ctree.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (!p->nodes[i] || !p->locks[i])
  54. continue;
  55. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  56. if (p->locks[i] == BTRFS_READ_LOCK)
  57. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  58. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  59. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held, int held_rw)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held) {
  82. btrfs_set_lock_blocking_rw(held, held_rw);
  83. if (held_rw == BTRFS_WRITE_LOCK)
  84. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  85. else if (held_rw == BTRFS_READ_LOCK)
  86. held_rw = BTRFS_READ_LOCK_BLOCKING;
  87. }
  88. btrfs_set_path_blocking(p);
  89. #endif
  90. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  91. if (p->nodes[i] && p->locks[i]) {
  92. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  93. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  94. p->locks[i] = BTRFS_WRITE_LOCK;
  95. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  96. p->locks[i] = BTRFS_READ_LOCK;
  97. }
  98. }
  99. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  100. if (held)
  101. btrfs_clear_lock_blocking_rw(held, held_rw);
  102. #endif
  103. }
  104. /* this also releases the path */
  105. void btrfs_free_path(struct btrfs_path *p)
  106. {
  107. if (!p)
  108. return;
  109. btrfs_release_path(p);
  110. kmem_cache_free(btrfs_path_cachep, p);
  111. }
  112. /*
  113. * path release drops references on the extent buffers in the path
  114. * and it drops any locks held by this path
  115. *
  116. * It is safe to call this on paths that no locks or extent buffers held.
  117. */
  118. noinline void btrfs_release_path(struct btrfs_path *p)
  119. {
  120. int i;
  121. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  122. p->slots[i] = 0;
  123. if (!p->nodes[i])
  124. continue;
  125. if (p->locks[i]) {
  126. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  127. p->locks[i] = 0;
  128. }
  129. free_extent_buffer(p->nodes[i]);
  130. p->nodes[i] = NULL;
  131. }
  132. }
  133. /*
  134. * safely gets a reference on the root node of a tree. A lock
  135. * is not taken, so a concurrent writer may put a different node
  136. * at the root of the tree. See btrfs_lock_root_node for the
  137. * looping required.
  138. *
  139. * The extent buffer returned by this has a reference taken, so
  140. * it won't disappear. It may stop being the root of the tree
  141. * at any time because there are no locks held.
  142. */
  143. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. rcu_read_lock();
  147. eb = rcu_dereference(root->node);
  148. extent_buffer_get(eb);
  149. rcu_read_unlock();
  150. return eb;
  151. }
  152. /* loop around taking references on and locking the root node of the
  153. * tree until you end up with a lock on the root. A locked buffer
  154. * is returned, with a reference held.
  155. */
  156. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  157. {
  158. struct extent_buffer *eb;
  159. while (1) {
  160. eb = btrfs_root_node(root);
  161. btrfs_tree_lock(eb);
  162. if (eb == root->node)
  163. break;
  164. btrfs_tree_unlock(eb);
  165. free_extent_buffer(eb);
  166. }
  167. return eb;
  168. }
  169. /* loop around taking references on and locking the root node of the
  170. * tree until you end up with a lock on the root. A locked buffer
  171. * is returned, with a reference held.
  172. */
  173. struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  174. {
  175. struct extent_buffer *eb;
  176. while (1) {
  177. eb = btrfs_root_node(root);
  178. btrfs_tree_read_lock(eb);
  179. if (eb == root->node)
  180. break;
  181. btrfs_tree_read_unlock(eb);
  182. free_extent_buffer(eb);
  183. }
  184. return eb;
  185. }
  186. /* cowonly root (everything not a reference counted cow subvolume), just get
  187. * put onto a simple dirty list. transaction.c walks this to make sure they
  188. * get properly updated on disk.
  189. */
  190. static void add_root_to_dirty_list(struct btrfs_root *root)
  191. {
  192. if (root->track_dirty && list_empty(&root->dirty_list)) {
  193. list_add(&root->dirty_list,
  194. &root->fs_info->dirty_cowonly_roots);
  195. }
  196. }
  197. /*
  198. * used by snapshot creation to make a copy of a root for a tree with
  199. * a given objectid. The buffer with the new root node is returned in
  200. * cow_ret, and this func returns zero on success or a negative error code.
  201. */
  202. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  203. struct btrfs_root *root,
  204. struct extent_buffer *buf,
  205. struct extent_buffer **cow_ret, u64 new_root_objectid)
  206. {
  207. struct extent_buffer *cow;
  208. int ret = 0;
  209. int level;
  210. struct btrfs_disk_key disk_key;
  211. WARN_ON(root->ref_cows && trans->transid !=
  212. root->fs_info->running_transaction->transid);
  213. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  214. level = btrfs_header_level(buf);
  215. if (level == 0)
  216. btrfs_item_key(buf, &disk_key, 0);
  217. else
  218. btrfs_node_key(buf, &disk_key, 0);
  219. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  220. new_root_objectid, &disk_key, level,
  221. buf->start, 0, 1);
  222. if (IS_ERR(cow))
  223. return PTR_ERR(cow);
  224. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  225. btrfs_set_header_bytenr(cow, cow->start);
  226. btrfs_set_header_generation(cow, trans->transid);
  227. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  228. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  229. BTRFS_HEADER_FLAG_RELOC);
  230. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  231. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  232. else
  233. btrfs_set_header_owner(cow, new_root_objectid);
  234. write_extent_buffer(cow, root->fs_info->fsid,
  235. (unsigned long)btrfs_header_fsid(cow),
  236. BTRFS_FSID_SIZE);
  237. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  238. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  239. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  240. else
  241. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  242. if (ret)
  243. return ret;
  244. btrfs_mark_buffer_dirty(cow);
  245. *cow_ret = cow;
  246. return 0;
  247. }
  248. /*
  249. * check if the tree block can be shared by multiple trees
  250. */
  251. int btrfs_block_can_be_shared(struct btrfs_root *root,
  252. struct extent_buffer *buf)
  253. {
  254. /*
  255. * Tree blocks not in refernece counted trees and tree roots
  256. * are never shared. If a block was allocated after the last
  257. * snapshot and the block was not allocated by tree relocation,
  258. * we know the block is not shared.
  259. */
  260. if (root->ref_cows &&
  261. buf != root->node && buf != root->commit_root &&
  262. (btrfs_header_generation(buf) <=
  263. btrfs_root_last_snapshot(&root->root_item) ||
  264. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  265. return 1;
  266. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  267. if (root->ref_cows &&
  268. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  269. return 1;
  270. #endif
  271. return 0;
  272. }
  273. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  274. struct btrfs_root *root,
  275. struct extent_buffer *buf,
  276. struct extent_buffer *cow,
  277. int *last_ref)
  278. {
  279. u64 refs;
  280. u64 owner;
  281. u64 flags;
  282. u64 new_flags = 0;
  283. int ret;
  284. /*
  285. * Backrefs update rules:
  286. *
  287. * Always use full backrefs for extent pointers in tree block
  288. * allocated by tree relocation.
  289. *
  290. * If a shared tree block is no longer referenced by its owner
  291. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  292. * use full backrefs for extent pointers in tree block.
  293. *
  294. * If a tree block is been relocating
  295. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  296. * use full backrefs for extent pointers in tree block.
  297. * The reason for this is some operations (such as drop tree)
  298. * are only allowed for blocks use full backrefs.
