138. ext3_truncate(inode);
  1139. }
  1140. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1141. loff_t pos, unsigned len, unsigned flags,
  1142. struct page **pagep, void **fsdata)
  1143. {
  1144. struct inode *inode = mapping->host;
  1145. int ret;
  1146. handle_t *handle;
  1147. int retries = 0;
  1148. struct page *page;
  1149. pgoff_t index;
  1150. unsigned from, to;
  1151. /* Reserve one block more for addition to orphan list in case
  1152. * we allocate blocks but write fails for some reason */
  1153. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1154. trace_ext3_write_begin(inode, pos, len, flags);
  1155. index = pos >> PAGE_CACHE_SHIFT;
  1156. from = pos & (PAGE_CACHE_SIZE - 1);
  1157. to = from + len;
  1158. retry:
  1159. page = grab_cache_page_write_begin(mapping, index, flags);
  1160. if (!page)
  1161. return -ENOMEM;
  1162. *pagep = page;
  1163. handle = ext3_journal_start(inode, needed_blocks);
  1164. if (IS_ERR(handle)) {
  1165. unlock_page(page);
  1166. page_cache_release(page);
  1167. ret = PTR_ERR(handle);
  1168. goto out;
  1169. }
  1170. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1171. if (ret)
  1172. goto write_begin_failed;
  1173. if (ext3_should_journal_data(inode)) {
  1174. ret = walk_page_buffers(handle, page_buffers(page),
  1175. from, to, NULL, do_journal_get_write_access);
  1176. }
  1177. write_begin_failed:
  1178. if (ret) {
  1179. /*
  1180. * block_write_begin may have instantiated a few blocks
  1181. * outside i_size. Trim these off again. Don't need
  1182. * i_size_read because we hold i_mutex.
  1183. *
  1184. * Add inode to orphan list in case we crash before truncate
  1185. * finishes. Do this only if ext3_can_truncate() agrees so
  1186. * that orphan processing code is happy.
  1187. */
  1188. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1189. ext3_orphan_add(handle, inode);
  1190. ext3_journal_stop(handle);
  1191. unlock_page(page);
  1192. page_cache_release(page);
  1193. if (pos + len > inode->i_size)
  1194. ext3_truncate_failed_write(inode);
  1195. }
  1196. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1197. goto retry;
  1198. out:
  1199. return ret;
  1200. }
  1201. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1202. {
  1203. int err = journal_dirty_data(handle, bh);
  1204. if (err)
  1205. ext3_journal_abort_handle(__func__, __func__,
  1206. bh, handle, err);
  1207. return err;
  1208. }
  1209. /* For ordered writepage and write_end functions */
  1210. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1211. {
  1212. /*
  1213. * Write could have mapped the buffer but it didn't copy the data in
  1214. * yet. So avoid filing such buffer into a transaction.
  1215. */
  1216. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1217. return ext3_journal_dirty_data(handle, bh);
  1218. return 0;
  1219. }
  1220. /* For write_end() in data=journal mode */
  1221. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1222. {
  1223. if (!buffer_mapped(bh) || buffer_freed(bh))
  1224. return 0;
  1225. set_buffer_uptodate(bh);
  1226. return ext3_journal_dirty_metadata(handle, bh);
  1227. }
  1228. /*
  1229. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1230. * for the whole page but later we failed to copy the data in. Update inode
  1231. * size according to what we managed to copy. The rest is going to be
  1232. * truncated in write_end function.
  1233. */
  1234. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1235. {
  1236. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1237. if (pos + copied > inode->i_size)
  1238. i_size_write(inode, pos + copied);
  1239. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1240. EXT3_I(inode)->i_disksize = pos + copied;
  1241. mark_inode_dirty(inode);
  1242. }
  1243. }
  1244. /*
  1245. * We need to pick up the new inode size which generic_commit_write gave us
  1246. * `file' can be NULL - eg, when called from page_symlink().
  1247. *
  1248. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1249. * buffers are managed internally.
  1250. */
  1251. static int ext3_ordered_write_end(struct file *file,
  1252. struct address_space *mapping,
  1253. loff_t pos, unsigned len, unsigned copied,
  1254. struct page *page, void *fsdata)
  1255. {
  1256. handle_t *handle = ext3_journal_current_handle();
  1257. struct inode *inode = file->f_mapping->host;
  1258. unsigned from, to;
  1259. int ret = 0, ret2;
  1260. trace_ext3_ordered_write_end(inode, pos, len, copied);
  1261. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1262. from = pos & (PAGE_CACHE_SIZE - 1);
  1263. to = from + copied;
  1264. ret = walk_page_buffers(handle, page_buffers(page),
  1265. from, to, NULL, journal_dirty_data_fn);
  1266. if (ret == 0)
  1267. update_file_sizes(inode, pos, copied);
  1268. /*
  1269. * There may be allocated blocks outside of i_size because
  1270. * we failed to copy some data. Prepare for truncate.
  1271. */
  1272. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1273. ext3_orphan_add(handle, inode);
  1274. ret2 = ext3_journal_stop(handle);
  1275. if (!ret)
  1276. ret = ret2;
  1277. unlock_page(page);
  1278. page_cache_release(page);
  1279. if (pos + len > inode->i_size)
  1280. ext3_truncate_failed_write(inode);
  1281. return ret ? ret : copied;
  1282. }
  1283. static int ext3_writeback_write_end(struct file *file,
  1284. struct address_space *mapping,
  1285. loff_t pos, unsigned len, unsigned copied,
  1286. struct page *page, void *fsdata)
  1287. {
  1288. handle_t *handle = ext3_journal_current_handle();
  1289. struct inode *inode = file->f_mapping->host;
  1290. int ret;
  1291. trace_ext3_writeback_write_end(inode, pos, len, copied);
  1292. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1293. update_file_sizes(inode, pos, copied);
  1294. /*
  1295. * There may be allocated blocks outside of i_size because
  1296. * we failed to copy some data. Prepare for truncate.
  1297. */
  1298. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1299. ext3_orphan_add(handle, inode);
  1300. ret = ext3_journal_stop(handle);
  1301. unlock_page(page);
  1302. page_cache_release(page);
  1303. if (pos + len > inode->i_size)
  1304. ext3_truncate_failed_write(inode);
  1305. return ret ? ret : copied;
  1306. }
  1307. static int ext3_journalled_write_end(struct file *file,
  1308. struct address_space *mapping,
  1309. loff_t pos, unsigned len, unsigned copied,
  1310. struct page *page, void *fsdata)
  1311. {
  1312. handle_t *handle = ext3_journal_current_handle();
  1313. struct inode *inode = mapping->host;
  1314. struct ext3_inode_info *ei = EXT3_I(inode);
  1315. int ret = 0, ret2;
  1316. int partial = 0;
  1317. unsigned from, to;
  1318. trace_ext3_journalled_write_end(inode, pos, len, copied);
  1319. from = pos & (PAGE_CACHE_SIZE - 1);
  1320. to = from + len;
  1321. if (copied < len) {
  1322. if (!PageUptodate(page))
  1323. copied = 0;
  1324. page_zero_new_buffers(page, from + copied, to);
  1325. to = from + copied;
  1326. }
  1327. ret = walk_page_buffers(handle, page_buffers(page), from,
  1328. to, &partial, write_end_fn);
  1329. if (!partial)
  1330. SetPageUptodate(page);
  1331. if (pos + copied > inode->i_size)
  1332. i_size_write(inode, pos + copied);
  1333. /*
  1334. * There may be allocated blocks outside of i_size because
  1335. * we failed to copy some data. Prepare for truncate.
  1336. */
  1337. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1338. ext3_orphan_add(handle, inode);
  1339. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1340. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  1341. if (inode->i_size > ei->i_disksize) {
  1342. ei->i_disksize = inode->i_size;
  1343. ret2 = ext3_mark_inode_dirty(handle, inode);
  1344. if (!ret)
  1345. ret = ret2;
  1346. }
  1347. ret2 = ext3_journal_stop(handle);
  1348. if (!ret)
  1349. ret = ret2;
  1350. unlock_page(page);
  1351. page_cache_release(page);
  1352. if (pos + len > inode->i_size)
  1353. ext3_truncate_failed_write(inode);
  1354. return ret ? ret : copied;
  1355. }
  1356. /*
  1357. * bmap() is special. It gets used by applications such as lilo and by
  1358. * the swapper to find the on-disk block of a specific piece of data.
  1359. *
  1360. * Naturally, this is dangerous if the block concerned is still in the
  1361. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1362. * filesystem and enables swap, then they may get a nasty shock when the
  1363. * data getting swapped to that swapfile suddenly gets overwritten by
  1364. * the original zero's written out previously to the journal and
  1365. * awaiting writeback in the kernel's buffer cache.
  1366. *
  1367. * So, if we see any bmap calls here on a modified, data-journaled file,
  1368. * take extra steps to flush any blocks which might be in the cache.
  1369. */
  1370. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1371. {
  1372. struct inode *inode = mapping->host;
  1373. journal_t *journal;
  1374. int err;
  1375. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1376. /*
  1377. * This is a REALLY heavyweight approach, but the use of
  1378. * bmap on dirty files is expected to be extremely rare:
  1379. * only if we run lilo or swapon on a freshly made file
  1380. * do we expect this to happen.
  1381. *
  1382. * (bmap requires CAP_SYS_RAWIO so this does not
  1383. * represent an unprivileged user DOS attack --- we'd be
  1384. * in trouble if mortal users could trigger this path at
  1385. * will.)
  1386. *
  1387. * NB. EXT3_STATE_JDATA is not set on files other than
  1388. * regular files. If somebody wants to bmap a directory
  1389. * or symlink and gets confused because the buffer
  1390. * hasn't yet been flushed to disk, they deserve
  1391. * everything they get.
