buffer.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277
  1. /*
  2. * linux/fs/buffer.c
  3. *
  4. * Copyright (C) 1991, 1992, 2002 Linus Torvalds
  5. */
  6. /*
  7. * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
  8. *
  9. * Removed a lot of unnecessary code and simplified things now that
  10. * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  11. *
  12. * Speed up hash, lru, and free list operations. Use gfp() for allocating
  13. * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
  14. *
  15. * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  16. *
  17. * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  18. */
  19. #include <linux/kernel.h>
  20. #include <linux/syscalls.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/percpu.h>
  24. #include <linux/slab.h>
  25. #include <linux/capability.h>
  26. #include <linux/blkdev.h>
  27. #include <linux/file.h>
  28. #include <linux/quotaops.h>
  29. #include <linux/highmem.h>
  30. #include <linux/export.h>
  31. #include <linux/writeback.h>
  32. #include <linux/hash.h>
  33. #include <linux/suspend.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/task_io_accounting_ops.h>
  36. #include <linux/bio.h>
  37. #include <linux/notifier.h>
  38. #include <linux/cpu.h>
  39. #include <linux/bitops.h>
  40. #include <linux/mpage.h>
  41. #include <linux/bit_spinlock.h>
  42. static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  43. #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  44. inline void
  45. init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  46. {
  47. bh->b_end_io = handler;
  48. bh->b_private = private;
  49. }
  50. EXPORT_SYMBOL(init_buffer);
  51. static int sleep_on_buffer(void *word)
  52. {
  53. io_schedule();
  54. return 0;
  55. }
  56. void __lock_buffer(struct buffer_head *bh)
  57. {
  58. wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
  59. TASK_UNINTERRUPTIBLE);
  60. }
  61. EXPORT_SYMBOL(__lock_buffer);
  62. void unlock_buffer(struct buffer_head *bh)
  63. {
  64. clear_bit_unlock(BH_Lock, &bh->b_state);
  65. smp_mb__after_clear_bit();
  66. wake_up_bit(&bh->b_state, BH_Lock);
  67. }
  68. EXPORT_SYMBOL(unlock_buffer);
  69. /*
  70. * Block until a buffer comes unlocked. This doesn't stop it
  71. * from becoming locked again - you have to lock it yourself
  72. * if you want to preserve its state.
  73. */
  74. void __wait_on_buffer(struct buffer_head * bh)
  75. {
  76. wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
  77. }
  78. EXPORT_SYMBOL(__wait_on_buffer);
  79. static void
  80. __clear_page_buffers(struct page *page)
  81. {
  82. ClearPagePrivate(page);
  83. set_page_private(page, 0);
  84. page_cache_release(page);
  85. }
  86. static int quiet_error(struct buffer_head *bh)
  87. {
  88. if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
  89. return 0;
  90. return 1;
  91. }
  92. static void buffer_io_error(struct buffer_head *bh)
  93. {
  94. char b[BDEVNAME_SIZE];
  95. printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
  96. bdevname(bh->b_bdev, b),
  97. (unsigned long long)bh->b_blocknr);
  98. }
  99. /*
  100. * End-of-IO handler helper function which does not touch the bh after
  101. * unlocking it.
  102. * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
  103. * a race there is benign: unlock_buffer() only use the bh's address for
  104. * hashing after unlocking the buffer, so it doesn't actually touch the bh
  105. * itself.
  106. */
  107. static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
  108. {
  109. if (uptodate) {
  110. set_buffer_uptodate(bh);
  111. } else {
  112. /* This happens, due to failed READA attempts. */
  113. clear_buffer_uptodate(bh);
  114. }
  115. unlock_buffer(bh);
  116. }
  117. /*
  118. * Default synchronous end-of-IO handler.. Just mark it up-to-date and
  119. * unlock the buffer. This is what ll_rw_block uses too.
  120. */
  121. void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
  122. {
  123. __end_buffer_read_notouch(bh, uptodate);
  124. put_bh(bh);
  125. }
  126. EXPORT_SYMBOL(end_buffer_read_sync);
  127. void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  128. {
  129. char b[BDEVNAME_SIZE];
  130. if (uptodate) {
  131. set_buffer_uptodate(bh);
  132. } else {
  133. if (!quiet_error(bh)) {
  134. buffer_io_error(bh);
  135. printk(KERN_WARNING "lost page write due to "
  136. "I/O error on %s\n",
  137. bdevname(bh->b_bdev, b));
  138. }
  139. set_buffer_write_io_error(bh);
  140. clear_buffer_uptodate(bh);
  141. }
  142. unlock_buffer(bh);
  143. put_bh(bh);
  144. }
  145. EXPORT_SYMBOL(end_buffer_write_sync);
  146. /*
  147. * Various filesystems appear to want __find_get_block to be non-blocking.
  148. * But it's the page lock which protects the buffers. To get around this,
  149. * we get exclusion from try_to_free_buffers with the blockdev mapping's
  150. * private_lock.
  151. *
  152. * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
  153. * may be quite high. This code could TryLock the page, and if that
  154. * succeeds, there is no need to take private_lock. (But if
  155. * private_lock is contended then so is mapping->tree_lock).
  156. */
  157. static struct buffer_head *
  158. __find_get_block_slow(struct block_device *bdev, sector_t block)
  159. {
  160. struct inode *bd_inode = bdev->bd_inode;
  161. struct address_space *bd_mapping = bd_inode->i_mapping;
  162. struct buffer_head *ret = NULL;
  163. pgoff_t index;
  164. struct buffer_head *bh;
  165. struct buffer_head *head;
  166. struct page *page;
  167. int all_mapped = 1;
  168. index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
  169. page = find_get_page(bd_mapping, index);
  170. if (!page)
  171. goto out;
  172. spin_lock(&bd_mapping->private_lock);
  173. if (!page_has_buffers(page))
  174. goto out_unlock;
  175. head = page_buffers(page);
  176. bh = head;
  177. do {
  178. if (!buffer_mapped(bh))
  179. all_mapped = 0;
  180. else if (bh->b_blocknr == block) {
  181. ret = bh;
  182. get_bh(bh);
  183. goto out_unlock;
  184. }
  185. bh = bh->b_this_page;
  186. } while (bh != head);
  187. /* we might be here because some of the buffers on this page are
  188. * not mapped. This is due to various races between
  189. * file io on the block device and getblk. It gets dealt with
  190. * elsewhere, don't buffer_error if we had some unmapped buffers
  191. */
  192. if (all_mapped) {
  193. char b[BDEVNAME_SIZE];
  194. printk("__find_get_block_slow() failed. "
  195. "block=%llu, b_blocknr=%llu\n",
  196. (unsigned long long)block,
  197. (unsigned long long)bh->b_blocknr);
  198. printk("b_state=0x%08lx, b_size=%zu\n",
  199. bh->b_state, bh->b_size);
  200. printk("device %s blocksize: %d\n", bdevname(bdev, b),
  201. 1 << bd_inode->i_blkbits);
  202. }
  203. out_unlock:
  204. spin_unlock(&bd_mapping->private_lock);
  205. page_cache_release(page);
  206. out:
  207. return ret;
  208. }
  209. /*
  210. * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
  211. */
  212. static void free_more_memory(void)
  213. {
  214. struct zone *zone;
  215. int nid;
  216. wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
  217. yield();
  218. for_each_online_node(nid) {
  219. (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
  220. gfp_zone(GFP_NOFS), NULL,
  221. &zone);
  222. if (zone)
  223. try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
  224. GFP_NOFS, NULL);
  225. }
  226. }
  227. /*
  228. * I/O completion handler for block_read_full_page() - pages
  229. * which come unlocked at the end of I/O.
  230. */
  231. static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
  232. {
  233. unsigned long flags;
  234. struct buffer_head *first;
  235. struct buffer_head *tmp;
  236. struct page *page;
  237. int page_uptodate = 1;
  238. BUG_ON(!buffer_async_read(bh));
  239. page = bh->b_page;
  240. if (uptodate) {
  241. set_buffer_uptodate(bh);
  242. } else {
  243. clear_buffer_uptodate(bh);
  244. if (!quiet_error(bh))
  245. buffer_io_error(bh);
  246. SetPageError(page);
  247. }
  248. /*
  249. * Be _very_ careful from here on. Bad things can happen if
  250. * two buffer heads end IO at almost the same time and both
  251. * decide that the page is now completely done.
  252. */
  253. first = page_buffers(page);
  254. local_irq_save(flags);
  255. bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
  256. clear_buffer_async_read(bh);
  257. unlock_buffer(bh);
  258. tmp = bh;
  259. do {
  260. if (!buffer_uptodate(tmp))
  261. page_uptodate = 0;
  262. if (buffer_async_read(tmp)) {
  263. BUG_ON(!buffer_locked(tmp));
  264. goto still_busy;
  265. }
  266. tmp = tmp->b_this_page;
  267. } while (tmp != bh);
  268. bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
  269. local_irq_restore(flags);
  270. /*
  271. * If none of the buffers had errors and they are all
  272. * uptodate then we can set the page uptodate.
  273. */
  274. if (page_uptodate && !PageError(page))
  275. SetPageUptodate(page);
  276. unlock_page(page);
  277. return;
  278. still_busy:
  279. bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
  280. local_irq_restore(flags);
  281. return;
  282. }
  283. /*
  284. * Completion handler for block_write_full_page() - pages which are unlocked
  285. * during I/O, and which have PageWriteback cleared upon I/O completion.
  286. */
  287. void end_buffer_async_write(struct buffer_head *bh, int uptodate)
  288. {
  289. char b[BDEVNAME_SIZE];
  290. unsigned long flags;
  291. struct buffer_head *first;
  292. struct buffer_head *tmp;
  293. struct page *page;
  294. BUG_ON(!buffer_async_write(bh));
  295. page = bh->b_page;
  296. if (uptodate) {
  297. set_buffer_uptodate(bh);
  298. } else {
  299. if (!quiet_error(bh)) {
  300. buffer_io_error(bh);
  301. printk(KERN_WARNING "lost page write due to "
  302. "I/O error on %s\n",
  303. bdevname(bh->b_bdev, b));
  304. }
  305. set_bit(AS_EIO, &page->mapping->flags);
  306. set_buffer_write_io_error(bh);
  307. clear_buffer_uptodate(bh);
  308. SetPageError(page);
  309. }
  310. first = page_buffers(page);
  311. local_irq_save(flags);
  312. bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
  313. clear_buffer_async_write(bh);
  314. unlock_buffer(bh);
  315. tmp = bh->b_this_page;
  316. while (tmp != bh) {
  317. if (buffer_async_write(tmp)) {
  318. BUG_ON(!buffer_locked(tmp));
  319. goto still_busy;
  320. }
  321. tmp = tmp->b_this_page;
  322. }
  323. bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
  324. local_irq_restore(flags);
  325. end_page_writeback(page);
  326. return;
  327. still_busy:
  328. bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
  329. local_irq_restore(flags);
  330. return;
  331. }
  332. EXPORT_SYMBOL(end_buffer_async_write);
  333. /*
  334. * If a page's buffers are under async readin (end_buffer_async_read
  335. * completion) then there is a possibility that another thread of
  336. * control could lock one of the buffers after it has completed
  337. * but while some of the other buffers have not completed. This
  338. * locked buffer would confuse end_buffer_async_read() into not unlocking
  339. * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
  340. * that this buffer is not under async I/O.
  341. *
  342. * The page comes unlocked when it has no locked buffer_async buffers
  343. * left.
  344. *
  345. * PageLocked prevents anyone starting new async I/O reads any of
  346. * the buffers.
  347. *
  348. * PageWriteback is used to prevent simultaneous writeout of the same
  349. * page.
  350. *
  351. * PageLocked prevents anyone from starting writeback of a page which is
  352. * under read I/O (PageWriteback is only ever set against a locked page).
  353. */
  354. static void mark_buffer_async_read(struct buffer_head *bh)
  355. {
  356. bh->b_end_io = end_buffer_async_read;
  357. set_buffer_async_read(bh);
  358. }
  359. static void mark_buffer_async_write_endio(struct buffer_head *bh,
  360. bh_end_io_t *handler)
  361. {
  362. bh->b_end_io = handler;
  363. set_buffer_async_write(bh);
  364. }
  365. void mark_buffer_async_write(struct buffer_head *bh)
  366. {
  367. mark_buffer_async_write_endio(bh, end_buffer_async_write);
  368. }
  369. EXPORT_SYMBOL(mark_buffer_async_write);
  370. /*
  371. * fs/buffer.c contains helper functions for buffer-backed address space's
  372. * fsync functions. A common requirement for buffer-based filesystems is
  373. * that certain data from the backing blockdev needs to be written out for
  374. * a successful fsync(). For example, ext2 indirect blocks need to be
  375. * written back and waited upon before fsync() returns.
  376. *
  377. * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
  378. * inode_has_buffers() and invalidate_inode_buffers() are provided for the
  379. * management of a list of dependent buffers at ->i_mapping->private_list.
  380. *
  381. * Locking is a little subtle: try_to_free_buffers() will remove buffers
  382. * from their controlling inode's queue when they are being freed. But
  383. * try_to_free_buffers() will be operating against the *blockdev* mapping
  384. * at the time, not against the S_ISREG file which depends on those buffers.
  385. * So the locking for private_list is via the private_lock in the address_space
  386. * which backs the buffers. Which is different from the address_space
  387. * against which the buffers are listed. So for a particular address_space,
  388. * mapping->private_lock does *not* protect mapping->private_list! In fact,
  389. * mapping->private_list will always be protected by the backing blockdev's
  390. * ->private_lock.
  391. *
  392. * Which introduces a requirement: all buffers on an address_space's
  393. * ->private_list must be from the same address_space: the blockdev's.
  394. *
  395. * address_spaces which do not place buffers at ->private_list via these
  396. * utility functions are free to use private_lock and private_list for
  397. * whatever they want. The only requirement is that list_empty(private_list)
  398. * be true at clear_inode() time.
