delayed-inode.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. }
  60. static inline int btrfs_is_continuous_delayed_item(
  61. struct btrfs_delayed_item *item1,
  62. struct btrfs_delayed_item *item2)
  63. {
  64. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  65. item1->key.objectid == item2->key.objectid &&
  66. item1->key.type == item2->key.type &&
  67. item1->key.offset + 1 == item2->key.offset)
  68. return 1;
  69. return 0;
  70. }
  71. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  72. struct btrfs_root *root)
  73. {
  74. return root->fs_info->delayed_root;
  75. }
  76. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  77. {
  78. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  79. struct btrfs_root *root = btrfs_inode->root;
  80. u64 ino = btrfs_ino(inode);
  81. struct btrfs_delayed_node *node;
  82. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  83. if (node) {
  84. atomic_inc(&node->refs);
  85. return node;
  86. }
  87. spin_lock(&root->inode_lock);
  88. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  89. if (node) {
  90. if (btrfs_inode->delayed_node) {
  91. atomic_inc(&node->refs); /* can be accessed */
  92. BUG_ON(btrfs_inode->delayed_node != node);
  93. spin_unlock(&root->inode_lock);
  94. return node;
  95. }
  96. btrfs_inode->delayed_node = node;
  97. atomic_inc(&node->refs); /* can be accessed */
  98. atomic_inc(&node->refs); /* cached in the inode */
  99. spin_unlock(&root->inode_lock);
  100. return node;
  101. }
  102. spin_unlock(&root->inode_lock);
  103. return NULL;
  104. }
  105. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  106. struct inode *inode)
  107. {
  108. struct btrfs_delayed_node *node;
  109. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  110. struct btrfs_root *root = btrfs_inode->root;
  111. u64 ino = btrfs_ino(inode);
  112. int ret;
  113. again:
  114. node = btrfs_get_delayed_node(inode);
  115. if (node)
  116. return node;
  117. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  118. if (!node)
  119. return ERR_PTR(-ENOMEM);
  120. btrfs_init_delayed_node(node, root, ino);
  121. atomic_inc(&node->refs); /* cached in the btrfs inode */
  122. atomic_inc(&node->refs); /* can be accessed */
  123. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  124. if (ret) {
  125. kmem_cache_free(delayed_node_cache, node);
  126. return ERR_PTR(ret);
  127. }
  128. spin_lock(&root->inode_lock);
  129. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  130. if (ret == -EEXIST) {
  131. kmem_cache_free(delayed_node_cache, node);
  132. spin_unlock(&root->inode_lock);
  133. radix_tree_preload_end();
  134. goto again;
  135. }
  136. btrfs_inode->delayed_node = node;
  137. spin_unlock(&root->inode_lock);
  138. radix_tree_preload_end();
  139. return node;
  140. }
  141. /*
  142. * Call it when holding delayed_node->mutex
  143. *
  144. * If mod = 1, add this node into the prepared list.
  145. */
  146. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  147. struct btrfs_delayed_node *node,
  148. int mod)
  149. {
  150. spin_lock(&root->lock);
  151. if (node->in_list) {
  152. if (!list_empty(&node->p_list))
  153. list_move_tail(&node->p_list, &root->prepare_list);
  154. else if (mod)
  155. list_add_tail(&node->p_list, &root->prepare_list);
  156. } else {
  157. list_add_tail(&node->n_list, &root->node_list);
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. atomic_inc(&node->refs); /* inserted into list */
  160. root->nodes++;
  161. node->in_list = 1;
  162. }
  163. spin_unlock(&root->lock);
  164. }
  165. /* Call it when holding delayed_node->mutex */
  166. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  167. struct btrfs_delayed_node *node)
  168. {
  169. spin_lock(&root->lock);
  170. if (node->in_list) {
  171. root->nodes--;
  172. atomic_dec(&node->refs); /* not in the list */
  173. list_del_init(&node->n_list);
  174. if (!list_empty(&node->p_list))
  175. list_del_init(&node->p_list);
  176. node->in_list = 0;
  177. }
  178. spin_unlock(&root->lock);
  179. }
  180. struct btrfs_delayed_node *btrfs_first_delayed_node(
  181. struct btrfs_delayed_root *delayed_root)
  182. {
  183. struct list_head *p;
  184. struct btrfs_delayed_node *node = NULL;
  185. spin_lock(&delayed_root->lock);
  186. if (list_empty(&delayed_root->node_list))
  187. goto out;
  188. p = delayed_root->node_list.next;
  189. node = list_entry(p, struct btrfs_delayed_node, n_list);
  190. atomic_inc(&node->refs);
  191. out:
  192. spin_unlock(&delayed_root->lock);
  193. return node;
  194. }
  195. struct btrfs_delayed_node *btrfs_next_delayed_node(
  196. struct btrfs_delayed_node *node)
  197. {
  198. struct btrfs_delayed_root *delayed_root;
  199. struct list_head *p;
  200. struct btrfs_delayed_node *next = NULL;
  201. delayed_root = node->root->fs_info->delayed_root;
  202. spin_lock(&delayed_root->lock);
  203. if (!node->in_list) { /* not in the list */
  204. if (list_empty(&delayed_root->node_list))
  205. goto out;
  206. p = delayed_root->node_list.next;
  207. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  208. goto out;
  209. else
  210. p = node->n_list.next;
  211. next = list_entry(p, struct btrfs_delayed_node, n_list);
  212. atomic_inc(&next->refs);
  213. out:
  214. spin_unlock(&delayed_root->lock);
  215. return next;
  216. }
  217. static void __btrfs_release_delayed_node(
  218. struct btrfs_delayed_node *delayed_node,
  219. int mod)
  220. {
  221. struct btrfs_delayed_root *delayed_root;
  222. if (!delayed_node)
  223. return;
  224. delayed_root = delayed_node->root->fs_info->delayed_root;
  225. mutex_lock(&delayed_node->mutex);
  226. if (delayed_node->count)
  227. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  228. else
  229. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  230. mutex_unlock(&delayed_node->mutex);
  231. if (atomic_dec_and_test(&delayed_node->refs)) {
  232. struct btrfs_root *root = delayed_node->root;
  233. spin_lock(&root->inode_lock);
  234. if (atomic_read(&delayed_node->refs) == 0) {
  235. radix_tree_delete(&root->delayed_nodes_tree,
  236. delayed_node->inode_id);
  237. kmem_cache_free(delayed_node_cache, delayed_node);
  238. }
  239. spin_unlock(&root->inode_lock);
  240. }
  241. }
  242. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  243. {
  244. __btrfs_release_delayed_node(node, 0);
  245. }
  246. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  247. struct btrfs_delayed_root *delayed_root)
  248. {
  249. struct list_head *p;
  250. struct btrfs_delayed_node *node = NULL;
  251. spin_lock(&delayed_root->lock);
  252. if (list_empty(&delayed_root->prepare_list))
  253. goto out;
  254. p = delayed_root->prepare_list.next;
  255. list_del_init(p);
  256. node = list_entry(p, struct btrfs_delayed_node, p_list);
  257. atomic_inc(&node->refs);
  258. out:
  259. spin_unlock(&delayed_root->lock);
  260. return node;
  261. }
  262. static inline void btrfs_release_prepared_delayed_node(
  263. struct btrfs_delayed_node *node)
  264. {
  265. __btrfs_release_delayed_node(node, 1);
  266. }
  267. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  268. {
  269. struct btrfs_delayed_item *item;
  270. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  271. if (item) {
  272. item->data_len = data_len;
  273. item->ins_or_del = 0;
  274. item->bytes_reserved = 0;
  275. item->delayed_node = NULL;
  276. atomic_set(&item->refs, 1);
  277. }
  278. return item;
  279. }
  280. /*
  281. * __btrfs_lookup_delayed_item - look up the delayed item by key
  282. * @delayed_node: pointer to the delayed node
  283. * @key: the key to look up
  284. * @prev: used to store the prev item if the right item isn't found
  285. * @next: used to store the next item if the right item isn't found
  286. *
  287. * Note: if we don't find the right item, we will return the prev item and
  288. * the next item.
