exec.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mm.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/swap.h>
  30. #include <linux/string.h>
  31. #include <linux/init.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/perf_event.h>
  34. #include <linux/highmem.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/key.h>
  37. #include <linux/personality.h>
  38. #include <linux/binfmts.h>
  39. #include <linux/utsname.h>
  40. #include <linux/pid_namespace.h>
  41. #include <linux/module.h>
  42. #include <linux/namei.h>
  43. #include <linux/mount.h>
  44. #include <linux/security.h>
  45. #include <linux/syscalls.h>
  46. #include <linux/tsacct_kern.h>
  47. #include <linux/cn_proc.h>
  48. #include <linux/audit.h>
  49. #include <linux/tracehook.h>
  50. #include <linux/kmod.h>
  51. #include <linux/fsnotify.h>
  52. #include <linux/fs_struct.h>
  53. #include <linux/pipe_fs_i.h>
  54. #include <linux/oom.h>
  55. #include <linux/compat.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/mmu_context.h>
  58. #include <asm/tlb.h>
  59. #include <trace/events/task.h>
  60. #include "internal.h"
  61. #include <trace/events/sched.h>
  62. int core_uses_pid;
  63. char core_pattern[CORENAME_MAX_SIZE] = "core";
  64. unsigned int core_pipe_limit;
  65. int suid_dumpable = 0;
  66. struct core_name {
  67. char *corename;
  68. int used, size;
  69. };
  70. static atomic_t call_count = ATOMIC_INIT(1);
  71. /* The maximal length of core_pattern is also specified in sysctl.c */
  72. static LIST_HEAD(formats);
  73. static DEFINE_RWLOCK(binfmt_lock);
  74. void __register_binfmt(struct linux_binfmt * fmt, int insert)
  75. {
  76. BUG_ON(!fmt);
  77. write_lock(&binfmt_lock);
  78. insert ? list_add(&fmt->lh, &formats) :
  79. list_add_tail(&fmt->lh, &formats);
  80. write_unlock(&binfmt_lock);
  81. }
  82. EXPORT_SYMBOL(__register_binfmt);
  83. void unregister_binfmt(struct linux_binfmt * fmt)
  84. {
  85. write_lock(&binfmt_lock);
  86. list_del(&fmt->lh);
  87. write_unlock(&binfmt_lock);
  88. }
  89. EXPORT_SYMBOL(unregister_binfmt);
  90. static inline void put_binfmt(struct linux_binfmt * fmt)
  91. {
  92. module_put(fmt->module);
  93. }
  94. /*
  95. * Note that a shared library must be both readable and executable due to
  96. * security reasons.
  97. *
  98. * Also note that we take the address to load from from the file itself.
  99. */
  100. SYSCALL_DEFINE1(uselib, const char __user *, library)
  101. {
  102. struct file *file;
  103. char *tmp = getname(library);
  104. int error = PTR_ERR(tmp);
  105. static const struct open_flags uselib_flags = {
  106. .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
  107. .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
  108. .intent = LOOKUP_OPEN
  109. };
  110. if (IS_ERR(tmp))
  111. goto out;
  112. file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
  113. putname(tmp);
  114. error = PTR_ERR(file);
  115. if (IS_ERR(file))
  116. goto out;
  117. error = -EINVAL;
  118. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  119. goto exit;
  120. error = -EACCES;
  121. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  122. goto exit;
  123. fsnotify_open(file);
  124. error = -ENOEXEC;
  125. if(file->f_op) {
  126. struct linux_binfmt * fmt;
  127. read_lock(&binfmt_lock);
  128. list_for_each_entry(fmt, &formats, lh) {
  129. if (!fmt->load_shlib)
  130. continue;
  131. if (!try_module_get(fmt->module))
  132. continue;
  133. read_unlock(&binfmt_lock);
  134. error = fmt->load_shlib(file);
  135. read_lock(&binfmt_lock);
  136. put_binfmt(fmt);
  137. if (error != -ENOEXEC)
  138. break;
  139. }
  140. read_unlock(&binfmt_lock);
  141. }
  142. exit:
  143. fput(file);
  144. out:
  145. return error;
  146. }
  147. #ifdef CONFIG_MMU
  148. /*
  149. * The nascent bprm->mm is not visible until exec_mmap() but it can
  150. * use a lot of memory, account these pages in current->mm temporary
  151. * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
  152. * change the counter back via acct_arg_size(0).
  153. */
  154. static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
  155. {
  156. struct mm_struct *mm = current->mm;
  157. long diff = (long)(pages - bprm->vma_pages);
  158. if (!mm || !diff)
  159. return;
  160. bprm->vma_pages = pages;
  161. add_mm_counter(mm, MM_ANONPAGES, diff);
  162. }
  163. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  164. int write)
  165. {
  166. struct page *page;
  167. int ret;
  168. #ifdef CONFIG_STACK_GROWSUP
  169. if (write) {
  170. ret = expand_downwards(bprm->vma, pos);
  171. if (ret < 0)
  172. return NULL;
  173. }
  174. #endif
  175. ret = get_user_pages(current, bprm->mm, pos,
  176. 1, write, 1, &page, NULL);
  177. if (ret <= 0)
  178. return NULL;
  179. if (write) {
  180. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  181. struct rlimit *rlim;
  182. acct_arg_size(bprm, size / PAGE_SIZE);
  183. /*
  184. * We've historically supported up to 32 pages (ARG_MAX)
  185. * of argument strings even with small stacks
  186. */
  187. if (size <= ARG_MAX)
  188. return page;
  189. /*
  190. * Limit to 1/4-th the stack size for the argv+env strings.
  191. * This ensures that:
  192. * - the remaining binfmt code will not run out of stack space,
  193. * - the program will have a reasonable amount of stack left
  194. * to work from.
  195. */
  196. rlim = current->signal->rlim;
  197. if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
  198. put_page(page);
  199. return NULL;
  200. }
  201. }
  202. return page;
  203. }
  204. static void put_arg_page(struct page *page)
  205. {
  206. put_page(page);
  207. }
  208. static void free_arg_page(struct linux_binprm *bprm, int i)
  209. {
  210. }
  211. static void free_arg_pages(struct linux_binprm *bprm)
  212. {
  213. }
  214. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  215. struct page *page)
  216. {
  217. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  218. }
  219. static int __bprm_mm_init(struct linux_binprm *bprm)
  220. {
  221. int err;
  222. struct vm_area_struct *vma = NULL;
  223. struct mm_struct *mm = bprm->mm;
  224. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  225. if (!vma)
  226. return -ENOMEM;
  227. down_write(&mm->mmap_sem);
  228. vma->vm_mm = mm;
  229. /*
  230. * Place the stack at the largest stack address the architecture
  231. * supports. Later, we'll move this to an appropriate place. We don't
  232. * use STACK_TOP because that can depend on attributes which aren't
  233. * configured yet.
  234. */
  235. BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
  236. vma->vm_end = STACK_TOP_MAX;
  237. vma->vm_start = vma->vm_end - PAGE_SIZE;
  238. vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
  239. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  240. INIT_LIST_HEAD(&vma->anon_vma_chain);
  241. err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
  242. if (err)
  243. goto err;
  244. err = insert_vm_struct(mm, vma);
  245. if (err)
  246. goto err;
  247. mm->stack_vm = mm->total_vm = 1;
  248. up_write(&mm->mmap_sem);
  249. bprm->p = vma->vm_end - sizeof(void *);
  250. return 0;
  251. err:
  252. up_write(&mm->mmap_sem);
  253. bprm->vma = NULL;
  254. kmem_cache_free(vm_area_cachep, vma);
  255. return err;
  256. }
  257. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  258. {
  259. return len <= MAX_ARG_STRLEN;
  260. }
  261. #else
  262. static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
  263. {
  264. }
  265. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  266. int write)
  267. {
  268. struct page *page;
  269. page = bprm->page[pos / PAGE_SIZE];
  270. if (!page && write) {
  271. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  272. if (!page)
  273. return NULL;
  274. bprm->page[pos / PAGE_SIZE] = page;
  275. }
  276. return page;
  277. }
  278. static void put_arg_page(struct page *page)
  279. {
  280. }
  281. static void free_arg_page(struct linux_binprm *bprm, int i)
  282. {
  283. if (bprm->page[i]) {
  284. __free_page(bprm->page[i]);
  285. bprm->page[i] = NULL;
  286. }
  287. }
  288. static void free_arg_pages(struct linux_binprm *bprm)
  289. {
  290. int i;
  291. for (i = 0; i < MAX_ARG_PAGES; i++)
  292. free_arg_page(bprm, i);
  293. }
  294. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  295. struct page *page)
  296. {
  297. }
  298. static int __bprm_mm_init(struct linux_binprm *bprm)
  299. {
  300. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  301. return 0;
  302. }
  303. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  304. {
  305. return len <= bprm->p;
  306. }
  307. #endif /* CONFIG_MMU */
  308. /*
  309. * Create a new mm_struct and populate it with a temporary stack
  310. * vm_area_struct. We don't have enough context at this point to set the stack
  311. * flags, permissions, and offset, so we use temporary values. We'll update
  312. * them later in setup_arg_pages().