  399. *
  400. * FIXME: clear_inode should not call invalidate_inode_buffers(). The
  401. * filesystems should do that. invalidate_inode_buffers() should just go
  402. * BUG_ON(!list_empty).
  403. *
  404. * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
  405. * take an address_space, not an inode. And it should be called
  406. * mark_buffer_dirty_fsync() to clearly define why those buffers are being
  407. * queued up.
  408. *
  409. * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
  410. * list if it is already on a list. Because if the buffer is on a list,
  411. * it *must* already be on the right one. If not, the filesystem is being
  412. * silly. This will save a ton of locking. But first we have to ensure
  413. * that buffers are taken *off* the old inode's list when they are freed
  414. * (presumably in truncate). That requires careful auditing of all
  415. * filesystems (do it inside bforget()). It could also be done by bringing
  416. * b_inode back.
  417. */
  418. /*
  419. * The buffer's backing address_space's private_lock must be held
  420. */
  421. static void __remove_assoc_queue(struct buffer_head *bh)
  422. {
  423. list_del_init(&bh->b_assoc_buffers);
  424. WARN_ON(!bh->b_assoc_map);
  425. if (buffer_write_io_error(bh))
  426. set_bit(AS_EIO, &bh->b_assoc_map->flags);
  427. bh->b_assoc_map = NULL;
  428. }
  429. int inode_has_buffers(struct inode *inode)
  430. {
  431. return !list_empty(&inode->i_data.private_list);
  432. }
  433. /*
  434. * osync is designed to support O_SYNC io. It waits synchronously for
  435. * all already-submitted IO to complete, but does not queue any new
  436. * writes to the disk.
  437. *
  438. * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
  439. * you dirty the buffers, and then use osync_inode_buffers to wait for
  440. * completion. Any other dirty buffers which are not yet queued for
  441. * write will not be flushed to disk by the osync.
  442. */
  443. static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
  444. {
  445. struct buffer_head *bh;
  446. struct list_head *p;
  447. int err = 0;
  448. spin_lock(lock);
  449. repeat:
  450. list_for_each_prev(p, list) {
  451. bh = BH_ENTRY(p);
  452. if (buffer_locked(bh)) {
  453. get_bh(bh);
  454. spin_unlock(lock);
  455. wait_on_buffer(bh);
  456. if (!buffer_uptodate(bh))
  457. err = -EIO;
  458. brelse(bh);
  459. spin_lock(lock);
  460. goto repeat;
  461. }
  462. }
  463. spin_unlock(lock);
  464. return err;
  465. }
  466. static void do_thaw_one(struct super_block *sb, void *unused)
  467. {
  468. char b[BDEVNAME_SIZE];
  469. while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
  470. printk(KERN_WARNING "Emergency Thaw on %s\n",
  471. bdevname(sb->s_bdev, b));
  472. }
  473. static void do_thaw_all(struct work_struct *work)
  474. {
  475. iterate_supers(do_thaw_one, NULL);
  476. kfree(work);
  477. printk(KERN_WARNING "Emergency Thaw complete\n");
  478. }
  479. /**
  480. * emergency_thaw_all -- forcibly thaw every frozen filesystem
  481. *
  482. * Used for emergency unfreeze of all filesystems via SysRq
  483. */
  484. void emergency_thaw_all(void)
  485. {
  486. struct work_struct *work;
  487. work = kmalloc(sizeof(*work), GFP_ATOMIC);
  488. if (work) {
  489. INIT_WORK(work, do_thaw_all);
  490. schedule_work(work);
  491. }
  492. }
  493. /**
  494. * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
  495. * @mapping: the mapping which wants those buffers written
  496. *
  497. * Starts I/O against the buffers at mapping->private_list, and waits upon
  498. * that I/O.
  499. *
  500. * Basically, this is a convenience function for fsync().
  501. * @mapping is a file or directory which needs those buffers to be written for
  502. * a successful fsync().
  503. */
  504. int sync_mapping_buffers(struct address_space *mapping)
  505. {
  506. struct address_space *buffer_mapping = mapping->assoc_mapping;
  507. if (buffer_mapping == NULL || list_empty(&mapping->private_list))
  508. return 0;
  509. return fsync_buffers_list(&buffer_mapping->private_lock,
  510. &mapping->private_list);
  511. }
  512. EXPORT_SYMBOL(sync_mapping_buffers);
  513. /*
  514. * Called when we've recently written block `bblock', and it is known that
  515. * `bblock' was for a buffer_boundary() buffer. This means that the block at
  516. * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
  517. * dirty, schedule it for IO. So that indirects merge nicely with their data.
  518. */
  519. void write_boundary_block(struct block_device *bdev,
  520. sector_t bblock, unsigned blocksize)
  521. {
  522. struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
  523. if (bh) {
  524. if (buffer_dirty(bh))
  525. ll_rw_block(WRITE, 1, &bh);
  526. put_bh(bh);
  527. }
  528. }
  529. void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
  530. {
  531. struct address_space *mapping = inode->i_mapping;
  532. struct address_space *buffer_mapping = bh->b_page->mapping;
  533. mark_buffer_dirty(bh);
  534. if (!mapping->assoc_mapping) {
  535. mapping->assoc_mapping = buffer_mapping;
  536. } else {
  537. BUG_ON(mapping->assoc_mapping != buffer_mapping);
  538. }
  539. if (!bh->b_assoc_map) {
  540. spin_lock(&buffer_mapping->private_lock);
  541. list_move_tail(&bh->b_assoc_buffers,
  542. &mapping->private_list);
  543. bh->b_assoc_map = mapping;
  544. spin_unlock(&buffer_mapping->private_lock);
  545. }
  546. }
  547. EXPORT_SYMBOL(mark_buffer_dirty_inode);
  548. /*
  549. * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
  550. * dirty.
  551. *
  552. * If warn is true, then emit a warning if the page is not uptodate and has
  553. * not been truncated.
  554. */
  555. static void __set_page_dirty(struct page *page,
  556. struct address_space *mapping, int warn)
  557. {
  558. spin_lock_irq(&mapping->tree_lock);
  559. if (page->mapping) { /* Race with truncate? */
  560. WARN_ON_ONCE(warn && !PageUptodate(page));
  561. account_page_dirtied(page, mapping);
  562. radix_tree_tag_set(&mapping->page_tree,
  563. page_index(page), PAGECACHE_TAG_DIRTY);
  564. }
  565. spin_unlock_irq(&mapping->tree_lock);
  566. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  567. }
  568. /*
  569. * Add a page to the dirty page list.
  570. *
  571. * It is a sad fact of life that this function is called from several places
  572. * deeply under spinlocking. It may not sleep.
  573. *
  574. * If the page has buffers, the uptodate buffers are set dirty, to preserve
  575. * dirty-state coherency between the page and the buffers. It the page does
  576. * not have buffers then when they are later attached they will all be set
  577. * dirty.
  578. *
  579. * The buffers are dirtied before the page is dirtied. There's a small race
  580. * window in which a writepage caller may see the page cleanness but not the
  581. * buffer dirtiness. That's fine. If this code were to set the page dirty
  582. * before the buffers, a concurrent writepage caller could clear the page dirty
  583. * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
  584. * page on the dirty page list.
  585. *
  586. * We use private_lock to lock against try_to_free_buffers while using the
  587. * page's buffer list. Also use this to protect against clean buffers being
  588. * added to the page after it was set dirty.
  589. *
  590. * FIXME: may need to call ->reservepage here as well. That's rather up to the
  591. * address_space though.
  592. */
  593. int __set_page_dirty_buffers(struct page *page)
  594. {
  595. int newly_dirty;
  596. struct address_space *mapping = page_mapping(page);
  597. if (unlikely(!mapping))
  598. return !TestSetPageDirty(page);
  599. spin_lock(&mapping->private_lock);
  600. if (page_has_buffers(page)) {
  601. struct buffer_head *head = page_buffers(page);
  602. struct buffer_head *bh = head;
  603. do {
  604. set_buffer_dirty(bh);
  605. bh = bh->b_this_page;
  606. } while (bh != head);
  607. }
  608. newly_dirty = !TestSetPageDirty(page);
  609. spin_unlock(&mapping->private_lock);
  610. if (newly_dirty)
  611. __set_page_dirty(page, mapping, 1);
  612. return newly_dirty;
  613. }
  614. EXPORT_SYMBOL(__set_page_dirty_buffers);
  615. /*
  616. * Write out and wait upon a list of buffers.
  617. *
  618. * We have conflicting pressures: we want to make sure that all
  619. * initially dirty buffers get waited on, but that any subsequently
  620. * dirtied buffers don't. After all, we don't want fsync to last
  621. * forever if somebody is actively writing to the file.
  622. *
  623. * Do this in two main stages: first we copy dirty buffers to a
  624. * temporary inode list, queueing the writes as we go. Then we clean
  625. * up, waiting for those writes to complete.
  626. *
  627. * During this second stage, any subsequent updates to the file may end
  628. * up refiling the buffer on the original inode's dirty list again, so
  629. * there is a chance we will end up with a buffer queued for write but
  630. * not yet completed on that list. So, as a final cleanup we go through
  631. * the osync code to catch these locked, dirty buffers without requeuing
  632. * any newly dirty buffers for write.
  633. */
  634. static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
  635. {
  636. struct buffer_head *bh;
  637. struct list_head tmp;
  638. struct address_space *mapping;
  639. int err = 0, err2;
  640. struct blk_plug plug;
  641. INIT_LIST_HEAD(&tmp);
  642. blk_start_plug(&plug);
  643. spin_lock(lock);
  644. while (!list_empty(list)) {
  645. bh = BH_ENTRY(list->next);
  646. mapping = bh->b_assoc_map;
  647. __remove_assoc_queue(bh);
  648. /* Avoid race with mark_buffer_dirty_inode() which does
  649. * a lockless check and we rely on seeing the dirty bit */
  650. smp_mb();
  651. if (buffer_dirty(bh) || buffer_locked(bh)) {
  652. list_add(&bh->b_assoc_buffers, &tmp);
  653. bh->b_assoc_map = mapping;
  654. if (buffer_dirty(bh)) {
  655. get_bh(bh);
  656. spin_unlock(lock);
  657. /*
  658. * Ensure any pending I/O completes so that
  659. * write_dirty_buffer() actually writes the
  660. * current contents - it is a noop if I/O is
  661. * still in flight on potentially older
  662. * contents.
  663. */
  664. write_dirty_buffer(bh, WRITE_SYNC);
  665. /*
  666. * Kick off IO for the previous mapping. Note
  667. * that we will not run the very last mapping,
  668. * wait_on_buffer() will do that for us
  669. * through sync_buffer().
  670. */
  671. brelse(bh);
  672. spin_lock(lock);
  673. }
  674. }
  675. }
  676. spin_unlock(lock);
  677. blk_finish_plug(&plug);
  678. spin_lock(lock);
  679. while (!list_empty(&tmp)) {
  680. bh = BH_ENTRY(tmp.prev);
  681. get_bh(bh);
  682. mapping = bh->b_assoc_map;
  683. __remove_assoc_queue(bh);
  684. /* Avoid race with mark_buffer_dirty_inode() which does
  685. * a lockless check and we rely on seeing the dirty bit */
  686. smp_mb();
  687. if (buffer_dirty(bh)) {
  688. list_add(&bh->b_assoc_buffers,
  689. &mapping->private_list);
  690. bh->b_assoc_map = mapping;
  691. }
  692. spin_unlock(lock);
  693. wait_on_buffer(bh);
  694. if (!buffer_uptodate(bh))
  695. err = -EIO;
  696. brelse(bh);
  697. spin_lock(lock);
  698. }
  699. spin_unlock(lock);
  700. err2 = osync_buffers_list(lock, list);
  701. if (err)
  702. return err;
  703. else
  704. return err2;
  705. }
  706. /*
  707. * Invalidate any and all dirty buffers on a given inode. We are
  708. * probably unmounting the fs, but that doesn't mean we have already
  709. * done a sync(). Just drop the buffers from the inode list.
  710. *
  711. * NOTE: we take the inode's blockdev's mapping's private_lock. Which
  712. * assumes that all the buffers are against the blockdev. Not true
  713. * for reiserfs.
  714. */
  715. void invalidate_inode_buffers(struct inode *inode)
  716. {
  717. if (inode_has_buffers(inode)) {
  718. struct address_space *mapping = &inode->i_data;
  719. struct list_head *list = &mapping->private_list;
  720. struct address_space *buffer_mapping = mapping->assoc_mapping;
  721. spin_lock(&buffer_mapping->private_lock);
  722. while (!list_empty(list))
  723. __remove_assoc_queue(BH_ENTRY(list->next));
  724. spin_unlock(&buffer_mapping->private_lock);
  725. }
  726. }
  727. EXPORT_SYMBOL(invalidate_inode_buffers);
  728. /*
  729. * Remove any clean buffers from the inode's buffer list. This is called
  730. * when we're trying to free the inode itself. Those buffers can pin it.
  731. *
  732. * Returns true if all buffers were removed.
  733. */
  734. int remove_inode_buffers(struct inode *inode)
  735. {
  736. int ret = 1;
  737. if (inode_has_buffers(inode)) {
  738. struct address_space *mapping = &inode->i_data;
  739. struct list_head *list = &mapping->private_list;
  740. struct address_space *buffer_mapping = mapping->assoc_mapping;
  741. spin_lock(&buffer_mapping->private_lock);
  742. while (!list_empty(list)) {
  743. struct buffer_head *bh = BH_ENTRY(list->next);
  744. if (buffer_dirty(bh)) {
  745. ret = 0;
  746. break;
  747. }
  748. __remove_assoc_queue(bh);
  749. }
  750. spin_unlock(&buffer_mapping->private_lock);
  751. }
  752. return ret;
  753. }
  754. /*
  755. * Create the appropriate buffers when given a page for data area and
  756. * the size of each buffer.. Use the bh->b_this_page linked list to
  757. * follow the buffers created. Return NULL if unable to create more
  758. * buffers.