  289. */
  290. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  291. struct rb_root *root,
  292. struct btrfs_key *key,
  293. struct btrfs_delayed_item **prev,
  294. struct btrfs_delayed_item **next)
  295. {
  296. struct rb_node *node, *prev_node = NULL;
  297. struct btrfs_delayed_item *delayed_item = NULL;
  298. int ret = 0;
  299. node = root->rb_node;
  300. while (node) {
  301. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  302. rb_node);
  303. prev_node = node;
  304. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  305. if (ret < 0)
  306. node = node->rb_right;
  307. else if (ret > 0)
  308. node = node->rb_left;
  309. else
  310. return delayed_item;
  311. }
  312. if (prev) {
  313. if (!prev_node)
  314. *prev = NULL;
  315. else if (ret < 0)
  316. *prev = delayed_item;
  317. else if ((node = rb_prev(prev_node)) != NULL) {
  318. *prev = rb_entry(node, struct btrfs_delayed_item,
  319. rb_node);
  320. } else
  321. *prev = NULL;
  322. }
  323. if (next) {
  324. if (!prev_node)
  325. *next = NULL;
  326. else if (ret > 0)
  327. *next = delayed_item;
  328. else if ((node = rb_next(prev_node)) != NULL) {
  329. *next = rb_entry(node, struct btrfs_delayed_item,
  330. rb_node);
  331. } else
  332. *next = NULL;
  333. }
  334. return NULL;
  335. }
  336. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  337. struct btrfs_delayed_node *delayed_node,
  338. struct btrfs_key *key)
  339. {
  340. struct btrfs_delayed_item *item;
  341. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  342. NULL, NULL);
  343. return item;
  344. }
  345. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  346. struct btrfs_delayed_node *delayed_node,
  347. struct btrfs_key *key)
  348. {
  349. struct btrfs_delayed_item *item;
  350. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  351. NULL, NULL);
  352. return item;
  353. }
  354. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  355. struct btrfs_delayed_node *delayed_node,
  356. struct btrfs_key *key)
  357. {
  358. struct btrfs_delayed_item *item, *next;
  359. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  360. NULL, &next);
  361. if (!item)
  362. item = next;
  363. return item;
  364. }
  365. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  366. struct btrfs_delayed_node *delayed_node,
  367. struct btrfs_key *key)
  368. {
  369. struct btrfs_delayed_item *item, *next;
  370. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  371. NULL, &next);
  372. if (!item)
  373. item = next;
  374. return item;
  375. }
  376. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  377. struct btrfs_delayed_item *ins,
  378. int action)
  379. {
  380. struct rb_node **p, *node;
  381. struct rb_node *parent_node = NULL;
  382. struct rb_root *root;
  383. struct btrfs_delayed_item *item;
  384. int cmp;
  385. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  386. root = &delayed_node->ins_root;
  387. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  388. root = &delayed_node->del_root;
  389. else
  390. BUG();
  391. p = &root->rb_node;
  392. node = &ins->rb_node;
  393. while (*p) {
  394. parent_node = *p;
  395. item = rb_entry(parent_node, struct btrfs_delayed_item,
  396. rb_node);
  397. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  398. if (cmp < 0)
  399. p = &(*p)->rb_right;
  400. else if (cmp > 0)
  401. p = &(*p)->rb_left;
  402. else
  403. return -EEXIST;
  404. }
  405. rb_link_node(node, parent_node, p);
  406. rb_insert_color(node, root);
  407. ins->delayed_node = delayed_node;
  408. ins->ins_or_del = action;
  409. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  410. action == BTRFS_DELAYED_INSERTION_ITEM &&
  411. ins->key.offset >= delayed_node->index_cnt)
  412. delayed_node->index_cnt = ins->key.offset + 1;
  413. delayed_node->count++;
  414. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  415. return 0;
  416. }
  417. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  418. struct btrfs_delayed_item *item)
  419. {
  420. return __btrfs_add_delayed_item(node, item,
  421. BTRFS_DELAYED_INSERTION_ITEM);
  422. }
  423. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  424. struct btrfs_delayed_item *item)
  425. {
  426. return __btrfs_add_delayed_item(node, item,
  427. BTRFS_DELAYED_DELETION_ITEM);
  428. }
  429. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  430. {
  431. struct rb_root *root;
  432. struct btrfs_delayed_root *delayed_root;
  433. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  434. BUG_ON(!delayed_root);
  435. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  436. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  437. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  438. root = &delayed_item->delayed_node->ins_root;
  439. else
  440. root = &delayed_item->delayed_node->del_root;
  441. rb_erase(&delayed_item->rb_node, root);
  442. delayed_item->delayed_node->count--;
  443. atomic_dec(&delayed_root->items);
  444. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
  445. waitqueue_active(&delayed_root->wait))
  446. wake_up(&delayed_root->wait);
  447. }
  448. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  449. {
  450. if (item) {
  451. __btrfs_remove_delayed_item(item);
  452. if (atomic_dec_and_test(&item->refs))
  453. kfree(item);
  454. }
  455. }
  456. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  457. struct btrfs_delayed_node *delayed_node)
  458. {
  459. struct rb_node *p;
  460. struct btrfs_delayed_item *item = NULL;
  461. p = rb_first(&delayed_node->ins_root);
  462. if (p)
  463. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  464. return item;
  465. }
  466. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  467. struct btrfs_delayed_node *delayed_node)
  468. {
  469. struct rb_node *p;
  470. struct btrfs_delayed_item *item = NULL;
  471. p = rb_first(&delayed_node->del_root);
  472. if (p)
  473. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  474. return item;
  475. }
  476. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  477. struct btrfs_delayed_item *item)
  478. {
  479. struct rb_node *p;
  480. struct btrfs_delayed_item *next = NULL;
  481. p = rb_next(&item->rb_node);
  482. if (p)