  313. */
  314. int bprm_mm_init(struct linux_binprm *bprm)
  315. {
  316. int err;
  317. struct mm_struct *mm = NULL;
  318. bprm->mm = mm = mm_alloc();
  319. err = -ENOMEM;
  320. if (!mm)
  321. goto err;
  322. err = init_new_context(current, mm);
  323. if (err)
  324. goto err;
  325. err = __bprm_mm_init(bprm);
  326. if (err)
  327. goto err;
  328. return 0;
  329. err:
  330. if (mm) {
  331. bprm->mm = NULL;
  332. mmdrop(mm);
  333. }
  334. return err;
  335. }
  336. struct user_arg_ptr {
  337. #ifdef CONFIG_COMPAT
  338. bool is_compat;
  339. #endif
  340. union {
  341. const char __user *const __user *native;
  342. #ifdef CONFIG_COMPAT
  343. compat_uptr_t __user *compat;
  344. #endif
  345. } ptr;
  346. };
  347. static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
  348. {
  349. const char __user *native;
  350. #ifdef CONFIG_COMPAT
  351. if (unlikely(argv.is_compat)) {
  352. compat_uptr_t compat;
  353. if (get_user(compat, argv.ptr.compat + nr))
  354. return ERR_PTR(-EFAULT);
  355. return compat_ptr(compat);
  356. }
  357. #endif
  358. if (get_user(native, argv.ptr.native + nr))
  359. return ERR_PTR(-EFAULT);
  360. return native;
  361. }
  362. /*
  363. * count() counts the number of strings in array ARGV.
  364. */
  365. static int count(struct user_arg_ptr argv, int max)
  366. {
  367. int i = 0;
  368. if (argv.ptr.native != NULL) {
  369. for (;;) {
  370. const char __user *p = get_user_arg_ptr(argv, i);
  371. if (!p)
  372. break;
  373. if (IS_ERR(p))
  374. return -EFAULT;
  375. if (i++ >= max)
  376. return -E2BIG;
  377. if (fatal_signal_pending(current))
  378. return -ERESTARTNOHAND;
  379. cond_resched();
  380. }
  381. }
  382. return i;
  383. }
  384. /*
  385. * 'copy_strings()' copies argument/environment strings from the old
  386. * processes's memory to the new process's stack. The call to get_user_pages()
  387. * ensures the destination page is created and not swapped out.
  388. */
  389. static int copy_strings(int argc, struct user_arg_ptr argv,
  390. struct linux_binprm *bprm)
  391. {
  392. struct page *kmapped_page = NULL;
  393. char *kaddr = NULL;
  394. unsigned long kpos = 0;
  395. int ret;
  396. while (argc-- > 0) {
  397. const char __user *str;
  398. int len;
  399. unsigned long pos;
  400. ret = -EFAULT;
  401. str = get_user_arg_ptr(argv, argc);
  402. if (IS_ERR(str))
  403. goto out;
  404. len = strnlen_user(str, MAX_ARG_STRLEN);
  405. if (!len)
  406. goto out;
  407. ret = -E2BIG;
  408. if (!valid_arg_len(bprm, len))
  409. goto out;
  410. /* We're going to work our way backwords. */
  411. pos = bprm->p;
  412. str += len;
  413. bprm->p -= len;
  414. while (len > 0) {
  415. int offset, bytes_to_copy;
  416. if (fatal_signal_pending(current)) {
  417. ret = -ERESTARTNOHAND;
  418. goto out;
  419. }
  420. cond_resched();
  421. offset = pos % PAGE_SIZE;
  422. if (offset == 0)
  423. offset = PAGE_SIZE;
  424. bytes_to_copy = offset;
  425. if (bytes_to_copy > len)
  426. bytes_to_copy = len;
  427. offset -= bytes_to_copy;
  428. pos -= bytes_to_copy;
  429. str -= bytes_to_copy;
  430. len -= bytes_to_copy;
  431. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  432. struct page *page;
  433. page = get_arg_page(bprm, pos, 1);
  434. if (!page) {
  435. ret = -E2BIG;
  436. goto out;
  437. }
  438. if (kmapped_page) {
  439. flush_kernel_dcache_page(kmapped_page);
  440. kunmap(kmapped_page);
  441. put_arg_page(kmapped_page);
  442. }
  443. kmapped_page = page;
  444. kaddr = kmap(kmapped_page);
  445. kpos = pos & PAGE_MASK;
  446. flush_arg_page(bprm, kpos, kmapped_page);
  447. }
  448. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  449. ret = -EFAULT;
  450. goto out;
  451. }
  452. }
  453. }
  454. ret = 0;
  455. out:
  456. if (kmapped_page) {
  457. flush_kernel_dcache_page(kmapped_page);
  458. kunmap(kmapped_page);
  459. put_arg_page(kmapped_page);
  460. }
  461. return ret;
  462. }
  463. /*
  464. * Like copy_strings, but get argv and its values from kernel memory.
  465. */
  466. int copy_strings_kernel(int argc, const char *const *__argv,
  467. struct linux_binprm *bprm)
  468. {
  469. int r;
  470. mm_segment_t oldfs = get_fs();
  471. struct user_arg_ptr argv = {
  472. .ptr.native = (const char __user *const __user *)__argv,
  473. };
  474. set_fs(KERNEL_DS);
  475. r = copy_strings(argc, argv, bprm);
  476. set_fs(oldfs);
  477. return r;
  478. }
  479. EXPORT_SYMBOL(copy_strings_kernel);
  480. #ifdef CONFIG_MMU
  481. /*
  482. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  483. * the binfmt code determines where the new stack should reside, we shift it to
  484. * its final location. The process proceeds as follows:
  485. *
  486. * 1) Use shift to calculate the new vma endpoints.
  487. * 2) Extend vma to cover both the old and new ranges. This ensures the
  488. * arguments passed to subsequent functions are consistent.
  489. * 3) Move vma's page tables to the new range.
  490. * 4) Free up any cleared pgd range.
  491. * 5) Shrink the vma to cover only the new range.
  492. */
  493. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  494. {
  495. struct mm_struct *mm = vma->vm_mm;
  496. unsigned long old_start = vma->vm_start;
  497. unsigned long old_end = vma->vm_end;
  498. unsigned long length = old_end - old_start;
  499. unsigned long new_start = old_start - shift;
  500. unsigned long new_end = old_end - shift;
  501. struct mmu_gather tlb;
  502. BUG_ON(new_start > new_end);
  503. /*
  504. * ensure there are no vmas between where we want to go
  505. * and where we are
  506. */
  507. if (vma != find_vma(mm, new_start))
  508. return -EFAULT;
  509. /*
  510. * cover the whole range: [new_start, old_end)
  511. */
  512. if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
  513. return -ENOMEM;
  514. /*
  515. * move the page tables downwards, on failure we rely on
  516. * process cleanup to remove whatever mess we made.
  517. */
  518. if (length != move_page_tables(vma, old_start,
  519. vma, new_start, length))
  520. return -ENOMEM;
  521. lru_add_drain();
  522. tlb_gather_mmu(&tlb, mm, 0);
  523. if (new_end > old_start) {
  524. /*
  525. * when the old and new regions overlap clear from new_end.
  526. */
  527. free_pgd_range(&tlb, new_end, old_end, new_end,
  528. vma->vm_next ? vma->vm_next->vm_start : 0);
  529. } else {
  530. /*
  531. * otherwise, clean from old_start; this is done to not touch
  532. * the address space in [new_end, old_start) some architectures
  533. * have constraints on va-space that make this illegal (IA64) -
  534. * for the others its just a little faster.
  535. */
  536. free_pgd_range(&tlb, old_start, old_end, new_end,
  537. vma->vm_next ? vma->vm_next->vm_start : 0);
  538. }
  539. tlb_finish_mmu(&tlb, new_end, old_end);
  540. /*
  541. * Shrink the vma to just the new range. Always succeeds.
  542. */
  543. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  544. return 0;
  545. }
  546. /*
  547. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  548. * the stack is optionally relocated, and some extra space is added.