  299. */
  300. if (btrfs_block_can_be_shared(root, buf)) {
  301. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  302. buf->len, &refs, &flags);
  303. BUG_ON(ret);
  304. BUG_ON(refs == 0);
  305. } else {
  306. refs = 1;
  307. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  308. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  309. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  310. else
  311. flags = 0;
  312. }
  313. owner = btrfs_header_owner(buf);
  314. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  315. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  316. if (refs > 1) {
  317. if ((owner == root->root_key.objectid ||
  318. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  319. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  320. ret = btrfs_inc_ref(trans, root, buf, 1, 1);
  321. BUG_ON(ret);
  322. if (root->root_key.objectid ==
  323. BTRFS_TREE_RELOC_OBJECTID) {
  324. ret = btrfs_dec_ref(trans, root, buf, 0, 1);
  325. BUG_ON(ret);
  326. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  327. BUG_ON(ret);
  328. }
  329. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  330. } else {
  331. if (root->root_key.objectid ==
  332. BTRFS_TREE_RELOC_OBJECTID)
  333. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  334. else
  335. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  336. BUG_ON(ret);
  337. }
  338. if (new_flags != 0) {
  339. ret = btrfs_set_disk_extent_flags(trans, root,
  340. buf->start,
  341. buf->len,
  342. new_flags, 0);
  343. BUG_ON(ret);
  344. }
  345. } else {
  346. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  347. if (root->root_key.objectid ==
  348. BTRFS_TREE_RELOC_OBJECTID)
  349. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  350. else
  351. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  352. BUG_ON(ret);
  353. ret = btrfs_dec_ref(trans, root, buf, 1, 1);
  354. BUG_ON(ret);
  355. }
  356. clean_tree_block(trans, root, buf);
  357. *last_ref = 1;
  358. }
  359. return 0;
  360. }
  361. /*
  362. * does the dirty work in cow of a single block. The parent block (if
  363. * supplied) is updated to point to the new cow copy. The new buffer is marked
  364. * dirty and returned locked. If you modify the block it needs to be marked
  365. * dirty again.
  366. *
  367. * search_start -- an allocation hint for the new block
  368. *
  369. * empty_size -- a hint that you plan on doing more cow. This is the size in
  370. * bytes the allocator should try to find free next to the block it returns.
  371. * This is just a hint and may be ignored by the allocator.
  372. */
  373. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  374. struct btrfs_root *root,
  375. struct extent_buffer *buf,
  376. struct extent_buffer *parent, int parent_slot,
  377. struct extent_buffer **cow_ret,
  378. u64 search_start, u64 empty_size)
  379. {
  380. struct btrfs_disk_key disk_key;
  381. struct extent_buffer *cow;
  382. int level;
  383. int last_ref = 0;
  384. int unlock_orig = 0;
  385. u64 parent_start;
  386. if (*cow_ret == buf)
  387. unlock_orig = 1;
  388. btrfs_assert_tree_locked(buf);
  389. WARN_ON(root->ref_cows && trans->transid !=
  390. root->fs_info->running_transaction->transid);
  391. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  392. level = btrfs_header_level(buf);
  393. if (level == 0)
  394. btrfs_item_key(buf, &disk_key, 0);
  395. else
  396. btrfs_node_key(buf, &disk_key, 0);
  397. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  398. if (parent)
  399. parent_start = parent->start;
  400. else
  401. parent_start = 0;
  402. } else
  403. parent_start = 0;
  404. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  405. root->root_key.objectid, &disk_key,
  406. level, search_start, empty_size, 1);
  407. if (IS_ERR(cow))
  408. return PTR_ERR(cow);
  409. /* cow is set to blocking by btrfs_init_new_buffer */
  410. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  411. btrfs_set_header_bytenr(cow, cow->start);
  412. btrfs_set_header_generation(cow, trans->transid);
  413. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  414. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  415. BTRFS_HEADER_FLAG_RELOC);
  416. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  417. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  418. else
  419. btrfs_set_header_owner(cow, root->root_key.objectid);
  420. write_extent_buffer(cow, root->fs_info->fsid,
  421. (unsigned long)btrfs_header_fsid(cow),
  422. BTRFS_FSID_SIZE);
  423. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  424. if (root->ref_cows)
  425. btrfs_reloc_cow_block(trans, root, buf, cow);
  426. if (buf == root->node) {
  427. WARN_ON(parent && parent != buf);
  428. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  429. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  430. parent_start = buf->start;
  431. else
  432. parent_start = 0;
  433. extent_buffer_get(cow);
  434. rcu_assign_pointer(root->node, cow);
  435. btrfs_free_tree_block(trans, root, buf, parent_start,
  436. last_ref, 1);
  437. free_extent_buffer(buf);
  438. add_root_to_dirty_list(root);
  439. } else {
  440. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  441. parent_start = parent->start;
  442. else
  443. parent_start = 0;
  444. WARN_ON(trans->transid != btrfs_header_generation(parent));
  445. btrfs_set_node_blockptr(parent, parent_slot,
  446. cow->start);
  447. btrfs_set_node_ptr_generation(parent, parent_slot,
  448. trans->transid);
  449. btrfs_mark_buffer_dirty(parent);
  450. btrfs_free_tree_block(trans, root, buf, parent_start,
  451. last_ref, 1);
  452. }
  453. if (unlock_orig)
  454. btrfs_tree_unlock(buf);
  455. free_extent_buffer(buf);
  456. btrfs_mark_buffer_dirty(cow);
  457. *cow_ret = cow;
  458. return 0;
  459. }
  460. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  461. struct btrfs_root *root,
  462. struct extent_buffer *buf)
  463. {
  464. /* ensure we can see the force_cow */
  465. smp_rmb();
  466. /*
  467. * We do not need to cow a block if
  468. * 1) this block is not created or changed in this transaction;
  469. * 2) this block does not belong to TREE_RELOC tree;
  470. * 3) the root is not forced COW.
  471. *
  472. * What is forced COW:
  473. * when we create snapshot during commiting the transaction,
  474. * after we've finished coping src root, we must COW the shared
  475. * block to ensure the metadata consistency.
  476. */
  477. if (btrfs_header_generation(buf) == trans->transid &&
  478. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  479. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  480. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
  481. !root->force_cow)
  482. return 0;
  483. return 1;
  484. }
  485. /*
  486. * cows a single block, see __btrfs_cow_block for the real work.