  483. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  484. return next;
  485. }
  486. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  487. u64 root_id)
  488. {
  489. struct btrfs_key root_key;
  490. if (root->objectid == root_id)
  491. return root;
  492. root_key.objectid = root_id;
  493. root_key.type = BTRFS_ROOT_ITEM_KEY;
  494. root_key.offset = (u64)-1;
  495. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  496. }
  497. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  498. struct btrfs_root *root,
  499. struct btrfs_delayed_item *item)
  500. {
  501. struct btrfs_block_rsv *src_rsv;
  502. struct btrfs_block_rsv *dst_rsv;
  503. u64 num_bytes;
  504. int ret;
  505. if (!trans->bytes_reserved)
  506. return 0;
  507. src_rsv = trans->block_rsv;
  508. dst_rsv = &root->fs_info->delayed_block_rsv;
  509. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  510. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  511. if (!ret) {
  512. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  513. item->key.objectid,
  514. num_bytes, 1);
  515. item->bytes_reserved = num_bytes;
  516. }
  517. return ret;
  518. }
  519. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  520. struct btrfs_delayed_item *item)
  521. {
  522. struct btrfs_block_rsv *rsv;
  523. if (!item->bytes_reserved)
  524. return;
  525. rsv = &root->fs_info->delayed_block_rsv;
  526. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  527. item->key.objectid, item->bytes_reserved,
  528. 0);
  529. btrfs_block_rsv_release(root, rsv,
  530. item->bytes_reserved);
  531. }
  532. static int btrfs_delayed_inode_reserve_metadata(
  533. struct btrfs_trans_handle *trans,
  534. struct btrfs_root *root,
  535. struct inode *inode,
  536. struct btrfs_delayed_node *node)
  537. {
  538. struct btrfs_block_rsv *src_rsv;
  539. struct btrfs_block_rsv *dst_rsv;
  540. u64 num_bytes;
  541. int ret;
  542. bool release = false;
  543. src_rsv = trans->block_rsv;
  544. dst_rsv = &root->fs_info->delayed_block_rsv;
  545. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  546. /*
  547. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  548. * which doesn't reserve space for speed. This is a problem since we
  549. * still need to reserve space for this update, so try to reserve the
  550. * space.
  551. *
  552. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  553. * we're accounted for.
  554. */
  555. if (!src_rsv || (!trans->bytes_reserved &&
  556. src_rsv != &root->fs_info->delalloc_block_rsv)) {
  557. ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
  558. /*
  559. * Since we're under a transaction reserve_metadata_bytes could
  560. * try to commit the transaction which will make it return
  561. * EAGAIN to make us stop the transaction we have, so return
  562. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  563. */
  564. if (ret == -EAGAIN)
  565. ret = -ENOSPC;
  566. if (!ret) {
  567. node->bytes_reserved = num_bytes;
  568. trace_btrfs_space_reservation(root->fs_info,
  569. "delayed_inode",
  570. btrfs_ino(inode),
  571. num_bytes, 1);
  572. }
  573. return ret;
  574. } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
  575. spin_lock(&BTRFS_I(inode)->lock);
  576. if (BTRFS_I(inode)->delalloc_meta_reserved) {
  577. BTRFS_I(inode)->delalloc_meta_reserved = 0;
  578. spin_unlock(&BTRFS_I(inode)->lock);
  579. release = true;
  580. goto migrate;
  581. }
  582. spin_unlock(&BTRFS_I(inode)->lock);
  583. /* Ok we didn't have space pre-reserved. This shouldn't happen
  584. * too often but it can happen if we do delalloc to an existing
  585. * inode which gets dirtied because of the time update, and then
  586. * isn't touched again until after the transaction commits and
  587. * then we try to write out the data. First try to be nice and
  588. * reserve something strictly for us. If not be a pain and try
  589. * to steal from the delalloc block rsv.
  590. */
  591. ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
  592. if (!ret)
  593. goto out;
  594. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  595. if (!ret)
  596. goto out;
  597. /*
  598. * Ok this is a problem, let's just steal from the global rsv
  599. * since this really shouldn't happen that often.
  600. */
  601. WARN_ON(1);
  602. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  603. dst_rsv, num_bytes);
  604. goto out;
  605. }
  606. migrate:
  607. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  608. out:
  609. /*
  610. * Migrate only takes a reservation, it doesn't touch the size of the
  611. * block_rsv. This is to simplify people who don't normally have things
  612. * migrated from their block rsv. If they go to release their
  613. * reservation, that will decrease the size as well, so if migrate
  614. * reduced size we'd end up with a negative size. But for the
  615. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  616. * but we could in fact do this reserve/migrate dance several times
  617. * between the time we did the original reservation and we'd clean it
  618. * up. So to take care of this, release the space for the meta
  619. * reservation here. I think it may be time for a documentation page on
  620. * how block rsvs. work.
  621. */
  622. if (!ret) {
  623. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  624. btrfs_ino(inode), num_bytes, 1);
  625. node->bytes_reserved = num_bytes;
  626. }
  627. if (release) {
  628. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  629. btrfs_ino(inode), num_bytes, 0);
  630. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  631. }
  632. return ret;
  633. }
  634. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  635. struct btrfs_delayed_node *node)
  636. {
  637. struct btrfs_block_rsv *rsv;
  638. if (!node->bytes_reserved)
  639. return;
  640. rsv = &root->fs_info->delayed_block_rsv;
  641. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  642. node->inode_id, node->bytes_reserved, 0);
  643. btrfs_block_rsv_release(root, rsv,
  644. node->bytes_reserved);
  645. node->bytes_reserved = 0;
  646. }
  647. /*
  648. * This helper will insert some continuous items into the same leaf according
  649. * to the free space of the leaf.