  549. */
  550. int setup_arg_pages(struct linux_binprm *bprm,
  551. unsigned long stack_top,
  552. int executable_stack)
  553. {
  554. unsigned long ret;
  555. unsigned long stack_shift;
  556. struct mm_struct *mm = current->mm;
  557. struct vm_area_struct *vma = bprm->vma;
  558. struct vm_area_struct *prev = NULL;
  559. unsigned long vm_flags;
  560. unsigned long stack_base;
  561. unsigned long stack_size;
  562. unsigned long stack_expand;
  563. unsigned long rlim_stack;
  564. #ifdef CONFIG_STACK_GROWSUP
  565. /* Limit stack size to 1GB */
  566. stack_base = rlimit_max(RLIMIT_STACK);
  567. if (stack_base > (1 << 30))
  568. stack_base = 1 << 30;
  569. /* Make sure we didn't let the argument array grow too large. */
  570. if (vma->vm_end - vma->vm_start > stack_base)
  571. return -ENOMEM;
  572. stack_base = PAGE_ALIGN(stack_top - stack_base);
  573. stack_shift = vma->vm_start - stack_base;
  574. mm->arg_start = bprm->p - stack_shift;
  575. bprm->p = vma->vm_end - stack_shift;
  576. #else
  577. stack_top = arch_align_stack(stack_top);
  578. stack_top = PAGE_ALIGN(stack_top);
  579. if (unlikely(stack_top < mmap_min_addr) ||
  580. unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
  581. return -ENOMEM;
  582. stack_shift = vma->vm_end - stack_top;
  583. bprm->p -= stack_shift;
  584. mm->arg_start = bprm->p;
  585. #endif
  586. if (bprm->loader)
  587. bprm->loader -= stack_shift;
  588. bprm->exec -= stack_shift;
  589. down_write(&mm->mmap_sem);
  590. vm_flags = VM_STACK_FLAGS;
  591. /*
  592. * Adjust stack execute permissions; explicitly enable for
  593. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  594. * (arch default) otherwise.
  595. */
  596. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  597. vm_flags |= VM_EXEC;
  598. else if (executable_stack == EXSTACK_DISABLE_X)
  599. vm_flags &= ~VM_EXEC;
  600. vm_flags |= mm->def_flags;
  601. vm_flags |= VM_STACK_INCOMPLETE_SETUP;
  602. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  603. vm_flags);
  604. if (ret)
  605. goto out_unlock;
  606. BUG_ON(prev != vma);
  607. /* Move stack pages down in memory. */
  608. if (stack_shift) {
  609. ret = shift_arg_pages(vma, stack_shift);
  610. if (ret)
  611. goto out_unlock;
  612. }
  613. /* mprotect_fixup is overkill to remove the temporary stack flags */
  614. vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
  615. stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
  616. stack_size = vma->vm_end - vma->vm_start;
  617. /*
  618. * Align this down to a page boundary as expand_stack
  619. * will align it up.
  620. */
  621. rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
  622. #ifdef CONFIG_STACK_GROWSUP
  623. if (stack_size + stack_expand > rlim_stack)
  624. stack_base = vma->vm_start + rlim_stack;
  625. else
  626. stack_base = vma->vm_end + stack_expand;
  627. #else
  628. if (stack_size + stack_expand > rlim_stack)
  629. stack_base = vma->vm_end - rlim_stack;
  630. else
  631. stack_base = vma->vm_start - stack_expand;
  632. #endif
  633. current->mm->start_stack = bprm->p;
  634. ret = expand_stack(vma, stack_base);
  635. if (ret)
  636. ret = -EFAULT;
  637. out_unlock:
  638. up_write(&mm->mmap_sem);
  639. return ret;
  640. }
  641. EXPORT_SYMBOL(setup_arg_pages);
  642. #endif /* CONFIG_MMU */
  643. struct file *open_exec(const char *name)
  644. {
  645. struct file *file;
  646. int err;
  647. static const struct open_flags open_exec_flags = {
  648. .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
  649. .acc_mode = MAY_EXEC | MAY_OPEN,
  650. .intent = LOOKUP_OPEN
  651. };
  652. file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
  653. if (IS_ERR(file))
  654. goto out;
  655. err = -EACCES;
  656. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  657. goto exit;
  658. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  659. goto exit;
  660. fsnotify_open(file);
  661. err = deny_write_access(file);
  662. if (err)
  663. goto exit;
  664. out:
  665. return file;
  666. exit:
  667. fput(file);
  668. return ERR_PTR(err);
  669. }
  670. EXPORT_SYMBOL(open_exec);
  671. int kernel_read(struct file *file, loff_t offset,
  672. char *addr, unsigned long count)
  673. {
  674. mm_segment_t old_fs;
  675. loff_t pos = offset;
  676. int result;
  677. old_fs = get_fs();
  678. set_fs(get_ds());
  679. /* The cast to a user pointer is valid due to the set_fs() */
  680. result = vfs_read(file, (void __user *)addr, count, &pos);
  681. set_fs(old_fs);
  682. return result;
  683. }
  684. EXPORT_SYMBOL(kernel_read);
  685. static int exec_mmap(struct mm_struct *mm)
  686. {
  687. struct task_struct *tsk;
  688. struct mm_struct * old_mm, *active_mm;
  689. /* Notify parent that we're no longer interested in the old VM */
  690. tsk = current;
  691. old_mm = current->mm;
  692. sync_mm_rss(old_mm);
  693. mm_release(tsk, old_mm);
  694. if (old_mm) {
  695. /*
  696. * Make sure that if there is a core dump in progress
  697. * for the old mm, we get out and die instead of going
  698. * through with the exec. We must hold mmap_sem around
  699. * checking core_state and changing tsk->mm.
  700. */
  701. down_read(&old_mm->mmap_sem);
  702. if (unlikely(old_mm->core_state)) {
  703. up_read(&old_mm->mmap_sem);
  704. return -EINTR;
  705. }
  706. }
  707. task_lock(tsk);
  708. active_mm = tsk->active_mm;
  709. tsk->mm = mm;
  710. tsk->active_mm = mm;
  711. activate_mm(active_mm, mm);
  712. task_unlock(tsk);
  713. arch_pick_mmap_layout(mm);
  714. if (old_mm) {
  715. up_read(&old_mm->mmap_sem);
  716. BUG_ON(active_mm != old_mm);
  717. setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
  718. mm_update_next_owner(old_mm);
  719. mmput(old_mm);
  720. return 0;
  721. }
  722. mmdrop(active_mm);
  723. return 0;
  724. }
  725. /*
  726. * This function makes sure the current process has its own signal table,
  727. * so that flush_signal_handlers can later reset the handlers without
  728. * disturbing other processes. (Other processes might share the signal
  729. * table via the CLONE_SIGHAND option to clone().)
  730. */
  731. static int de_thread(struct task_struct *tsk)
  732. {
  733. struct signal_struct *sig = tsk->signal;
  734. struct sighand_struct *oldsighand = tsk->sighand;
  735. spinlock_t *lock = &oldsighand->siglock;
  736. if (thread_group_empty(tsk))
  737. goto no_thread_group;
  738. /*
  739. * Kill all other threads in the thread group.
  740. */
  741. spin_lock_irq(lock);
  742. if (signal_group_exit(sig)) {
  743. /*
  744. * Another group action in progress, just
  745. * return so that the signal is processed.
  746. */
  747. spin_unlock_irq(lock);
  748. return -EAGAIN;
  749. }
  750. sig->group_exit_task = tsk;
  751. sig->notify_count = zap_other_threads(tsk);
  752. if (!thread_group_leader(tsk))
  753. sig->notify_count--;
  754. while (sig->notify_count) {
  755. __set_current_state(TASK_UNINTERRUPTIBLE);
  756. spin_unlock_irq(lock);
  757. schedule();
  758. spin_lock_irq(lock);
  759. }
  760. spin_unlock_irq(lock);
  761. /*
  762. * At this point all other threads have exited, all we have to
  763. * do is to wait for the thread group leader to become inactive,
  764. * and to assume its PID:
  765. */
  766. if (!thread_group_leader(tsk)) {
  767. struct task_struct *leader = tsk->group_leader;
  768. sig->notify_count = -1; /* for exit_notify() */
  769. for (;;) {
  770. write_lock_irq(&tasklist_lock);
  771. if (likely(leader->exit_state))
  772. break;
  773. __set_current_state(TASK_UNINTERRUPTIBLE);
  774. write_unlock_irq(&tasklist_lock);
  775. schedule();
  776. }
  777. /*
  778. * The only record we have of the real-time age of a
  779. * process, regardless of execs it's done, is start_time.
  780. * All the past CPU time is accumulated in signal_struct
  781. * from sister threads now dead. But in this non-leader
  782. * exec, nothing survives from the original leader thread,
  783. * whose birth marks the true age of this process now.
  784. * When we take on its identity by switching to its PID, we
  785. * also take its birthdate (always earlier than our own).