  1392. */
  1393. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1394. journal = EXT3_JOURNAL(inode);
  1395. journal_lock_updates(journal);
  1396. err = journal_flush(journal);
  1397. journal_unlock_updates(journal);
  1398. if (err)
  1399. return 0;
  1400. }
  1401. return generic_block_bmap(mapping,block,ext3_get_block);
  1402. }
  1403. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1404. {
  1405. get_bh(bh);
  1406. return 0;
  1407. }
  1408. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1409. {
  1410. put_bh(bh);
  1411. return 0;
  1412. }
  1413. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1414. {
  1415. return !buffer_mapped(bh);
  1416. }
  1417. /*
  1418. * Note that we always start a transaction even if we're not journalling
  1419. * data. This is to preserve ordering: any hole instantiation within
  1420. * __block_write_full_page -> ext3_get_block() should be journalled
  1421. * along with the data so we don't crash and then get metadata which
  1422. * refers to old data.
  1423. *
  1424. * In all journalling modes block_write_full_page() will start the I/O.
  1425. *
  1426. * Problem:
  1427. *
  1428. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1429. * ext3_writepage()
  1430. *
  1431. * Similar for:
  1432. *
  1433. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1434. *
  1435. * Same applies to ext3_get_block(). We will deadlock on various things like
  1436. * lock_journal and i_truncate_mutex.
  1437. *
  1438. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1439. * allocations fail.
  1440. *
  1441. * 16May01: If we're reentered then journal_current_handle() will be
  1442. * non-zero. We simply *return*.
  1443. *
  1444. * 1 July 2001: @@@ FIXME:
  1445. * In journalled data mode, a data buffer may be metadata against the
  1446. * current transaction. But the same file is part of a shared mapping
  1447. * and someone does a writepage() on it.
  1448. *
  1449. * We will move the buffer onto the async_data list, but *after* it has
  1450. * been dirtied. So there's a small window where we have dirty data on
  1451. * BJ_Metadata.
  1452. *
  1453. * Note that this only applies to the last partial page in the file. The
  1454. * bit which block_write_full_page() uses prepare/commit for. (That's
  1455. * broken code anyway: it's wrong for msync()).
  1456. *
  1457. * It's a rare case: affects the final partial page, for journalled data
  1458. * where the file is subject to bith write() and writepage() in the same
  1459. * transction. To fix it we'll need a custom block_write_full_page().
  1460. * We'll probably need that anyway for journalling writepage() output.
  1461. *
  1462. * We don't honour synchronous mounts for writepage(). That would be
  1463. * disastrous. Any write() or metadata operation will sync the fs for
  1464. * us.
  1465. *
  1466. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1467. * we don't need to open a transaction here.
  1468. */
  1469. static int ext3_ordered_writepage(struct page *page,
  1470. struct writeback_control *wbc)
  1471. {
  1472. struct inode *inode = page->mapping->host;
  1473. struct buffer_head *page_bufs;
  1474. handle_t *handle = NULL;
  1475. int ret = 0;
  1476. int err;
  1477. J_ASSERT(PageLocked(page));
  1478. /*
  1479. * We don't want to warn for emergency remount. The condition is
  1480. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1481. * avoid slow-downs.
  1482. */
  1483. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1484. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1485. /*
  1486. * We give up here if we're reentered, because it might be for a
  1487. * different filesystem.
  1488. */
  1489. if (ext3_journal_current_handle())
  1490. goto out_fail;
  1491. trace_ext3_ordered_writepage(page);
  1492. if (!page_has_buffers(page)) {
  1493. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1494. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1495. page_bufs = page_buffers(page);
  1496. } else {
  1497. page_bufs = page_buffers(page);
  1498. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1499. NULL, buffer_unmapped)) {
  1500. /* Provide NULL get_block() to catch bugs if buffers
  1501. * weren't really mapped */
  1502. return block_write_full_page(page, NULL, wbc);
  1503. }
  1504. }
  1505. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1506. if (IS_ERR(handle)) {
  1507. ret = PTR_ERR(handle);
  1508. goto out_fail;
  1509. }
  1510. walk_page_buffers(handle, page_bufs, 0,
  1511. PAGE_CACHE_SIZE, NULL, bget_one);
  1512. ret = block_write_full_page(page, ext3_get_block, wbc);
  1513. /*
  1514. * The page can become unlocked at any point now, and
  1515. * truncate can then come in and change things. So we
  1516. * can't touch *page from now on. But *page_bufs is
  1517. * safe due to elevated refcount.
  1518. */
  1519. /*
  1520. * And attach them to the current transaction. But only if
  1521. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1522. * and generally junk.
  1523. */
  1524. if (ret == 0) {
  1525. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1526. NULL, journal_dirty_data_fn);
  1527. if (!ret)
  1528. ret = err;
  1529. }
  1530. walk_page_buffers(handle, page_bufs, 0,
  1531. PAGE_CACHE_SIZE, NULL, bput_one);
  1532. err = ext3_journal_stop(handle);
  1533. if (!ret)
  1534. ret = err;
  1535. return ret;
  1536. out_fail:
  1537. redirty_page_for_writepage(wbc, page);
  1538. unlock_page(page);
  1539. return ret;
  1540. }
  1541. static int ext3_writeback_writepage(struct page *page,
  1542. struct writeback_control *wbc)
  1543. {
  1544. struct inode *inode = page->mapping->host;
  1545. handle_t *handle = NULL;
  1546. int ret = 0;
  1547. int err;
  1548. J_ASSERT(PageLocked(page));
  1549. /*
  1550. * We don't want to warn for emergency remount. The condition is
  1551. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1552. * avoid slow-downs.
  1553. */
  1554. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1555. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1556. if (ext3_journal_current_handle())
  1557. goto out_fail;
  1558. trace_ext3_writeback_writepage(page);
  1559. if (page_has_buffers(page)) {
  1560. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1561. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1562. /* Provide NULL get_block() to catch bugs if buffers
  1563. * weren't really mapped */
  1564. return block_write_full_page(page, NULL, wbc);
  1565. }
  1566. }
  1567. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1568. if (IS_ERR(handle)) {
  1569. ret = PTR_ERR(handle);
  1570. goto out_fail;
  1571. }
  1572. ret = block_write_full_page(page, ext3_get_block, wbc);
  1573. err = ext3_journal_stop(handle);
  1574. if (!ret)
  1575. ret = err;
  1576. return ret;
  1577. out_fail:
  1578. redirty_page_for_writepage(wbc, page);
  1579. unlock_page(page);
  1580. return ret;
  1581. }
  1582. static int ext3_journalled_writepage(struct page *page,
  1583. struct writeback_control *wbc)
  1584. {
  1585. struct inode *inode = page->mapping->host;
  1586. handle_t *handle = NULL;
  1587. int ret = 0;
  1588. int err;
  1589. J_ASSERT(PageLocked(page));
  1590. /*
  1591. * We don't want to warn for emergency remount. The condition is
  1592. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1593. * avoid slow-downs.
  1594. */
  1595. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1596. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1597. if (ext3_journal_current_handle())
  1598. goto no_write;
  1599. trace_ext3_journalled_writepage(page);
  1600. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1601. if (IS_ERR(handle)) {
  1602. ret = PTR_ERR(handle);
  1603. goto no_write;
  1604. }
  1605. if (!page_has_buffers(page) || PageChecked(page)) {
  1606. /*
  1607. * It's mmapped pagecache. Add buffers and journal it. There
  1608. * doesn't seem much point in redirtying the page here.
  1609. */
  1610. ClearPageChecked(page);
  1611. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1612. ext3_get_block);
  1613. if (ret != 0) {
  1614. ext3_journal_stop(handle);
  1615. goto out_unlock;
  1616. }
  1617. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1618. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1619. err = walk_page_buffers(handle, page_buffers(page), 0,
  1620. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1621. if (ret == 0)
  1622. ret = err;
  1623. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1624. atomic_set(&EXT3_I(inode)->i_datasync_tid,
  1625. handle->h_transaction->t_tid);
  1626. unlock_page(page);
  1627. } else {
  1628. /*
  1629. * It may be a page full of checkpoint-mode buffers. We don't
  1630. * really know unless we go poke around in the buffer_heads.
  1631. * But block_write_full_page will do the right thing.
  1632. */
  1633. ret = block_write_full_page(page, ext3_get_block, wbc);
  1634. }
  1635. err = ext3_journal_stop(handle);
  1636. if (!ret)
  1637. ret = err;
  1638. out:
  1639. return ret;
  1640. no_write:
  1641. redirty_page_for_writepage(wbc, page);
  1642. out_unlock:
  1643. unlock_page(page);
  1644. goto out;
  1645. }
  1646. static int ext3_readpage(struct file *file, struct page *page)
  1647. {
  1648. trace_ext3_readpage(page);
  1649. return mpage_readpage(page, ext3_get_block);
  1650. }
  1651. static int
  1652. ext3_readpages(struct file *file, struct address_space *mapping,
  1653. struct list_head *pages, unsigned nr_pages)
  1654. {
  1655. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1656. }
  1657. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1658. {
  1659. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1660. trace_ext3_invalidatepage(page, offset);
  1661. /*
  1662. * If it's a full truncate we just forget about the pending dirtying
  1663. */
  1664. if (offset == 0)
  1665. ClearPageChecked(page);
  1666. journal_invalidatepage(journal, page, offset);
  1667. }
  1668. static int ext3_releasepage(struct page *page, gfp_t wait)
  1669. {
  1670. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1671. trace_ext3_releasepage(page);
  1672. WARN_ON(PageChecked(page));
  1673. if (!page_has_buffers(page))
  1674. return 0;
  1675. return journal_try_to_free_buffers(journal, page, wait);
  1676. }
  1677. /*
  1678. * If the O_DIRECT write will extend the file then add this inode to the
  1679. * orphan list. So recovery will truncate it back to the original size
  1680. * if the machine crashes during the write.
  1681. *
  1682. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1683. * crashes then stale disk data _may_ be exposed inside the file. But current
  1684. * VFS code falls back into buffered path in that case so we are safe.