  650. */
  651. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  652. struct btrfs_root *root,
  653. struct btrfs_path *path,
  654. struct btrfs_delayed_item *item)
  655. {
  656. struct btrfs_delayed_item *curr, *next;
  657. int free_space;
  658. int total_data_size = 0, total_size = 0;
  659. struct extent_buffer *leaf;
  660. char *data_ptr;
  661. struct btrfs_key *keys;
  662. u32 *data_size;
  663. struct list_head head;
  664. int slot;
  665. int nitems;
  666. int i;
  667. int ret = 0;
  668. BUG_ON(!path->nodes[0]);
  669. leaf = path->nodes[0];
  670. free_space = btrfs_leaf_free_space(root, leaf);
  671. INIT_LIST_HEAD(&head);
  672. next = item;
  673. nitems = 0;
  674. /*
  675. * count the number of the continuous items that we can insert in batch
  676. */
  677. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  678. free_space) {
  679. total_data_size += next->data_len;
  680. total_size += next->data_len + sizeof(struct btrfs_item);
  681. list_add_tail(&next->tree_list, &head);
  682. nitems++;
  683. curr = next;
  684. next = __btrfs_next_delayed_item(curr);
  685. if (!next)
  686. break;
  687. if (!btrfs_is_continuous_delayed_item(curr, next))
  688. break;
  689. }
  690. if (!nitems) {
  691. ret = 0;
  692. goto out;
  693. }
  694. /*
  695. * we need allocate some memory space, but it might cause the task
  696. * to sleep, so we set all locked nodes in the path to blocking locks
  697. * first.
  698. */
  699. btrfs_set_path_blocking(path);
  700. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  701. if (!keys) {
  702. ret = -ENOMEM;
  703. goto out;
  704. }
  705. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  706. if (!data_size) {
  707. ret = -ENOMEM;
  708. goto error;
  709. }
  710. /* get keys of all the delayed items */
  711. i = 0;
  712. list_for_each_entry(next, &head, tree_list) {
  713. keys[i] = next->key;
  714. data_size[i] = next->data_len;
  715. i++;
  716. }
  717. /* reset all the locked nodes in the patch to spinning locks. */
  718. btrfs_clear_path_blocking(path, NULL, 0);
  719. /* insert the keys of the items */
  720. ret = setup_items_for_insert(trans, root, path, keys, data_size,
  721. total_data_size, total_size, nitems);
  722. if (ret)
  723. goto error;
  724. /* insert the dir index items */
  725. slot = path->slots[0];
  726. list_for_each_entry_safe(curr, next, &head, tree_list) {
  727. data_ptr = btrfs_item_ptr(leaf, slot, char);
  728. write_extent_buffer(leaf, &curr->data,
  729. (unsigned long)data_ptr,
  730. curr->data_len);
  731. slot++;
  732. btrfs_delayed_item_release_metadata(root, curr);
  733. list_del(&curr->tree_list);
  734. btrfs_release_delayed_item(curr);
  735. }
  736. error:
  737. kfree(data_size);
  738. kfree(keys);
  739. out:
  740. return ret;
  741. }
  742. /*
  743. * This helper can just do simple insertion that needn't extend item for new
  744. * data, such as directory name index insertion, inode insertion.
  745. */
  746. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  747. struct btrfs_root *root,
  748. struct btrfs_path *path,
  749. struct btrfs_delayed_item *delayed_item)
  750. {
  751. struct extent_buffer *leaf;
  752. struct btrfs_item *item;
  753. char *ptr;
  754. int ret;
  755. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  756. delayed_item->data_len);
  757. if (ret < 0 && ret != -EEXIST)
  758. return ret;
  759. leaf = path->nodes[0];
  760. item = btrfs_item_nr(leaf, path->slots[0]);
  761. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  762. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  763. delayed_item->data_len);
  764. btrfs_mark_buffer_dirty(leaf);
  765. btrfs_delayed_item_release_metadata(root, delayed_item);
  766. return 0;
  767. }
  768. /*
  769. * we insert an item first, then if there are some continuous items, we try
  770. * to insert those items into the same leaf.
  771. */
  772. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  773. struct btrfs_path *path,
  774. struct btrfs_root *root,
  775. struct btrfs_delayed_node *node)
  776. {
  777. struct btrfs_delayed_item *curr, *prev;
  778. int ret = 0;
  779. do_again:
  780. mutex_lock(&node->mutex);
  781. curr = __btrfs_first_delayed_insertion_item(node);
  782. if (!curr)
  783. goto insert_end;
  784. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  785. if (ret < 0) {
  786. btrfs_release_path(path);
  787. goto insert_end;
  788. }
  789. prev = curr;
  790. curr = __btrfs_next_delayed_item(prev);
  791. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  792. /* insert the continuous items into the same leaf */
  793. path->slots[0]++;
  794. btrfs_batch_insert_items(trans, root, path, curr);
  795. }
  796. btrfs_release_delayed_item(prev);
  797. btrfs_mark_buffer_dirty(path->nodes[0]);
  798. btrfs_release_path(path);
  799. mutex_unlock(&node->mutex);
  800. goto do_again;
  801. insert_end:
  802. mutex_unlock(&node->mutex);
  803. return ret;
  804. }
  805. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  806. struct btrfs_root *root,
  807. struct btrfs_path *path,
  808. struct btrfs_delayed_item *item)
  809. {
  810. struct btrfs_delayed_item *curr, *next;
  811. struct extent_buffer *leaf;
  812. struct btrfs_key key;
  813. struct list_head head;
  814. int nitems, i, last_item;
  815. int ret = 0;
  816. BUG_ON(!path->nodes[0]);
  817. leaf = path->nodes[0];
  818. i = path->slots[0];
  819. last_item = btrfs_header_nritems(leaf) - 1;
  820. if (i > last_item)
  821. return -ENOENT; /* FIXME: Is errno suitable? */
  822. next = item;
  823. INIT_LIST_HEAD(&head);
  824. btrfs_item_key_to_cpu(leaf, &key, i);
  825. nitems = 0;
  826. /*
  827. * count the number of the dir index items that we can delete in batch
  828. */
  829. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  830. list_add_tail(&next->tree_list, &head);
  831. nitems++;
  832. curr = next;
  833. next = __btrfs_next_delayed_item(curr);
  834. if (!next)
  835. break;
  836. if (!btrfs_is_continuous_delayed_item(curr, next))
  837. break;
  838. i++;
  839. if (i > last_item)
  840. break;
  841. btrfs_item_key_to_cpu(leaf, &key, i);
  842. }
  843. if (!nitems)
  844. return 0;
  845. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  846. if (ret)
  847. goto out;
  848. list_for_each_entry_safe(curr, next, &head, tree_list) {
  849. btrfs_delayed_item_release_metadata(root, curr);
  850. list_del(&curr->tree_list);
  851. btrfs_release_delayed_item(curr);
  852. }
  853. out:
  854. return ret;
  855. }
  856. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  857. struct btrfs_path *path,
  858. struct btrfs_root *root,
  859. struct btrfs_delayed_node *node)
  860. {
  861. struct btrfs_delayed_item *curr, *prev;
  862. int ret = 0;
  863. do_again:
  864. mutex_lock(&node->mutex);
  865. curr = __btrfs_first_delayed_deletion_item(node);
  866. if (!curr)
  867. goto delete_fail;
  868. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  869. if (ret < 0)
  870. goto delete_fail;
  871. else if (ret > 0) {
  872. /*
  873. * can't find the item which the node points to, so this node
  874. * is invalid, just drop it.