  487. * This version of it has extra checks so that a block isn't cow'd more than
  488. * once per transaction, as long as it hasn't been written yet
  489. */
  490. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  491. struct btrfs_root *root, struct extent_buffer *buf,
  492. struct extent_buffer *parent, int parent_slot,
  493. struct extent_buffer **cow_ret)
  494. {
  495. u64 search_start;
  496. int ret;
  497. if (trans->transaction != root->fs_info->running_transaction) {
  498. printk(KERN_CRIT "trans %llu running %llu\n",
  499. (unsigned long long)trans->transid,
  500. (unsigned long long)
  501. root->fs_info->running_transaction->transid);
  502. WARN_ON(1);
  503. }
  504. if (trans->transid != root->fs_info->generation) {
  505. printk(KERN_CRIT "trans %llu running %llu\n",
  506. (unsigned long long)trans->transid,
  507. (unsigned long long)root->fs_info->generation);
  508. WARN_ON(1);
  509. }
  510. if (!should_cow_block(trans, root, buf)) {
  511. *cow_ret = buf;
  512. return 0;
  513. }
  514. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  515. if (parent)
  516. btrfs_set_lock_blocking(parent);
  517. btrfs_set_lock_blocking(buf);
  518. ret = __btrfs_cow_block(trans, root, buf, parent,
  519. parent_slot, cow_ret, search_start, 0);
  520. trace_btrfs_cow_block(root, buf, *cow_ret);
  521. return ret;
  522. }
  523. /*
  524. * helper function for defrag to decide if two blocks pointed to by a
  525. * node are actually close by
  526. */
  527. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  528. {
  529. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  530. return 1;
  531. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  532. return 1;
  533. return 0;
  534. }
  535. /*
  536. * compare two keys in a memcmp fashion
  537. */
  538. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  539. {
  540. struct btrfs_key k1;
  541. btrfs_disk_key_to_cpu(&k1, disk);
  542. return btrfs_comp_cpu_keys(&k1, k2);
  543. }
  544. /*
  545. * same as comp_keys only with two btrfs_key's
  546. */
  547. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  548. {
  549. if (k1->objectid > k2->objectid)
  550. return 1;
  551. if (k1->objectid < k2->objectid)
  552. return -1;
  553. if (k1->type > k2->type)
  554. return 1;
  555. if (k1->type < k2->type)
  556. return -1;
  557. if (k1->offset > k2->offset)
  558. return 1;
  559. if (k1->offset < k2->offset)
  560. return -1;
  561. return 0;
  562. }
  563. /*
  564. * this is used by the defrag code to go through all the
  565. * leaves pointed to by a node and reallocate them so that
  566. * disk order is close to key order
  567. */
  568. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  569. struct btrfs_root *root, struct extent_buffer *parent,
  570. int start_slot, int cache_only, u64 *last_ret,
  571. struct btrfs_key *progress)
  572. {
  573. struct extent_buffer *cur;
  574. u64 blocknr;
  575. u64 gen;
  576. u64 search_start = *last_ret;
  577. u64 last_block = 0;
  578. u64 other;
  579. u32 parent_nritems;
  580. int end_slot;
  581. int i;
  582. int err = 0;
  583. int parent_level;
  584. int uptodate;
  585. u32 blocksize;
  586. int progress_passed = 0;
  587. struct btrfs_disk_key disk_key;
  588. parent_level = btrfs_header_level(parent);
  589. if (cache_only && parent_level != 1)
  590. return 0;
  591. if (trans->transaction != root->fs_info->running_transaction)
  592. WARN_ON(1);
  593. if (trans->transid != root->fs_info->generation)
  594. WARN_ON(1);
  595. parent_nritems = btrfs_header_nritems(parent);
  596. blocksize = btrfs_level_size(root, parent_level - 1);
  597. end_slot = parent_nritems;
  598. if (parent_nritems == 1)
  599. return 0;
  600. btrfs_set_lock_blocking(parent);
  601. for (i = start_slot; i < end_slot; i++) {
  602. int close = 1;
  603. btrfs_node_key(parent, &disk_key, i);
  604. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  605. continue;
  606. progress_passed = 1;
  607. blocknr = btrfs_node_blockptr(parent, i);
  608. gen = btrfs_node_ptr_generation(parent, i);
  609. if (last_block == 0)
  610. last_block = blocknr;
  611. if (i > 0) {
  612. other = btrfs_node_blockptr(parent, i - 1);
  613. close = close_blocks(blocknr, other, blocksize);
  614. }
  615. if (!close && i < end_slot - 2) {
  616. other = btrfs_node_blockptr(parent, i + 1);
  617. close = close_blocks(blocknr, other, blocksize);
  618. }
  619. if (close) {
  620. last_block = blocknr;
  621. continue;
  622. }
  623. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  624. if (cur)
  625. uptodate = btrfs_buffer_uptodate(cur, gen);
  626. else
  627. uptodate = 0;
  628. if (!cur || !uptodate) {
  629. if (cache_only) {
  630. free_extent_buffer(cur);
  631. continue;
  632. }
  633. if (!cur) {
  634. cur = read_tree_block(root, blocknr,
  635. blocksize, gen);
  636. if (!cur)
  637. return -EIO;
  638. } else if (!uptodate) {
  639. btrfs_read_buffer(cur, gen);
  640. }
  641. }
  642. if (search_start == 0)
  643. search_start = last_block;
  644. btrfs_tree_lock(cur);
  645. btrfs_set_lock_blocking(cur);
  646. err = __btrfs_cow_block(trans, root, cur, parent, i,
  647. &cur, search_start,
  648. min(16 * blocksize,
  649. (end_slot - i) * blocksize));
  650. if (err) {
  651. btrfs_tree_unlock(cur);
  652. free_extent_buffer(cur);
  653. break;
  654. }
  655. search_start = cur->start;
  656. last_block = cur->start;
  657. *last_ret = search_start;
  658. btrfs_tree_unlock(cur);
  659. free_extent_buffer(cur);
  660. }
  661. return err;
  662. }
  663. /*
  664. * The leaf data grows from end-to-front in the node.
  665. * this returns the address of the start of the last item,
  666. * which is the stop of the leaf data stack
  667. */
  668. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  669. struct extent_buffer *leaf)
  670. {
  671. u32 nr = btrfs_header_nritems(leaf);
  672. if (nr == 0)
  673. return BTRFS_LEAF_DATA_SIZE(root);
  674. return btrfs_item_offset_nr(leaf, nr - 1);
  675. }
  676. /*
  677. * search for key in the extent_buffer. The items start at offset p,
  678. * and they are item_size apart. There are 'max' items in p.
  679. *
  680. * the slot in the array is returned via slot, and it points to
  681. * the place where you would insert key if it is not found in
  682. * the array.
  683. *
  684. * slot may point to max if the key is bigger than all of the keys
  685. */
  686. static noinline int generic_bin_search(struct extent_buffer *eb,
  687. unsigned long p,
  688. int item_size, struct btrfs_key *key,
  689. int max, int *slot)
  690. {
  691. int low = 0;
  692. int high = max;
  693. int mid;
  694. int ret;
  695. struct btrfs_disk_key *tmp = NULL;
  696. struct btrfs_disk_key unaligned;
  697. unsigned long offset;
  698. char *kaddr = NULL;
  699. unsigned long map_start = 0;
  700. unsigned long map_len = 0;
  701. int err;
  702. while (low < high) {
  703. mid = (low + high) / 2;
  704. offset = p + mid * item_size;
  705. if (!kaddr || offset < map_start ||
  706. (offset + sizeof(struct btrfs_disk_key)) >
  707. map_start + map_len) {
  708. err = map_private_extent_buffer(eb, offset,
  709. sizeof(struct btrfs_disk_key),
  710. &kaddr, &map_start, &map_len);
  711. if (!err) {
  712. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  713. map_start);
  714. } else {
  715. read_extent_buffer(eb, &unaligned,
  716. offset, sizeof(unaligned));
  717. tmp = &unaligned;
  718. }
  719. } else {
  720. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  721. map_start);
  722. }
  723. ret = comp_keys(tmp, key);
  724. if (ret < 0)
  725. low = mid + 1;
  726. else if (ret > 0)
  727. high = mid;
  728. else {
  729. *slot = mid;
  730. return 0;
  731. }
  732. }
  733. *slot = low;
  734. return 1;
  735. }
  736. /*
  737. * simple bin_search frontend that does the right thing for
  738. * leaves vs nodes
  739. */
  740. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  741. int level, int *slot)
  742. {
  743. if (level == 0) {
  744. return generic_bin_search(eb,
  745. offsetof(struct btrfs_leaf, items),
  746. sizeof(struct btrfs_item),
  747. key, btrfs_header_nritems(eb),
  748. slot);
  749. } else {
  750. return generic_bin_search(eb,
  751. offsetof(struct btrfs_node, ptrs),
  752. sizeof(struct btrfs_key_ptr),
  753. key, btrfs_header_nritems(eb),
  754. slot);
  755. }
  756. return -1;
  757. }
  758. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  759. int level, int *slot)
  760. {
  761. return bin_search(eb, key, level, slot);
  762. }
  763. static void root_add_used(struct btrfs_root *root, u32 size)
  764. {
  765. spin_lock(&root->accounting_lock);
  766. btrfs_set_root_used(&root->root_item,
  767. btrfs_root_used(&root->root_item) + size);
  768. spin_unlock(&root->accounting_lock);
  769. }
  770. static void root_sub_used(struct btrfs_root *root, u32 size)
  771. {
  772. spin_lock(&root->accounting_lock);
  773. btrfs_set_root_used(&root->root_item,
  774. btrfs_root_used(&root->root_item) - size);
  775. spin_unlock(&root->accounting_lock);
  776. }
  777. /* given a node and slot number, this reads the blocks it points to. The
  778. * extent buffer is returned with a reference taken (but unlocked).