  1685. */
  1686. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1687. const struct iovec *iov, loff_t offset,
  1688. unsigned long nr_segs)
  1689. {
  1690. struct file *file = iocb->ki_filp;
  1691. struct inode *inode = file->f_mapping->host;
  1692. struct ext3_inode_info *ei = EXT3_I(inode);
  1693. handle_t *handle;
  1694. ssize_t ret;
  1695. int orphan = 0;
  1696. size_t count = iov_length(iov, nr_segs);
  1697. int retries = 0;
  1698. trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  1699. if (rw == WRITE) {
  1700. loff_t final_size = offset + count;
  1701. if (final_size > inode->i_size) {
  1702. /* Credits for sb + inode write */
  1703. handle = ext3_journal_start(inode, 2);
  1704. if (IS_ERR(handle)) {
  1705. ret = PTR_ERR(handle);
  1706. goto out;
  1707. }
  1708. ret = ext3_orphan_add(handle, inode);
  1709. if (ret) {
  1710. ext3_journal_stop(handle);
  1711. goto out;
  1712. }
  1713. orphan = 1;
  1714. ei->i_disksize = inode->i_size;
  1715. ext3_journal_stop(handle);
  1716. }
  1717. }
  1718. retry:
  1719. ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  1720. ext3_get_block);
  1721. /*
  1722. * In case of error extending write may have instantiated a few
  1723. * blocks outside i_size. Trim these off again.
  1724. */
  1725. if (unlikely((rw & WRITE) && ret < 0)) {
  1726. loff_t isize = i_size_read(inode);
  1727. loff_t end = offset + iov_length(iov, nr_segs);
  1728. if (end > isize)
  1729. ext3_truncate_failed_direct_write(inode);
  1730. }
  1731. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1732. goto retry;
  1733. if (orphan) {
  1734. int err;
  1735. /* Credits for sb + inode write */
  1736. handle = ext3_journal_start(inode, 2);
  1737. if (IS_ERR(handle)) {
  1738. /* This is really bad luck. We've written the data
  1739. * but cannot extend i_size. Truncate allocated blocks
  1740. * and pretend the write failed... */
  1741. ext3_truncate_failed_direct_write(inode);
  1742. ret = PTR_ERR(handle);
  1743. goto out;
  1744. }
  1745. if (inode->i_nlink)
  1746. ext3_orphan_del(handle, inode);
  1747. if (ret > 0) {
  1748. loff_t end = offset + ret;
  1749. if (end > inode->i_size) {
  1750. ei->i_disksize = end;
  1751. i_size_write(inode, end);
  1752. /*
  1753. * We're going to return a positive `ret'
  1754. * here due to non-zero-length I/O, so there's
  1755. * no way of reporting error returns from
  1756. * ext3_mark_inode_dirty() to userspace. So
  1757. * ignore it.
  1758. */
  1759. ext3_mark_inode_dirty(handle, inode);
  1760. }
  1761. }
  1762. err = ext3_journal_stop(handle);
  1763. if (ret == 0)
  1764. ret = err;
  1765. }
  1766. out:
  1767. trace_ext3_direct_IO_exit(inode, offset,
  1768. iov_length(iov, nr_segs), rw, ret);
  1769. return ret;
  1770. }
  1771. /*
  1772. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1773. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1774. * much here because ->set_page_dirty is called under VFS locks. The page is
  1775. * not necessarily locked.
  1776. *
  1777. * We cannot just dirty the page and leave attached buffers clean, because the
  1778. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1779. * or jbddirty because all the journalling code will explode.
  1780. *
  1781. * So what we do is to mark the page "pending dirty" and next time writepage
  1782. * is called, propagate that into the buffers appropriately.
  1783. */
  1784. static int ext3_journalled_set_page_dirty(struct page *page)
  1785. {
  1786. SetPageChecked(page);
  1787. return __set_page_dirty_nobuffers(page);
  1788. }
  1789. static const struct address_space_operations ext3_ordered_aops = {
  1790. .readpage = ext3_readpage,
  1791. .readpages = ext3_readpages,
  1792. .writepage = ext3_ordered_writepage,
  1793. .write_begin = ext3_write_begin,
  1794. .write_end = ext3_ordered_write_end,
  1795. .bmap = ext3_bmap,
  1796. .invalidatepage = ext3_invalidatepage,
  1797. .releasepage = ext3_releasepage,
  1798. .direct_IO = ext3_direct_IO,
  1799. .migratepage = buffer_migrate_page,
  1800. .is_partially_uptodate = block_is_partially_uptodate,
  1801. .error_remove_page = generic_error_remove_page,
  1802. };
  1803. static const struct address_space_operations ext3_writeback_aops = {
  1804. .readpage = ext3_readpage,
  1805. .readpages = ext3_readpages,
  1806. .writepage = ext3_writeback_writepage,
  1807. .write_begin = ext3_write_begin,
  1808. .write_end = ext3_writeback_write_end,
  1809. .bmap = ext3_bmap,
  1810. .invalidatepage = ext3_invalidatepage,
  1811. .releasepage = ext3_releasepage,
  1812. .direct_IO = ext3_direct_IO,
  1813. .migratepage = buffer_migrate_page,
  1814. .is_partially_uptodate = block_is_partially_uptodate,
  1815. .error_remove_page = generic_error_remove_page,
  1816. };
  1817. static const struct address_space_operations ext3_journalled_aops = {
  1818. .readpage = ext3_readpage,
  1819. .readpages = ext3_readpages,
  1820. .writepage = ext3_journalled_writepage,
  1821. .write_begin = ext3_write_begin,
  1822. .write_end = ext3_journalled_write_end,
  1823. .set_page_dirty = ext3_journalled_set_page_dirty,
  1824. .bmap = ext3_bmap,
  1825. .invalidatepage = ext3_invalidatepage,
  1826. .releasepage = ext3_releasepage,
  1827. .is_partially_uptodate = block_is_partially_uptodate,
  1828. .error_remove_page = generic_error_remove_page,
  1829. };
  1830. void ext3_set_aops(struct inode *inode)
  1831. {
  1832. if (ext3_should_order_data(inode))
  1833. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1834. else if (ext3_should_writeback_data(inode))
  1835. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1836. else
  1837. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1838. }
  1839. /*
  1840. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1841. * up to the end of the block which corresponds to `from'.
  1842. * This required during truncate. We need to physically zero the tail end
  1843. * of that block so it doesn't yield old data if the file is later grown.
  1844. */
  1845. static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  1846. {
  1847. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1848. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  1849. unsigned blocksize, iblock, length, pos;
  1850. struct page *page;
  1851. handle_t *handle = NULL;
  1852. struct buffer_head *bh;
  1853. int err = 0;
  1854. /* Truncated on block boundary - nothing to do */
  1855. blocksize = inode->i_sb->s_blocksize;
  1856. if ((from & (blocksize - 1)) == 0)
  1857. return 0;
  1858. page = grab_cache_page(inode->i_mapping, index);
  1859. if (!page)
  1860. return -ENOMEM;
  1861. length = blocksize - (offset & (blocksize - 1));
  1862. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1863. if (!page_has_buffers(page))
  1864. create_empty_buffers(page, blocksize, 0);
  1865. /* Find the buffer that contains "offset" */
  1866. bh = page_buffers(page);
  1867. pos = blocksize;
  1868. while (offset >= pos) {
  1869. bh = bh->b_this_page;
  1870. iblock++;
  1871. pos += blocksize;
  1872. }
  1873. err = 0;
  1874. if (buffer_freed(bh)) {
  1875. BUFFER_TRACE(bh, "freed: skip");
  1876. goto unlock;
  1877. }
  1878. if (!buffer_mapped(bh)) {
  1879. BUFFER_TRACE(bh, "unmapped");
  1880. ext3_get_block(inode, iblock, bh, 0);
  1881. /* unmapped? It's a hole - nothing to do */
  1882. if (!buffer_mapped(bh)) {
  1883. BUFFER_TRACE(bh, "still unmapped");
  1884. goto unlock;
  1885. }
  1886. }
  1887. /* Ok, it's mapped. Make sure it's up-to-date */
  1888. if (PageUptodate(page))
  1889. set_buffer_uptodate(bh);
  1890. if (!bh_uptodate_or_lock(bh)) {
  1891. err = bh_submit_read(bh);
  1892. /* Uhhuh. Read error. Complain and punt. */
  1893. if (err)
  1894. goto unlock;
  1895. }
  1896. /* data=writeback mode doesn't need transaction to zero-out data */
  1897. if (!ext3_should_writeback_data(inode)) {
  1898. /* We journal at most one block */
  1899. handle = ext3_journal_start(inode, 1);
  1900. if (IS_ERR(handle)) {
  1901. clear_highpage(page);
  1902. flush_dcache_page(page);
  1903. err = PTR_ERR(handle);
  1904. goto unlock;
  1905. }
  1906. }
  1907. if (ext3_should_journal_data(inode)) {
  1908. BUFFER_TRACE(bh, "get write access");
  1909. err = ext3_journal_get_write_access(handle, bh);
  1910. if (err)
  1911. goto stop;
  1912. }
  1913. zero_user(page, offset, length);
  1914. BUFFER_TRACE(bh, "zeroed end of block");
  1915. err = 0;
  1916. if (ext3_should_journal_data(inode)) {
  1917. err = ext3_journal_dirty_metadata(handle, bh);
  1918. } else {
  1919. if (ext3_should_order_data(inode))
  1920. err = ext3_journal_dirty_data(handle, bh);
  1921. mark_buffer_dirty(bh);
  1922. }
  1923. stop:
  1924. if (handle)
  1925. ext3_journal_stop(handle);
  1926. unlock:
  1927. unlock_page(page);
  1928. page_cache_release(page);
  1929. return err;
  1930. }
  1931. /*
  1932. * Probably it should be a library function... search for first non-zero word
  1933. * or memcmp with zero_page, whatever is better for particular architecture.
  1934. * Linus?