  875. */
  876. prev = curr;
  877. curr = __btrfs_next_delayed_item(prev);
  878. btrfs_release_delayed_item(prev);
  879. ret = 0;
  880. btrfs_release_path(path);
  881. if (curr)
  882. goto do_again;
  883. else
  884. goto delete_fail;
  885. }
  886. btrfs_batch_delete_items(trans, root, path, curr);
  887. btrfs_release_path(path);
  888. mutex_unlock(&node->mutex);
  889. goto do_again;
  890. delete_fail:
  891. btrfs_release_path(path);
  892. mutex_unlock(&node->mutex);
  893. return ret;
  894. }
  895. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  896. {
  897. struct btrfs_delayed_root *delayed_root;
  898. if (delayed_node && delayed_node->inode_dirty) {
  899. BUG_ON(!delayed_node->root);
  900. delayed_node->inode_dirty = 0;
  901. delayed_node->count--;
  902. delayed_root = delayed_node->root->fs_info->delayed_root;
  903. atomic_dec(&delayed_root->items);
  904. if (atomic_read(&delayed_root->items) <
  905. BTRFS_DELAYED_BACKGROUND &&
  906. waitqueue_active(&delayed_root->wait))
  907. wake_up(&delayed_root->wait);
  908. }
  909. }
  910. static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  911. struct btrfs_root *root,
  912. struct btrfs_path *path,
  913. struct btrfs_delayed_node *node)
  914. {
  915. struct btrfs_key key;
  916. struct btrfs_inode_item *inode_item;
  917. struct extent_buffer *leaf;
  918. int ret;
  919. mutex_lock(&node->mutex);
  920. if (!node->inode_dirty) {
  921. mutex_unlock(&node->mutex);
  922. return 0;
  923. }
  924. key.objectid = node->inode_id;
  925. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  926. key.offset = 0;
  927. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  928. if (ret > 0) {
  929. btrfs_release_path(path);
  930. mutex_unlock(&node->mutex);
  931. return -ENOENT;
  932. } else if (ret < 0) {
  933. mutex_unlock(&node->mutex);
  934. return ret;
  935. }
  936. btrfs_unlock_up_safe(path, 1);
  937. leaf = path->nodes[0];
  938. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  939. struct btrfs_inode_item);
  940. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  941. sizeof(struct btrfs_inode_item));
  942. btrfs_mark_buffer_dirty(leaf);
  943. btrfs_release_path(path);
  944. btrfs_delayed_inode_release_metadata(root, node);
  945. btrfs_release_delayed_inode(node);
  946. mutex_unlock(&node->mutex);
  947. return 0;
  948. }
  949. /* Called when committing the transaction. */
  950. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  951. struct btrfs_root *root)
  952. {
  953. struct btrfs_delayed_root *delayed_root;
  954. struct btrfs_delayed_node *curr_node, *prev_node;
  955. struct btrfs_path *path;
  956. struct btrfs_block_rsv *block_rsv;
  957. int ret = 0;
  958. path = btrfs_alloc_path();
  959. if (!path)
  960. return -ENOMEM;
  961. path->leave_spinning = 1;
  962. block_rsv = trans->block_rsv;
  963. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  964. delayed_root = btrfs_get_delayed_root(root);
  965. curr_node = btrfs_first_delayed_node(delayed_root);
  966. while (curr_node) {
  967. root = curr_node->root;
  968. ret = btrfs_insert_delayed_items(trans, path, root,
  969. curr_node);
  970. if (!ret)
  971. ret = btrfs_delete_delayed_items(trans, path, root,
  972. curr_node);
  973. if (!ret)
  974. ret = btrfs_update_delayed_inode(trans, root, path,
  975. curr_node);
  976. if (ret) {
  977. btrfs_release_delayed_node(curr_node);
  978. break;
  979. }
  980. prev_node = curr_node;
  981. curr_node = btrfs_next_delayed_node(curr_node);
  982. btrfs_release_delayed_node(prev_node);
  983. }
  984. btrfs_free_path(path);
  985. trans->block_rsv = block_rsv;
  986. return ret;
  987. }
  988. static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  989. struct btrfs_delayed_node *node)
  990. {
  991. struct btrfs_path *path;
  992. struct btrfs_block_rsv *block_rsv;
  993. int ret;
  994. path = btrfs_alloc_path();
  995. if (!path)
  996. return -ENOMEM;
  997. path->leave_spinning = 1;
  998. block_rsv = trans->block_rsv;
  999. trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
  1000. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  1001. if (!ret)
  1002. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  1003. if (!ret)
  1004. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  1005. btrfs_free_path(path);
  1006. trans->block_rsv = block_rsv;
  1007. return ret;
  1008. }
  1009. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1010. struct inode *inode)
  1011. {
  1012. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1013. int ret;
  1014. if (!delayed_node)
  1015. return 0;
  1016. mutex_lock(&delayed_node->mutex);
  1017. if (!delayed_node->count) {
  1018. mutex_unlock(&delayed_node->mutex);
  1019. btrfs_release_delayed_node(delayed_node);
  1020. return 0;
  1021. }
  1022. mutex_unlock(&delayed_node->mutex);
  1023. ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
  1024. btrfs_release_delayed_node(delayed_node);
  1025. return ret;
  1026. }
  1027. void btrfs_remove_delayed_node(struct inode *inode)
  1028. {
  1029. struct btrfs_delayed_node *delayed_node;
  1030. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1031. if (!delayed_node)
  1032. return;
  1033. BTRFS_I(inode)->delayed_node = NULL;
  1034. btrfs_release_delayed_node(delayed_node);
  1035. }
  1036. struct btrfs_async_delayed_node {
  1037. struct btrfs_root *root;
  1038. struct btrfs_delayed_node *delayed_node;
  1039. struct btrfs_work work;
  1040. };
  1041. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  1042. {
  1043. struct btrfs_async_delayed_node *async_node;
  1044. struct btrfs_trans_handle *trans;
  1045. struct btrfs_path *path;
  1046. struct btrfs_delayed_node *delayed_node = NULL;
  1047. struct btrfs_root *root;
  1048. struct btrfs_block_rsv *block_rsv;
  1049. unsigned long nr = 0;
  1050. int need_requeue = 0;