  786. */
  787. tsk->start_time = leader->start_time;
  788. BUG_ON(!same_thread_group(leader, tsk));
  789. BUG_ON(has_group_leader_pid(tsk));
  790. /*
  791. * An exec() starts a new thread group with the
  792. * TGID of the previous thread group. Rehash the
  793. * two threads with a switched PID, and release
  794. * the former thread group leader:
  795. */
  796. /* Become a process group leader with the old leader's pid.
  797. * The old leader becomes a thread of the this thread group.
  798. * Note: The old leader also uses this pid until release_task
  799. * is called. Odd but simple and correct.
  800. */
  801. detach_pid(tsk, PIDTYPE_PID);
  802. tsk->pid = leader->pid;
  803. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  804. transfer_pid(leader, tsk, PIDTYPE_PGID);
  805. transfer_pid(leader, tsk, PIDTYPE_SID);
  806. list_replace_rcu(&leader->tasks, &tsk->tasks);
  807. list_replace_init(&leader->sibling, &tsk->sibling);
  808. tsk->group_leader = tsk;
  809. leader->group_leader = tsk;
  810. tsk->exit_signal = SIGCHLD;
  811. leader->exit_signal = -1;
  812. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  813. leader->exit_state = EXIT_DEAD;
  814. /*
  815. * We are going to release_task()->ptrace_unlink() silently,
  816. * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
  817. * the tracer wont't block again waiting for this thread.
  818. */
  819. if (unlikely(leader->ptrace))
  820. __wake_up_parent(leader, leader->parent);
  821. write_unlock_irq(&tasklist_lock);
  822. release_task(leader);
  823. }
  824. sig->group_exit_task = NULL;
  825. sig->notify_count = 0;
  826. no_thread_group:
  827. /* we have changed execution domain */
  828. tsk->exit_signal = SIGCHLD;
  829. exit_itimers(sig);
  830. flush_itimer_signals();
  831. if (atomic_read(&oldsighand->count) != 1) {
  832. struct sighand_struct *newsighand;
  833. /*
  834. * This ->sighand is shared with the CLONE_SIGHAND
  835. * but not CLONE_THREAD task, switch to the new one.
  836. */
  837. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  838. if (!newsighand)
  839. return -ENOMEM;
  840. atomic_set(&newsighand->count, 1);
  841. memcpy(newsighand->action, oldsighand->action,
  842. sizeof(newsighand->action));
  843. write_lock_irq(&tasklist_lock);
  844. spin_lock(&oldsighand->siglock);
  845. rcu_assign_pointer(tsk->sighand, newsighand);
  846. spin_unlock(&oldsighand->siglock);
  847. write_unlock_irq(&tasklist_lock);
  848. __cleanup_sighand(oldsighand);
  849. }
  850. BUG_ON(!thread_group_leader(tsk));
  851. return 0;
  852. }
  853. /*
  854. * These functions flushes out all traces of the currently running executable
  855. * so that a new one can be started
  856. */
  857. static void flush_old_files(struct files_struct * files)
  858. {
  859. long j = -1;
  860. struct fdtable *fdt;
  861. spin_lock(&files->file_lock);
  862. for (;;) {
  863. unsigned long set, i;
  864. j++;
  865. i = j * __NFDBITS;
  866. fdt = files_fdtable(files);
  867. if (i >= fdt->max_fds)
  868. break;
  869. set = fdt->close_on_exec->fds_bits[j];
  870. if (!set)
  871. continue;
  872. fdt->close_on_exec->fds_bits[j] = 0;
  873. spin_unlock(&files->file_lock);
  874. for ( ; set ; i++,set >>= 1) {
  875. if (set & 1) {
  876. sys_close(i);
  877. }
  878. }
  879. spin_lock(&files->file_lock);
  880. }
  881. spin_unlock(&files->file_lock);
  882. }
  883. char *get_task_comm(char *buf, struct task_struct *tsk)
  884. {
  885. /* buf must be at least sizeof(tsk->comm) in size */
  886. task_lock(tsk);
  887. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  888. task_unlock(tsk);
  889. return buf;
  890. }
  891. EXPORT_SYMBOL_GPL(get_task_comm);
  892. void set_task_comm(struct task_struct *tsk, char *buf)
  893. {
  894. task_lock(tsk);
  895. trace_task_rename(tsk, buf);
  896. /*
  897. * Threads may access current->comm without holding
  898. * the task lock, so write the string carefully.
  899. * Readers without a lock may see incomplete new
  900. * names but are safe from non-terminating string reads.
  901. */
  902. memset(tsk->comm, 0, TASK_COMM_LEN);
  903. wmb();
  904. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  905. task_unlock(tsk);
  906. perf_event_comm(tsk);
  907. }
  908. static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
  909. {
  910. int i, ch;
  911. /* Copies the binary name from after last slash */
  912. for (i = 0; (ch = *(fn++)) != '\0';) {
  913. if (ch == '/')
  914. i = 0; /* overwrite what we wrote */
  915. else
  916. if (i < len - 1)
  917. tcomm[i++] = ch;
  918. }
  919. tcomm[i] = '\0';
  920. }
  921. int flush_old_exec(struct linux_binprm * bprm)
  922. {
  923. int retval;
  924. /*
  925. * Make sure we have a private signal table and that
  926. * we are unassociated from the previous thread group.
  927. */
  928. retval = de_thread(current);
  929. if (retval)
  930. goto out;
  931. set_mm_exe_file(bprm->mm, bprm->file);
  932. filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
  933. /*
  934. * Release all of the old mmap stuff
  935. */
  936. acct_arg_size(bprm, 0);
  937. retval = exec_mmap(bprm->mm);
  938. if (retval)
  939. goto out;
  940. bprm->mm = NULL; /* We're using it now */
  941. set_fs(USER_DS);
  942. current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
  943. flush_thread();
  944. current->personality &= ~bprm->per_clear;
  945. return 0;
  946. out:
  947. return retval;
  948. }
  949. EXPORT_SYMBOL(flush_old_exec);
  950. void would_dump(struct linux_binprm *bprm, struct file *file)
  951. {
  952. if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
  953. bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
  954. }
  955. EXPORT_SYMBOL(would_dump);
  956. void setup_new_exec(struct linux_binprm * bprm)
  957. {
  958. arch_pick_mmap_layout(current->mm);
  959. /* This is the point of no return */
  960. current->sas_ss_sp = current->sas_ss_size = 0;
  961. if (current_euid() == current_uid() && current_egid() == current_gid())
  962. set_dumpable(current->mm, 1);
  963. else
  964. set_dumpable(current->mm, suid_dumpable);
  965. set_task_comm(current, bprm->tcomm);
  966. /* Set the new mm task size. We have to do that late because it may
  967. * depend on TIF_32BIT which is only updated in flush_thread() on
  968. * some architectures like powerpc
  969. */
  970. current->mm->task_size = TASK_SIZE;
  971. /* install the new credentials */
  972. if (bprm->cred->uid != current_euid() ||
  973. bprm->cred->gid != current_egid()) {
  974. current->pdeath_signal = 0;
  975. } else {
  976. would_dump(bprm, bprm->file);
  977. if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
  978. set_dumpable(current->mm, suid_dumpable);
  979. }
  980. /*
  981. * Flush performance counters when crossing a
  982. * security domain:
  983. */
  984. if (!get_dumpable(current->mm))
  985. perf_event_exit_task(current);
  986. /* An exec changes our domain. We are no longer part of the thread
  987. group */
  988. current->self_exec_id++;
  989. flush_signal_handlers(current, 0);
  990. flush_old_files(current->files);
  991. }
  992. EXPORT_SYMBOL(setup_new_exec);
  993. /*
  994. * Prepare credentials and lock ->cred_guard_mutex.
  995. * install_exec_creds() commits the new creds and drops the lock.
  996. * Or, if exec fails before, free_bprm() should release ->cred and
  997. * and unlock.
  998. */
  999. int prepare_bprm_creds(struct linux_binprm *bprm)
  1000. {
  1001. if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
  1002. return -ERESTARTNOINTR;
  1003. bprm->cred = prepare_exec_creds();
  1004. if (likely(bprm->cred))
  1005. return 0;
  1006. mutex_unlock(&current->signal->cred_guard_mutex);
  1007. return -ENOMEM;
  1008. }
  1009. void free_bprm(struct linux_binprm *bprm)
  1010. {
  1011. free_arg_pages(bprm);
  1012. if (bprm->cred) {
  1013. mutex_unlock(&current->signal->cred_guard_mutex);
  1014. abort_creds(bprm->cred);
  1015. }
  1016. kfree(bprm);
  1017. }
  1018. /*
  1019. * install the new credentials for this executable
  1020. */
  1021. void install_exec_creds(struct linux_binprm *bprm)
  1022. {
  1023. security_bprm_committing_creds(bprm);
  1024. commit_creds(bprm->cred);
  1025. bprm->cred = NULL;
  1026. /*
  1027. * cred_guard_mutex must be held at least to this point to prevent
  1028. * ptrace_attach() from altering our determination of the task's
  1029. * credentials; any time after this it may be unlocked.