  1935. */
  1936. static inline int all_zeroes(__le32 *p, __le32 *q)
  1937. {
  1938. while (p < q)
  1939. if (*p++)
  1940. return 0;
  1941. return 1;
  1942. }
  1943. /**
  1944. * ext3_find_shared - find the indirect blocks for partial truncation.
  1945. * @inode: inode in question
  1946. * @depth: depth of the affected branch
  1947. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1948. * @chain: place to store the pointers to partial indirect blocks
  1949. * @top: place to the (detached) top of branch
  1950. *
  1951. * This is a helper function used by ext3_truncate().
  1952. *
  1953. * When we do truncate() we may have to clean the ends of several
  1954. * indirect blocks but leave the blocks themselves alive. Block is
  1955. * partially truncated if some data below the new i_size is referred
  1956. * from it (and it is on the path to the first completely truncated
  1957. * data block, indeed). We have to free the top of that path along
  1958. * with everything to the right of the path. Since no allocation
  1959. * past the truncation point is possible until ext3_truncate()
  1960. * finishes, we may safely do the latter, but top of branch may
  1961. * require special attention - pageout below the truncation point
  1962. * might try to populate it.
  1963. *
  1964. * We atomically detach the top of branch from the tree, store the
  1965. * block number of its root in *@top, pointers to buffer_heads of
  1966. * partially truncated blocks - in @chain[].bh and pointers to
  1967. * their last elements that should not be removed - in
  1968. * @chain[].p. Return value is the pointer to last filled element
  1969. * of @chain.
  1970. *
  1971. * The work left to caller to do the actual freeing of subtrees:
  1972. * a) free the subtree starting from *@top
  1973. * b) free the subtrees whose roots are stored in
  1974. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1975. * c) free the subtrees growing from the inode past the @chain[0].
  1976. * (no partially truncated stuff there). */
  1977. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1978. int offsets[4], Indirect chain[4], __le32 *top)
  1979. {
  1980. Indirect *partial, *p;
  1981. int k, err;
  1982. *top = 0;
  1983. /* Make k index the deepest non-null offset + 1 */
  1984. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1985. ;
  1986. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1987. /* Writer: pointers */
  1988. if (!partial)
  1989. partial = chain + k-1;
  1990. /*
  1991. * If the branch acquired continuation since we've looked at it -
  1992. * fine, it should all survive and (new) top doesn't belong to us.
  1993. */
  1994. if (!partial->key && *partial->p)
  1995. /* Writer: end */
  1996. goto no_top;
  1997. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1998. ;
  1999. /*
  2000. * OK, we've found the last block that must survive. The rest of our
  2001. * branch should be detached before unlocking. However, if that rest
  2002. * of branch is all ours and does not grow immediately from the inode
  2003. * it's easier to cheat and just decrement partial->p.
  2004. */
  2005. if (p == chain + k - 1 && p > chain) {
  2006. p->p--;
  2007. } else {
  2008. *top = *p->p;
  2009. /* Nope, don't do this in ext3. Must leave the tree intact */
  2010. #if 0
  2011. *p->p = 0;
  2012. #endif
  2013. }
  2014. /* Writer: end */
  2015. while(partial > p) {
  2016. brelse(partial->bh);
  2017. partial--;
  2018. }
  2019. no_top:
  2020. return partial;
  2021. }
  2022. /*
  2023. * Zero a number of block pointers in either an inode or an indirect block.
  2024. * If we restart the transaction we must again get write access to the
  2025. * indirect block for further modification.
  2026. *
  2027. * We release `count' blocks on disk, but (last - first) may be greater
  2028. * than `count' because there can be holes in there.
  2029. */
  2030. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  2031. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  2032. unsigned long count, __le32 *first, __le32 *last)
  2033. {
  2034. __le32 *p;
  2035. if (try_to_extend_transaction(handle, inode)) {
  2036. if (bh) {
  2037. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2038. if (ext3_journal_dirty_metadata(handle, bh))
  2039. return;
  2040. }
  2041. ext3_mark_inode_dirty(handle, inode);
  2042. truncate_restart_transaction(handle, inode);
  2043. if (bh) {
  2044. BUFFER_TRACE(bh, "retaking write access");
  2045. if (ext3_journal_get_write_access(handle, bh))
  2046. return;
  2047. }
  2048. }
  2049. /*
  2050. * Any buffers which are on the journal will be in memory. We find
  2051. * them on the hash table so journal_revoke() will run journal_forget()
  2052. * on them. We've already detached each block from the file, so
  2053. * bforget() in journal_forget() should be safe.
  2054. *
  2055. * AKPM: turn on bforget in journal_forget()!!!
  2056. */
  2057. for (p = first; p < last; p++) {
  2058. u32 nr = le32_to_cpu(*p);
  2059. if (nr) {
  2060. struct buffer_head *bh;
  2061. *p = 0;
  2062. bh = sb_find_get_block(inode->i_sb, nr);
  2063. ext3_forget(handle, 0, inode, bh, nr);
  2064. }
  2065. }
  2066. ext3_free_blocks(handle, inode, block_to_free, count);
  2067. }
  2068. /**
  2069. * ext3_free_data - free a list of data blocks
  2070. * @handle: handle for this transaction
  2071. * @inode: inode we are dealing with
  2072. * @this_bh: indirect buffer_head which contains *@first and *@last
  2073. * @first: array of block numbers
  2074. * @last: points immediately past the end of array
  2075. *
  2076. * We are freeing all blocks referred from that array (numbers are stored as
  2077. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  2078. *
  2079. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2080. * blocks are contiguous then releasing them at one time will only affect one
  2081. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2082. * actually use a lot of journal space.
  2083. *
  2084. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2085. * block pointers.
  2086. */
  2087. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2088. struct buffer_head *this_bh,
  2089. __le32 *first, __le32 *last)
  2090. {
  2091. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2092. unsigned long count = 0; /* Number of blocks in the run */
  2093. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2094. corresponding to
  2095. block_to_free */
  2096. ext3_fsblk_t nr; /* Current block # */
  2097. __le32 *p; /* Pointer into inode/ind
  2098. for current block */
  2099. int err;
  2100. if (this_bh) { /* For indirect block */
  2101. BUFFER_TRACE(this_bh, "get_write_access");
  2102. err = ext3_journal_get_write_access(handle, this_bh);
  2103. /* Important: if we can't update the indirect pointers
  2104. * to the blocks, we can't free them. */
  2105. if (err)
  2106. return;
  2107. }
  2108. for (p = first; p < last; p++) {
  2109. nr = le32_to_cpu(*p);
  2110. if (nr) {
  2111. /* accumulate blocks to free if they're contiguous */
  2112. if (count == 0) {
  2113. block_to_free = nr;
  2114. block_to_free_p = p;
  2115. count = 1;
  2116. } else if (nr == block_to_free + count) {
  2117. count++;
  2118. } else {
  2119. ext3_clear_blocks(handle, inode, this_bh,
  2120. block_to_free,
  2121. count, block_to_free_p, p);
  2122. block_to_free = nr;
  2123. block_to_free_p = p;
  2124. count = 1;
  2125. }
  2126. }
  2127. }
  2128. if (count > 0)
  2129. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2130. count, block_to_free_p, p);
  2131. if (this_bh) {
  2132. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2133. /*
  2134. * The buffer head should have an attached journal head at this
  2135. * point. However, if the data is corrupted and an indirect
  2136. * block pointed to itself, it would have been detached when
  2137. * the block was cleared. Check for this instead of OOPSing.
  2138. */
  2139. if (bh2jh(this_bh))
  2140. ext3_journal_dirty_metadata(handle, this_bh);
  2141. else
  2142. ext3_error(inode->i_sb, "ext3_free_data",
  2143. "circular indirect block detected, "
  2144. "inode=%lu, block=%llu",
  2145. inode->i_ino,
  2146. (unsigned long long)this_bh->b_blocknr);
  2147. }
  2148. }
  2149. /**
  2150. * ext3_free_branches - free an array of branches
  2151. * @handle: JBD handle for this transaction
  2152. * @inode: inode we are dealing with
  2153. * @parent_bh: the buffer_head which contains *@first and *@last
  2154. * @first: array of block numbers
  2155. * @last: pointer immediately past the end of array
  2156. * @depth: depth of the branches to free
  2157. *
  2158. * We are freeing all blocks referred from these branches (numbers are
  2159. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2160. * appropriately.
  2161. */
  2162. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2163. struct buffer_head *parent_bh,
  2164. __le32 *first, __le32 *last, int depth)
  2165. {
  2166. ext3_fsblk_t nr;
  2167. __le32 *p;
  2168. if (is_handle_aborted(handle))
  2169. return;
  2170. if (depth--) {
  2171. struct buffer_head *bh;
  2172. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2173. p = last;
  2174. while (--p >= first) {
  2175. nr = le32_to_cpu(*p);
  2176. if (!nr)
  2177. continue; /* A hole */
  2178. /* Go read the buffer for the next level down */
  2179. bh = sb_bread(inode->i_sb, nr);
  2180. /*
  2181. * A read failure? Report error and clear slot
  2182. * (should be rare).
  2183. */
  2184. if (!bh) {
  2185. ext3_error(inode->i_sb, "ext3_free_branches",
  2186. "Read failure, inode=%lu, block="E3FSBLK,
  2187. inode->i_ino, nr);
  2188. continue;
  2189. }
  2190. /* This zaps the entire block. Bottom up. */
  2191. BUFFER_TRACE(bh, "free child branches");
  2192. ext3_free_branches(handle, inode, bh,
  2193. (__le32*)bh->b_data,
  2194. (__le32*)bh->b_data + addr_per_block,
  2195. depth);
  2196. /*
  2197. * Everything below this this pointer has been
  2198. * released. Now let this top-of-subtree go.
  2199. *
  2200. * We want the freeing of this indirect block to be
  2201. * atomic in the journal with the updating of the
  2202. * bitmap block which owns it. So make some room in
  2203. * the journal.