  759. *
  760. * The retry flag is used to differentiate async IO (paging, swapping)
  761. * which may not fail from ordinary buffer allocations.
  762. */
  763. struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
  764. int retry)
  765. {
  766. struct buffer_head *bh, *head;
  767. long offset;
  768. try_again:
  769. head = NULL;
  770. offset = PAGE_SIZE;
  771. while ((offset -= size) >= 0) {
  772. bh = alloc_buffer_head(GFP_NOFS);
  773. if (!bh)
  774. goto no_grow;
  775. bh->b_bdev = NULL;
  776. bh->b_this_page = head;
  777. bh->b_blocknr = -1;
  778. head = bh;
  779. bh->b_state = 0;
  780. atomic_set(&bh->b_count, 0);
  781. bh->b_size = size;
  782. /* Link the buffer to its page */
  783. set_bh_page(bh, page, offset);
  784. init_buffer(bh, NULL, NULL);
  785. }
  786. return head;
  787. /*
  788. * In case anything failed, we just free everything we got.
  789. */
  790. no_grow:
  791. if (head) {
  792. do {
  793. bh = head;
  794. head = head->b_this_page;
  795. free_buffer_head(bh);
  796. } while (head);
  797. }
  798. /*
  799. * Return failure for non-async IO requests. Async IO requests
  800. * are not allowed to fail, so we have to wait until buffer heads
  801. * become available. But we don't want tasks sleeping with
  802. * partially complete buffers, so all were released above.
  803. */
  804. if (!retry)
  805. return NULL;
  806. /* We're _really_ low on memory. Now we just
  807. * wait for old buffer heads to become free due to
  808. * finishing IO. Since this is an async request and
  809. * the reserve list is empty, we're sure there are
  810. * async buffer heads in use.
  811. */
  812. free_more_memory();
  813. goto try_again;
  814. }
  815. EXPORT_SYMBOL_GPL(alloc_page_buffers);
  816. static inline void
  817. link_dev_buffers(struct page *page, struct buffer_head *head)
  818. {
  819. struct buffer_head *bh, *tail;
  820. bh = head;
  821. do {
  822. tail = bh;
  823. bh = bh->b_this_page;
  824. } while (bh);
  825. tail->b_this_page = head;
  826. attach_page_buffers(page, head);
  827. }
  828. /*
  829. * Initialise the state of a blockdev page's buffers.
  830. */
  831. static void
  832. init_page_buffers(struct page *page, struct block_device *bdev,
  833. sector_t block, int size)
  834. {
  835. struct buffer_head *head = page_buffers(page);
  836. struct buffer_head *bh = head;
  837. int uptodate = PageUptodate(page);
  838. do {
  839. if (!buffer_mapped(bh)) {
  840. init_buffer(bh, NULL, NULL);
  841. bh->b_bdev = bdev;
  842. bh->b_blocknr = block;
  843. if (uptodate)
  844. set_buffer_uptodate(bh);
  845. set_buffer_mapped(bh);
  846. }
  847. block++;
  848. bh = bh->b_this_page;
  849. } while (bh != head);
  850. }
  851. /*
  852. * Create the page-cache page that contains the requested block.
  853. *
  854. * This is user purely for blockdev mappings.
  855. */
  856. static struct page *
  857. grow_dev_page(struct block_device *bdev, sector_t block,
  858. pgoff_t index, int size)
  859. {
  860. struct inode *inode = bdev->bd_inode;
  861. struct page *page;
  862. struct buffer_head *bh;
  863. page = find_or_create_page(inode->i_mapping, index,
  864. (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
  865. if (!page)
  866. return NULL;
  867. BUG_ON(!PageLocked(page));
  868. if (page_has_buffers(page)) {
  869. bh = page_buffers(page);
  870. if (bh->b_size == size) {
  871. init_page_buffers(page, bdev, block, size);
  872. return page;
  873. }
  874. if (!try_to_free_buffers(page))
  875. goto failed;
  876. }
  877. /*
  878. * Allocate some buffers for this page
  879. */
  880. bh = alloc_page_buffers(page, size, 0);
  881. if (!bh)
  882. goto failed;
  883. /*
  884. * Link the page to the buffers and initialise them. Take the
  885. * lock to be atomic wrt __find_get_block(), which does not
  886. * run under the page lock.
  887. */
  888. spin_lock(&inode->i_mapping->private_lock);
  889. link_dev_buffers(page, bh);
  890. init_page_buffers(page, bdev, block, size);
  891. spin_unlock(&inode->i_mapping->private_lock);
  892. return page;
  893. failed:
  894. BUG();
  895. unlock_page(page);
  896. page_cache_release(page);
  897. return NULL;
  898. }
  899. /*
  900. * Create buffers for the specified block device block's page. If
  901. * that page was dirty, the buffers are set dirty also.
  902. */
  903. static int
  904. grow_buffers(struct block_device *bdev, sector_t block, int size)
  905. {
  906. struct page *page;
  907. pgoff_t index;
  908. int sizebits;
  909. sizebits = -1;
  910. do {
  911. sizebits++;
  912. } while ((size << sizebits) < PAGE_SIZE);
  913. index = block >> sizebits;
  914. /*
  915. * Check for a block which wants to lie outside our maximum possible
  916. * pagecache index. (this comparison is done using sector_t types).
  917. */
  918. if (unlikely(index != block >> sizebits)) {
  919. char b[BDEVNAME_SIZE];
  920. printk(KERN_ERR "%s: requested out-of-range block %llu for "
  921. "device %s\n",
  922. __func__, (unsigned long long)block,
  923. bdevname(bdev, b));
  924. return -EIO;
  925. }
  926. block = index << sizebits;
  927. /* Create a page with the proper size buffers.. */
  928. page = grow_dev_page(bdev, block, index, size);
  929. if (!page)
  930. return 0;
  931. unlock_page(page);
  932. page_cache_release(page);
  933. return 1;
  934. }
  935. static struct buffer_head *
  936. __getblk_slow(struct block_device *bdev, sector_t block, int size)
  937. {
  938. /* Size must be multiple of hard sectorsize */
  939. if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
  940. (size < 512 || size > PAGE_SIZE))) {
  941. printk(KERN_ERR "getblk(): invalid block size %d requested\n",
  942. size);
  943. printk(KERN_ERR "logical block size: %d\n",
  944. bdev_logical_block_size(bdev));
  945. dump_stack();
  946. return NULL;
  947. }
  948. for (;;) {
  949. struct buffer_head * bh;
  950. int ret;
  951. bh = __find_get_block(bdev, block, size);
  952. if (bh)
  953. return bh;
  954. ret = grow_buffers(bdev, block, size);
  955. if (ret < 0)
  956. return NULL;
  957. if (ret == 0)
  958. free_more_memory();
  959. }
  960. }
  961. /*
  962. * The relationship between dirty buffers and dirty pages:
  963. *
  964. * Whenever a page has any dirty buffers, the page's dirty bit is set, and
  965. * the page is tagged dirty in its radix tree.
  966. *
  967. * At all times, the dirtiness of the buffers represents the dirtiness of
  968. * subsections of the page. If the page has buffers, the page dirty bit is
  969. * merely a hint about the true dirty state.
  970. *
  971. * When a page is set dirty in its entirety, all its buffers are marked dirty
  972. * (if the page has buffers).
  973. *
  974. * When a buffer is marked dirty, its page is dirtied, but the page's other
  975. * buffers are not.
  976. *
  977. * Also. When blockdev buffers are explicitly read with bread(), they
  978. * individually become uptodate. But their backing page remains not
  979. * uptodate - even if all of its buffers are uptodate. A subsequent
  980. * block_read_full_page() against that page will discover all the uptodate
  981. * buffers, will set the page uptodate and will perform no I/O.
  982. */
  983. /**
  984. * mark_buffer_dirty - mark a buffer_head as needing writeout
  985. * @bh: the buffer_head to mark dirty
  986. *
  987. * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
  988. * backing page dirty, then tag the page as dirty in its address_space's radix
  989. * tree and then attach the address_space's inode to its superblock's dirty
  990. * inode list.
  991. *
  992. * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
  993. * mapping->tree_lock and mapping->host->i_lock.
  994. */
  995. void mark_buffer_dirty(struct buffer_head *bh)
  996. {
  997. WARN_ON_ONCE(!buffer_uptodate(bh));
  998. /*
  999. * Very *carefully* optimize the it-is-already-dirty case.
  1000. *
  1001. * Don't let the final "is it dirty" escape to before we
  1002. * perhaps modified the buffer.
  1003. */
  1004. if (buffer_dirty(bh)) {
  1005. smp_mb();
  1006. if (buffer_dirty(bh))
  1007. return;
  1008. }
  1009. if (!test_set_buffer_dirty(bh)) {
  1010. struct page *page = bh->b_page;
  1011. if (!TestSetPageDirty(page)) {
  1012. struct address_space *mapping = page_mapping(page);
  1013. if (mapping)
  1014. __set_page_dirty(page, mapping, 0);
  1015. }
  1016. }
  1017. }
  1018. EXPORT_SYMBOL(mark_buffer_dirty);
  1019. /*
  1020. * Decrement a buffer_head's reference count. If all buffers against a page
  1021. * have zero reference count, are clean and unlocked, and if the page is clean
  1022. * and unlocked then try_to_free_buffers() may strip the buffers from the page
  1023. * in preparation for freeing it (sometimes, rarely, buffers are removed from
  1024. * a page but it ends up not being freed, and buffers may later be reattached).
  1025. */
  1026. void __brelse(struct buffer_head * buf)
  1027. {
  1028. if (atomic_read(&buf->b_count)) {
  1029. put_bh(buf);
  1030. return;
  1031. }
  1032. WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
  1033. }
  1034. EXPORT_SYMBOL(__brelse);
  1035. /*
  1036. * bforget() is like brelse(), except it discards any
  1037. * potentially dirty data.
  1038. */
  1039. void __bforget(struct buffer_head *bh)
  1040. {
  1041. clear_buffer_dirty(bh);
  1042. if (bh->b_assoc_map) {
  1043. struct address_space *buffer_mapping = bh->b_page->mapping;
  1044. spin_lock(&buffer_mapping->private_lock);
  1045. list_del_init(&bh->b_assoc_buffers);
  1046. bh->b_assoc_map = NULL;
  1047. spin_unlock(&buffer_mapping->private_lock);
  1048. }
  1049. __brelse(bh);
  1050. }
  1051. EXPORT_SYMBOL(__bforget);
  1052. static struct buffer_head *__bread_slow(struct buffer_head *bh)
  1053. {
  1054. lock_buffer(bh);
  1055. if (buffer_uptodate(bh)) {
  1056. unlock_buffer(bh);
  1057. return bh;
  1058. } else {
  1059. get_bh(bh);
  1060. bh->b_end_io = end_buffer_read_sync;
  1061. submit_bh(READ, bh);
  1062. wait_on_buffer(bh);
  1063. if (buffer_uptodate(bh))
  1064. return bh;
  1065. }
  1066. brelse(bh);
  1067. return NULL;
  1068. }
  1069. /*
  1070. * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
  1071. * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
  1072. * refcount elevated by one when they're in an LRU. A buffer can only appear
  1073. * once in a particular CPU's LRU. A single buffer can be present in multiple
  1074. * CPU's LRUs at the same time.
  1075. *
  1076. * This is a transparent caching front-end to sb_bread(), sb_getblk() and
  1077. * sb_find_get_block().
  1078. *
  1079. * The LRUs themselves only need locking against invalidate_bh_lrus. We use
  1080. * a local interrupt disable for that.
  1081. */
  1082. #define BH_LRU_SIZE 8
  1083. struct bh_lru {
  1084. struct buffer_head *bhs[BH_LRU_SIZE];
  1085. };
  1086. static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
  1087. #ifdef CONFIG_SMP
  1088. #define bh_lru_lock() local_irq_disable()
  1089. #define bh_lru_unlock() local_irq_enable()
  1090. #else
  1091. #define bh_lru_lock() preempt_disable()
  1092. #define bh_lru_unlock() preempt_enable()
  1093. #endif
  1094. static inline void check_irqs_on(void)
  1095. {
  1096. #ifdef irqs_disabled
  1097. BUG_ON(irqs_disabled());
  1098. #endif
  1099. }
  1100. /*
  1101. * The LRU management algorithm is dopey-but-simple. Sorry.
  1102. */
  1103. static void bh_lru_install(struct buffer_head *bh)
  1104. {
  1105. struct buffer_head *evictee = NULL;
  1106. check_irqs_on();
  1107. bh_lru_lock();
  1108. if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
  1109. struct buffer_head *bhs[BH_LRU_SIZE];
  1110. int in;
  1111. int out = 0;
  1112. get_bh(bh);
  1113. bhs[out++] = bh;
  1114. for (in = 0; in < BH_LRU_SIZE; in++) {
  1115. struct buffer_head *bh2 =
  1116. __this_cpu_read(bh_lrus.bhs[in]);
  1117. if (bh2 == bh) {
  1118. __brelse(bh2);
  1119. } else {
  1120. if (out >= BH_LRU_SIZE) {
  1121. BUG_ON(evictee != NULL);
  1122. evictee = bh2;
  1123. } else {
  1124. bhs[out++] = bh2;
  1125. }
  1126. }
  1127. }
  1128. while (out < BH_LRU_SIZE)
  1129. bhs[out++] = NULL;
  1130. memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
  1131. }
  1132. bh_lru_unlock();
  1133. if (evictee)
  1134. __brelse(evictee);
  1135. }
  1136. /*
  1137. * Look up the bh in this cpu's LRU. If it's there, move it to the head.