  1030. */
  1031. security_bprm_committed_creds(bprm);
  1032. mutex_unlock(&current->signal->cred_guard_mutex);
  1033. }
  1034. EXPORT_SYMBOL(install_exec_creds);
  1035. /*
  1036. * determine how safe it is to execute the proposed program
  1037. * - the caller must hold ->cred_guard_mutex to protect against
  1038. * PTRACE_ATTACH
  1039. */
  1040. static int check_unsafe_exec(struct linux_binprm *bprm)
  1041. {
  1042. struct task_struct *p = current, *t;
  1043. unsigned n_fs;
  1044. int res = 0;
  1045. if (p->ptrace) {
  1046. if (p->ptrace & PT_PTRACE_CAP)
  1047. bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
  1048. else
  1049. bprm->unsafe |= LSM_UNSAFE_PTRACE;
  1050. }
  1051. n_fs = 1;
  1052. spin_lock(&p->fs->lock);
  1053. rcu_read_lock();
  1054. for (t = next_thread(p); t != p; t = next_thread(t)) {
  1055. if (t->fs == p->fs)
  1056. n_fs++;
  1057. }
  1058. rcu_read_unlock();
  1059. if (p->fs->users > n_fs) {
  1060. bprm->unsafe |= LSM_UNSAFE_SHARE;
  1061. } else {
  1062. res = -EAGAIN;
  1063. if (!p->fs->in_exec) {
  1064. p->fs->in_exec = 1;
  1065. res = 1;
  1066. }
  1067. }
  1068. spin_unlock(&p->fs->lock);
  1069. return res;
  1070. }
  1071. /*
  1072. * Fill the binprm structure from the inode.
  1073. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  1074. *
  1075. * This may be called multiple times for binary chains (scripts for example).
  1076. */
  1077. int prepare_binprm(struct linux_binprm *bprm)
  1078. {
  1079. umode_t mode;
  1080. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  1081. int retval;
  1082. mode = inode->i_mode;
  1083. if (bprm->file->f_op == NULL)
  1084. return -EACCES;
  1085. /* clear any previous set[ug]id data from a previous binary */
  1086. bprm->cred->euid = current_euid();
  1087. bprm->cred->egid = current_egid();
  1088. if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  1089. /* Set-uid? */
  1090. if (mode & S_ISUID) {
  1091. bprm->per_clear |= PER_CLEAR_ON_SETID;
  1092. bprm->cred->euid = inode->i_uid;
  1093. }
  1094. /* Set-gid? */
  1095. /*
  1096. * If setgid is set but no group execute bit then this
  1097. * is a candidate for mandatory locking, not a setgid
  1098. * executable.
  1099. */
  1100. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  1101. bprm->per_clear |= PER_CLEAR_ON_SETID;
  1102. bprm->cred->egid = inode->i_gid;
  1103. }
  1104. }
  1105. /* fill in binprm security blob */
  1106. retval = security_bprm_set_creds(bprm);
  1107. if (retval)
  1108. return retval;
  1109. bprm->cred_prepared = 1;
  1110. memset(bprm->buf, 0, BINPRM_BUF_SIZE);
  1111. return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
  1112. }
  1113. EXPORT_SYMBOL(prepare_binprm);
  1114. /*
  1115. * Arguments are '\0' separated strings found at the location bprm->p
  1116. * points to; chop off the first by relocating brpm->p to right after
  1117. * the first '\0' encountered.
  1118. */
  1119. int remove_arg_zero(struct linux_binprm *bprm)
  1120. {
  1121. int ret = 0;
  1122. unsigned long offset;
  1123. char *kaddr;
  1124. struct page *page;
  1125. if (!bprm->argc)
  1126. return 0;
  1127. do {
  1128. offset = bprm->p & ~PAGE_MASK;
  1129. page = get_arg_page(bprm, bprm->p, 0);
  1130. if (!page) {
  1131. ret = -EFAULT;
  1132. goto out;
  1133. }
  1134. kaddr = kmap_atomic(page);
  1135. for (; offset < PAGE_SIZE && kaddr[offset];
  1136. offset++, bprm->p++)
  1137. ;
  1138. kunmap_atomic(kaddr);
  1139. put_arg_page(page);
  1140. if (offset == PAGE_SIZE)
  1141. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  1142. } while (offset == PAGE_SIZE);
  1143. bprm->p++;
  1144. bprm->argc--;
  1145. ret = 0;
  1146. out:
  1147. return ret;
  1148. }
  1149. EXPORT_SYMBOL(remove_arg_zero);
  1150. /*
  1151. * cycle the list of binary formats handler, until one recognizes the image
  1152. */
  1153. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  1154. {
  1155. unsigned int depth = bprm->recursion_depth;
  1156. int try,retval;
  1157. struct linux_binfmt *fmt;
  1158. pid_t old_pid;
  1159. retval = security_bprm_check(bprm);
  1160. if (retval)
  1161. return retval;
  1162. retval = audit_bprm(bprm);
  1163. if (retval)
  1164. return retval;
  1165. /* Need to fetch pid before load_binary changes it */
  1166. rcu_read_lock();
  1167. old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
  1168. rcu_read_unlock();
  1169. retval = -ENOENT;
  1170. for (try=0; try<2; try++) {
  1171. read_lock(&binfmt_lock);
  1172. list_for_each_entry(fmt, &formats, lh) {
  1173. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1174. if (!fn)
  1175. continue;
  1176. if (!try_module_get(fmt->module))
  1177. continue;
  1178. read_unlock(&binfmt_lock);
  1179. retval = fn(bprm, regs);
  1180. /*
  1181. * Restore the depth counter to its starting value
  1182. * in this call, so we don't have to rely on every
  1183. * load_binary function to restore it on return.
  1184. */
  1185. bprm->recursion_depth = depth;
  1186. if (retval >= 0) {
  1187. if (depth == 0) {
  1188. trace_sched_process_exec(current, old_pid, bprm);
  1189. ptrace_event(PTRACE_EVENT_EXEC, old_pid);
  1190. }
  1191. put_binfmt(fmt);
  1192. allow_write_access(bprm->file);
  1193. if (bprm->file)
  1194. fput(bprm->file);
  1195. bprm->file = NULL;
  1196. current->did_exec = 1;
  1197. proc_exec_connector(current);
  1198. return retval;
  1199. }
  1200. read_lock(&binfmt_lock);
  1201. put_binfmt(fmt);
  1202. if (retval != -ENOEXEC || bprm->mm == NULL)
  1203. break;
  1204. if (!bprm->file) {
  1205. read_unlock(&binfmt_lock);
  1206. return retval;
  1207. }
  1208. }
  1209. read_unlock(&binfmt_lock);
  1210. #ifdef CONFIG_MODULES
  1211. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1212. break;
  1213. } else {
  1214. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1215. if (printable(bprm->buf[0]) &&
  1216. printable(bprm->buf[1]) &&
  1217. printable(bprm->buf[2]) &&
  1218. printable(bprm->buf[3]))
  1219. break; /* -ENOEXEC */
  1220. if (try)
  1221. break; /* -ENOEXEC */
  1222. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1223. }
  1224. #else
  1225. break;
  1226. #endif
  1227. }
  1228. return retval;
  1229. }
  1230. EXPORT_SYMBOL(search_binary_handler);
  1231. /*
  1232. * sys_execve() executes a new program.
  1233. */
  1234. static int do_execve_common(const char *filename,
  1235. struct user_arg_ptr argv,
  1236. struct user_arg_ptr envp,
  1237. struct pt_regs *regs)
  1238. {
  1239. struct linux_binprm *bprm;
  1240. struct file *file;
  1241. struct files_struct *displaced;
  1242. bool clear_in_exec;
  1243. int retval;
  1244. const struct cred *cred = current_cred();
  1245. /*
  1246. * We move the actual failure in case of RLIMIT_NPROC excess from
  1247. * set*uid() to execve() because too many poorly written programs
  1248. * don't check setuid() return code. Here we additionally recheck
  1249. * whether NPROC limit is still exceeded.