  2204. *
  2205. * We zero the parent pointer *after* freeing its
  2206. * pointee in the bitmaps, so if extend_transaction()
  2207. * for some reason fails to put the bitmap changes and
  2208. * the release into the same transaction, recovery
  2209. * will merely complain about releasing a free block,
  2210. * rather than leaking blocks.
  2211. */
  2212. if (is_handle_aborted(handle))
  2213. return;
  2214. if (try_to_extend_transaction(handle, inode)) {
  2215. ext3_mark_inode_dirty(handle, inode);
  2216. truncate_restart_transaction(handle, inode);
  2217. }
  2218. /*
  2219. * We've probably journalled the indirect block several
  2220. * times during the truncate. But it's no longer
  2221. * needed and we now drop it from the transaction via
  2222. * journal_revoke().
  2223. *
  2224. * That's easy if it's exclusively part of this
  2225. * transaction. But if it's part of the committing
  2226. * transaction then journal_forget() will simply
  2227. * brelse() it. That means that if the underlying
  2228. * block is reallocated in ext3_get_block(),
  2229. * unmap_underlying_metadata() will find this block
  2230. * and will try to get rid of it. damn, damn. Thus
  2231. * we don't allow a block to be reallocated until
  2232. * a transaction freeing it has fully committed.
  2233. *
  2234. * We also have to make sure journal replay after a
  2235. * crash does not overwrite non-journaled data blocks
  2236. * with old metadata when the block got reallocated for
  2237. * data. Thus we have to store a revoke record for a
  2238. * block in the same transaction in which we free the
  2239. * block.
  2240. */
  2241. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2242. ext3_free_blocks(handle, inode, nr, 1);
  2243. if (parent_bh) {
  2244. /*
  2245. * The block which we have just freed is
  2246. * pointed to by an indirect block: journal it
  2247. */
  2248. BUFFER_TRACE(parent_bh, "get_write_access");
  2249. if (!ext3_journal_get_write_access(handle,
  2250. parent_bh)){
  2251. *p = 0;
  2252. BUFFER_TRACE(parent_bh,
  2253. "call ext3_journal_dirty_metadata");
  2254. ext3_journal_dirty_metadata(handle,
  2255. parent_bh);
  2256. }
  2257. }
  2258. }
  2259. } else {
  2260. /* We have reached the bottom of the tree. */
  2261. BUFFER_TRACE(parent_bh, "free data blocks");
  2262. ext3_free_data(handle, inode, parent_bh, first, last);
  2263. }
  2264. }
  2265. int ext3_can_truncate(struct inode *inode)
  2266. {
  2267. if (S_ISREG(inode->i_mode))
  2268. return 1;
  2269. if (S_ISDIR(inode->i_mode))
  2270. return 1;
  2271. if (S_ISLNK(inode->i_mode))
  2272. return !ext3_inode_is_fast_symlink(inode);
  2273. return 0;
  2274. }
  2275. /*
  2276. * ext3_truncate()
  2277. *
  2278. * We block out ext3_get_block() block instantiations across the entire
  2279. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2280. * simultaneously on behalf of the same inode.
  2281. *
  2282. * As we work through the truncate and commit bits of it to the journal there
  2283. * is one core, guiding principle: the file's tree must always be consistent on
  2284. * disk. We must be able to restart the truncate after a crash.
  2285. *
  2286. * The file's tree may be transiently inconsistent in memory (although it
  2287. * probably isn't), but whenever we close off and commit a journal transaction,
  2288. * the contents of (the filesystem + the journal) must be consistent and
  2289. * restartable. It's pretty simple, really: bottom up, right to left (although
  2290. * left-to-right works OK too).
  2291. *
  2292. * Note that at recovery time, journal replay occurs *before* the restart of
  2293. * truncate against the orphan inode list.
  2294. *
  2295. * The committed inode has the new, desired i_size (which is the same as
  2296. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2297. * that this inode's truncate did not complete and it will again call
  2298. * ext3_truncate() to have another go. So there will be instantiated blocks
  2299. * to the right of the truncation point in a crashed ext3 filesystem. But
  2300. * that's fine - as long as they are linked from the inode, the post-crash
  2301. * ext3_truncate() run will find them and release them.
  2302. */
  2303. void ext3_truncate(struct inode *inode)
  2304. {
  2305. handle_t *handle;
  2306. struct ext3_inode_info *ei = EXT3_I(inode);
  2307. __le32 *i_data = ei->i_data;
  2308. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2309. int offsets[4];
  2310. Indirect chain[4];
  2311. Indirect *partial;
  2312. __le32 nr = 0;
  2313. int n;
  2314. long last_block;
  2315. unsigned blocksize = inode->i_sb->s_blocksize;
  2316. trace_ext3_truncate_enter(inode);
  2317. if (!ext3_can_truncate(inode))
  2318. goto out_notrans;
  2319. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2320. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2321. handle = start_transaction(inode);
  2322. if (IS_ERR(handle))
  2323. goto out_notrans;
  2324. last_block = (inode->i_size + blocksize-1)
  2325. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2326. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2327. if (n == 0)
  2328. goto out_stop; /* error */
  2329. /*
  2330. * OK. This truncate is going to happen. We add the inode to the
  2331. * orphan list, so that if this truncate spans multiple transactions,
  2332. * and we crash, we will resume the truncate when the filesystem
  2333. * recovers. It also marks the inode dirty, to catch the new size.
  2334. *
  2335. * Implication: the file must always be in a sane, consistent
  2336. * truncatable state while each transaction commits.
  2337. */
  2338. if (ext3_orphan_add(handle, inode))
  2339. goto out_stop;
  2340. /*
  2341. * The orphan list entry will now protect us from any crash which
  2342. * occurs before the truncate completes, so it is now safe to propagate
  2343. * the new, shorter inode size (held for now in i_size) into the
  2344. * on-disk inode. We do this via i_disksize, which is the value which
  2345. * ext3 *really* writes onto the disk inode.
  2346. */
  2347. ei->i_disksize = inode->i_size;
  2348. /*
  2349. * From here we block out all ext3_get_block() callers who want to
  2350. * modify the block allocation tree.
  2351. */
  2352. mutex_lock(&ei->truncate_mutex);
  2353. if (n == 1) { /* direct blocks */
  2354. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2355. i_data + EXT3_NDIR_BLOCKS);
  2356. goto do_indirects;
  2357. }
  2358. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2359. /* Kill the top of shared branch (not detached) */
  2360. if (nr) {
  2361. if (partial == chain) {
  2362. /* Shared branch grows from the inode */
  2363. ext3_free_branches(handle, inode, NULL,
  2364. &nr, &nr+1, (chain+n-1) - partial);
  2365. *partial->p = 0;
  2366. /*
  2367. * We mark the inode dirty prior to restart,
  2368. * and prior to stop. No need for it here.
  2369. */
  2370. } else {
  2371. /* Shared branch grows from an indirect block */
  2372. ext3_free_branches(handle, inode, partial->bh,
  2373. partial->p,
  2374. partial->p+1, (chain+n-1) - partial);
  2375. }
  2376. }
  2377. /* Clear the ends of indirect blocks on the shared branch */
  2378. while (partial > chain) {
  2379. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2380. (__le32*)partial->bh->b_data+addr_per_block,
  2381. (chain+n-1) - partial);
  2382. BUFFER_TRACE(partial->bh, "call brelse");
  2383. brelse (partial->bh);
  2384. partial--;
  2385. }
  2386. do_indirects:
  2387. /* Kill the remaining (whole) subtrees */
  2388. switch (offsets[0]) {
  2389. default:
  2390. nr = i_data[EXT3_IND_BLOCK];
  2391. if (nr) {
  2392. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2393. i_data[EXT3_IND_BLOCK] = 0;
  2394. }
  2395. case EXT3_IND_BLOCK:
  2396. nr = i_data[EXT3_DIND_BLOCK];
  2397. if (nr) {
  2398. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2399. i_data[EXT3_DIND_BLOCK] = 0;
  2400. }
  2401. case EXT3_DIND_BLOCK:
  2402. nr = i_data[EXT3_TIND_BLOCK];
  2403. if (nr) {
  2404. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2405. i_data[EXT3_TIND_BLOCK] = 0;
  2406. }
  2407. case EXT3_TIND_BLOCK:
  2408. ;
  2409. }
  2410. ext3_discard_reservation(inode);
  2411. mutex_unlock(&ei->truncate_mutex);
  2412. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2413. ext3_mark_inode_dirty(handle, inode);
  2414. /*
  2415. * In a multi-transaction truncate, we only make the final transaction
  2416. * synchronous
  2417. */
  2418. if (IS_SYNC(inode))
  2419. handle->h_sync = 1;
  2420. out_stop:
  2421. /*
  2422. * If this was a simple ftruncate(), and the file will remain alive
  2423. * then we need to clear up the orphan record which we created above.
  2424. * However, if this was a real unlink then we were called by
  2425. * ext3_evict_inode(), and we allow that function to clean up the
  2426. * orphan info for us.
  2427. */
  2428. if (inode->i_nlink)
  2429. ext3_orphan_del(handle, inode);
  2430. ext3_journal_stop(handle);
  2431. trace_ext3_truncate_exit(inode);
  2432. return;
  2433. out_notrans:
  2434. /*
  2435. * Delete the inode from orphan list so that it doesn't stay there
  2436. * forever and trigger assertion on umount.
  2437. */
  2438. if (inode->i_nlink)
  2439. ext3_orphan_del(NULL, inode);
  2440. trace_ext3_truncate_exit(inode);
  2441. }
  2442. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2443. unsigned long ino, struct ext3_iloc *iloc)
  2444. {
  2445. unsigned long block_group;
  2446. unsigned long offset;
  2447. ext3_fsblk_t block;
  2448. struct ext3_group_desc *gdp;
  2449. if (!ext3_valid_inum(sb, ino)) {
  2450. /*
  2451. * This error is already checked for in namei.c unless we are
  2452. * looking at an NFS filehandle, in which case no error
  2453. * report is needed
  2454. */
  2455. return 0;
  2456. }
  2457. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2458. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2459. if (!gdp)
  2460. return 0;
  2461. /*
  2462. * Figure out the offset within the block group inode table
  2463. */
  2464. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2465. EXT3_INODE_SIZE(sb);
  2466. block = le32_to_cpu(gdp->bg_inode_table) +
  2467. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2468. iloc->block_group = block_group;
  2469. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2470. return block;
  2471. }
  2472. /*
  2473. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2474. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2475. * data in memory that is needed to recreate the on-disk version of this
  2476. * inode.