  1051. int ret;
  1052. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  1053. path = btrfs_alloc_path();
  1054. if (!path)
  1055. goto out;
  1056. path->leave_spinning = 1;
  1057. delayed_node = async_node->delayed_node;
  1058. root = delayed_node->root;
  1059. trans = btrfs_join_transaction(root);
  1060. if (IS_ERR(trans))
  1061. goto free_path;
  1062. block_rsv = trans->block_rsv;
  1063. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1064. ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
  1065. if (!ret)
  1066. ret = btrfs_delete_delayed_items(trans, path, root,
  1067. delayed_node);
  1068. if (!ret)
  1069. btrfs_update_delayed_inode(trans, root, path, delayed_node);
  1070. /*
  1071. * Maybe new delayed items have been inserted, so we need requeue
  1072. * the work. Besides that, we must dequeue the empty delayed nodes
  1073. * to avoid the race between delayed items balance and the worker.
  1074. * The race like this:
  1075. * Task1 Worker thread
  1076. * count == 0, needn't requeue
  1077. * also needn't insert the
  1078. * delayed node into prepare
  1079. * list again.
  1080. * add lots of delayed items
  1081. * queue the delayed node
  1082. * already in the list,
  1083. * and not in the prepare
  1084. * list, it means the delayed
  1085. * node is being dealt with
  1086. * by the worker.
  1087. * do delayed items balance
  1088. * the delayed node is being
  1089. * dealt with by the worker
  1090. * now, just wait.
  1091. * the worker goto idle.
  1092. * Task1 will sleep until the transaction is commited.
  1093. */
  1094. mutex_lock(&delayed_node->mutex);
  1095. if (delayed_node->count)
  1096. need_requeue = 1;
  1097. else
  1098. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1099. delayed_node);
  1100. mutex_unlock(&delayed_node->mutex);
  1101. nr = trans->blocks_used;
  1102. trans->block_rsv = block_rsv;
  1103. btrfs_end_transaction_dmeta(trans, root);
  1104. __btrfs_btree_balance_dirty(root, nr);
  1105. free_path:
  1106. btrfs_free_path(path);
  1107. out:
  1108. if (need_requeue)
  1109. btrfs_requeue_work(&async_node->work);
  1110. else {
  1111. btrfs_release_prepared_delayed_node(delayed_node);
  1112. kfree(async_node);
  1113. }
  1114. }
  1115. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1116. struct btrfs_root *root, int all)
  1117. {
  1118. struct btrfs_async_delayed_node *async_node;
  1119. struct btrfs_delayed_node *curr;
  1120. int count = 0;
  1121. again:
  1122. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1123. if (!curr)
  1124. return 0;
  1125. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1126. if (!async_node) {
  1127. btrfs_release_prepared_delayed_node(curr);
  1128. return -ENOMEM;
  1129. }
  1130. async_node->root = root;
  1131. async_node->delayed_node = curr;
  1132. async_node->work.func = btrfs_async_run_delayed_node_done;
  1133. async_node->work.flags = 0;
  1134. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1135. count++;
  1136. if (all || count < 4)
  1137. goto again;
  1138. return 0;
  1139. }
  1140. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1141. {
  1142. struct btrfs_delayed_root *delayed_root;
  1143. delayed_root = btrfs_get_delayed_root(root);
  1144. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1145. }
  1146. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1147. {
  1148. struct btrfs_delayed_root *delayed_root;
  1149. delayed_root = btrfs_get_delayed_root(root);
  1150. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1151. return;
  1152. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1153. int ret;
  1154. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1155. if (ret)
  1156. return;
  1157. wait_event_interruptible_timeout(
  1158. delayed_root->wait,
  1159. (atomic_read(&delayed_root->items) <
  1160. BTRFS_DELAYED_BACKGROUND),
  1161. HZ);
  1162. return;
  1163. }
  1164. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1165. }
  1166. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1167. struct btrfs_root *root, const char *name,
  1168. int name_len, struct inode *dir,
  1169. struct btrfs_disk_key *disk_key, u8 type,
  1170. u64 index)
  1171. {
  1172. struct btrfs_delayed_node *delayed_node;
  1173. struct btrfs_delayed_item *delayed_item;
  1174. struct btrfs_dir_item *dir_item;
  1175. int ret;
  1176. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1177. if (IS_ERR(delayed_node))
  1178. return PTR_ERR(delayed_node);
  1179. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1180. if (!delayed_item) {
  1181. ret = -ENOMEM;
  1182. goto release_node;
  1183. }
  1184. delayed_item->key.objectid = btrfs_ino(dir);
  1185. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1186. delayed_item->key.offset = index;
  1187. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1188. dir_item->location = *disk_key;
  1189. dir_item->transid = cpu_to_le64(trans->transid);
  1190. dir_item->data_len = 0;
  1191. dir_item->name_len = cpu_to_le16(name_len);
  1192. dir_item->type = type;
  1193. memcpy((char *)(dir_item + 1), name, name_len);
  1194. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1195. /*
  1196. * we have reserved enough space when we start a new transaction,
  1197. * so reserving metadata failure is impossible
  1198. */
  1199. BUG_ON(ret);
  1200. mutex_lock(&delayed_node->mutex);
  1201. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1202. if (unlikely(ret)) {
  1203. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1204. "the insertion tree of the delayed node"
  1205. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1206. name,
  1207. (unsigned long long)delayed_node->root->objectid,
  1208. (unsigned long long)delayed_node->inode_id,
  1209. ret);
  1210. BUG();
  1211. }
  1212. mutex_unlock(&delayed_node->mutex);