  1138. */
  1139. static struct buffer_head *
  1140. lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
  1141. {
  1142. struct buffer_head *ret = NULL;
  1143. unsigned int i;
  1144. check_irqs_on();
  1145. bh_lru_lock();
  1146. for (i = 0; i < BH_LRU_SIZE; i++) {
  1147. struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
  1148. if (bh && bh->b_bdev == bdev &&
  1149. bh->b_blocknr == block && bh->b_size == size) {
  1150. if (i) {
  1151. while (i) {
  1152. __this_cpu_write(bh_lrus.bhs[i],
  1153. __this_cpu_read(bh_lrus.bhs[i - 1]));
  1154. i--;
  1155. }
  1156. __this_cpu_write(bh_lrus.bhs[0], bh);
  1157. }
  1158. get_bh(bh);
  1159. ret = bh;
  1160. break;
  1161. }
  1162. }
  1163. bh_lru_unlock();
  1164. return ret;
  1165. }
  1166. /*
  1167. * Perform a pagecache lookup for the matching buffer. If it's there, refresh
  1168. * it in the LRU and mark it as accessed. If it is not present then return
  1169. * NULL
  1170. */
  1171. struct buffer_head *
  1172. __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
  1173. {
  1174. struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
  1175. if (bh == NULL) {
  1176. bh = __find_get_block_slow(bdev, block);
  1177. if (bh)
  1178. bh_lru_install(bh);
  1179. }
  1180. if (bh)
  1181. touch_buffer(bh);
  1182. return bh;
  1183. }
  1184. EXPORT_SYMBOL(__find_get_block);
  1185. /*
  1186. * __getblk will locate (and, if necessary, create) the buffer_head
  1187. * which corresponds to the passed block_device, block and size. The
  1188. * returned buffer has its reference count incremented.
  1189. *
  1190. * __getblk() cannot fail - it just keeps trying. If you pass it an
  1191. * illegal block number, __getblk() will happily return a buffer_head
  1192. * which represents the non-existent block. Very weird.
  1193. *
  1194. * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
  1195. * attempt is failing. FIXME, perhaps?
  1196. */
  1197. struct buffer_head *
  1198. __getblk(struct block_device *bdev, sector_t block, unsigned size)
  1199. {
  1200. struct buffer_head *bh = __find_get_block(bdev, block, size);
  1201. might_sleep();
  1202. if (bh == NULL)
  1203. bh = __getblk_slow(bdev, block, size);
  1204. return bh;
  1205. }
  1206. EXPORT_SYMBOL(__getblk);
  1207. /*
  1208. * Do async read-ahead on a buffer..
  1209. */
  1210. void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
  1211. {
  1212. struct buffer_head *bh = __getblk(bdev, block, size);
  1213. if (likely(bh)) {
  1214. ll_rw_block(READA, 1, &bh);
  1215. brelse(bh);
  1216. }
  1217. }
  1218. EXPORT_SYMBOL(__breadahead);
  1219. /**
  1220. * __bread() - reads a specified block and returns the bh
  1221. * @bdev: the block_device to read from
  1222. * @block: number of block
  1223. * @size: size (in bytes) to read
  1224. *
  1225. * Reads a specified block, and returns buffer head that contains it.
  1226. * It returns NULL if the block was unreadable.
  1227. */
  1228. struct buffer_head *
  1229. __bread(struct block_device *bdev, sector_t block, unsigned size)
  1230. {
  1231. struct buffer_head *bh = __getblk(bdev, block, size);
  1232. if (likely(bh) && !buffer_uptodate(bh))
  1233. bh = __bread_slow(bh);
  1234. return bh;
  1235. }
  1236. EXPORT_SYMBOL(__bread);
  1237. /*
  1238. * invalidate_bh_lrus() is called rarely - but not only at unmount.
  1239. * This doesn't race because it runs in each cpu either in irq
  1240. * or with preempt disabled.
  1241. */
  1242. static void invalidate_bh_lru(void *arg)
  1243. {
  1244. struct bh_lru *b = &get_cpu_var(bh_lrus);
  1245. int i;
  1246. for (i = 0; i < BH_LRU_SIZE; i++) {
  1247. brelse(b->bhs[i]);
  1248. b->bhs[i] = NULL;
  1249. }
  1250. put_cpu_var(bh_lrus);
  1251. }
  1252. void invalidate_bh_lrus(void)
  1253. {
  1254. on_each_cpu(invalidate_bh_lru, NULL, 1);
  1255. }
  1256. EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
  1257. void set_bh_page(struct buffer_head *bh,
  1258. struct page *page, unsigned long offset)
  1259. {
  1260. bh->b_page = page;
  1261. BUG_ON(offset >= PAGE_SIZE);
  1262. if (PageHighMem(page))
  1263. /*
  1264. * This catches illegal uses and preserves the offset:
  1265. */
  1266. bh->b_data = (char *)(0 + offset);
  1267. else
  1268. bh->b_data = page_address(page) + offset;
  1269. }
  1270. EXPORT_SYMBOL(set_bh_page);
  1271. /*
  1272. * Called when truncating a buffer on a page completely.
  1273. */
  1274. static void discard_buffer(struct buffer_head * bh)
  1275. {
  1276. lock_buffer(bh);
  1277. clear_buffer_dirty(bh);
  1278. bh->b_bdev = NULL;
  1279. clear_buffer_mapped(bh);
  1280. clear_buffer_req(bh);
  1281. clear_buffer_new(bh);
  1282. clear_buffer_delay(bh);
  1283. clear_buffer_unwritten(bh);
  1284. unlock_buffer(bh);
  1285. }
  1286. /**
  1287. * block_invalidatepage - invalidate part or all of a buffer-backed page
  1288. *
  1289. * @page: the page which is affected
  1290. * @offset: the index of the truncation point
  1291. *
  1292. * block_invalidatepage() is called when all or part of the page has become
  1293. * invalidated by a truncate operation.
  1294. *
  1295. * block_invalidatepage() does not have to release all buffers, but it must
  1296. * ensure that no dirty buffer is left outside @offset and that no I/O
  1297. * is underway against any of the blocks which are outside the truncation
  1298. * point. Because the caller is about to free (and possibly reuse) those
  1299. * blocks on-disk.
  1300. */
  1301. void block_invalidatepage(struct page *page, unsigned long offset)
  1302. {
  1303. struct buffer_head *head, *bh, *next;
  1304. unsigned int curr_off = 0;
  1305. BUG_ON(!PageLocked(page));
  1306. if (!page_has_buffers(page))
  1307. goto out;
  1308. head = page_buffers(page);
  1309. bh = head;
  1310. do {
  1311. unsigned int next_off = curr_off + bh->b_size;
  1312. next = bh->b_this_page;
  1313. /*
  1314. * is this block fully invalidated?
  1315. */
  1316. if (offset <= curr_off)
  1317. discard_buffer(bh);
  1318. curr_off = next_off;
  1319. bh = next;
  1320. } while (bh != head);
  1321. /*
  1322. * We release buffers only if the entire page is being invalidated.
  1323. * The get_block cached value has been unconditionally invalidated,
  1324. * so real IO is not possible anymore.
  1325. */
  1326. if (offset == 0)
  1327. try_to_release_page(page, 0);
  1328. out:
  1329. return;
  1330. }
  1331. EXPORT_SYMBOL(block_invalidatepage);
  1332. /*
  1333. * We attach and possibly dirty the buffers atomically wrt
  1334. * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
  1335. * is already excluded via the page lock.
  1336. */
  1337. void create_empty_buffers(struct page *page,
  1338. unsigned long blocksize, unsigned long b_state)
  1339. {
  1340. struct buffer_head *bh, *head, *tail;
  1341. head = alloc_page_buffers(page, blocksize, 1);
  1342. bh = head;
  1343. do {
  1344. bh->b_state |= b_state;
  1345. tail = bh;
  1346. bh = bh->b_this_page;
  1347. } while (bh);
  1348. tail->b_this_page = head;
  1349. spin_lock(&page->mapping->private_lock);
  1350. if (PageUptodate(page) || PageDirty(page)) {
  1351. bh = head;
  1352. do {
  1353. if (PageDirty(page))
  1354. set_buffer_dirty(bh);
  1355. if (PageUptodate(page))
  1356. set_buffer_uptodate(bh);
  1357. bh = bh->b_this_page;
  1358. } while (bh != head);
  1359. }
  1360. attach_page_buffers(page, head);
  1361. spin_unlock(&page->mapping->private_lock);
  1362. }
  1363. EXPORT_SYMBOL(create_empty_buffers);
  1364. /*
  1365. * We are taking a block for data and we don't want any output from any
  1366. * buffer-cache aliases starting from return from that function and
  1367. * until the moment when something will explicitly mark the buffer
  1368. * dirty (hopefully that will not happen until we will free that block ;-)
  1369. * We don't even need to mark it not-uptodate - nobody can expect
  1370. * anything from a newly allocated buffer anyway. We used to used
  1371. * unmap_buffer() for such invalidation, but that was wrong. We definitely
  1372. * don't want to mark the alias unmapped, for example - it would confuse
  1373. * anyone who might pick it with bread() afterwards...
  1374. *
  1375. * Also.. Note that bforget() doesn't lock the buffer. So there can
  1376. * be writeout I/O going on against recently-freed buffers. We don't
  1377. * wait on that I/O in bforget() - it's more efficient to wait on the I/O
  1378. * only if we really need to. That happens here.
  1379. */
  1380. void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
  1381. {
  1382. struct buffer_head *old_bh;
  1383. might_sleep();
  1384. old_bh = __find_get_block_slow(bdev, block);
  1385. if (old_bh) {
  1386. clear_buffer_dirty(old_bh);
  1387. wait_on_buffer(old_bh);
  1388. clear_buffer_req(old_bh);
  1389. __brelse(old_bh);
  1390. }
  1391. }
  1392. EXPORT_SYMBOL(unmap_underlying_metadata);
  1393. /*
  1394. * NOTE! All mapped/uptodate combinations are valid:
  1395. *
  1396. * Mapped Uptodate Meaning
  1397. *
  1398. * No No "unknown" - must do get_block()
  1399. * No Yes "hole" - zero-filled
  1400. * Yes No "allocated" - allocated on disk, not read in
  1401. * Yes Yes "valid" - allocated and up-to-date in memory.
  1402. *
  1403. * "Dirty" is valid only with the last case (mapped+uptodate).
  1404. */
  1405. /*
  1406. * While block_write_full_page is writing back the dirty buffers under
  1407. * the page lock, whoever dirtied the buffers may decide to clean them
  1408. * again at any time. We handle that by only looking at the buffer
  1409. * state inside lock_buffer().
  1410. *
  1411. * If block_write_full_page() is called for regular writeback
  1412. * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
  1413. * locked buffer. This only can happen if someone has written the buffer
  1414. * directly, with submit_bh(). At the address_space level PageWriteback
  1415. * prevents this contention from occurring.
  1416. *
  1417. * If block_write_full_page() is called with wbc->sync_mode ==
  1418. * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
  1419. * causes the writes to be flagged as synchronous writes.
  1420. */
  1421. static int __block_write_full_page(struct inode *inode, struct page *page,
  1422. get_block_t *get_block, struct writeback_control *wbc,
  1423. bh_end_io_t *handler)
  1424. {
  1425. int err;
  1426. sector_t block;
  1427. sector_t last_block;
  1428. struct buffer_head *bh, *head;
  1429. const unsigned blocksize = 1 << inode->i_blkbits;
  1430. int nr_underway = 0;
  1431. int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
  1432. WRITE_SYNC : WRITE);
  1433. BUG_ON(!PageLocked(page));
  1434. last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
  1435. if (!page_has_buffers(page)) {
  1436. create_empty_buffers(page, blocksize,
  1437. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1438. }
  1439. /*
  1440. * Be very careful. We have no exclusion from __set_page_dirty_buffers
  1441. * here, and the (potentially unmapped) buffers may become dirty at
  1442. * any time. If a buffer becomes dirty here after we've inspected it
  1443. * then we just miss that fact, and the page stays dirty.
  1444. *
  1445. * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
  1446. * handle that here by just cleaning them.
  1447. */
  1448. block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1449. head = page_buffers(page);
  1450. bh = head;
  1451. /*
  1452. * Get all the dirty buffers mapped to disk addresses and
  1453. * handle any aliases from the underlying blockdev's mapping.
  1454. */
  1455. do {
  1456. if (block > last_block) {
  1457. /*
  1458. * mapped buffers outside i_size will occur, because
  1459. * this page can be outside i_size when there is a
  1460. * truncate in progress.
  1461. */
  1462. /*
  1463. * The buffer was zeroed by block_write_full_page()
  1464. */
  1465. clear_buffer_dirty(bh);
  1466. set_buffer_uptodate(bh);
  1467. } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
  1468. buffer_dirty(bh)) {
  1469. WARN_ON(bh->b_size != blocksize);
  1470. err = get_block(inode, block, bh, 1);
  1471. if (err)
  1472. goto recover;
  1473. clear_buffer_delay(bh);
  1474. if (buffer_new(bh)) {
  1475. /* blockdev mappings never come here */
  1476. clear_buffer_new(bh);
  1477. unmap_underlying_metadata(bh->b_bdev,
  1478. bh->b_blocknr);
  1479. }
  1480. }
  1481. bh = bh->b_this_page;
  1482. block++;
  1483. } while (bh != head);
  1484. do {
  1485. if (!buffer_mapped(bh))
  1486. continue;
  1487. /*
  1488. * If it's a fully non-blocking write attempt and we cannot
  1489. * lock the buffer then redirty the page. Note that this can
  1490. * potentially cause a busy-wait loop from writeback threads
  1491. * and kswapd activity, but those code paths have their own
  1492. * higher-level throttling.