  1250. */
  1251. if ((current->flags & PF_NPROC_EXCEEDED) &&
  1252. atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
  1253. retval = -EAGAIN;
  1254. goto out_ret;
  1255. }
  1256. /* We're below the limit (still or again), so we don't want to make
  1257. * further execve() calls fail. */
  1258. current->flags &= ~PF_NPROC_EXCEEDED;
  1259. retval = unshare_files(&displaced);
  1260. if (retval)
  1261. goto out_ret;
  1262. retval = -ENOMEM;
  1263. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1264. if (!bprm)
  1265. goto out_files;
  1266. retval = prepare_bprm_creds(bprm);
  1267. if (retval)
  1268. goto out_free;
  1269. retval = check_unsafe_exec(bprm);
  1270. if (retval < 0)
  1271. goto out_free;
  1272. clear_in_exec = retval;
  1273. current->in_execve = 1;
  1274. file = open_exec(filename);
  1275. retval = PTR_ERR(file);
  1276. if (IS_ERR(file))
  1277. goto out_unmark;
  1278. sched_exec();
  1279. bprm->file = file;
  1280. bprm->filename = filename;
  1281. bprm->interp = filename;
  1282. retval = bprm_mm_init(bprm);
  1283. if (retval)
  1284. goto out_file;
  1285. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1286. if ((retval = bprm->argc) < 0)
  1287. goto out;
  1288. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1289. if ((retval = bprm->envc) < 0)
  1290. goto out;
  1291. retval = prepare_binprm(bprm);
  1292. if (retval < 0)
  1293. goto out;
  1294. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1295. if (retval < 0)
  1296. goto out;
  1297. bprm->exec = bprm->p;
  1298. retval = copy_strings(bprm->envc, envp, bprm);
  1299. if (retval < 0)
  1300. goto out;
  1301. retval = copy_strings(bprm->argc, argv, bprm);
  1302. if (retval < 0)
  1303. goto out;
  1304. retval = search_binary_handler(bprm,regs);
  1305. if (retval < 0)
  1306. goto out;
  1307. /* execve succeeded */
  1308. current->fs->in_exec = 0;
  1309. current->in_execve = 0;
  1310. acct_update_integrals(current);
  1311. free_bprm(bprm);
  1312. if (displaced)
  1313. put_files_struct(displaced);
  1314. return retval;
  1315. out:
  1316. if (bprm->mm) {
  1317. acct_arg_size(bprm, 0);
  1318. mmput(bprm->mm);
  1319. }
  1320. out_file:
  1321. if (bprm->file) {
  1322. allow_write_access(bprm->file);
  1323. fput(bprm->file);
  1324. }
  1325. out_unmark:
  1326. if (clear_in_exec)
  1327. current->fs->in_exec = 0;
  1328. current->in_execve = 0;
  1329. out_free:
  1330. free_bprm(bprm);
  1331. out_files:
  1332. if (displaced)
  1333. reset_files_struct(displaced);
  1334. out_ret:
  1335. return retval;
  1336. }
  1337. int do_execve(const char *filename,
  1338. const char __user *const __user *__argv,
  1339. const char __user *const __user *__envp,
  1340. struct pt_regs *regs)
  1341. {
  1342. struct user_arg_ptr argv = { .ptr.native = __argv };
  1343. struct user_arg_ptr envp = { .ptr.native = __envp };
  1344. return do_execve_common(filename, argv, envp, regs);
  1345. }
  1346. #ifdef CONFIG_COMPAT
  1347. int compat_do_execve(char *filename,
  1348. compat_uptr_t __user *__argv,
  1349. compat_uptr_t __user *__envp,
  1350. struct pt_regs *regs)
  1351. {
  1352. struct user_arg_ptr argv = {
  1353. .is_compat = true,
  1354. .ptr.compat = __argv,
  1355. };
  1356. struct user_arg_ptr envp = {
  1357. .is_compat = true,
  1358. .ptr.compat = __envp,
  1359. };
  1360. return do_execve_common(filename, argv, envp, regs);
  1361. }
  1362. #endif
  1363. void set_binfmt(struct linux_binfmt *new)
  1364. {
  1365. struct mm_struct *mm = current->mm;
  1366. if (mm->binfmt)
  1367. module_put(mm->binfmt->module);
  1368. mm->binfmt = new;
  1369. if (new)
  1370. __module_get(new->module);
  1371. }
  1372. EXPORT_SYMBOL(set_binfmt);
  1373. static int expand_corename(struct core_name *cn)
  1374. {
  1375. char *old_corename = cn->corename;
  1376. cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
  1377. cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
  1378. if (!cn->corename) {
  1379. kfree(old_corename);
  1380. return -ENOMEM;
  1381. }
  1382. return 0;
  1383. }
  1384. static int cn_printf(struct core_name *cn, const char *fmt, ...)
  1385. {
  1386. char *cur;
  1387. int need;
  1388. int ret;
  1389. va_list arg;
  1390. va_start(arg, fmt);
  1391. need = vsnprintf(NULL, 0, fmt, arg);
  1392. va_end(arg);
  1393. if (likely(need < cn->size - cn->used - 1))
  1394. goto out_printf;
  1395. ret = expand_corename(cn);
  1396. if (ret)
  1397. goto expand_fail;
  1398. out_printf:
  1399. cur = cn->corename + cn->used;
  1400. va_start(arg, fmt);
  1401. vsnprintf(cur, need + 1, fmt, arg);
  1402. va_end(arg);
  1403. cn->used += need;
  1404. return 0;
  1405. expand_fail:
  1406. return ret;
  1407. }
  1408. static void cn_escape(char *str)
  1409. {
  1410. for (; *str; str++)
  1411. if (*str == '/')
  1412. *str = '!';
  1413. }
  1414. static int cn_print_exe_file(struct core_name *cn)
  1415. {
  1416. struct file *exe_file;
  1417. char *pathbuf, *path;
  1418. int ret;
  1419. exe_file = get_mm_exe_file(current->mm);
  1420. if (!exe_file) {
  1421. char *commstart = cn->corename + cn->used;
  1422. ret = cn_printf(cn, "%s (path unknown)", current->comm);
  1423. cn_escape(commstart);
  1424. return ret;
  1425. }
  1426. pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
  1427. if (!pathbuf) {
  1428. ret = -ENOMEM;
  1429. goto put_exe_file;
  1430. }
  1431. path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
  1432. if (IS_ERR(path)) {
  1433. ret = PTR_ERR(path);
  1434. goto free_buf;
  1435. }
  1436. cn_escape(path);
  1437. ret = cn_printf(cn, "%s", path);
  1438. free_buf:
  1439. kfree(pathbuf);
  1440. put_exe_file:
  1441. fput(exe_file);
  1442. return ret;
  1443. }
  1444. /* format_corename will inspect the pattern parameter, and output a
  1445. * name into corename, which must have space for at least
  1446. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1447. */
  1448. static int format_corename(struct core_name *cn, long signr)
  1449. {
  1450. const struct cred *cred = current_cred();
  1451. const char *pat_ptr = core_pattern;
  1452. int ispipe = (*pat_ptr == '|');
  1453. int pid_in_pattern = 0;
  1454. int err = 0;
  1455. cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
  1456. cn->corename = kmalloc(cn->size, GFP_KERNEL);
  1457. cn->used = 0;
  1458. if (!cn->corename)
  1459. return -ENOMEM;
  1460. /* Repeat as long as we have more pattern to process and more output
  1461. space */
  1462. while (*pat_ptr) {
  1463. if (*pat_ptr != '%') {
  1464. if (*pat_ptr == 0)
  1465. goto out;
  1466. err = cn_printf(cn, "%c", *pat_ptr++);
  1467. } else {
  1468. switch (*++pat_ptr) {
  1469. /* single % at the end, drop that */
  1470. case 0:
  1471. goto out;
  1472. /* Double percent, output one percent */
  1473. case '%':
  1474. err = cn_printf(cn, "%c", '%');
  1475. break;
  1476. /* pid */
  1477. case 'p':
  1478. pid_in_pattern = 1;
  1479. err = cn_printf(cn, "%d",
  1480. task_tgid_vnr(current));
  1481. break;
  1482. /* uid */
  1483. case 'u':
  1484. err = cn_printf(cn, "%d", cred->uid);
  1485. break;
  1486. /* gid */
  1487. case 'g':
  1488. err = cn_printf(cn, "%d", cred->gid);
  1489. break;
  1490. /* signal that caused the coredump */
  1491. case 's':
  1492. err = cn_printf(cn, "%ld", signr);
  1493. break;
  1494. /* UNIX time of coredump */
  1495. case 't': {
  1496. struct timeval tv;
  1497. do_gettimeofday(&tv);
  1498. err = cn_printf(cn, "%lu", tv.tv_sec);
  1499. break;
  1500. }
  1501. /* hostname */
  1502. case 'h': {
  1503. char *namestart = cn->corename + cn->used;
  1504. down_read(&uts_sem);
  1505. err = cn_printf(cn, "%s",
  1506. utsname()->nodename);