  779. * NULL is returned on error.
  780. */
  781. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  782. struct extent_buffer *parent, int slot)
  783. {
  784. int level = btrfs_header_level(parent);
  785. if (slot < 0)
  786. return NULL;
  787. if (slot >= btrfs_header_nritems(parent))
  788. return NULL;
  789. BUG_ON(level == 0);
  790. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  791. btrfs_level_size(root, level - 1),
  792. btrfs_node_ptr_generation(parent, slot));
  793. }
  794. /*
  795. * node level balancing, used to make sure nodes are in proper order for
  796. * item deletion. We balance from the top down, so we have to make sure
  797. * that a deletion won't leave an node completely empty later on.
  798. */
  799. static noinline int balance_level(struct btrfs_trans_handle *trans,
  800. struct btrfs_root *root,
  801. struct btrfs_path *path, int level)
  802. {
  803. struct extent_buffer *right = NULL;
  804. struct extent_buffer *mid;
  805. struct extent_buffer *left = NULL;
  806. struct extent_buffer *parent = NULL;
  807. int ret = 0;
  808. int wret;
  809. int pslot;
  810. int orig_slot = path->slots[level];
  811. u64 orig_ptr;
  812. if (level == 0)
  813. return 0;
  814. mid = path->nodes[level];
  815. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  816. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  817. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  818. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  819. if (level < BTRFS_MAX_LEVEL - 1) {
  820. parent = path->nodes[level + 1];
  821. pslot = path->slots[level + 1];
  822. }
  823. /*
  824. * deal with the case where there is only one pointer in the root
  825. * by promoting the node below to a root
  826. */
  827. if (!parent) {
  828. struct extent_buffer *child;
  829. if (btrfs_header_nritems(mid) != 1)
  830. return 0;
  831. /* promote the child to a root */
  832. child = read_node_slot(root, mid, 0);
  833. BUG_ON(!child);
  834. btrfs_tree_lock(child);
  835. btrfs_set_lock_blocking(child);
  836. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  837. if (ret) {
  838. btrfs_tree_unlock(child);
  839. free_extent_buffer(child);
  840. goto enospc;
  841. }
  842. rcu_assign_pointer(root->node, child);
  843. add_root_to_dirty_list(root);
  844. btrfs_tree_unlock(child);
  845. path->locks[level] = 0;
  846. path->nodes[level] = NULL;
  847. clean_tree_block(trans, root, mid);
  848. btrfs_tree_unlock(mid);
  849. /* once for the path */
  850. free_extent_buffer(mid);
  851. root_sub_used(root, mid->len);
  852. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  853. /* once for the root ptr */
  854. free_extent_buffer(mid);
  855. return 0;
  856. }
  857. if (btrfs_header_nritems(mid) >
  858. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  859. return 0;
  860. btrfs_header_nritems(mid);
  861. left = read_node_slot(root, parent, pslot - 1);
  862. if (left) {
  863. btrfs_tree_lock(left);
  864. btrfs_set_lock_blocking(left);
  865. wret = btrfs_cow_block(trans, root, left,
  866. parent, pslot - 1, &left);
  867. if (wret) {
  868. ret = wret;
  869. goto enospc;
  870. }
  871. }
  872. right = read_node_slot(root, parent, pslot + 1);
  873. if (right) {
  874. btrfs_tree_lock(right);
  875. btrfs_set_lock_blocking(right);
  876. wret = btrfs_cow_block(trans, root, right,
  877. parent, pslot + 1, &right);
  878. if (wret) {
  879. ret = wret;
  880. goto enospc;
  881. }
  882. }
  883. /* first, try to make some room in the middle buffer */
  884. if (left) {
  885. orig_slot += btrfs_header_nritems(left);
  886. wret = push_node_left(trans, root, left, mid, 1);
  887. if (wret < 0)
  888. ret = wret;
  889. btrfs_header_nritems(mid);
  890. }
  891. /*
  892. * then try to empty the right most buffer into the middle
  893. */
  894. if (right) {
  895. wret = push_node_left(trans, root, mid, right, 1);
  896. if (wret < 0 && wret != -ENOSPC)
  897. ret = wret;
  898. if (btrfs_header_nritems(right) == 0) {
  899. clean_tree_block(trans, root, right);
  900. btrfs_tree_unlock(right);
  901. wret = del_ptr(trans, root, path, level + 1, pslot +
  902. 1);
  903. if (wret)
  904. ret = wret;
  905. root_sub_used(root, right->len);
  906. btrfs_free_tree_block(trans, root, right, 0, 1, 0);
  907. free_extent_buffer(right);
  908. right = NULL;
  909. } else {
  910. struct btrfs_disk_key right_key;
  911. btrfs_node_key(right, &right_key, 0);
  912. btrfs_set_node_key(parent, &right_key, pslot + 1);
  913. btrfs_mark_buffer_dirty(parent);
  914. }
  915. }
  916. if (btrfs_header_nritems(mid) == 1) {
  917. /*
  918. * we're not allowed to leave a node with one item in the
  919. * tree during a delete. A deletion from lower in the tree
  920. * could try to delete the only pointer in this node.
  921. * So, pull some keys from the left.