  2477. */
  2478. static int __ext3_get_inode_loc(struct inode *inode,
  2479. struct ext3_iloc *iloc, int in_mem)
  2480. {
  2481. ext3_fsblk_t block;
  2482. struct buffer_head *bh;
  2483. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2484. if (!block)
  2485. return -EIO;
  2486. bh = sb_getblk(inode->i_sb, block);
  2487. if (!bh) {
  2488. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2489. "unable to read inode block - "
  2490. "inode=%lu, block="E3FSBLK,
  2491. inode->i_ino, block);
  2492. return -EIO;
  2493. }
  2494. if (!buffer_uptodate(bh)) {
  2495. lock_buffer(bh);
  2496. /*
  2497. * If the buffer has the write error flag, we have failed
  2498. * to write out another inode in the same block. In this
  2499. * case, we don't have to read the block because we may
  2500. * read the old inode data successfully.
  2501. */
  2502. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2503. set_buffer_uptodate(bh);
  2504. if (buffer_uptodate(bh)) {
  2505. /* someone brought it uptodate while we waited */
  2506. unlock_buffer(bh);
  2507. goto has_buffer;
  2508. }
  2509. /*
  2510. * If we have all information of the inode in memory and this
  2511. * is the only valid inode in the block, we need not read the
  2512. * block.
  2513. */
  2514. if (in_mem) {
  2515. struct buffer_head *bitmap_bh;
  2516. struct ext3_group_desc *desc;
  2517. int inodes_per_buffer;
  2518. int inode_offset, i;
  2519. int block_group;
  2520. int start;
  2521. block_group = (inode->i_ino - 1) /
  2522. EXT3_INODES_PER_GROUP(inode->i_sb);
  2523. inodes_per_buffer = bh->b_size /
  2524. EXT3_INODE_SIZE(inode->i_sb);
  2525. inode_offset = ((inode->i_ino - 1) %
  2526. EXT3_INODES_PER_GROUP(inode->i_sb));
  2527. start = inode_offset & ~(inodes_per_buffer - 1);
  2528. /* Is the inode bitmap in cache? */
  2529. desc = ext3_get_group_desc(inode->i_sb,
  2530. block_group, NULL);
  2531. if (!desc)
  2532. goto make_io;
  2533. bitmap_bh = sb_getblk(inode->i_sb,
  2534. le32_to_cpu(desc->bg_inode_bitmap));
  2535. if (!bitmap_bh)
  2536. goto make_io;
  2537. /*
  2538. * If the inode bitmap isn't in cache then the
  2539. * optimisation may end up performing two reads instead
  2540. * of one, so skip it.
  2541. */
  2542. if (!buffer_uptodate(bitmap_bh)) {
  2543. brelse(bitmap_bh);
  2544. goto make_io;
  2545. }
  2546. for (i = start; i < start + inodes_per_buffer; i++) {
  2547. if (i == inode_offset)
  2548. continue;
  2549. if (ext3_test_bit(i, bitmap_bh->b_data))
  2550. break;
  2551. }
  2552. brelse(bitmap_bh);
  2553. if (i == start + inodes_per_buffer) {
  2554. /* all other inodes are free, so skip I/O */
  2555. memset(bh->b_data, 0, bh->b_size);
  2556. set_buffer_uptodate(bh);
  2557. unlock_buffer(bh);
  2558. goto has_buffer;
  2559. }
  2560. }
  2561. make_io:
  2562. /*
  2563. * There are other valid inodes in the buffer, this inode
  2564. * has in-inode xattrs, or we don't have this inode in memory.
  2565. * Read the block from disk.
  2566. */
  2567. trace_ext3_load_inode(inode);
  2568. get_bh(bh);
  2569. bh->b_end_io = end_buffer_read_sync;
  2570. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  2571. wait_on_buffer(bh);
  2572. if (!buffer_uptodate(bh)) {
  2573. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2574. "unable to read inode block - "
  2575. "inode=%lu, block="E3FSBLK,
  2576. inode->i_ino, block);
  2577. brelse(bh);
  2578. return -EIO;
  2579. }
  2580. }
  2581. has_buffer:
  2582. iloc->bh = bh;
  2583. return 0;
  2584. }
  2585. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2586. {
  2587. /* We have all inode data except xattrs in memory here. */
  2588. return __ext3_get_inode_loc(inode, iloc,
  2589. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2590. }
  2591. void ext3_set_inode_flags(struct inode *inode)
  2592. {
  2593. unsigned int flags = EXT3_I(inode)->i_flags;
  2594. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2595. if (flags & EXT3_SYNC_FL)
  2596. inode->i_flags |= S_SYNC;
  2597. if (flags & EXT3_APPEND_FL)
  2598. inode->i_flags |= S_APPEND;
  2599. if (flags & EXT3_IMMUTABLE_FL)
  2600. inode->i_flags |= S_IMMUTABLE;
  2601. if (flags & EXT3_NOATIME_FL)
  2602. inode->i_flags |= S_NOATIME;
  2603. if (flags & EXT3_DIRSYNC_FL)
  2604. inode->i_flags |= S_DIRSYNC;
  2605. }
  2606. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2607. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2608. {
  2609. unsigned int flags = ei->vfs_inode.i_flags;
  2610. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2611. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2612. if (flags & S_SYNC)
  2613. ei->i_flags |= EXT3_SYNC_FL;
  2614. if (flags & S_APPEND)
  2615. ei->i_flags |= EXT3_APPEND_FL;
  2616. if (flags & S_IMMUTABLE)
  2617. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2618. if (flags & S_NOATIME)
  2619. ei->i_flags |= EXT3_NOATIME_FL;
  2620. if (flags & S_DIRSYNC)
  2621. ei->i_flags |= EXT3_DIRSYNC_FL;
  2622. }
  2623. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2624. {
  2625. struct ext3_iloc iloc;
  2626. struct ext3_inode *raw_inode;
  2627. struct ext3_inode_info *ei;
  2628. struct buffer_head *bh;
  2629. struct inode *inode;
  2630. journal_t *journal = EXT3_SB(sb)->s_journal;
  2631. transaction_t *transaction;
  2632. long ret;
  2633. int block;
  2634. inode = iget_locked(sb, ino);
  2635. if (!inode)
  2636. return ERR_PTR(-ENOMEM);
  2637. if (!(inode->i_state & I_NEW))
  2638. return inode;
  2639. ei = EXT3_I(inode);
  2640. ei->i_block_alloc_info = NULL;
  2641. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2642. if (ret < 0)
  2643. goto bad_inode;
  2644. bh = iloc.bh;
  2645. raw_inode = ext3_raw_inode(&iloc);
  2646. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2647. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2648. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2649. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2650. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2651. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2652. }
  2653. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  2654. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2655. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2656. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2657. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2658. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2659. ei->i_state_flags = 0;
  2660. ei->i_dir_start_lookup = 0;
  2661. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2662. /* We now have enough fields to check if the inode was active or not.
  2663. * This is needed because nfsd might try to access dead inodes
  2664. * the test is that same one that e2fsck uses
  2665. * NeilBrown 1999oct15
  2666. */
  2667. if (inode->i_nlink == 0) {
  2668. if (inode->i_mode == 0 ||
  2669. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2670. /* this inode is deleted */
  2671. brelse (bh);
  2672. ret = -ESTALE;
  2673. goto bad_inode;
  2674. }
  2675. /* The only unlinked inodes we let through here have
  2676. * valid i_mode and are being read by the orphan
  2677. * recovery code: that's fine, we're about to complete
  2678. * the process of deleting those. */
  2679. }
  2680. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2681. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2682. #ifdef EXT3_FRAGMENTS
  2683. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2684. ei->i_frag_no = raw_inode->i_frag;
  2685. ei->i_frag_size = raw_inode->i_fsize;
  2686. #endif
  2687. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2688. if (!S_ISREG(inode->i_mode)) {
  2689. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2690. } else {
  2691. inode->i_size |=
  2692. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2693. }
  2694. ei->i_disksize = inode->i_size;
  2695. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2696. ei->i_block_group = iloc.block_group;
  2697. /*
  2698. * NOTE! The in-memory inode i_data array is in little-endian order
  2699. * even on big-endian machines: we do NOT byteswap the block numbers!
  2700. */
  2701. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2702. ei->i_data[block] = raw_inode->i_block[block];
  2703. INIT_LIST_HEAD(&ei->i_orphan);
  2704. /*
  2705. * Set transaction id's of transactions that have to be committed
  2706. * to finish f[data]sync. We set them to currently running transaction
  2707. * as we cannot be sure that the inode or some of its metadata isn't
  2708. * part of the transaction - the inode could have been reclaimed and
  2709. * now it is reread from disk.
  2710. */
  2711. if (journal) {
  2712. tid_t tid;
  2713. spin_lock(&journal->j_state_lock);
  2714. if (journal->j_running_transaction)
  2715. transaction = journal->j_running_transaction;
  2716. else
  2717. transaction = journal->j_committing_transaction;
  2718. if (transaction)
  2719. tid = transaction->t_tid;
  2720. else
  2721. tid = journal->j_commit_sequence;
  2722. spin_unlock(&journal->j_state_lock);
  2723. atomic_set(&ei->i_sync_tid, tid);
  2724. atomic_set(&ei->i_datasync_tid, tid);
  2725. }
  2726. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2727. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2728. /*
  2729. * When mke2fs creates big inodes it does not zero out
  2730. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2731. * so ignore those first few inodes.