  1507. up_read(&uts_sem);
  1508. cn_escape(namestart);
  1509. break;
  1510. }
  1511. /* executable */
  1512. case 'e': {
  1513. char *commstart = cn->corename + cn->used;
  1514. err = cn_printf(cn, "%s", current->comm);
  1515. cn_escape(commstart);
  1516. break;
  1517. }
  1518. case 'E':
  1519. err = cn_print_exe_file(cn);
  1520. break;
  1521. /* core limit size */
  1522. case 'c':
  1523. err = cn_printf(cn, "%lu",
  1524. rlimit(RLIMIT_CORE));
  1525. break;
  1526. default:
  1527. break;
  1528. }
  1529. ++pat_ptr;
  1530. }
  1531. if (err)
  1532. return err;
  1533. }
  1534. /* Backward compatibility with core_uses_pid:
  1535. *
  1536. * If core_pattern does not include a %p (as is the default)
  1537. * and core_uses_pid is set, then .%pid will be appended to
  1538. * the filename. Do not do this for piped commands. */
  1539. if (!ispipe && !pid_in_pattern && core_uses_pid) {
  1540. err = cn_printf(cn, ".%d", task_tgid_vnr(current));
  1541. if (err)
  1542. return err;
  1543. }
  1544. out:
  1545. return ispipe;
  1546. }
  1547. static int zap_process(struct task_struct *start, int exit_code)
  1548. {
  1549. struct task_struct *t;
  1550. int nr = 0;
  1551. start->signal->flags = SIGNAL_GROUP_EXIT;
  1552. start->signal->group_exit_code = exit_code;
  1553. start->signal->group_stop_count = 0;
  1554. t = start;
  1555. do {
  1556. task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
  1557. if (t != current && t->mm) {
  1558. sigaddset(&t->pending.signal, SIGKILL);
  1559. signal_wake_up(t, 1);
  1560. nr++;
  1561. }
  1562. } while_each_thread(start, t);
  1563. return nr;
  1564. }
  1565. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1566. struct core_state *core_state, int exit_code)
  1567. {
  1568. struct task_struct *g, *p;
  1569. unsigned long flags;
  1570. int nr = -EAGAIN;
  1571. spin_lock_irq(&tsk->sighand->siglock);
  1572. if (!signal_group_exit(tsk->signal)) {
  1573. mm->core_state = core_state;
  1574. nr = zap_process(tsk, exit_code);
  1575. }
  1576. spin_unlock_irq(&tsk->sighand->siglock);
  1577. if (unlikely(nr < 0))
  1578. return nr;
  1579. if (atomic_read(&mm->mm_users) == nr + 1)
  1580. goto done;
  1581. /*
  1582. * We should find and kill all tasks which use this mm, and we should
  1583. * count them correctly into ->nr_threads. We don't take tasklist
  1584. * lock, but this is safe wrt:
  1585. *
  1586. * fork:
  1587. * None of sub-threads can fork after zap_process(leader). All
  1588. * processes which were created before this point should be
  1589. * visible to zap_threads() because copy_process() adds the new
  1590. * process to the tail of init_task.tasks list, and lock/unlock
  1591. * of ->siglock provides a memory barrier.
  1592. *
  1593. * do_exit:
  1594. * The caller holds mm->mmap_sem. This means that the task which
  1595. * uses this mm can't pass exit_mm(), so it can't exit or clear
  1596. * its ->mm.
  1597. *
  1598. * de_thread:
  1599. * It does list_replace_rcu(&leader->tasks, &current->tasks),
  1600. * we must see either old or new leader, this does not matter.
  1601. * However, it can change p->sighand, so lock_task_sighand(p)
  1602. * must be used. Since p->mm != NULL and we hold ->mmap_sem
  1603. * it can't fail.
  1604. *
  1605. * Note also that "g" can be the old leader with ->mm == NULL
  1606. * and already unhashed and thus removed from ->thread_group.
  1607. * This is OK, __unhash_process()->list_del_rcu() does not
  1608. * clear the ->next pointer, we will find the new leader via
  1609. * next_thread().
  1610. */
  1611. rcu_read_lock();
  1612. for_each_process(g) {
  1613. if (g == tsk->group_leader)
  1614. continue;
  1615. if (g->flags & PF_KTHREAD)
  1616. continue;
  1617. p = g;
  1618. do {
  1619. if (p->mm) {
  1620. if (unlikely(p->mm == mm)) {
  1621. lock_task_sighand(p, &flags);
  1622. nr += zap_process(p, exit_code);
  1623. unlock_task_sighand(p, &flags);
  1624. }
  1625. break;
  1626. }
  1627. } while_each_thread(g, p);
  1628. }
  1629. rcu_read_unlock();
  1630. done:
  1631. atomic_set(&core_state->nr_threads, nr);
  1632. return nr;
  1633. }
  1634. static int coredump_wait(int exit_code, struct core_state *core_state)
  1635. {
  1636. struct task_struct *tsk = current;
  1637. struct mm_struct *mm = tsk->mm;
  1638. int core_waiters = -EBUSY;
  1639. init_completion(&core_state->startup);
  1640. core_state->dumper.task = tsk;
  1641. core_state->dumper.next = NULL;
  1642. down_write(&mm->mmap_sem);
  1643. if (!mm->core_state)
  1644. core_waiters = zap_threads(tsk, mm, core_state, exit_code);
  1645. up_write(&mm->mmap_sem);
  1646. if (core_waiters > 0)
  1647. wait_for_completion(&core_state->startup);
  1648. return core_waiters;
  1649. }
  1650. static void coredump_finish(struct mm_struct *mm)
  1651. {
  1652. struct core_thread *curr, *next;
  1653. struct task_struct *task;
  1654. next = mm->core_state->dumper.next;
  1655. while ((curr = next) != NULL) {
  1656. next = curr->next;
  1657. task = curr->task;
  1658. /*
  1659. * see exit_mm(), curr->task must not see
  1660. * ->task == NULL before we read ->next.
  1661. */
  1662. smp_mb();
  1663. curr->task = NULL;
  1664. wake_up_process(task);
  1665. }
  1666. mm->core_state = NULL;
  1667. }
  1668. /*
  1669. * set_dumpable converts traditional three-value dumpable to two flags and
  1670. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1671. * these bits are not changed atomically. So get_dumpable can observe the
  1672. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1673. * return either old dumpable or new one by paying attention to the order of
  1674. * modifying the bits.
  1675. *
  1676. * dumpable | mm->flags (binary)
  1677. * old new | initial interim final
  1678. * ---------+-----------------------
  1679. * 0 1 | 00 01 01
  1680. * 0 2 | 00 10(*) 11
  1681. * 1 0 | 01 00 00
  1682. * 1 2 | 01 11 11
  1683. * 2 0 | 11 10(*) 00
  1684. * 2 1 | 11 11 01
  1685. *
  1686. * (*) get_dumpable regards interim value of 10 as 11.
  1687. */
  1688. void set_dumpable(struct mm_struct *mm, int value)
  1689. {
  1690. switch (value) {
  1691. case 0:
  1692. clear_bit(MMF_DUMPABLE, &mm->flags);
  1693. smp_wmb();
  1694. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1695. break;
  1696. case 1:
  1697. set_bit(MMF_DUMPABLE, &mm->flags);
  1698. smp_wmb();
  1699. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1700. break;
  1701. case 2:
  1702. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1703. smp_wmb();
  1704. set_bit(MMF_DUMPABLE, &mm->flags);
  1705. break;
  1706. }
  1707. }
  1708. static int __get_dumpable(unsigned long mm_flags)
  1709. {
  1710. int ret;
  1711. ret = mm_flags & MMF_DUMPABLE_MASK;
  1712. return (ret >= 2) ? 2 : ret;
  1713. }
  1714. int get_dumpable(struct mm_struct *mm)
  1715. {
  1716. return __get_dumpable(mm->flags);
  1717. }
  1718. static void wait_for_dump_helpers(struct file *file)
  1719. {
  1720. struct pipe_inode_info *pipe;
  1721. pipe = file->f_path.dentry->d_inode->i_pipe;
  1722. pipe_lock(pipe);
  1723. pipe->readers++;
  1724. pipe->writers--;
  1725. while ((pipe->readers > 1) && (!signal_pending(current))) {
  1726. wake_up_interruptible_sync(&pipe->wait);
  1727. kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
  1728. pipe_wait(pipe);
  1729. }
  1730. pipe->readers--;
  1731. pipe->writers++;
  1732. pipe_unlock(pipe);
  1733. }
  1734. /*
  1735. * umh_pipe_setup
  1736. * helper function to customize the process used
  1737. * to collect the core in userspace. Specifically
  1738. * it sets up a pipe and installs it as fd 0 (stdin)
  1739. * for the process. Returns 0 on success, or
  1740. * PTR_ERR on failure.