  922. * There has to be a left pointer at this point because
  923. * otherwise we would have pulled some pointers from the
  924. * right
  925. */
  926. BUG_ON(!left);
  927. wret = balance_node_right(trans, root, mid, left);
  928. if (wret < 0) {
  929. ret = wret;
  930. goto enospc;
  931. }
  932. if (wret == 1) {
  933. wret = push_node_left(trans, root, left, mid, 1);
  934. if (wret < 0)
  935. ret = wret;
  936. }
  937. BUG_ON(wret == 1);
  938. }
  939. if (btrfs_header_nritems(mid) == 0) {
  940. clean_tree_block(trans, root, mid);
  941. btrfs_tree_unlock(mid);
  942. wret = del_ptr(trans, root, path, level + 1, pslot);
  943. if (wret)
  944. ret = wret;
  945. root_sub_used(root, mid->len);
  946. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  947. free_extent_buffer(mid);
  948. mid = NULL;
  949. } else {
  950. /* update the parent key to reflect our changes */
  951. struct btrfs_disk_key mid_key;
  952. btrfs_node_key(mid, &mid_key, 0);
  953. btrfs_set_node_key(parent, &mid_key, pslot);
  954. btrfs_mark_buffer_dirty(parent);
  955. }
  956. /* update the path */
  957. if (left) {
  958. if (btrfs_header_nritems(left) > orig_slot) {
  959. extent_buffer_get(left);
  960. /* left was locked after cow */
  961. path->nodes[level] = left;
  962. path->slots[level + 1] -= 1;
  963. path->slots[level] = orig_slot;
  964. if (mid) {
  965. btrfs_tree_unlock(mid);
  966. free_extent_buffer(mid);
  967. }
  968. } else {
  969. orig_slot -= btrfs_header_nritems(left);
  970. path->slots[level] = orig_slot;
  971. }
  972. }
  973. /* double check we haven't messed things up */
  974. if (orig_ptr !=
  975. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  976. BUG();
  977. enospc:
  978. if (right) {
  979. btrfs_tree_unlock(right);
  980. free_extent_buffer(right);
  981. }
  982. if (left) {
  983. if (path->nodes[level] != left)
  984. btrfs_tree_unlock(left);
  985. free_extent_buffer(left);
  986. }
  987. return ret;
  988. }
  989. /* Node balancing for insertion. Here we only split or push nodes around
  990. * when they are completely full. This is also done top down, so we
  991. * have to be pessimistic.
  992. */
  993. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  994. struct btrfs_root *root,
  995. struct btrfs_path *path, int level)
  996. {
  997. struct extent_buffer *right = NULL;
  998. struct extent_buffer *mid;
  999. struct extent_buffer *left = NULL;
  1000. struct extent_buffer *parent = NULL;
  1001. int ret = 0;
  1002. int wret;
  1003. int pslot;
  1004. int orig_slot = path->slots[level];
  1005. if (level == 0)
  1006. return 1;
  1007. mid = path->nodes[level];
  1008. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1009. if (level < BTRFS_MAX_LEVEL - 1) {
  1010. parent = path->nodes[level + 1];
  1011. pslot = path->slots[level + 1];
  1012. }
  1013. if (!parent)
  1014. return 1;
  1015. left = read_node_slot(root, parent, pslot - 1);
  1016. /* first, try to make some room in the middle buffer */
  1017. if (left) {
  1018. u32 left_nr;
  1019. btrfs_tree_lock(left);
  1020. btrfs_set_lock_blocking(left);
  1021. left_nr = btrfs_header_nritems(left);
  1022. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1023. wret = 1;
  1024. } else {
  1025. ret = btrfs_cow_block(trans, root, left, parent,
  1026. pslot - 1, &left);
  1027. if (ret)
  1028. wret = 1;
  1029. else {
  1030. wret = push_node_left(trans, root,
  1031. left, mid, 0);
  1032. }
  1033. }
  1034. if (wret < 0)
  1035. ret = wret;
  1036. if (wret == 0) {
  1037. struct btrfs_disk_key disk_key;
  1038. orig_slot += left_nr;
  1039. btrfs_node_key(mid, &disk_key, 0);
  1040. btrfs_set_node_key(parent, &disk_key, pslot);
  1041. btrfs_mark_buffer_dirty(parent);
  1042. if (btrfs_header_nritems(left) > orig_slot) {
  1043. path->nodes[level] = left;
  1044. path->slots[level + 1] -= 1;
  1045. path->slots[level] = orig_slot;
  1046. btrfs_tree_unlock(mid);
  1047. free_extent_buffer(mid);
  1048. } else {
  1049. orig_slot -=
  1050. btrfs_header_nritems(left);
  1051. path->slots[level] = orig_slot;
  1052. btrfs_tree_unlock(left);
  1053. free_extent_buffer(left);
  1054. }
  1055. return 0;
  1056. }
  1057. btrfs_tree_unlock(left);
  1058. free_extent_buffer(left);
  1059. }
  1060. right = read_node_slot(root, parent, pslot + 1);
  1061. /*
  1062. * then try to empty the right most buffer into the middle
  1063. */
  1064. if (right) {
  1065. u32 right_nr;
  1066. btrfs_tree_lock(right);
  1067. btrfs_set_lock_blocking(right);
  1068. right_nr = btrfs_header_nritems(right);
  1069. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1070. wret = 1;
  1071. } else {
  1072. ret = btrfs_cow_block(trans, root, right,
  1073. parent, pslot + 1,
  1074. &right);
  1075. if (ret)
  1076. wret = 1;
  1077. else {
  1078. wret = balance_node_right(trans, root,
  1079. right, mid);
  1080. }
  1081. }
  1082. if (wret < 0)
  1083. ret = wret;
  1084. if (wret == 0) {
  1085. struct btrfs_disk_key disk_key;
  1086. btrfs_node_key(right, &disk_key, 0);
  1087. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1088. btrfs_mark_buffer_dirty(parent);
  1089. if (btrfs_header_nritems(mid) <= orig_slot) {
  1090. path->nodes[level] = right;
  1091. path->slots[level + 1] += 1;
  1092. path->slots[level] = orig_slot -
  1093. btrfs_header_nritems(mid);
  1094. btrfs_tree_unlock(mid);
  1095. free_extent_buffer(mid);
  1096. } else {
  1097. btrfs_tree_unlock(right);
  1098. free_extent_buffer(right);
  1099. }
  1100. return 0;
  1101. }
  1102. btrfs_tree_unlock(right);
  1103. free_extent_buffer(right);
  1104. }
  1105. return 1;
  1106. }
  1107. /*
  1108. * readahead one full node of leaves, finding things that are close
  1109. * to the block in 'slot', and triggering ra on them.