  1213. release_node:
  1214. btrfs_release_delayed_node(delayed_node);
  1215. return ret;
  1216. }
  1217. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1218. struct btrfs_delayed_node *node,
  1219. struct btrfs_key *key)
  1220. {
  1221. struct btrfs_delayed_item *item;
  1222. mutex_lock(&node->mutex);
  1223. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1224. if (!item) {
  1225. mutex_unlock(&node->mutex);
  1226. return 1;
  1227. }
  1228. btrfs_delayed_item_release_metadata(root, item);
  1229. btrfs_release_delayed_item(item);
  1230. mutex_unlock(&node->mutex);
  1231. return 0;
  1232. }
  1233. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1234. struct btrfs_root *root, struct inode *dir,
  1235. u64 index)
  1236. {
  1237. struct btrfs_delayed_node *node;
  1238. struct btrfs_delayed_item *item;
  1239. struct btrfs_key item_key;
  1240. int ret;
  1241. node = btrfs_get_or_create_delayed_node(dir);
  1242. if (IS_ERR(node))
  1243. return PTR_ERR(node);
  1244. item_key.objectid = btrfs_ino(dir);
  1245. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1246. item_key.offset = index;
  1247. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1248. if (!ret)
  1249. goto end;
  1250. item = btrfs_alloc_delayed_item(0);
  1251. if (!item) {
  1252. ret = -ENOMEM;
  1253. goto end;
  1254. }
  1255. item->key = item_key;
  1256. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1257. /*
  1258. * we have reserved enough space when we start a new transaction,
  1259. * so reserving metadata failure is impossible.
  1260. */
  1261. BUG_ON(ret);
  1262. mutex_lock(&node->mutex);
  1263. ret = __btrfs_add_delayed_deletion_item(node, item);
  1264. if (unlikely(ret)) {
  1265. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1266. "into the deletion tree of the delayed node"
  1267. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1268. (unsigned long long)index,
  1269. (unsigned long long)node->root->objectid,
  1270. (unsigned long long)node->inode_id,
  1271. ret);
  1272. BUG();
  1273. }
  1274. mutex_unlock(&node->mutex);
  1275. end:
  1276. btrfs_release_delayed_node(node);
  1277. return ret;
  1278. }
  1279. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1280. {
  1281. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1282. if (!delayed_node)
  1283. return -ENOENT;
  1284. /*
  1285. * Since we have held i_mutex of this directory, it is impossible that
  1286. * a new directory index is added into the delayed node and index_cnt
  1287. * is updated now. So we needn't lock the delayed node.
  1288. */
  1289. if (!delayed_node->index_cnt) {
  1290. btrfs_release_delayed_node(delayed_node);
  1291. return -EINVAL;
  1292. }
  1293. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1294. btrfs_release_delayed_node(delayed_node);
  1295. return 0;
  1296. }
  1297. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1298. struct list_head *del_list)
  1299. {
  1300. struct btrfs_delayed_node *delayed_node;
  1301. struct btrfs_delayed_item *item;
  1302. delayed_node = btrfs_get_delayed_node(inode);
  1303. if (!delayed_node)
  1304. return;
  1305. mutex_lock(&delayed_node->mutex);
  1306. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1307. while (item) {
  1308. atomic_inc(&item->refs);
  1309. list_add_tail(&item->readdir_list, ins_list);
  1310. item = __btrfs_next_delayed_item(item);
  1311. }
  1312. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1313. while (item) {
  1314. atomic_inc(&item->refs);
  1315. list_add_tail(&item->readdir_list, del_list);
  1316. item = __btrfs_next_delayed_item(item);
  1317. }
  1318. mutex_unlock(&delayed_node->mutex);
  1319. /*
  1320. * This delayed node is still cached in the btrfs inode, so refs
  1321. * must be > 1 now, and we needn't check it is going to be freed
  1322. * or not.
  1323. *
  1324. * Besides that, this function is used to read dir, we do not
  1325. * insert/delete delayed items in this period. So we also needn't
  1326. * requeue or dequeue this delayed node.
  1327. */
  1328. atomic_dec(&delayed_node->refs);
  1329. }
  1330. void btrfs_put_delayed_items(struct list_head *ins_list,
  1331. struct list_head *del_list)
  1332. {
  1333. struct btrfs_delayed_item *curr, *next;
  1334. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1335. list_del(&curr->readdir_list);
  1336. if (atomic_dec_and_test(&curr->refs))
  1337. kfree(curr);
  1338. }
  1339. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1340. list_del(&curr->readdir_list);
  1341. if (atomic_dec_and_test(&curr->refs))
  1342. kfree(curr);
  1343. }
  1344. }
  1345. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1346. u64 index)
  1347. {
  1348. struct btrfs_delayed_item *curr, *next;
  1349. int ret;
  1350. if (list_empty(del_list))
  1351. return 0;
  1352. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1353. if (curr->key.offset > index)
  1354. break;
  1355. list_del(&curr->readdir_list);
  1356. ret = (curr->key.offset == index);
  1357. if (atomic_dec_and_test(&curr->refs))
  1358. kfree(curr);
  1359. if (ret)
  1360. return 1;
  1361. else
  1362. continue;
  1363. }
  1364. return 0;
  1365. }
  1366. /*
  1367. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1368. *
  1369. */
  1370. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1371. filldir_t filldir,
  1372. struct list_head *ins_list)
  1373. {
  1374. struct btrfs_dir_item *di;
  1375. struct btrfs_delayed_item *curr, *next;
  1376. struct btrfs_key location;
  1377. char *name;
  1378. int name_len;
  1379. int over = 0;
  1380. unsigned char d_type;
  1381. if (list_empty(ins_list))
  1382. return 0;
  1383. /*
  1384. * Changing the data of the delayed item is impossible. So
  1385. * we needn't lock them. And we have held i_mutex of the
  1386. * directory, nobody can delete any directory indexes now.