  1493. */
  1494. if (wbc->sync_mode != WB_SYNC_NONE) {
  1495. lock_buffer(bh);
  1496. } else if (!trylock_buffer(bh)) {
  1497. redirty_page_for_writepage(wbc, page);
  1498. continue;
  1499. }
  1500. if (test_clear_buffer_dirty(bh)) {
  1501. mark_buffer_async_write_endio(bh, handler);
  1502. } else {
  1503. unlock_buffer(bh);
  1504. }
  1505. } while ((bh = bh->b_this_page) != head);
  1506. /*
  1507. * The page and its buffers are protected by PageWriteback(), so we can
  1508. * drop the bh refcounts early.
  1509. */
  1510. BUG_ON(PageWriteback(page));
  1511. set_page_writeback(page);
  1512. do {
  1513. struct buffer_head *next = bh->b_this_page;
  1514. if (buffer_async_write(bh)) {
  1515. submit_bh(write_op, bh);
  1516. nr_underway++;
  1517. }
  1518. bh = next;
  1519. } while (bh != head);
  1520. unlock_page(page);
  1521. err = 0;
  1522. done:
  1523. if (nr_underway == 0) {
  1524. /*
  1525. * The page was marked dirty, but the buffers were
  1526. * clean. Someone wrote them back by hand with
  1527. * ll_rw_block/submit_bh. A rare case.
  1528. */
  1529. end_page_writeback(page);
  1530. /*
  1531. * The page and buffer_heads can be released at any time from
  1532. * here on.
  1533. */
  1534. }
  1535. return err;
  1536. recover:
  1537. /*
  1538. * ENOSPC, or some other error. We may already have added some
  1539. * blocks to the file, so we need to write these out to avoid
  1540. * exposing stale data.
  1541. * The page is currently locked and not marked for writeback
  1542. */
  1543. bh = head;
  1544. /* Recovery: lock and submit the mapped buffers */
  1545. do {
  1546. if (buffer_mapped(bh) && buffer_dirty(bh) &&
  1547. !buffer_delay(bh)) {
  1548. lock_buffer(bh);
  1549. mark_buffer_async_write_endio(bh, handler);
  1550. } else {
  1551. /*
  1552. * The buffer may have been set dirty during
  1553. * attachment to a dirty page.
  1554. */
  1555. clear_buffer_dirty(bh);
  1556. }
  1557. } while ((bh = bh->b_this_page) != head);
  1558. SetPageError(page);
  1559. BUG_ON(PageWriteback(page));
  1560. mapping_set_error(page->mapping, err);
  1561. set_page_writeback(page);
  1562. do {
  1563. struct buffer_head *next = bh->b_this_page;
  1564. if (buffer_async_write(bh)) {
  1565. clear_buffer_dirty(bh);
  1566. submit_bh(write_op, bh);
  1567. nr_underway++;
  1568. }
  1569. bh = next;
  1570. } while (bh != head);
  1571. unlock_page(page);
  1572. goto done;
  1573. }
  1574. /*
  1575. * If a page has any new buffers, zero them out here, and mark them uptodate
  1576. * and dirty so they'll be written out (in order to prevent uninitialised
  1577. * block data from leaking). And clear the new bit.
  1578. */
  1579. void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
  1580. {
  1581. unsigned int block_start, block_end;
  1582. struct buffer_head *head, *bh;
  1583. BUG_ON(!PageLocked(page));
  1584. if (!page_has_buffers(page))
  1585. return;
  1586. bh = head = page_buffers(page);
  1587. block_start = 0;
  1588. do {
  1589. block_end = block_start + bh->b_size;
  1590. if (buffer_new(bh)) {
  1591. if (block_end > from && block_start < to) {
  1592. if (!PageUptodate(page)) {
  1593. unsigned start, size;
  1594. start = max(from, block_start);
  1595. size = min(to, block_end) - start;
  1596. zero_user(page, start, size);
  1597. set_buffer_uptodate(bh);
  1598. }
  1599. clear_buffer_new(bh);
  1600. mark_buffer_dirty(bh);
  1601. }
  1602. }
  1603. block_start = block_end;
  1604. bh = bh->b_this_page;
  1605. } while (bh != head);
  1606. }
  1607. EXPORT_SYMBOL(page_zero_new_buffers);
  1608. int __block_write_begin(struct page *page, loff_t pos, unsigned len,
  1609. get_block_t *get_block)
  1610. {
  1611. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  1612. unsigned to = from + len;
  1613. struct inode *inode = page->mapping->host;
  1614. unsigned block_start, block_end;
  1615. sector_t block;
  1616. int err = 0;
  1617. unsigned blocksize, bbits;
  1618. struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
  1619. BUG_ON(!PageLocked(page));
  1620. BUG_ON(from > PAGE_CACHE_SIZE);
  1621. BUG_ON(to > PAGE_CACHE_SIZE);
  1622. BUG_ON(from > to);
  1623. blocksize = 1 << inode->i_blkbits;
  1624. if (!page_has_buffers(page))
  1625. create_empty_buffers(page, blocksize, 0);
  1626. head = page_buffers(page);
  1627. bbits = inode->i_blkbits;
  1628. block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
  1629. for(bh = head, block_start = 0; bh != head || !block_start;
  1630. block++, block_start=block_end, bh = bh->b_this_page) {
  1631. block_end = block_start + blocksize;
  1632. if (block_end <= from || block_start >= to) {
  1633. if (PageUptodate(page)) {
  1634. if (!buffer_uptodate(bh))
  1635. set_buffer_uptodate(bh);
  1636. }
  1637. continue;
  1638. }
  1639. if (buffer_new(bh))
  1640. clear_buffer_new(bh);
  1641. if (!buffer_mapped(bh)) {
  1642. WARN_ON(bh->b_size != blocksize);
  1643. err = get_block(inode, block, bh, 1);
  1644. if (err)
  1645. break;
  1646. if (buffer_new(bh)) {
  1647. unmap_underlying_metadata(bh->b_bdev,
  1648. bh->b_blocknr);
  1649. if (PageUptodate(page)) {
  1650. clear_buffer_new(bh);
  1651. set_buffer_uptodate(bh);
  1652. mark_buffer_dirty(bh);
  1653. continue;
  1654. }
  1655. if (block_end > to || block_start < from)
  1656. zero_user_segments(page,
  1657. to, block_end,
  1658. block_start, from);
  1659. continue;
  1660. }
  1661. }
  1662. if (PageUptodate(page)) {
  1663. if (!buffer_uptodate(bh))
  1664. set_buffer_uptodate(bh);
  1665. continue;
  1666. }
  1667. if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
  1668. !buffer_unwritten(bh) &&
  1669. (block_start < from || block_end > to)) {
  1670. ll_rw_block(READ, 1, &bh);
  1671. *wait_bh++=bh;
  1672. }
  1673. }
  1674. /*
  1675. * If we issued read requests - let them complete.
  1676. */
  1677. while(wait_bh > wait) {
  1678. wait_on_buffer(*--wait_bh);
  1679. if (!buffer_uptodate(*wait_bh))
  1680. err = -EIO;
  1681. }
  1682. if (unlikely(err))
  1683. page_zero_new_buffers(page, from, to);
  1684. return err;
  1685. }
  1686. EXPORT_SYMBOL(__block_write_begin);
  1687. static int __block_commit_write(struct inode *inode, struct page *page,
  1688. unsigned from, unsigned to)
  1689. {
  1690. unsigned block_start, block_end;
  1691. int partial = 0;
  1692. unsigned blocksize;
  1693. struct buffer_head *bh, *head;
  1694. blocksize = 1 << inode->i_blkbits;
  1695. for(bh = head = page_buffers(page), block_start = 0;
  1696. bh != head || !block_start;
  1697. block_start=block_end, bh = bh->b_this_page) {
  1698. block_end = block_start + blocksize;
  1699. if (block_end <= from || block_start >= to) {
  1700. if (!buffer_uptodate(bh))
  1701. partial = 1;
  1702. } else {
  1703. set_buffer_uptodate(bh);
  1704. mark_buffer_dirty(bh);
  1705. }
  1706. clear_buffer_new(bh);
  1707. }
  1708. /*
  1709. * If this is a partial write which happened to make all buffers
  1710. * uptodate then we can optimize away a bogus readpage() for
  1711. * the next read(). Here we 'discover' whether the page went
  1712. * uptodate as a result of this (potentially partial) write.
  1713. */
  1714. if (!partial)
  1715. SetPageUptodate(page);
  1716. return 0;
  1717. }
  1718. /*
  1719. * block_write_begin takes care of the basic task of block allocation and
  1720. * bringing partial write blocks uptodate first.
  1721. *
  1722. * The filesystem needs to handle block truncation upon failure.
  1723. */
  1724. int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
  1725. unsigned flags, struct page **pagep, get_block_t *get_block)
  1726. {
  1727. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  1728. struct page *page;
  1729. int status;
  1730. page = grab_cache_page_write_begin(mapping, index, flags);
  1731. if (!page)
  1732. return -ENOMEM;
  1733. status = __block_write_begin(page, pos, len, get_block);
  1734. if (unlikely(status)) {
  1735. unlock_page(page);
  1736. page_cache_release(page);
  1737. page = NULL;
  1738. }
  1739. *pagep = page;
  1740. return status;
  1741. }
  1742. EXPORT_SYMBOL(block_write_begin);
  1743. int block_write_end(struct file *file, struct address_space *mapping,
  1744. loff_t pos, unsigned len, unsigned copied,
  1745. struct page *page, void *fsdata)
  1746. {
  1747. struct inode *inode = mapping->host;
  1748. unsigned start;
  1749. start = pos & (PAGE_CACHE_SIZE - 1);
  1750. if (unlikely(copied < len)) {
  1751. /*
  1752. * The buffers that were written will now be uptodate, so we
  1753. * don't have to worry about a readpage reading them and
  1754. * overwriting a partial write. However if we have encountered
  1755. * a short write and only partially written into a buffer, it
  1756. * will not be marked uptodate, so a readpage might come in and
  1757. * destroy our partial write.
  1758. *
  1759. * Do the simplest thing, and just treat any short write to a
  1760. * non uptodate page as a zero-length write, and force the
  1761. * caller to redo the whole thing.
  1762. */
  1763. if (!PageUptodate(page))
  1764. copied = 0;
  1765. page_zero_new_buffers(page, start+copied, start+len);
  1766. }
  1767. flush_dcache_page(page);
  1768. /* This could be a short (even 0-length) commit */
  1769. __block_commit_write(inode, page, start, start+copied);
  1770. return copied;
  1771. }
  1772. EXPORT_SYMBOL(block_write_end);
  1773. int generic_write_end(struct file *file, struct address_space *mapping,
  1774. loff_t pos, unsigned len, unsigned copied,
  1775. struct page *page, void *fsdata)
  1776. {
  1777. struct inode *inode = mapping->host;
  1778. int i_size_changed = 0;
  1779. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1780. /*
  1781. * No need to use i_size_read() here, the i_size
  1782. * cannot change under us because we hold i_mutex.
  1783. *
  1784. * But it's important to update i_size while still holding page lock:
  1785. * page writeout could otherwise come in and zero beyond i_size.
  1786. */
  1787. if (pos+copied > inode->i_size) {
  1788. i_size_write(inode, pos+copied);
  1789. i_size_changed = 1;
  1790. }
  1791. unlock_page(page);
  1792. page_cache_release(page);
  1793. /*
  1794. * Don't mark the inode dirty under page lock. First, it unnecessarily
  1795. * makes the holding time of page lock longer. Second, it forces lock
  1796. * ordering of page lock and transaction start for journaling
  1797. * filesystems.
  1798. */
  1799. if (i_size_changed)
  1800. mark_inode_dirty(inode);
  1801. return copied;
  1802. }
  1803. EXPORT_SYMBOL(generic_write_end);
  1804. /*
  1805. * block_is_partially_uptodate checks whether buffers within a page are
  1806. * uptodate or not.
  1807. *
  1808. * Returns true if all buffers which correspond to a file portion
  1809. * we want to read are uptodate.
  1810. */
  1811. int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
  1812. unsigned long from)
  1813. {
  1814. struct inode *inode = page->mapping->host;
  1815. unsigned block_start, block_end, blocksize;
  1816. unsigned to;
  1817. struct buffer_head *bh, *head;
  1818. int ret = 1;
  1819. if (!page_has_buffers(page))
  1820. return 0;
  1821. blocksize = 1 << inode->i_blkbits;
  1822. to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
  1823. to = from + to;
  1824. if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
  1825. return 0;
  1826. head = page_buffers(page);
  1827. bh = head;
  1828. block_start = 0;
  1829. do {
  1830. block_end = block_start + blocksize;
  1831. if (block_end > from && block_start < to) {
  1832. if (!buffer_uptodate(bh)) {
  1833. ret = 0;
  1834. break;
  1835. }
  1836. if (block_end >= to)
  1837. break;
  1838. }
  1839. block_start = block_end;
  1840. bh = bh->b_this_page;
  1841. } while (bh != head);
  1842. return ret;
  1843. }
  1844. EXPORT_SYMBOL(block_is_partially_uptodate);
  1845. /*
  1846. * Generic "read page" function for block devices that have the normal
  1847. * get_block functionality. This is most of the block device filesystems.
  1848. * Reads the page asynchronously --- the unlock_buffer() and
  1849. * set/clear_buffer_uptodate() functions propagate buffer state into the
  1850. * page struct once IO has completed.