  1110. */
  1111. static void reada_for_search(struct btrfs_root *root,
  1112. struct btrfs_path *path,
  1113. int level, int slot, u64 objectid)
  1114. {
  1115. struct extent_buffer *node;
  1116. struct btrfs_disk_key disk_key;
  1117. u32 nritems;
  1118. u64 search;
  1119. u64 target;
  1120. u64 nread = 0;
  1121. u64 gen;
  1122. int direction = path->reada;
  1123. struct extent_buffer *eb;
  1124. u32 nr;
  1125. u32 blocksize;
  1126. u32 nscan = 0;
  1127. if (level != 1)
  1128. return;
  1129. if (!path->nodes[level])
  1130. return;
  1131. node = path->nodes[level];
  1132. search = btrfs_node_blockptr(node, slot);
  1133. blocksize = btrfs_level_size(root, level - 1);
  1134. eb = btrfs_find_tree_block(root, search, blocksize);
  1135. if (eb) {
  1136. free_extent_buffer(eb);
  1137. return;
  1138. }
  1139. target = search;
  1140. nritems = btrfs_header_nritems(node);
  1141. nr = slot;
  1142. while (1) {
  1143. if (direction < 0) {
  1144. if (nr == 0)
  1145. break;
  1146. nr--;
  1147. } else if (direction > 0) {
  1148. nr++;
  1149. if (nr >= nritems)
  1150. break;
  1151. }
  1152. if (path->reada < 0 && objectid) {
  1153. btrfs_node_key(node, &disk_key, nr);
  1154. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1155. break;
  1156. }
  1157. search = btrfs_node_blockptr(node, nr);
  1158. if ((search <= target && target - search <= 65536) ||
  1159. (search > target && search - target <= 65536)) {
  1160. gen = btrfs_node_ptr_generation(node, nr);
  1161. readahead_tree_block(root, search, blocksize, gen);
  1162. nread += blocksize;
  1163. }
  1164. nscan++;
  1165. if ((nread > 65536 || nscan > 32))
  1166. break;
  1167. }
  1168. }
  1169. /*
  1170. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1171. * cache
  1172. */
  1173. static noinline int reada_for_balance(struct btrfs_root *root,
  1174. struct btrfs_path *path, int level)
  1175. {
  1176. int slot;
  1177. int nritems;
  1178. struct extent_buffer *parent;
  1179. struct extent_buffer *eb;
  1180. u64 gen;
  1181. u64 block1 = 0;
  1182. u64 block2 = 0;
  1183. int ret = 0;
  1184. int blocksize;
  1185. parent = path->nodes[level + 1];
  1186. if (!parent)
  1187. return 0;
  1188. nritems = btrfs_header_nritems(parent);
  1189. slot = path->slots[level + 1];
  1190. blocksize = btrfs_level_size(root, level);
  1191. if (slot > 0) {
  1192. block1 = btrfs_node_blockptr(parent, slot - 1);
  1193. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1194. eb = btrfs_find_tree_block(root, block1, blocksize);
  1195. if (eb && btrfs_buffer_uptodate(eb, gen))
  1196. block1 = 0;
  1197. free_extent_buffer(eb);
  1198. }
  1199. if (slot + 1 < nritems) {
  1200. block2 = btrfs_node_blockptr(parent, slot + 1);
  1201. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1202. eb = btrfs_find_tree_block(root, block2, blocksize);
  1203. if (eb && btrfs_buffer_uptodate(eb, gen))
  1204. block2 = 0;
  1205. free_extent_buffer(eb);
  1206. }
  1207. if (block1 || block2) {
  1208. ret = -EAGAIN;
  1209. /* release the whole path */
  1210. btrfs_release_path(path);
  1211. /* read the blocks */
  1212. if (block1)
  1213. readahead_tree_block(root, block1, blocksize, 0);
  1214. if (block2)
  1215. readahead_tree_block(root, block2, blocksize, 0);
  1216. if (block1) {
  1217. eb = read_tree_block(root, block1, blocksize, 0);
  1218. free_extent_buffer(eb);
  1219. }
  1220. if (block2) {
  1221. eb = read_tree_block(root, block2, blocksize, 0);
  1222. free_extent_buffer(eb);
  1223. }
  1224. }
  1225. return ret;
  1226. }
  1227. /*
  1228. * when we walk down the tree, it is usually safe to unlock the higher layers
  1229. * in the tree. The exceptions are when our path goes through slot 0, because
  1230. * operations on the tree might require changing key pointers higher up in the
  1231. * tree.
  1232. *
  1233. * callers might also have set path->keep_locks, which tells this code to keep
  1234. * the lock if the path points to the last slot in the block. This is part of
  1235. * walking through the tree, and selecting the next slot in the higher block.
  1236. *
  1237. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1238. * if lowest_unlock is 1, level 0 won't be unlocked
  1239. */
  1240. static noinline void unlock_up(struct btrfs_path *path, int level,
  1241. int lowest_unlock)
  1242. {
  1243. int i;
  1244. int skip_level = level;
  1245. int no_skips = 0;
  1246. struct extent_buffer *t;
  1247. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1248. if (!path->nodes[i])
  1249. break;
  1250. if (!path->locks[i])
  1251. break;
  1252. if (!no_skips && path->slots[i] == 0) {
  1253. skip_level = i + 1;
  1254. continue;
  1255. }
  1256. if (!no_skips && path->keep_locks) {
  1257. u32 nritems;
  1258. t = path->nodes[i];
  1259. nritems = btrfs_header_nritems(t);
  1260. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1261. skip_level = i + 1;
  1262. continue;
  1263. }
  1264. }
  1265. if (skip_level < i && i >= lowest_unlock)
  1266. no_skips = 1;
  1267. t = path->nodes[i];
  1268. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1269. btrfs_tree_unlock_rw(t, path->locks[i]);
  1270. path->locks[i] = 0;
  1271. }
  1272. }
  1273. }
  1274. /*
  1275. * This releases any locks held in the path starting at level and
  1276. * going all the way up to the root.
  1277. *
  1278. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1279. * corner cases, such as COW of the block at slot zero in the node. This
  1280. * ignores those rules, and it should only be called when there are no
  1281. * more updates to be done higher up in the tree.
  1282. */
  1283. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1284. {
  1285. int i;
  1286. if (path->keep_locks)
  1287. return;
  1288. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1289. if (!path->nodes[i])
  1290. continue;
  1291. if (!path->locks[i])
  1292. continue;
  1293. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  1294. path->locks[i] = 0;
  1295. }
  1296. }
  1297. /*
  1298. * helper function for btrfs_search_slot. The goal is to find a block
  1299. * in cache without setting the path to blocking. If we find the block
  1300. * we return zero and the path is unchanged.
  1301. *
  1302. * If we can't find the block, we set the path blocking and do some
  1303. * reada. -EAGAIN is returned and the search must be repeated.
  1304. */
  1305. static int
  1306. read_block_for_search(struct btrfs_trans_handle *trans,
  1307. struct btrfs_root *root, struct btrfs_path *p,
  1308. struct extent_buffer **eb_ret, int level, int slot,
  1309. struct btrfs_key *key)
  1310. {
  1311. u64 blocknr;
  1312. u64 gen;
  1313. u32 blocksize;
  1314. struct extent_buffer *b = *eb_ret;
  1315. struct extent_buffer *tmp;
  1316. int ret;
  1317. blocknr = btrfs_node_blockptr(b, slot);
  1318. gen = btrfs_node_ptr_generation(b, slot);
  1319. blocksize = btrfs_level_size(root, level - 1);
  1320. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1321. if (tmp) {
  1322. if (btrfs_buffer_uptodate(tmp, 0)) {
  1323. if (btrfs_buffer_uptodate(tmp, gen)) {
  1324. /*
  1325. * we found an up to date block without
  1326. * sleeping, return
  1327. * right away
  1328. */
  1329. *eb_ret = tmp;
  1330. return 0;
  1331. }
  1332. /* the pages were up to date, but we failed
  1333. * the generation number check. Do a full
  1334. * read for the generation number that is correct.
  1335. * We must do this without dropping locks so
  1336. * we can trust our generation number
  1337. */
  1338. free_extent_buffer(tmp);
  1339. btrfs_set_path_blocking(p);
  1340. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1341. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1342. *eb_ret = tmp;
  1343. return 0;
  1344. }
  1345. free_extent_buffer(tmp);
  1346. btrfs_release_path(p);
  1347. return -EIO;
  1348. }
  1349. }
  1350. /*
  1351. * reduce lock contention at high levels
  1352. * of the btree by dropping locks before
  1353. * we read. Don't release the lock on the current
  1354. * level because we need to walk this node to figure
  1355. * out which blocks to read.
  1356. */
  1357. btrfs_unlock_up_safe(p, level + 1);
  1358. btrfs_set_path_blocking(p);
  1359. free_extent_buffer(tmp);
  1360. if (p->reada)
  1361. reada_for_search(root, p, level, slot, key->objectid);
  1362. btrfs_release_path(p);
  1363. ret = -EAGAIN;
  1364. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1365. if (tmp) {
  1366. /*
  1367. * If the read above didn't mark this buffer up to date,
  1368. * it will never end up being up to date. Set ret to EIO now
  1369. * and give up so that our caller doesn't loop forever
  1370. * on our EAGAINs.