  2732. */
  2733. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2734. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2735. EXT3_INODE_SIZE(inode->i_sb)) {
  2736. brelse (bh);
  2737. ret = -EIO;
  2738. goto bad_inode;
  2739. }
  2740. if (ei->i_extra_isize == 0) {
  2741. /* The extra space is currently unused. Use it. */
  2742. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2743. EXT3_GOOD_OLD_INODE_SIZE;
  2744. } else {
  2745. __le32 *magic = (void *)raw_inode +
  2746. EXT3_GOOD_OLD_INODE_SIZE +
  2747. ei->i_extra_isize;
  2748. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2749. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2750. }
  2751. } else
  2752. ei->i_extra_isize = 0;
  2753. if (S_ISREG(inode->i_mode)) {
  2754. inode->i_op = &ext3_file_inode_operations;
  2755. inode->i_fop = &ext3_file_operations;
  2756. ext3_set_aops(inode);
  2757. } else if (S_ISDIR(inode->i_mode)) {
  2758. inode->i_op = &ext3_dir_inode_operations;
  2759. inode->i_fop = &ext3_dir_operations;
  2760. } else if (S_ISLNK(inode->i_mode)) {
  2761. if (ext3_inode_is_fast_symlink(inode)) {
  2762. inode->i_op = &ext3_fast_symlink_inode_operations;
  2763. nd_terminate_link(ei->i_data, inode->i_size,
  2764. sizeof(ei->i_data) - 1);
  2765. } else {
  2766. inode->i_op = &ext3_symlink_inode_operations;
  2767. ext3_set_aops(inode);
  2768. }
  2769. } else {
  2770. inode->i_op = &ext3_special_inode_operations;
  2771. if (raw_inode->i_block[0])
  2772. init_special_inode(inode, inode->i_mode,
  2773. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2774. else
  2775. init_special_inode(inode, inode->i_mode,
  2776. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2777. }
  2778. brelse (iloc.bh);
  2779. ext3_set_inode_flags(inode);
  2780. unlock_new_inode(inode);
  2781. return inode;
  2782. bad_inode:
  2783. iget_failed(inode);
  2784. return ERR_PTR(ret);
  2785. }
  2786. /*
  2787. * Post the struct inode info into an on-disk inode location in the
  2788. * buffer-cache. This gobbles the caller's reference to the
  2789. * buffer_head in the inode location struct.
  2790. *
  2791. * The caller must have write access to iloc->bh.
  2792. */
  2793. static int ext3_do_update_inode(handle_t *handle,
  2794. struct inode *inode,
  2795. struct ext3_iloc *iloc)
  2796. {
  2797. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2798. struct ext3_inode_info *ei = EXT3_I(inode);
  2799. struct buffer_head *bh = iloc->bh;
  2800. int err = 0, rc, block;
  2801. again:
  2802. /* we can't allow multiple procs in here at once, its a bit racey */
  2803. lock_buffer(bh);
  2804. /* For fields not not tracking in the in-memory inode,
  2805. * initialise them to zero for new inodes. */
  2806. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2807. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2808. ext3_get_inode_flags(ei);
  2809. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2810. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2811. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2812. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2813. /*
  2814. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2815. * re-used with the upper 16 bits of the uid/gid intact
  2816. */
  2817. if(!ei->i_dtime) {
  2818. raw_inode->i_uid_high =
  2819. cpu_to_le16(high_16_bits(inode->i_uid));
  2820. raw_inode->i_gid_high =
  2821. cpu_to_le16(high_16_bits(inode->i_gid));
  2822. } else {
  2823. raw_inode->i_uid_high = 0;
  2824. raw_inode->i_gid_high = 0;
  2825. }
  2826. } else {
  2827. raw_inode->i_uid_low =
  2828. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2829. raw_inode->i_gid_low =
  2830. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2831. raw_inode->i_uid_high = 0;
  2832. raw_inode->i_gid_high = 0;
  2833. }
  2834. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2835. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2836. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2837. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2838. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2839. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2840. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2841. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2842. #ifdef EXT3_FRAGMENTS
  2843. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2844. raw_inode->i_frag = ei->i_frag_no;
  2845. raw_inode->i_fsize = ei->i_frag_size;
  2846. #endif
  2847. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2848. if (!S_ISREG(inode->i_mode)) {
  2849. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2850. } else {
  2851. raw_inode->i_size_high =
  2852. cpu_to_le32(ei->i_disksize >> 32);
  2853. if (ei->i_disksize > 0x7fffffffULL) {
  2854. struct super_block *sb = inode->i_sb;
  2855. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2856. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2857. EXT3_SB(sb)->s_es->s_rev_level ==
  2858. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2859. /* If this is the first large file
  2860. * created, add a flag to the superblock.
  2861. */
  2862. unlock_buffer(bh);
  2863. err = ext3_journal_get_write_access(handle,
  2864. EXT3_SB(sb)->s_sbh);
  2865. if (err)
  2866. goto out_brelse;
  2867. ext3_update_dynamic_rev(sb);
  2868. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2869. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2870. handle->h_sync = 1;
  2871. err = ext3_journal_dirty_metadata(handle,
  2872. EXT3_SB(sb)->s_sbh);
  2873. /* get our lock and start over */
  2874. goto again;
  2875. }
  2876. }
  2877. }
  2878. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2879. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2880. if (old_valid_dev(inode->i_rdev)) {
  2881. raw_inode->i_block[0] =
  2882. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2883. raw_inode->i_block[1] = 0;
  2884. } else {
  2885. raw_inode->i_block[0] = 0;
  2886. raw_inode->i_block[1] =
  2887. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2888. raw_inode->i_block[2] = 0;
  2889. }
  2890. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2891. raw_inode->i_block[block] = ei->i_data[block];
  2892. if (ei->i_extra_isize)
  2893. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2894. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2895. unlock_buffer(bh);
  2896. rc = ext3_journal_dirty_metadata(handle, bh);
  2897. if (!err)
  2898. err = rc;
  2899. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2900. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2901. out_brelse:
  2902. brelse (bh);
  2903. ext3_std_error(inode->i_sb, err);
  2904. return err;
  2905. }
  2906. /*
  2907. * ext3_write_inode()
  2908. *
  2909. * We are called from a few places:
  2910. *
  2911. * - Within generic_file_write() for O_SYNC files.
  2912. * Here, there will be no transaction running. We wait for any running
  2913. * trasnaction to commit.
  2914. *
  2915. * - Within sys_sync(), kupdate and such.
  2916. * We wait on commit, if tol to.
  2917. *
  2918. * - Within prune_icache() (PF_MEMALLOC == true)
  2919. * Here we simply return. We can't afford to block kswapd on the
  2920. * journal commit.
  2921. *
  2922. * In all cases it is actually safe for us to return without doing anything,
  2923. * because the inode has been copied into a raw inode buffer in
  2924. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2925. * knfsd.
  2926. *
  2927. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2928. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2929. * which we are interested.
  2930. *
  2931. * It would be a bug for them to not do this. The code:
  2932. *
  2933. * mark_inode_dirty(inode)
  2934. * stuff();
  2935. * inode->i_size = expr;
  2936. *
  2937. * is in error because a kswapd-driven write_inode() could occur while
  2938. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2939. * will no longer be on the superblock's dirty inode list.
  2940. */
  2941. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2942. {
  2943. if (current->flags & PF_MEMALLOC)
  2944. return 0;
  2945. if (ext3_journal_current_handle()) {
  2946. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2947. dump_stack();
  2948. return -EIO;
  2949. }
  2950. if (wbc->sync_mode != WB_SYNC_ALL)
  2951. return 0;
  2952. return ext3_force_commit(inode->i_sb);
  2953. }
  2954. /*
  2955. * ext3_setattr()
  2956. *
  2957. * Called from notify_change.
  2958. *
  2959. * We want to trap VFS attempts to truncate the file as soon as
  2960. * possible. In particular, we want to make sure that when the VFS
  2961. * shrinks i_size, we put the inode on the orphan list and modify
  2962. * i_disksize immediately, so that during the subsequent flushing of
  2963. * dirty pages and freeing of disk blocks, we can guarantee that any
  2964. * commit will leave the blocks being flushed in an unused state on
  2965. * disk. (On recovery, the inode will get truncated and the blocks will
  2966. * be freed, so we have a strong guarantee that no future commit will
  2967. * leave these blocks visible to the user.)
  2968. *
  2969. * Called with inode->sem down.