  1851. */
  1852. int block_read_full_page(struct page *page, get_block_t *get_block)
  1853. {
  1854. struct inode *inode = page->mapping->host;
  1855. sector_t iblock, lblock;
  1856. struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
  1857. unsigned int blocksize;
  1858. int nr, i;
  1859. int fully_mapped = 1;
  1860. BUG_ON(!PageLocked(page));
  1861. blocksize = 1 << inode->i_blkbits;
  1862. if (!page_has_buffers(page))
  1863. create_empty_buffers(page, blocksize, 0);
  1864. head = page_buffers(page);
  1865. iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1866. lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
  1867. bh = head;
  1868. nr = 0;
  1869. i = 0;
  1870. do {
  1871. if (buffer_uptodate(bh))
  1872. continue;
  1873. if (!buffer_mapped(bh)) {
  1874. int err = 0;
  1875. fully_mapped = 0;
  1876. if (iblock < lblock) {
  1877. WARN_ON(bh->b_size != blocksize);
  1878. err = get_block(inode, iblock, bh, 0);
  1879. if (err)
  1880. SetPageError(page);
  1881. }
  1882. if (!buffer_mapped(bh)) {
  1883. zero_user(page, i * blocksize, blocksize);
  1884. if (!err)
  1885. set_buffer_uptodate(bh);
  1886. continue;
  1887. }
  1888. /*
  1889. * get_block() might have updated the buffer
  1890. * synchronously
  1891. */
  1892. if (buffer_uptodate(bh))
  1893. continue;
  1894. }
  1895. arr[nr++] = bh;
  1896. } while (i++, iblock++, (bh = bh->b_this_page) != head);
  1897. if (fully_mapped)
  1898. SetPageMappedToDisk(page);
  1899. if (!nr) {
  1900. /*
  1901. * All buffers are uptodate - we can set the page uptodate
  1902. * as well. But not if get_block() returned an error.
  1903. */
  1904. if (!PageError(page))
  1905. SetPageUptodate(page);
  1906. unlock_page(page);
  1907. return 0;
  1908. }
  1909. /* Stage two: lock the buffers */
  1910. for (i = 0; i < nr; i++) {
  1911. bh = arr[i];
  1912. lock_buffer(bh);
  1913. mark_buffer_async_read(bh);
  1914. }
  1915. /*
  1916. * Stage 3: start the IO. Check for uptodateness
  1917. * inside the buffer lock in case another process reading
  1918. * the underlying blockdev brought it uptodate (the sct fix).
  1919. */
  1920. for (i = 0; i < nr; i++) {
  1921. bh = arr[i];
  1922. if (buffer_uptodate(bh))
  1923. end_buffer_async_read(bh, 1);
  1924. else
  1925. submit_bh(READ, bh);
  1926. }
  1927. return 0;
  1928. }
  1929. EXPORT_SYMBOL(block_read_full_page);
  1930. /* utility function for filesystems that need to do work on expanding
  1931. * truncates. Uses filesystem pagecache writes to allow the filesystem to
  1932. * deal with the hole.
  1933. */
  1934. int generic_cont_expand_simple(struct inode *inode, loff_t size)
  1935. {
  1936. struct address_space *mapping = inode->i_mapping;
  1937. struct page *page;
  1938. void *fsdata;
  1939. int err;
  1940. err = inode_newsize_ok(inode, size);
  1941. if (err)
  1942. goto out;
  1943. err = pagecache_write_begin(NULL, mapping, size, 0,
  1944. AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
  1945. &page, &fsdata);
  1946. if (err)
  1947. goto out;
  1948. err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
  1949. BUG_ON(err > 0);
  1950. out:
  1951. return err;
  1952. }
  1953. EXPORT_SYMBOL(generic_cont_expand_simple);
  1954. static int cont_expand_zero(struct file *file, struct address_space *mapping,
  1955. loff_t pos, loff_t *bytes)
  1956. {
  1957. struct inode *inode = mapping->host;
  1958. unsigned blocksize = 1 << inode->i_blkbits;
  1959. struct page *page;
  1960. void *fsdata;
  1961. pgoff_t index, curidx;
  1962. loff_t curpos;
  1963. unsigned zerofrom, offset, len;
  1964. int err = 0;
  1965. index = pos >> PAGE_CACHE_SHIFT;
  1966. offset = pos & ~PAGE_CACHE_MASK;
  1967. while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
  1968. zerofrom = curpos & ~PAGE_CACHE_MASK;
  1969. if (zerofrom & (blocksize-1)) {
  1970. *bytes |= (blocksize-1);
  1971. (*bytes)++;
  1972. }
  1973. len = PAGE_CACHE_SIZE - zerofrom;
  1974. err = pagecache_write_begin(file, mapping, curpos, len,
  1975. AOP_FLAG_UNINTERRUPTIBLE,
  1976. &page, &fsdata);
  1977. if (err)
  1978. goto out;
  1979. zero_user(page, zerofrom, len);
  1980. err = pagecache_write_end(file, mapping, curpos, len, len,
  1981. page, fsdata);
  1982. if (err < 0)
  1983. goto out;
  1984. BUG_ON(err != len);
  1985. err = 0;
  1986. balance_dirty_pages_ratelimited(mapping);
  1987. }
  1988. /* page covers the boundary, find the boundary offset */
  1989. if (index == curidx) {
  1990. zerofrom = curpos & ~PAGE_CACHE_MASK;
  1991. /* if we will expand the thing last block will be filled */
  1992. if (offset <= zerofrom) {
  1993. goto out;
  1994. }
  1995. if (zerofrom & (blocksize-1)) {
  1996. *bytes |= (blocksize-1);
  1997. (*bytes)++;
  1998. }
  1999. len = offset - zerofrom;
  2000. err = pagecache_write_begin(file, mapping, curpos, len,
  2001. AOP_FLAG_UNINTERRUPTIBLE,
  2002. &page, &fsdata);
  2003. if (err)
  2004. goto out;
  2005. zero_user(page, zerofrom, len);
  2006. err = pagecache_write_end(file, mapping, curpos, len, len,
  2007. page, fsdata);
  2008. if (err < 0)
  2009. goto out;
  2010. BUG_ON(err != len);
  2011. err = 0;
  2012. }
  2013. out:
  2014. return err;
  2015. }
  2016. /*
  2017. * For moronic filesystems that do not allow holes in file.
  2018. * We may have to extend the file.
  2019. */
  2020. int cont_write_begin(struct file *file, struct address_space *mapping,
  2021. loff_t pos, unsigned len, unsigned flags,
  2022. struct page **pagep, void **fsdata,
  2023. get_block_t *get_block, loff_t *bytes)
  2024. {
  2025. struct inode *inode = mapping->host;
  2026. unsigned blocksize = 1 << inode->i_blkbits;
  2027. unsigned zerofrom;
  2028. int err;
  2029. err = cont_expand_zero(file, mapping, pos, bytes);
  2030. if (err)
  2031. return err;
  2032. zerofrom = *bytes & ~PAGE_CACHE_MASK;
  2033. if (pos+len > *bytes && zerofrom & (blocksize-1)) {
  2034. *bytes |= (blocksize-1);
  2035. (*bytes)++;
  2036. }
  2037. return block_write_begin(mapping, pos, len, flags, pagep, get_block);
  2038. }
  2039. EXPORT_SYMBOL(cont_write_begin);
  2040. int block_commit_write(struct page *page, unsigned from, unsigned to)
  2041. {
  2042. struct inode *inode = page->mapping->host;
  2043. __block_commit_write(inode,page,from,to);
  2044. return 0;
  2045. }
  2046. EXPORT_SYMBOL(block_commit_write);
  2047. /*
  2048. * block_page_mkwrite() is not allowed to change the file size as it gets
  2049. * called from a page fault handler when a page is first dirtied. Hence we must
  2050. * be careful to check for EOF conditions here. We set the page up correctly
  2051. * for a written page which means we get ENOSPC checking when writing into
  2052. * holes and correct delalloc and unwritten extent mapping on filesystems that
  2053. * support these features.
  2054. *
  2055. * We are not allowed to take the i_mutex here so we have to play games to
  2056. * protect against truncate races as the page could now be beyond EOF. Because
  2057. * truncate writes the inode size before removing pages, once we have the
  2058. * page lock we can determine safely if the page is beyond EOF. If it is not
  2059. * beyond EOF, then the page is guaranteed safe against truncation until we
  2060. * unlock the page.
  2061. *
  2062. * Direct callers of this function should call vfs_check_frozen() so that page
  2063. * fault does not busyloop until the fs is thawed.
  2064. */
  2065. int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
  2066. get_block_t get_block)
  2067. {
  2068. struct page *page = vmf->page;
  2069. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  2070. unsigned long end;
  2071. loff_t size;
  2072. int ret;
  2073. lock_page(page);
  2074. size = i_size_read(inode);
  2075. if ((page->mapping != inode->i_mapping) ||
  2076. (page_offset(page) > size)) {
  2077. /* We overload EFAULT to mean page got truncated */
  2078. ret = -EFAULT;
  2079. goto out_unlock;
  2080. }
  2081. /* page is wholly or partially inside EOF */
  2082. if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
  2083. end = size & ~PAGE_CACHE_MASK;
  2084. else
  2085. end = PAGE_CACHE_SIZE;
  2086. ret = __block_write_begin(page, 0, end, get_block);
  2087. if (!ret)
  2088. ret = block_commit_write(page, 0, end);
  2089. if (unlikely(ret < 0))
  2090. goto out_unlock;
  2091. /*
  2092. * Freezing in progress? We check after the page is marked dirty and
  2093. * with page lock held so if the test here fails, we are sure freezing
  2094. * code will wait during syncing until the page fault is done - at that
  2095. * point page will be dirty and unlocked so freezing code will write it
  2096. * and writeprotect it again.
  2097. */
  2098. set_page_dirty(page);
  2099. if (inode->i_sb->s_frozen != SB_UNFROZEN) {
  2100. ret = -EAGAIN;
  2101. goto out_unlock;
  2102. }
  2103. wait_on_page_writeback(page);
  2104. return 0;
  2105. out_unlock:
  2106. unlock_page(page);
  2107. return ret;
  2108. }
  2109. EXPORT_SYMBOL(__block_page_mkwrite);
  2110. int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
  2111. get_block_t get_block)
  2112. {
  2113. int ret;
  2114. struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
  2115. /*
  2116. * This check is racy but catches the common case. The check in
  2117. * __block_page_mkwrite() is reliable.
  2118. */
  2119. vfs_check_frozen(sb, SB_FREEZE_WRITE);
  2120. ret = __block_page_mkwrite(vma, vmf, get_block);
  2121. return block_page_mkwrite_return(ret);
  2122. }
  2123. EXPORT_SYMBOL(block_page_mkwrite);
  2124. /*
  2125. * nobh_write_begin()'s prereads are special: the buffer_heads are freed
  2126. * immediately, while under the page lock. So it needs a special end_io
  2127. * handler which does not touch the bh after unlocking it.
  2128. */
  2129. static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
  2130. {
  2131. __end_buffer_read_notouch(bh, uptodate);
  2132. }
  2133. /*
  2134. * Attach the singly-linked list of buffers created by nobh_write_begin, to
  2135. * the page (converting it to circular linked list and taking care of page
  2136. * dirty races).
  2137. */
  2138. static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
  2139. {
  2140. struct buffer_head *bh;
  2141. BUG_ON(!PageLocked(page));
  2142. spin_lock(&page->mapping->private_lock);
  2143. bh = head;
  2144. do {
  2145. if (PageDirty(page))
  2146. set_buffer_dirty(bh);
  2147. if (!bh->b_this_page)
  2148. bh->b_this_page = head;
  2149. bh = bh->b_this_page;
  2150. } while (bh != head);
  2151. attach_page_buffers(page, head);
  2152. spin_unlock(&page->mapping->private_lock);
  2153. }
  2154. /*
  2155. * On entry, the page is fully not uptodate.
  2156. * On exit the page is fully uptodate in the areas outside (from,to)
  2157. * The filesystem needs to handle block truncation upon failure.
  2158. */
  2159. int nobh_write_begin(struct address_space *mapping,
  2160. loff_t pos, unsigned len, unsigned flags,
  2161. struct page **pagep, void **fsdata,
  2162. get_block_t *get_block)
  2163. {
  2164. struct inode *inode = mapping->host;
  2165. const unsigned blkbits = inode->i_blkbits;
  2166. const unsigned blocksize = 1 << blkbits;
  2167. struct buffer_head *head, *bh;
  2168. struct page *page;
  2169. pgoff_t index;
  2170. unsigned from, to;
  2171. unsigned block_in_page;
  2172. unsigned block_start, block_end;
  2173. sector_t block_in_file;
  2174. int nr_reads = 0;
  2175. int ret = 0;
  2176. int is_mapped_to_disk = 1;
  2177. index = pos >> PAGE_CACHE_SHIFT;
  2178. from = pos & (PAGE_CACHE_SIZE - 1);
  2179. to = from + len;
  2180. page = grab_cache_page_write_begin(mapping, index, flags);
  2181. if (!page)
  2182. return -ENOMEM;
  2183. *pagep = page;
  2184. *fsdata = NULL;
  2185. if (page_has_buffers(page)) {
  2186. ret = __block_write_begin(page, pos, len, get_block);
  2187. if (unlikely(ret))
  2188. goto out_release;
  2189. return ret;
  2190. }
  2191. if (PageMappedToDisk(page))
  2192. return 0;
  2193. /*
  2194. * Allocate buffers so that we can keep track of state, and potentially
  2195. * attach them to the page if an error occurs. In the common case of
  2196. * no error, they will just be freed again without ever being attached
  2197. * to the page (which is all OK, because we're under the page lock).
  2198. *
  2199. * Be careful: the buffer linked list is a NULL terminated one, rather
  2200. * than the circular one we're used to.
  2201. */
  2202. head = alloc_page_buffers(page, blocksize, 0);
  2203. if (!head) {
  2204. ret = -ENOMEM;
  2205. goto out_release;
  2206. }
  2207. block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
  2208. /*
  2209. * We loop across all blocks in the page, whether or not they are
  2210. * part of the affected region. This is so we can discover if the
  2211. * page is fully mapped-to-disk.