  1741. * Note that it also sets the core limit to 1. This
  1742. * is a special value that we use to trap recursive
  1743. * core dumps
  1744. */
  1745. static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
  1746. {
  1747. struct file *rp, *wp;
  1748. struct fdtable *fdt;
  1749. struct coredump_params *cp = (struct coredump_params *)info->data;
  1750. struct files_struct *cf = current->files;
  1751. wp = create_write_pipe(0);
  1752. if (IS_ERR(wp))
  1753. return PTR_ERR(wp);
  1754. rp = create_read_pipe(wp, 0);
  1755. if (IS_ERR(rp)) {
  1756. free_write_pipe(wp);
  1757. return PTR_ERR(rp);
  1758. }
  1759. cp->file = wp;
  1760. sys_close(0);
  1761. fd_install(0, rp);
  1762. spin_lock(&cf->file_lock);
  1763. fdt = files_fdtable(cf);
  1764. FD_SET(0, fdt->open_fds);
  1765. FD_CLR(0, fdt->close_on_exec);
  1766. spin_unlock(&cf->file_lock);
  1767. /* and disallow core files too */
  1768. current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
  1769. return 0;
  1770. }
  1771. void do_coredump(long signr, int exit_code, struct pt_regs *regs)
  1772. {
  1773. struct core_state core_state;
  1774. struct core_name cn;
  1775. struct mm_struct *mm = current->mm;
  1776. struct linux_binfmt * binfmt;
  1777. const struct cred *old_cred;
  1778. struct cred *cred;
  1779. int retval = 0;
  1780. int flag = 0;
  1781. int ispipe;
  1782. static atomic_t core_dump_count = ATOMIC_INIT(0);
  1783. struct coredump_params cprm = {
  1784. .signr = signr,
  1785. .regs = regs,
  1786. .limit = rlimit(RLIMIT_CORE),
  1787. /*
  1788. * We must use the same mm->flags while dumping core to avoid
  1789. * inconsistency of bit flags, since this flag is not protected
  1790. * by any locks.
  1791. */
  1792. .mm_flags = mm->flags,
  1793. };
  1794. audit_core_dumps(signr);
  1795. binfmt = mm->binfmt;
  1796. if (!binfmt || !binfmt->core_dump)
  1797. goto fail;
  1798. if (!__get_dumpable(cprm.mm_flags))
  1799. goto fail;
  1800. cred = prepare_creds();
  1801. if (!cred)
  1802. goto fail;
  1803. /*
  1804. * We cannot trust fsuid as being the "true" uid of the
  1805. * process nor do we know its entire history. We only know it
  1806. * was tainted so we dump it as root in mode 2.
  1807. */
  1808. if (__get_dumpable(cprm.mm_flags) == 2) {
  1809. /* Setuid core dump mode */
  1810. flag = O_EXCL; /* Stop rewrite attacks */
  1811. cred->fsuid = 0; /* Dump root private */
  1812. }
  1813. retval = coredump_wait(exit_code, &core_state);
  1814. if (retval < 0)
  1815. goto fail_creds;
  1816. old_cred = override_creds(cred);
  1817. /*
  1818. * Clear any false indication of pending signals that might
  1819. * be seen by the filesystem code called to write the core file.
  1820. */
  1821. clear_thread_flag(TIF_SIGPENDING);
  1822. ispipe = format_corename(&cn, signr);
  1823. if (ispipe) {
  1824. int dump_count;
  1825. char **helper_argv;
  1826. if (ispipe < 0) {
  1827. printk(KERN_WARNING "format_corename failed\n");
  1828. printk(KERN_WARNING "Aborting core\n");
  1829. goto fail_corename;
  1830. }
  1831. if (cprm.limit == 1) {
  1832. /*
  1833. * Normally core limits are irrelevant to pipes, since
  1834. * we're not writing to the file system, but we use
  1835. * cprm.limit of 1 here as a speacial value. Any
  1836. * non-1 limit gets set to RLIM_INFINITY below, but
  1837. * a limit of 0 skips the dump. This is a consistent
  1838. * way to catch recursive crashes. We can still crash
  1839. * if the core_pattern binary sets RLIM_CORE = !1
  1840. * but it runs as root, and can do lots of stupid things
  1841. * Note that we use task_tgid_vnr here to grab the pid
  1842. * of the process group leader. That way we get the
  1843. * right pid if a thread in a multi-threaded
  1844. * core_pattern process dies.
  1845. */
  1846. printk(KERN_WARNING
  1847. "Process %d(%s) has RLIMIT_CORE set to 1\n",
  1848. task_tgid_vnr(current), current->comm);
  1849. printk(KERN_WARNING "Aborting core\n");
  1850. goto fail_unlock;
  1851. }
  1852. cprm.limit = RLIM_INFINITY;
  1853. dump_count = atomic_inc_return(&core_dump_count);
  1854. if (core_pipe_limit && (core_pipe_limit < dump_count)) {
  1855. printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
  1856. task_tgid_vnr(current), current->comm);
  1857. printk(KERN_WARNING "Skipping core dump\n");
  1858. goto fail_dropcount;
  1859. }
  1860. helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
  1861. if (!helper_argv) {
  1862. printk(KERN_WARNING "%s failed to allocate memory\n",
  1863. __func__);
  1864. goto fail_dropcount;
  1865. }
  1866. retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
  1867. NULL, UMH_WAIT_EXEC, umh_pipe_setup,
  1868. NULL, &cprm);
  1869. argv_free(helper_argv);
  1870. if (retval) {
  1871. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1872. cn.corename);
  1873. goto close_fail;
  1874. }
  1875. } else {
  1876. struct inode *inode;
  1877. if (cprm.limit < binfmt->min_coredump)
  1878. goto fail_unlock;
  1879. cprm.file = filp_open(cn.corename,
  1880. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1881. 0600);
  1882. if (IS_ERR(cprm.file))
  1883. goto fail_unlock;
  1884. inode = cprm.file->f_path.dentry->d_inode;
  1885. if (inode->i_nlink > 1)
  1886. goto close_fail;
  1887. if (d_unhashed(cprm.file->f_path.dentry))
  1888. goto close_fail;
  1889. /*
  1890. * AK: actually i see no reason to not allow this for named
  1891. * pipes etc, but keep the previous behaviour for now.
  1892. */
  1893. if (!S_ISREG(inode->i_mode))
  1894. goto close_fail;
  1895. /*
  1896. * Dont allow local users get cute and trick others to coredump
  1897. * into their pre-created files.
  1898. */
  1899. if (inode->i_uid != current_fsuid())
  1900. goto close_fail;
  1901. if (!cprm.file->f_op || !cprm.file->f_op->write)
  1902. goto close_fail;
  1903. if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
  1904. goto close_fail;
  1905. }
  1906. retval = binfmt->core_dump(&cprm);
  1907. if (retval)
  1908. current->signal->group_exit_code |= 0x80;
  1909. if (ispipe && core_pipe_limit)
  1910. wait_for_dump_helpers(cprm.file);
  1911. close_fail:
  1912. if (cprm.file)
  1913. filp_close(cprm.file, NULL);
  1914. fail_dropcount:
  1915. if (ispipe)
  1916. atomic_dec(&core_dump_count);
  1917. fail_unlock:
  1918. kfree(cn.corename);
  1919. fail_corename:
  1920. coredump_finish(mm);
  1921. revert_creds(old_cred);
  1922. fail_creds:
  1923. put_cred(cred);
  1924. fail:
  1925. return;
  1926. }
  1927. /*
  1928. * Core dumping helper functions. These are the only things you should
  1929. * do on a core-file: use only these functions to write out all the
  1930. * necessary info.
  1931. */
  1932. int dump_write(struct file *file, const void *addr, int nr)
  1933. {
  1934. return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
  1935. }
  1936. EXPORT_SYMBOL(dump_write);
  1937. int dump_seek(struct file *file, loff_t off)
  1938. {
  1939. int ret = 1;
  1940. if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
  1941. if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
  1942. return 0;
  1943. } else {
  1944. char *buf = (char *)get_zeroed_page(GFP_KERNEL);
  1945. if (!buf)
  1946. return 0;
  1947. while (off > 0) {
  1948. unsigned long n = off;
  1949. if (n > PAGE_SIZE)
  1950. n = PAGE_SIZE;
  1951. if (!dump_write(file, buf, n)) {
  1952. ret = 0;
  1953. break;
  1954. }
  1955. off -= n;
  1956. }
  1957. free_page((unsigned long)buf);
  1958. }
  1959. return ret;
  1960. }
  1961. EXPORT_SYMBOL(dump_seek);