  2970. */
  2971. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2972. {
  2973. struct inode *inode = dentry->d_inode;
  2974. int error, rc = 0;
  2975. const unsigned int ia_valid = attr->ia_valid;
  2976. error = inode_change_ok(inode, attr);
  2977. if (error)
  2978. return error;
  2979. if (is_quota_modification(inode, attr))
  2980. dquot_initialize(inode);
  2981. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2982. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2983. handle_t *handle;
  2984. /* (user+group)*(old+new) structure, inode write (sb,
  2985. * inode block, ? - but truncate inode update has it) */
  2986. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2987. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2988. if (IS_ERR(handle)) {
  2989. error = PTR_ERR(handle);
  2990. goto err_out;
  2991. }
  2992. error = dquot_transfer(inode, attr);
  2993. if (error) {
  2994. ext3_journal_stop(handle);
  2995. return error;
  2996. }
  2997. /* Update corresponding info in inode so that everything is in
  2998. * one transaction */
  2999. if (attr->ia_valid & ATTR_UID)
  3000. inode->i_uid = attr->ia_uid;
  3001. if (attr->ia_valid & ATTR_GID)
  3002. inode->i_gid = attr->ia_gid;
  3003. error = ext3_mark_inode_dirty(handle, inode);
  3004. ext3_journal_stop(handle);
  3005. }
  3006. if (attr->ia_valid & ATTR_SIZE)
  3007. inode_dio_wait(inode);
  3008. if (S_ISREG(inode->i_mode) &&
  3009. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  3010. handle_t *handle;
  3011. handle = ext3_journal_start(inode, 3);
  3012. if (IS_ERR(handle)) {
  3013. error = PTR_ERR(handle);
  3014. goto err_out;
  3015. }
  3016. error = ext3_orphan_add(handle, inode);
  3017. if (error) {
  3018. ext3_journal_stop(handle);
  3019. goto err_out;
  3020. }
  3021. EXT3_I(inode)->i_disksize = attr->ia_size;
  3022. error = ext3_mark_inode_dirty(handle, inode);
  3023. ext3_journal_stop(handle);
  3024. if (error) {
  3025. /* Some hard fs error must have happened. Bail out. */
  3026. ext3_orphan_del(NULL, inode);
  3027. goto err_out;
  3028. }
  3029. rc = ext3_block_truncate_page(inode, attr->ia_size);
  3030. if (rc) {
  3031. /* Cleanup orphan list and exit */
  3032. handle = ext3_journal_start(inode, 3);
  3033. if (IS_ERR(handle)) {
  3034. ext3_orphan_del(NULL, inode);
  3035. goto err_out;
  3036. }
  3037. ext3_orphan_del(handle, inode);
  3038. ext3_journal_stop(handle);
  3039. goto err_out;
  3040. }
  3041. }
  3042. if ((attr->ia_valid & ATTR_SIZE) &&
  3043. attr->ia_size != i_size_read(inode)) {
  3044. truncate_setsize(inode, attr->ia_size);
  3045. ext3_truncate(inode);
  3046. }
  3047. setattr_copy(inode, attr);
  3048. mark_inode_dirty(inode);
  3049. if (ia_valid & ATTR_MODE)
  3050. rc = ext3_acl_chmod(inode);
  3051. err_out:
  3052. ext3_std_error(inode->i_sb, error);
  3053. if (!error)
  3054. error = rc;
  3055. return error;
  3056. }
  3057. /*
  3058. * How many blocks doth make a writepage()?
  3059. *
  3060. * With N blocks per page, it may be:
  3061. * N data blocks
  3062. * 2 indirect block
  3063. * 2 dindirect
  3064. * 1 tindirect
  3065. * N+5 bitmap blocks (from the above)
  3066. * N+5 group descriptor summary blocks
  3067. * 1 inode block
  3068. * 1 superblock.
  3069. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  3070. *
  3071. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  3072. *
  3073. * With ordered or writeback data it's the same, less the N data blocks.
  3074. *
  3075. * If the inode's direct blocks can hold an integral number of pages then a
  3076. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3077. * and dindirect block, and the "5" above becomes "3".
  3078. *
  3079. * This still overestimates under most circumstances. If we were to pass the
  3080. * start and end offsets in here as well we could do block_to_path() on each
  3081. * block and work out the exact number of indirects which are touched. Pah.
  3082. */
  3083. static int ext3_writepage_trans_blocks(struct inode *inode)
  3084. {
  3085. int bpp = ext3_journal_blocks_per_page(inode);
  3086. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3087. int ret;
  3088. if (ext3_should_journal_data(inode))
  3089. ret = 3 * (bpp + indirects) + 2;
  3090. else
  3091. ret = 2 * (bpp + indirects) + indirects + 2;
  3092. #ifdef CONFIG_QUOTA
  3093. /* We know that structure was already allocated during dquot_initialize so
  3094. * we will be updating only the data blocks + inodes */
  3095. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3096. #endif
  3097. return ret;
  3098. }
  3099. /*
  3100. * The caller must have previously called ext3_reserve_inode_write().
  3101. * Give this, we know that the caller already has write access to iloc->bh.
  3102. */
  3103. int ext3_mark_iloc_dirty(handle_t *handle,
  3104. struct inode *inode, struct ext3_iloc *iloc)
  3105. {
  3106. int err = 0;
  3107. /* the do_update_inode consumes one bh->b_count */
  3108. get_bh(iloc->bh);
  3109. /* ext3_do_update_inode() does journal_dirty_metadata */
  3110. err = ext3_do_update_inode(handle, inode, iloc);
  3111. put_bh(iloc->bh);
  3112. return err;
  3113. }
  3114. /*
  3115. * On success, We end up with an outstanding reference count against
  3116. * iloc->bh. This _must_ be cleaned up later.
  3117. */
  3118. int
  3119. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3120. struct ext3_iloc *iloc)
  3121. {
  3122. int err = 0;
  3123. if (handle) {
  3124. err = ext3_get_inode_loc(inode, iloc);
  3125. if (!err) {
  3126. BUFFER_TRACE(iloc->bh, "get_write_access");
  3127. err = ext3_journal_get_write_access(handle, iloc->bh);
  3128. if (err) {
  3129. brelse(iloc->bh);
  3130. iloc->bh = NULL;
  3131. }
  3132. }
  3133. }
  3134. ext3_std_error(inode->i_sb, err);
  3135. return err;
  3136. }
  3137. /*
  3138. * What we do here is to mark the in-core inode as clean with respect to inode
  3139. * dirtiness (it may still be data-dirty).
  3140. * This means that the in-core inode may be reaped by prune_icache
  3141. * without having to perform any I/O. This is a very good thing,
  3142. * because *any* task may call prune_icache - even ones which
  3143. * have a transaction open against a different journal.
  3144. *
  3145. * Is this cheating? Not really. Sure, we haven't written the
  3146. * inode out, but prune_icache isn't a user-visible syncing function.
  3147. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3148. * we start and wait on commits.
  3149. *
  3150. * Is this efficient/effective? Well, we're being nice to the system
  3151. * by cleaning up our inodes proactively so they can be reaped
  3152. * without I/O. But we are potentially leaving up to five seconds'
  3153. * worth of inodes floating about which prune_icache wants us to
  3154. * write out. One way to fix that would be to get prune_icache()
  3155. * to do a write_super() to free up some memory. It has the desired
  3156. * effect.
  3157. */
  3158. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3159. {
  3160. struct ext3_iloc iloc;
  3161. int err;
  3162. might_sleep();
  3163. trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  3164. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3165. if (!err)
  3166. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3167. return err;
  3168. }
  3169. /*
  3170. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3171. *
  3172. * We're really interested in the case where a file is being extended.
  3173. * i_size has been changed by generic_commit_write() and we thus need
  3174. * to include the updated inode in the current transaction.
  3175. *
  3176. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3177. * are allocated to the file.
  3178. *
  3179. * If the inode is marked synchronous, we don't honour that here - doing
  3180. * so would cause a commit on atime updates, which we don't bother doing.
  3181. * We handle synchronous inodes at the highest possible level.
  3182. */
  3183. void ext3_dirty_inode(struct inode *inode, int flags)
  3184. {
  3185. handle_t *current_handle = ext3_journal_current_handle();
  3186. handle_t *handle;
  3187. handle = ext3_journal_start(inode, 2);
  3188. if (IS_ERR(handle))
  3189. goto out;
  3190. if (current_handle &&
  3191. current_handle->h_transaction != handle->h_transaction) {
  3192. /* This task has a transaction open against a different fs */
  3193. printk(KERN_EMERG "%s: transactions do not match!\n",
  3194. __func__);
  3195. } else {
  3196. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3197. current_handle);
  3198. ext3_mark_inode_dirty(handle, inode);
  3199. }
  3200. ext3_journal_stop(handle);
  3201. out:
  3202. return;
  3203. }
  3204. #if 0
  3205. /*
  3206. * Bind an inode's backing buffer_head into this transaction, to prevent
  3207. * it from being flushed to disk early. Unlike
  3208. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3209. * returns no iloc structure, so the caller needs to repeat the iloc
  3210. * lookup to mark the inode dirty later.
  3211. */
  3212. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3213. {
  3214. struct ext3_iloc iloc;
  3215. int err = 0;
  3216. if (handle) {
  3217. err = ext3_get_inode_loc(inode, &iloc);
  3218. if (!err) {
  3219. BUFFER_TRACE(iloc.bh, "get_write_access");
  3220. err = journal_get_write_access(handle, iloc.bh);
  3221. if (!err)
  3222. err = ext3_journal_dirty_metadata(handle,
  3223. iloc.bh);
  3224. brelse(iloc.bh);
  3225. }
  3226. }
  3227. ext3_std_error(inode->i_sb, err);
  3228. return err;
  3229. }
  3230. #endif
  3231. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3232. {
  3233. journal_t *journal;
  3234. handle_t *handle;
  3235. int err;
  3236. /*
  3237. * We have to be very careful here: changing a data block's
  3238. * journaling status dynamically is dangerous. If we write a
  3239. * data block to the journal, change the status and then delete
  3240. * that block, we risk forgetting to revoke the old log record
  3241. * from the journal and so a subsequent replay can corrupt data.
  3242. * So, first we make sure that the journal is empty and that
  3243. * nobody is changing anything.
  3244. */
  3245. journal = EXT3_JOURNAL(inode);
  3246. if (is_journal_aborted(journal))
  3247. return -EROFS;
  3248. journal_lock_updates(journal);
  3249. journal_flush(journal);
  3250. /*
  3251. * OK, there are no updates running now, and all cached data is
  3252. * synced to disk. We are now in a completely consistent state
  3253. * which doesn't have anything in the journal, and we know that
  3254. * no filesystem updates are running, so it is safe to modify
  3255. * the inode's in-core data-journaling state flag now.
  3256. */
  3257. if (val)
  3258. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3259. else
  3260. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3261. ext3_set_aops(inode);
  3262. journal_unlock_updates(journal);
  3263. /* Finally we can mark the inode as dirty. */
  3264. handle = ext3_journal_start(inode, 1);
  3265. if (IS_ERR(handle))
  3266. return PTR_ERR(handle);
  3267. err = ext3_mark_inode_dirty(handle, inode);
  3268. handle->h_sync = 1;
  3269. ext3_journal_stop(handle);
  3270. ext3_std_error(inode->i_sb, err);
  3271. return err;
  3272. }