  2212. */
  2213. for (block_start = 0, block_in_page = 0, bh = head;
  2214. block_start < PAGE_CACHE_SIZE;
  2215. block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
  2216. int create;
  2217. block_end = block_start + blocksize;
  2218. bh->b_state = 0;
  2219. create = 1;
  2220. if (block_start >= to)
  2221. create = 0;
  2222. ret = get_block(inode, block_in_file + block_in_page,
  2223. bh, create);
  2224. if (ret)
  2225. goto failed;
  2226. if (!buffer_mapped(bh))
  2227. is_mapped_to_disk = 0;
  2228. if (buffer_new(bh))
  2229. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  2230. if (PageUptodate(page)) {
  2231. set_buffer_uptodate(bh);
  2232. continue;
  2233. }
  2234. if (buffer_new(bh) || !buffer_mapped(bh)) {
  2235. zero_user_segments(page, block_start, from,
  2236. to, block_end);
  2237. continue;
  2238. }
  2239. if (buffer_uptodate(bh))
  2240. continue; /* reiserfs does this */
  2241. if (block_start < from || block_end > to) {
  2242. lock_buffer(bh);
  2243. bh->b_end_io = end_buffer_read_nobh;
  2244. submit_bh(READ, bh);
  2245. nr_reads++;
  2246. }
  2247. }
  2248. if (nr_reads) {
  2249. /*
  2250. * The page is locked, so these buffers are protected from
  2251. * any VM or truncate activity. Hence we don't need to care
  2252. * for the buffer_head refcounts.
  2253. */
  2254. for (bh = head; bh; bh = bh->b_this_page) {
  2255. wait_on_buffer(bh);
  2256. if (!buffer_uptodate(bh))
  2257. ret = -EIO;
  2258. }
  2259. if (ret)
  2260. goto failed;
  2261. }
  2262. if (is_mapped_to_disk)
  2263. SetPageMappedToDisk(page);
  2264. *fsdata = head; /* to be released by nobh_write_end */
  2265. return 0;
  2266. failed:
  2267. BUG_ON(!ret);
  2268. /*
  2269. * Error recovery is a bit difficult. We need to zero out blocks that
  2270. * were newly allocated, and dirty them to ensure they get written out.
  2271. * Buffers need to be attached to the page at this point, otherwise
  2272. * the handling of potential IO errors during writeout would be hard
  2273. * (could try doing synchronous writeout, but what if that fails too?)
  2274. */
  2275. attach_nobh_buffers(page, head);
  2276. page_zero_new_buffers(page, from, to);
  2277. out_release:
  2278. unlock_page(page);
  2279. page_cache_release(page);
  2280. *pagep = NULL;
  2281. return ret;
  2282. }
  2283. EXPORT_SYMBOL(nobh_write_begin);
  2284. int nobh_write_end(struct file *file, struct address_space *mapping,
  2285. loff_t pos, unsigned len, unsigned copied,
  2286. struct page *page, void *fsdata)
  2287. {
  2288. struct inode *inode = page->mapping->host;
  2289. struct buffer_head *head = fsdata;
  2290. struct buffer_head *bh;
  2291. BUG_ON(fsdata != NULL && page_has_buffers(page));
  2292. if (unlikely(copied < len) && head)
  2293. attach_nobh_buffers(page, head);
  2294. if (page_has_buffers(page))
  2295. return generic_write_end(file, mapping, pos, len,
  2296. copied, page, fsdata);
  2297. SetPageUptodate(page);
  2298. set_page_dirty(page);
  2299. if (pos+copied > inode->i_size) {
  2300. i_size_write(inode, pos+copied);
  2301. mark_inode_dirty(inode);
  2302. }
  2303. unlock_page(page);
  2304. page_cache_release(page);
  2305. while (head) {
  2306. bh = head;
  2307. head = head->b_this_page;
  2308. free_buffer_head(bh);
  2309. }
  2310. return copied;
  2311. }
  2312. EXPORT_SYMBOL(nobh_write_end);
  2313. /*
  2314. * nobh_writepage() - based on block_full_write_page() except
  2315. * that it tries to operate without attaching bufferheads to
  2316. * the page.
  2317. */
  2318. int nobh_writepage(struct page *page, get_block_t *get_block,
  2319. struct writeback_control *wbc)
  2320. {
  2321. struct inode * const inode = page->mapping->host;
  2322. loff_t i_size = i_size_read(inode);
  2323. const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
  2324. unsigned offset;
  2325. int ret;
  2326. /* Is the page fully inside i_size? */
  2327. if (page->index < end_index)
  2328. goto out;
  2329. /* Is the page fully outside i_size? (truncate in progress) */
  2330. offset = i_size & (PAGE_CACHE_SIZE-1);
  2331. if (page->index >= end_index+1 || !offset) {
  2332. /*
  2333. * The page may have dirty, unmapped buffers. For example,
  2334. * they may have been added in ext3_writepage(). Make them
  2335. * freeable here, so the page does not leak.
  2336. */
  2337. #if 0
  2338. /* Not really sure about this - do we need this ? */
  2339. if (page->mapping->a_ops->invalidatepage)
  2340. page->mapping->a_ops->invalidatepage(page, offset);
  2341. #endif
  2342. unlock_page(page);
  2343. return 0; /* don't care */
  2344. }
  2345. /*
  2346. * The page straddles i_size. It must be zeroed out on each and every
  2347. * writepage invocation because it may be mmapped. "A file is mapped
  2348. * in multiples of the page size. For a file that is not a multiple of
  2349. * the page size, the remaining memory is zeroed when mapped, and
  2350. * writes to that region are not written out to the file."
  2351. */
  2352. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  2353. out:
  2354. ret = mpage_writepage(page, get_block, wbc);
  2355. if (ret == -EAGAIN)
  2356. ret = __block_write_full_page(inode, page, get_block, wbc,
  2357. end_buffer_async_write);
  2358. return ret;
  2359. }
  2360. EXPORT_SYMBOL(nobh_writepage);
  2361. int nobh_truncate_page(struct address_space *mapping,
  2362. loff_t from, get_block_t *get_block)
  2363. {
  2364. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  2365. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  2366. unsigned blocksize;
  2367. sector_t iblock;
  2368. unsigned length, pos;
  2369. struct inode *inode = mapping->host;
  2370. struct page *page;
  2371. struct buffer_head map_bh;
  2372. int err;
  2373. blocksize = 1 << inode->i_blkbits;
  2374. length = offset & (blocksize - 1);
  2375. /* Block boundary? Nothing to do */
  2376. if (!length)
  2377. return 0;
  2378. length = blocksize - length;
  2379. iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2380. page = grab_cache_page(mapping, index);
  2381. err = -ENOMEM;
  2382. if (!page)
  2383. goto out;
  2384. if (page_has_buffers(page)) {
  2385. has_buffers:
  2386. unlock_page(page);
  2387. page_cache_release(page);
  2388. return block_truncate_page(mapping, from, get_block);
  2389. }
  2390. /* Find the buffer that contains "offset" */
  2391. pos = blocksize;
  2392. while (offset >= pos) {
  2393. iblock++;
  2394. pos += blocksize;
  2395. }
  2396. map_bh.b_size = blocksize;
  2397. map_bh.b_state = 0;
  2398. err = get_block(inode, iblock, &map_bh, 0);
  2399. if (err)
  2400. goto unlock;
  2401. /* unmapped? It's a hole - nothing to do */
  2402. if (!buffer_mapped(&map_bh))
  2403. goto unlock;
  2404. /* Ok, it's mapped. Make sure it's up-to-date */
  2405. if (!PageUptodate(page)) {
  2406. err = mapping->a_ops->readpage(NULL, page);
  2407. if (err) {
  2408. page_cache_release(page);
  2409. goto out;
  2410. }
  2411. lock_page(page);
  2412. if (!PageUptodate(page)) {
  2413. err = -EIO;
  2414. goto unlock;
  2415. }
  2416. if (page_has_buffers(page))
  2417. goto has_buffers;
  2418. }
  2419. zero_user(page, offset, length);
  2420. set_page_dirty(page);
  2421. err = 0;
  2422. unlock:
  2423. unlock_page(page);
  2424. page_cache_release(page);
  2425. out:
  2426. return err;
  2427. }
  2428. EXPORT_SYMBOL(nobh_truncate_page);
  2429. int block_truncate_page(struct address_space *mapping,
  2430. loff_t from, get_block_t *get_block)
  2431. {
  2432. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  2433. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  2434. unsigned blocksize;
  2435. sector_t iblock;
  2436. unsigned length, pos;
  2437. struct inode *inode = mapping->host;
  2438. struct page *page;
  2439. struct buffer_head *bh;
  2440. int err;
  2441. blocksize = 1 << inode->i_blkbits;
  2442. length = offset & (blocksize - 1);
  2443. /* Block boundary? Nothing to do */
  2444. if (!length)
  2445. return 0;
  2446. length = blocksize - length;
  2447. iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2448. page = grab_cache_page(mapping, index);
  2449. err = -ENOMEM;
  2450. if (!page)
  2451. goto out;
  2452. if (!page_has_buffers(page))
  2453. create_empty_buffers(page, blocksize, 0);
  2454. /* Find the buffer that contains "offset" */
  2455. bh = page_buffers(page);
  2456. pos = blocksize;
  2457. while (offset >= pos) {
  2458. bh = bh->b_this_page;
  2459. iblock++;
  2460. pos += blocksize;
  2461. }
  2462. err = 0;
  2463. if (!buffer_mapped(bh)) {
  2464. WARN_ON(bh->b_size != blocksize);
  2465. err = get_block(inode, iblock, bh, 0);
  2466. if (err)
  2467. goto unlock;
  2468. /* unmapped? It's a hole - nothing to do */
  2469. if (!buffer_mapped(bh))
  2470. goto unlock;
  2471. }
  2472. /* Ok, it's mapped. Make sure it's up-to-date */
  2473. if (PageUptodate(page))
  2474. set_buffer_uptodate(bh);
  2475. if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
  2476. err = -EIO;
  2477. ll_rw_block(READ, 1, &bh);
  2478. wait_on_buffer(bh);
  2479. /* Uhhuh. Read error. Complain and punt. */
  2480. if (!buffer_uptodate(bh))
  2481. goto unlock;
  2482. }
  2483. zero_user(page, offset, length);
  2484. mark_buffer_dirty(bh);
  2485. err = 0;
  2486. unlock:
  2487. unlock_page(page);
  2488. page_cache_release(page);
  2489. out:
  2490. return err;
  2491. }
  2492. EXPORT_SYMBOL(block_truncate_page);
  2493. /*
  2494. * The generic ->writepage function for buffer-backed address_spaces
  2495. * this form passes in the end_io handler used to finish the IO.
  2496. */
  2497. int block_write_full_page_endio(struct page *page, get_block_t *get_block,
  2498. struct writeback_control *wbc, bh_end_io_t *handler)
  2499. {
  2500. struct inode * const inode = page->mapping->host;
  2501. loff_t i_size = i_size_read(inode);
  2502. const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
  2503. unsigned offset;
  2504. /* Is the page fully inside i_size? */
  2505. if (page->index < end_index)
  2506. return __block_write_full_page(inode, page, get_block, wbc,
  2507. handler);
  2508. /* Is the page fully outside i_size? (truncate in progress) */
  2509. offset = i_size & (PAGE_CACHE_SIZE-1);
  2510. if (page->index >= end_index+1 || !offset) {
  2511. /*
  2512. * The page may have dirty, unmapped buffers. For example,
  2513. * they may have been added in ext3_writepage(). Make them
  2514. * freeable here, so the page does not leak.
  2515. */
  2516. do_invalidatepage(page, 0);
  2517. unlock_page(page);
  2518. return 0; /* don't care */
  2519. }
  2520. /*
  2521. * The page straddles i_size. It must be zeroed out on each and every
  2522. * writepage invocation because it may be mmapped. "A file is mapped
  2523. * in multiples of the page size. For a file that is not a multiple of
  2524. * the page size, the remaining memory is zeroed when mapped, and
  2525. * writes to that region are not written out to the file."
  2526. */
  2527. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  2528. return __block_write_full_page(inode, page, get_block, wbc, handler);
  2529. }
  2530. EXPORT_SYMBOL(block_write_full_page_endio);
  2531. /*
  2532. * The generic ->writepage function for buffer-backed address_spaces
  2533. */
  2534. int block_write_full_page(struct page *page, get_block_t *get_block,
  2535. struct writeback_control *wbc)
  2536. {
  2537. return block_write_full_page_endio(page, get_block, wbc,
  2538. end_buffer_async_write);
  2539. }
  2540. EXPORT_SYMBOL(block_write_full_page);
  2541. sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
  2542. get_block_t *get_block)
  2543. {
  2544. struct buffer_head tmp;
  2545. struct inode *inode = mapping->host;
  2546. tmp.b_state = 0;
  2547. tmp.b_blocknr = 0;
  2548. tmp.b_size = 1 << inode->i_blkbits;
  2549. get_block(inode, block, &tmp, 0);
  2550. return tmp.b_blocknr;
  2551. }
  2552. EXPORT_SYMBOL(generic_block_bmap);
  2553. static void end_bio_bh_io_sync(struct bio *bio, int err)
  2554. {
  2555. struct buffer_head *bh = bio->bi_private;
  2556. if (err == -EOPNOTSUPP) {
  2557. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2558. }
  2559. if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
  2560. set_bit(BH_Quiet, &bh->b_state);
  2561. bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
  2562. bio_put(bio);
  2563. }
  2564. int submit_bh(int rw, struct buffer_head * bh)
  2565. {
  2566. struct bio *bio;
  2567. int ret = 0;
  2568. BUG_ON(!buffer_locked(bh));
  2569. BUG_ON(!buffer_mapped(bh));
  2570. BUG_ON(!bh->b_end_io);
  2571. BUG_ON(buffer_delay(bh));
  2572. BUG_ON(buffer_unwritten(bh));
  2573. /*
  2574. * Only clear out a write error when rewriting
  2575. */
  2576. if (test_set_buffer_req(bh) && (rw & WRITE))
  2577. clear_buffer_write_io_error(bh);
  2578. /*
  2579. * from here on down, it's all bio -- do the initial mapping,
  2580. * submit_bio -> generic_make_request may further map this bio around
  2581. */
  2582. bio = bio_alloc(GFP_NOIO, 1);
  2583. bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
  2584. bio->bi_bdev = bh->b_bdev;
  2585. bio->bi_io_vec[0].bv_page = bh->b_page;
  2586. bio->bi_io_vec[0].bv_len = bh->b_size;
  2587. bio->bi_io_vec[0].bv_offset = bh_offset(bh);
  2588. bio->bi_vcnt = 1;
  2589. bio->bi_idx = 0;
  2590. bio->bi_size = bh->b_size;
  2591. bio->bi_end_io = end_bio_bh_io_sync;
  2592. bio->bi_private = bh;
  2593. bio_get(bio);
  2594. submit_bio(rw, bio);
  2595. if (bio_flagged(bio, BIO_EOPNOTSUPP))
  2596. ret = -EOPNOTSUPP;
  2597. bio_put(bio);
  2598. return ret;
  2599. }
  2600. EXPORT_SYMBOL(submit_bh);
  2601. /**
  2602. * ll_rw_block: low-level access to block devices (DEPRECATED)
  2603. * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
  2604. * @nr: number of &struct buffer_heads in the array
  2605. * @bhs: array of pointers to &struct buffer_head
  2606. *
  2607. * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
  2608. * requests an I/O operation on them, either a %READ or a %WRITE. The third
  2609. * %READA option is described in the documentation for generic_make_request()
  2610. * which ll_rw_block() calls.