  1371. */
  1372. if (!btrfs_buffer_uptodate(tmp, 0))
  1373. ret = -EIO;
  1374. free_extent_buffer(tmp);
  1375. }
  1376. return ret;
  1377. }
  1378. /*
  1379. * helper function for btrfs_search_slot. This does all of the checks
  1380. * for node-level blocks and does any balancing required based on
  1381. * the ins_len.
  1382. *
  1383. * If no extra work was required, zero is returned. If we had to
  1384. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1385. * start over
  1386. */
  1387. static int
  1388. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1389. struct btrfs_root *root, struct btrfs_path *p,
  1390. struct extent_buffer *b, int level, int ins_len,
  1391. int *write_lock_level)
  1392. {
  1393. int ret;
  1394. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1395. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1396. int sret;
  1397. if (*write_lock_level < level + 1) {
  1398. *write_lock_level = level + 1;
  1399. btrfs_release_path(p);
  1400. goto again;
  1401. }
  1402. sret = reada_for_balance(root, p, level);
  1403. if (sret)
  1404. goto again;
  1405. btrfs_set_path_blocking(p);
  1406. sret = split_node(trans, root, p, level);
  1407. btrfs_clear_path_blocking(p, NULL, 0);
  1408. BUG_ON(sret > 0);
  1409. if (sret) {
  1410. ret = sret;
  1411. goto done;
  1412. }
  1413. b = p->nodes[level];
  1414. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1415. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1416. int sret;
  1417. if (*write_lock_level < level + 1) {
  1418. *write_lock_level = level + 1;
  1419. btrfs_release_path(p);
  1420. goto again;
  1421. }
  1422. sret = reada_for_balance(root, p, level);
  1423. if (sret)
  1424. goto again;
  1425. btrfs_set_path_blocking(p);
  1426. sret = balance_level(trans, root, p, level);
  1427. btrfs_clear_path_blocking(p, NULL, 0);
  1428. if (sret) {
  1429. ret = sret;
  1430. goto done;
  1431. }
  1432. b = p->nodes[level];
  1433. if (!b) {
  1434. btrfs_release_path(p);
  1435. goto again;
  1436. }
  1437. BUG_ON(btrfs_header_nritems(b) == 1);
  1438. }
  1439. return 0;
  1440. again:
  1441. ret = -EAGAIN;
  1442. done:
  1443. return ret;
  1444. }
  1445. /*
  1446. * look for key in the tree. path is filled in with nodes along the way
  1447. * if key is found, we return zero and you can find the item in the leaf
  1448. * level of the path (level 0)
  1449. *
  1450. * If the key isn't found, the path points to the slot where it should
  1451. * be inserted, and 1 is returned. If there are other errors during the
  1452. * search a negative error number is returned.
  1453. *
  1454. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1455. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1456. * possible)
  1457. */
  1458. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1459. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1460. ins_len, int cow)
  1461. {
  1462. struct extent_buffer *b;
  1463. int slot;
  1464. int ret;
  1465. int err;
  1466. int level;
  1467. int lowest_unlock = 1;
  1468. int root_lock;
  1469. /* everything at write_lock_level or lower must be write locked */
  1470. int write_lock_level = 0;
  1471. u8 lowest_level = 0;
  1472. lowest_level = p->lowest_level;
  1473. WARN_ON(lowest_level && ins_len > 0);
  1474. WARN_ON(p->nodes[0] != NULL);
  1475. if (ins_len < 0) {
  1476. lowest_unlock = 2;
  1477. /* when we are removing items, we might have to go up to level
  1478. * two as we update tree pointers Make sure we keep write
  1479. * for those levels as well
  1480. */
  1481. write_lock_level = 2;
  1482. } else if (ins_len > 0) {
  1483. /*
  1484. * for inserting items, make sure we have a write lock on
  1485. * level 1 so we can update keys
  1486. */
  1487. write_lock_level = 1;
  1488. }
  1489. if (!cow)
  1490. write_lock_level = -1;
  1491. if (cow && (p->keep_locks || p->lowest_level))
  1492. write_lock_level = BTRFS_MAX_LEVEL;
  1493. again:
  1494. /*
  1495. * we try very hard to do read locks on the root
  1496. */
  1497. root_lock = BTRFS_READ_LOCK;
  1498. level = 0;
  1499. if (p->search_commit_root) {
  1500. /*
  1501. * the commit roots are read only
  1502. * so we always do read locks
  1503. */
  1504. b = root->commit_root;
  1505. extent_buffer_get(b);
  1506. level = btrfs_header_level(b);
  1507. if (!p->skip_locking)
  1508. btrfs_tree_read_lock(b);
  1509. } else {
  1510. if (p->skip_locking) {
  1511. b = btrfs_root_node(root);
  1512. level = btrfs_header_level(b);
  1513. } else {
  1514. /* we don't know the level of the root node
  1515. * until we actually have it read locked
  1516. */
  1517. b = btrfs_read_lock_root_node(root);
  1518. level = btrfs_header_level(b);
  1519. if (level <= write_lock_level) {
  1520. /* whoops, must trade for write lock */
  1521. btrfs_tree_read_unlock(b);
  1522. free_extent_buffer(b);
  1523. b = btrfs_lock_root_node(root);
  1524. root_lock = BTRFS_WRITE_LOCK;
  1525. /* the level might have changed, check again */
  1526. level = btrfs_header_level(b);
  1527. }
  1528. }
  1529. }
  1530. p->nodes[level] = b;
  1531. if (!p->skip_locking)
  1532. p->locks[level] = root_lock;
  1533. while (b) {
  1534. level = btrfs_header_level(b);
  1535. /*
  1536. * setup the path here so we can release it under lock
  1537. * contention with the cow code
  1538. */
  1539. if (cow) {
  1540. /*
  1541. * if we don't really need to cow this block
  1542. * then we don't want to set the path blocking,
  1543. * so we test it here
  1544. */
  1545. if (!should_cow_block(trans, root, b))
  1546. goto cow_done;
  1547. btrfs_set_path_blocking(p);
  1548. /*
  1549. * must have write locks on this node and the
  1550. * parent
  1551. */
  1552. if (level + 1 > write_lock_level) {
  1553. write_lock_level = level + 1;
  1554. btrfs_release_path(p);
  1555. goto again;
  1556. }
  1557. err = btrfs_cow_block(trans, root, b,
  1558. p->nodes[level + 1],
  1559. p->slots[level + 1], &b);
  1560. if (err) {
  1561. ret = err;
  1562. goto done;
  1563. }
  1564. }
  1565. cow_done:
  1566. BUG_ON(!cow && ins_len);
  1567. p->nodes[level] = b;
  1568. btrfs_clear_path_blocking(p, NULL, 0);
  1569. /*
  1570. * we have a lock on b and as long as we aren't changing
  1571. * the tree, there is no way to for the items in b to change.
  1572. * It is safe to drop the lock on our parent before we
  1573. * go through the expensive btree search on b.
  1574. *
  1575. * If cow is true, then we might be changing slot zero,
  1576. * which may require changing the parent. So, we can't
  1577. * drop the lock until after we know which slot we're
  1578. * operating on.