  1387. */
  1388. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1389. list_del(&curr->readdir_list);
  1390. if (curr->key.offset < filp->f_pos) {
  1391. if (atomic_dec_and_test(&curr->refs))
  1392. kfree(curr);
  1393. continue;
  1394. }
  1395. filp->f_pos = curr->key.offset;
  1396. di = (struct btrfs_dir_item *)curr->data;
  1397. name = (char *)(di + 1);
  1398. name_len = le16_to_cpu(di->name_len);
  1399. d_type = btrfs_filetype_table[di->type];
  1400. btrfs_disk_key_to_cpu(&location, &di->location);
  1401. over = filldir(dirent, name, name_len, curr->key.offset,
  1402. location.objectid, d_type);
  1403. if (atomic_dec_and_test(&curr->refs))
  1404. kfree(curr);
  1405. if (over)
  1406. return 1;
  1407. }
  1408. return 0;
  1409. }
  1410. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1411. generation, 64);
  1412. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1413. sequence, 64);
  1414. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1415. transid, 64);
  1416. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1417. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1418. nbytes, 64);
  1419. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1420. block_group, 64);
  1421. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1422. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1423. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1424. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1425. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1426. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1427. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1428. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1429. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1430. struct btrfs_inode_item *inode_item,
  1431. struct inode *inode)
  1432. {
  1433. btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
  1434. btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
  1435. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1436. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1437. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1438. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1439. btrfs_set_stack_inode_generation(inode_item,
  1440. BTRFS_I(inode)->generation);
  1441. btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
  1442. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1443. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1444. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1445. btrfs_set_stack_inode_block_group(inode_item, 0);
  1446. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1447. inode->i_atime.tv_sec);
  1448. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1449. inode->i_atime.tv_nsec);
  1450. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1451. inode->i_mtime.tv_sec);
  1452. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1453. inode->i_mtime.tv_nsec);
  1454. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1455. inode->i_ctime.tv_sec);
  1456. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1457. inode->i_ctime.tv_nsec);
  1458. }
  1459. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1460. {
  1461. struct btrfs_delayed_node *delayed_node;
  1462. struct btrfs_inode_item *inode_item;
  1463. struct btrfs_timespec *tspec;
  1464. delayed_node = btrfs_get_delayed_node(inode);
  1465. if (!delayed_node)
  1466. return -ENOENT;
  1467. mutex_lock(&delayed_node->mutex);
  1468. if (!delayed_node->inode_dirty) {
  1469. mutex_unlock(&delayed_node->mutex);
  1470. btrfs_release_delayed_node(delayed_node);
  1471. return -ENOENT;
  1472. }
  1473. inode_item = &delayed_node->inode_item;
  1474. inode->i_uid = btrfs_stack_inode_uid(inode_item);
  1475. inode->i_gid = btrfs_stack_inode_gid(inode_item);
  1476. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1477. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1478. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1479. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1480. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1481. BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
  1482. inode->i_rdev = 0;
  1483. *rdev = btrfs_stack_inode_rdev(inode_item);
  1484. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1485. tspec = btrfs_inode_atime(inode_item);
  1486. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1487. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1488. tspec = btrfs_inode_mtime(inode_item);
  1489. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1490. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1491. tspec = btrfs_inode_ctime(inode_item);
  1492. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1493. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1494. inode->i_generation = BTRFS_I(inode)->generation;
  1495. BTRFS_I(inode)->index_cnt = (u64)-1;
  1496. mutex_unlock(&delayed_node->mutex);
  1497. btrfs_release_delayed_node(delayed_node);
  1498. return 0;
  1499. }
  1500. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1501. struct btrfs_root *root, struct inode *inode)
  1502. {
  1503. struct btrfs_delayed_node *delayed_node;
  1504. int ret = 0;
  1505. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1506. if (IS_ERR(delayed_node))
  1507. return PTR_ERR(delayed_node);
  1508. mutex_lock(&delayed_node->mutex);
  1509. if (delayed_node->inode_dirty) {
  1510. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1511. goto release_node;
  1512. }
  1513. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1514. delayed_node);
  1515. if (ret)
  1516. goto release_node;
  1517. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1518. delayed_node->inode_dirty = 1;
  1519. delayed_node->count++;
  1520. atomic_inc(&root->fs_info->delayed_root->items);
  1521. release_node:
  1522. mutex_unlock(&delayed_node->mutex);
  1523. btrfs_release_delayed_node(delayed_node);
  1524. return ret;
  1525. }
  1526. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1527. {
  1528. struct btrfs_root *root = delayed_node->root;
  1529. struct btrfs_delayed_item *curr_item, *prev_item;
  1530. mutex_lock(&delayed_node->mutex);
  1531. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1532. while (curr_item) {
  1533. btrfs_delayed_item_release_metadata(root, curr_item);
  1534. prev_item = curr_item;
  1535. curr_item = __btrfs_next_delayed_item(prev_item);
  1536. btrfs_release_delayed_item(prev_item);
  1537. }
  1538. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1539. while (curr_item) {
  1540. btrfs_delayed_item_release_metadata(root, curr_item);
  1541. prev_item = curr_item;
  1542. curr_item = __btrfs_next_delayed_item(prev_item);
  1543. btrfs_release_delayed_item(prev_item);
  1544. }
  1545. if (delayed_node->inode_dirty) {
  1546. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1547. btrfs_release_delayed_inode(delayed_node);
  1548. }
  1549. mutex_unlock(&delayed_node->mutex);
  1550. }
  1551. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1552. {
  1553. struct btrfs_delayed_node *delayed_node;
  1554. delayed_node = btrfs_get_delayed_node(inode);
  1555. if (!delayed_node)
  1556. return;
  1557. __btrfs_kill_delayed_node(delayed_node);
  1558. btrfs_release_delayed_node(delayed_node);
  1559. }
  1560. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1561. {
  1562. u64 inode_id = 0;
  1563. struct btrfs_delayed_node *delayed_nodes[8];
  1564. int i, n;
  1565. while (1) {
  1566. spin_lock(&root->inode_lock);
  1567. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1568. (void **)delayed_nodes, inode_id,
  1569. ARRAY_SIZE(delayed_nodes));
  1570. if (!n) {
  1571. spin_unlock(&root->inode_lock);
  1572. break;
  1573. }
  1574. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1575. for (i = 0; i < n; i++)
  1576. atomic_inc(&delayed_nodes[i]->refs);
  1577. spin_unlock(&root->inode_lock);
  1578. for (i = 0; i < n; i++) {
  1579. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1580. btrfs_release_delayed_node(delayed_nodes[i]);
  1581. }
  1582. }
  1583. }