  2611. *
  2612. * This function drops any buffer that it cannot get a lock on (with the
  2613. * BH_Lock state bit), any buffer that appears to be clean when doing a write
  2614. * request, and any buffer that appears to be up-to-date when doing read
  2615. * request. Further it marks as clean buffers that are processed for
  2616. * writing (the buffer cache won't assume that they are actually clean
  2617. * until the buffer gets unlocked).
  2618. *
  2619. * ll_rw_block sets b_end_io to simple completion handler that marks
  2620. * the buffer up-to-date (if approriate), unlocks the buffer and wakes
  2621. * any waiters.
  2622. *
  2623. * All of the buffers must be for the same device, and must also be a
  2624. * multiple of the current approved size for the device.
  2625. */
  2626. void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
  2627. {
  2628. int i;
  2629. for (i = 0; i < nr; i++) {
  2630. struct buffer_head *bh = bhs[i];
  2631. if (!trylock_buffer(bh))
  2632. continue;
  2633. if (rw == WRITE) {
  2634. if (test_clear_buffer_dirty(bh)) {
  2635. bh->b_end_io = end_buffer_write_sync;
  2636. get_bh(bh);
  2637. submit_bh(WRITE, bh);
  2638. continue;
  2639. }
  2640. } else {
  2641. if (!buffer_uptodate(bh)) {
  2642. bh->b_end_io = end_buffer_read_sync;
  2643. get_bh(bh);
  2644. submit_bh(rw, bh);
  2645. continue;
  2646. }
  2647. }
  2648. unlock_buffer(bh);
  2649. }
  2650. }
  2651. EXPORT_SYMBOL(ll_rw_block);
  2652. void write_dirty_buffer(struct buffer_head *bh, int rw)
  2653. {
  2654. lock_buffer(bh);
  2655. if (!test_clear_buffer_dirty(bh)) {
  2656. unlock_buffer(bh);
  2657. return;
  2658. }
  2659. bh->b_end_io = end_buffer_write_sync;
  2660. get_bh(bh);
  2661. submit_bh(rw, bh);
  2662. }
  2663. EXPORT_SYMBOL(write_dirty_buffer);
  2664. /*
  2665. * For a data-integrity writeout, we need to wait upon any in-progress I/O
  2666. * and then start new I/O and then wait upon it. The caller must have a ref on
  2667. * the buffer_head.
  2668. */
  2669. int __sync_dirty_buffer(struct buffer_head *bh, int rw)
  2670. {
  2671. int ret = 0;
  2672. WARN_ON(atomic_read(&bh->b_count) < 1);
  2673. lock_buffer(bh);
  2674. if (test_clear_buffer_dirty(bh)) {
  2675. get_bh(bh);
  2676. bh->b_end_io = end_buffer_write_sync;
  2677. ret = submit_bh(rw, bh);
  2678. wait_on_buffer(bh);
  2679. if (!ret && !buffer_uptodate(bh))
  2680. ret = -EIO;
  2681. } else {
  2682. unlock_buffer(bh);
  2683. }
  2684. return ret;
  2685. }
  2686. EXPORT_SYMBOL(__sync_dirty_buffer);
  2687. int sync_dirty_buffer(struct buffer_head *bh)
  2688. {
  2689. return __sync_dirty_buffer(bh, WRITE_SYNC);
  2690. }
  2691. EXPORT_SYMBOL(sync_dirty_buffer);
  2692. /*
  2693. * try_to_free_buffers() checks if all the buffers on this particular page
  2694. * are unused, and releases them if so.
  2695. *
  2696. * Exclusion against try_to_free_buffers may be obtained by either
  2697. * locking the page or by holding its mapping's private_lock.
  2698. *
  2699. * If the page is dirty but all the buffers are clean then we need to
  2700. * be sure to mark the page clean as well. This is because the page
  2701. * may be against a block device, and a later reattachment of buffers
  2702. * to a dirty page will set *all* buffers dirty. Which would corrupt
  2703. * filesystem data on the same device.
  2704. *
  2705. * The same applies to regular filesystem pages: if all the buffers are
  2706. * clean then we set the page clean and proceed. To do that, we require
  2707. * total exclusion from __set_page_dirty_buffers(). That is obtained with
  2708. * private_lock.
  2709. *
  2710. * try_to_free_buffers() is non-blocking.
  2711. */
  2712. static inline int buffer_busy(struct buffer_head *bh)
  2713. {
  2714. return atomic_read(&bh->b_count) |
  2715. (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
  2716. }
  2717. static int
  2718. drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
  2719. {
  2720. struct buffer_head *head = page_buffers(page);
  2721. struct buffer_head *bh;
  2722. bh = head;
  2723. do {
  2724. if (buffer_write_io_error(bh) && page->mapping)
  2725. set_bit(AS_EIO, &page->mapping->flags);
  2726. if (buffer_busy(bh))
  2727. goto failed;
  2728. bh = bh->b_this_page;
  2729. } while (bh != head);
  2730. do {
  2731. struct buffer_head *next = bh->b_this_page;
  2732. if (bh->b_assoc_map)
  2733. __remove_assoc_queue(bh);
  2734. bh = next;
  2735. } while (bh != head);
  2736. *buffers_to_free = head;
  2737. __clear_page_buffers(page);
  2738. return 1;
  2739. failed:
  2740. return 0;
  2741. }
  2742. int try_to_free_buffers(struct page *page)
  2743. {
  2744. struct address_space * const mapping = page->mapping;
  2745. struct buffer_head *buffers_to_free = NULL;
  2746. int ret = 0;
  2747. BUG_ON(!PageLocked(page));
  2748. if (PageWriteback(page))
  2749. return 0;
  2750. if (mapping == NULL) { /* can this still happen? */
  2751. ret = drop_buffers(page, &buffers_to_free);
  2752. goto out;
  2753. }
  2754. spin_lock(&mapping->private_lock);
  2755. ret = drop_buffers(page, &buffers_to_free);
  2756. /*
  2757. * If the filesystem writes its buffers by hand (eg ext3)
  2758. * then we can have clean buffers against a dirty page. We
  2759. * clean the page here; otherwise the VM will never notice
  2760. * that the filesystem did any IO at all.
  2761. *
  2762. * Also, during truncate, discard_buffer will have marked all
  2763. * the page's buffers clean. We discover that here and clean
  2764. * the page also.
  2765. *
  2766. * private_lock must be held over this entire operation in order
  2767. * to synchronise against __set_page_dirty_buffers and prevent the
  2768. * dirty bit from being lost.
  2769. */
  2770. if (ret)
  2771. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  2772. spin_unlock(&mapping->private_lock);
  2773. out:
  2774. if (buffers_to_free) {
  2775. struct buffer_head *bh = buffers_to_free;
  2776. do {
  2777. struct buffer_head *next = bh->b_this_page;
  2778. free_buffer_head(bh);
  2779. bh = next;
  2780. } while (bh != buffers_to_free);
  2781. }
  2782. return ret;
  2783. }
  2784. EXPORT_SYMBOL(try_to_free_buffers);
  2785. /*
  2786. * There are no bdflush tunables left. But distributions are
  2787. * still running obsolete flush daemons, so we terminate them here.
  2788. *
  2789. * Use of bdflush() is deprecated and will be removed in a future kernel.
  2790. * The `flush-X' kernel threads fully replace bdflush daemons and this call.
  2791. */
  2792. SYSCALL_DEFINE2(bdflush, int, func, long, data)
  2793. {
  2794. static int msg_count;
  2795. if (!capable(CAP_SYS_ADMIN))
  2796. return -EPERM;
  2797. if (msg_count < 5) {
  2798. msg_count++;
  2799. printk(KERN_INFO
  2800. "warning: process `%s' used the obsolete bdflush"
  2801. " system call\n", current->comm);
  2802. printk(KERN_INFO "Fix your initscripts?\n");
  2803. }
  2804. if (func == 1)
  2805. do_exit(0);
  2806. return 0;
  2807. }
  2808. /*
  2809. * Buffer-head allocation
  2810. */
  2811. static struct kmem_cache *bh_cachep;
  2812. /*
  2813. * Once the number of bh's in the machine exceeds this level, we start
  2814. * stripping them in writeback.
  2815. */
  2816. static int max_buffer_heads;
  2817. int buffer_heads_over_limit;
  2818. struct bh_accounting {
  2819. int nr; /* Number of live bh's */
  2820. int ratelimit; /* Limit cacheline bouncing */
  2821. };
  2822. static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
  2823. static void recalc_bh_state(void)
  2824. {
  2825. int i;
  2826. int tot = 0;
  2827. if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
  2828. return;
  2829. __this_cpu_write(bh_accounting.ratelimit, 0);
  2830. for_each_online_cpu(i)
  2831. tot += per_cpu(bh_accounting, i).nr;
  2832. buffer_heads_over_limit = (tot > max_buffer_heads);
  2833. }
  2834. struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
  2835. {
  2836. struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
  2837. if (ret) {
  2838. INIT_LIST_HEAD(&ret->b_assoc_buffers);
  2839. preempt_disable();
  2840. __this_cpu_inc(bh_accounting.nr);
  2841. recalc_bh_state();
  2842. preempt_enable();
  2843. }
  2844. return ret;
  2845. }
  2846. EXPORT_SYMBOL(alloc_buffer_head);
  2847. void free_buffer_head(struct buffer_head *bh)
  2848. {
  2849. BUG_ON(!list_empty(&bh->b_assoc_buffers));
  2850. kmem_cache_free(bh_cachep, bh);
  2851. preempt_disable();
  2852. __this_cpu_dec(bh_accounting.nr);
  2853. recalc_bh_state();
  2854. preempt_enable();
  2855. }
  2856. EXPORT_SYMBOL(free_buffer_head);
  2857. static void buffer_exit_cpu(int cpu)
  2858. {
  2859. int i;
  2860. struct bh_lru *b = &per_cpu(bh_lrus, cpu);
  2861. for (i = 0; i < BH_LRU_SIZE; i++) {
  2862. brelse(b->bhs[i]);
  2863. b->bhs[i] = NULL;
  2864. }
  2865. this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
  2866. per_cpu(bh_accounting, cpu).nr = 0;
  2867. }
  2868. static int buffer_cpu_notify(struct notifier_block *self,
  2869. unsigned long action, void *hcpu)
  2870. {
  2871. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
  2872. buffer_exit_cpu((unsigned long)hcpu);
  2873. return NOTIFY_OK;
  2874. }
  2875. /**
  2876. * bh_uptodate_or_lock - Test whether the buffer is uptodate
  2877. * @bh: struct buffer_head
  2878. *
  2879. * Return true if the buffer is up-to-date and false,
  2880. * with the buffer locked, if not.
  2881. */
  2882. int bh_uptodate_or_lock(struct buffer_head *bh)
  2883. {
  2884. if (!buffer_uptodate(bh)) {
  2885. lock_buffer(bh);
  2886. if (!buffer_uptodate(bh))
  2887. return 0;
  2888. unlock_buffer(bh);
  2889. }
  2890. return 1;
  2891. }
  2892. EXPORT_SYMBOL(bh_uptodate_or_lock);
  2893. /**
  2894. * bh_submit_read - Submit a locked buffer for reading
  2895. * @bh: struct buffer_head
  2896. *
  2897. * Returns zero on success and -EIO on error.
  2898. */
  2899. int bh_submit_read(struct buffer_head *bh)
  2900. {
  2901. BUG_ON(!buffer_locked(bh));
  2902. if (buffer_uptodate(bh)) {
  2903. unlock_buffer(bh);
  2904. return 0;
  2905. }
  2906. get_bh(bh);
  2907. bh->b_end_io = end_buffer_read_sync;
  2908. submit_bh(READ, bh);
  2909. wait_on_buffer(bh);
  2910. if (buffer_uptodate(bh))
  2911. return 0;
  2912. return -EIO;
  2913. }
  2914. EXPORT_SYMBOL(bh_submit_read);
  2915. void __init buffer_init(void)
  2916. {
  2917. int nrpages;
  2918. bh_cachep = kmem_cache_create("buffer_head",
  2919. sizeof(struct buffer_head), 0,
  2920. (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
  2921. SLAB_MEM_SPREAD),
  2922. NULL);
  2923. /*
  2924. * Limit the bh occupancy to 10% of ZONE_NORMAL
  2925. */
  2926. nrpages = (nr_free_buffer_pages() * 10) / 100;
  2927. max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
  2928. hotcpu_notifier(buffer_cpu_notify, 0);
  2929. }