  1579. */
  1580. if (!cow)
  1581. btrfs_unlock_up_safe(p, level + 1);
  1582. ret = bin_search(b, key, level, &slot);
  1583. if (level != 0) {
  1584. int dec = 0;
  1585. if (ret && slot > 0) {
  1586. dec = 1;
  1587. slot -= 1;
  1588. }
  1589. p->slots[level] = slot;
  1590. err = setup_nodes_for_search(trans, root, p, b, level,
  1591. ins_len, &write_lock_level);
  1592. if (err == -EAGAIN)
  1593. goto again;
  1594. if (err) {
  1595. ret = err;
  1596. goto done;
  1597. }
  1598. b = p->nodes[level];
  1599. slot = p->slots[level];
  1600. /*
  1601. * slot 0 is special, if we change the key
  1602. * we have to update the parent pointer
  1603. * which means we must have a write lock
  1604. * on the parent
  1605. */
  1606. if (slot == 0 && cow &&
  1607. write_lock_level < level + 1) {
  1608. write_lock_level = level + 1;
  1609. btrfs_release_path(p);
  1610. goto again;
  1611. }
  1612. unlock_up(p, level, lowest_unlock);
  1613. if (level == lowest_level) {
  1614. if (dec)
  1615. p->slots[level]++;
  1616. goto done;
  1617. }
  1618. err = read_block_for_search(trans, root, p,
  1619. &b, level, slot, key);
  1620. if (err == -EAGAIN)
  1621. goto again;
  1622. if (err) {
  1623. ret = err;
  1624. goto done;
  1625. }
  1626. if (!p->skip_locking) {
  1627. level = btrfs_header_level(b);
  1628. if (level <= write_lock_level) {
  1629. err = btrfs_try_tree_write_lock(b);
  1630. if (!err) {
  1631. btrfs_set_path_blocking(p);
  1632. btrfs_tree_lock(b);
  1633. btrfs_clear_path_blocking(p, b,
  1634. BTRFS_WRITE_LOCK);
  1635. }
  1636. p->locks[level] = BTRFS_WRITE_LOCK;
  1637. } else {
  1638. err = btrfs_try_tree_read_lock(b);
  1639. if (!err) {
  1640. btrfs_set_path_blocking(p);
  1641. btrfs_tree_read_lock(b);
  1642. btrfs_clear_path_blocking(p, b,
  1643. BTRFS_READ_LOCK);
  1644. }
  1645. p->locks[level] = BTRFS_READ_LOCK;
  1646. }
  1647. p->nodes[level] = b;
  1648. }
  1649. } else {
  1650. p->slots[level] = slot;
  1651. if (ins_len > 0 &&
  1652. btrfs_leaf_free_space(root, b) < ins_len) {
  1653. if (write_lock_level < 1) {
  1654. write_lock_level = 1;
  1655. btrfs_release_path(p);
  1656. goto again;
  1657. }
  1658. btrfs_set_path_blocking(p);
  1659. err = split_leaf(trans, root, key,
  1660. p, ins_len, ret == 0);
  1661. btrfs_clear_path_blocking(p, NULL, 0);
  1662. BUG_ON(err > 0);
  1663. if (err) {
  1664. ret = err;
  1665. goto done;
  1666. }
  1667. }
  1668. if (!p->search_for_split)
  1669. unlock_up(p, level, lowest_unlock);
  1670. goto done;
  1671. }
  1672. }
  1673. ret = 1;
  1674. done:
  1675. /*
  1676. * we don't really know what they plan on doing with the path
  1677. * from here on, so for now just mark it as blocking
  1678. */
  1679. if (!p->leave_spinning)
  1680. btrfs_set_path_blocking(p);
  1681. if (ret < 0)
  1682. btrfs_release_path(p);
  1683. return ret;
  1684. }
  1685. /*
  1686. * adjust the pointers going up the tree, starting at level
  1687. * making sure the right key of each node is points to 'key'.
  1688. * This is used after shifting pointers to the left, so it stops
  1689. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1690. * higher levels
  1691. *
  1692. * If this fails to write a tree block, it returns -1, but continues
  1693. * fixing up the blocks in ram so the tree is consistent.
  1694. */
  1695. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1696. struct btrfs_root *root, struct btrfs_path *path,
  1697. struct btrfs_disk_key *key, int level)
  1698. {
  1699. int i;
  1700. int ret = 0;
  1701. struct extent_buffer *t;
  1702. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1703. int tslot = path->slots[i];
  1704. if (!path->nodes[i])
  1705. break;
  1706. t = path->nodes[i];
  1707. btrfs_set_node_key(t, key, tslot);
  1708. btrfs_mark_buffer_dirty(path->nodes[i]);
  1709. if (tslot != 0)
  1710. break;
  1711. }
  1712. return ret;
  1713. }
  1714. /*
  1715. * update item key.
  1716. *
  1717. * This function isn't completely safe. It's the caller's responsibility
  1718. * that the new key won't break the order
  1719. */
  1720. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1721. struct btrfs_root *root, struct btrfs_path *path,
  1722. struct btrfs_key *new_key)
  1723. {
  1724. struct btrfs_disk_key disk_key;
  1725. struct extent_buffer *eb;
  1726. int slot;
  1727. eb = path->nodes[0];
  1728. slot = path->slots[0];
  1729. if (slot > 0) {
  1730. btrfs_item_key(eb, &disk_key, slot - 1);
  1731. if (comp_keys(&disk_key, new_key) >= 0)
  1732. return -1;
  1733. }
  1734. if (slot < btrfs_header_nritems(eb) - 1) {
  1735. btrfs_item_key(eb, &disk_key, slot + 1);
  1736. if (comp_keys(&disk_key, new_key) <= 0)
  1737. return -1;
  1738. }
  1739. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1740. btrfs_set_item_key(eb, &disk_key, slot);
  1741. btrfs_mark_buffer_dirty(eb);
  1742. if (slot == 0)
  1743. fixup_low_keys(trans, root, path, &disk_key, 1);
  1744. return 0;
  1745. }
  1746. /*
  1747. * try to push data from one node into the next node left in the
  1748. * tree.
  1749. *
  1750. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1751. * error, and > 0 if there was no room in the left hand block.
  1752. */
  1753. static int push_node_left(struct btrfs_trans_handle *trans,
  1754. struct btrfs_root *root, struct extent_buffer *dst,
  1755. struct extent_buffer *src, int empty)
  1756. {
  1757. int push_items = 0;
  1758. int src_nritems;
  1759. int dst_nritems;
  1760. int ret = 0;
  1761. src_nritems = btrfs_header_nritems(src);
  1762. dst_nritems = btrfs_header_nritems(dst);
  1763. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1764. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1765. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1766. if (!empty && src_nritems <= 8)
  1767. return 1;
  1768. if (push_items <= 0)
  1769. return 1;
  1770. if (empty) {
  1771. push_items = min(src_nritems, push_items);
  1772. if (push_items < src_nritems) {
  1773. /* leave at least 8 pointers in the node if
  1774. * we aren't going to empty it
  1775. */
  1776. if (src_nritems - push_items < 8) {
  1777. if (push_items <= 8)
  1778. return 1;
  1779. push_items -= 8;
  1780. }
  1781. }
  1782. } else
  1783. push_items = min(src_nritems - 8, push_items);
  1784. copy_extent_buffer(dst, src,
  1785. btrfs_node_key_ptr_offset(dst_nritems),
  1786. btrfs_node_key_ptr_offset(0),
  1787. push_items * sizeof(struct btrfs_key_ptr));
  1788. if (push_items < src_nritems) {
  1789. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1790. btrfs_node_key_ptr_offset(push_items),
  1791. (src_nritems - push_items) *
  1792. sizeof(struct btrfs_key_ptr));
  1793. }
  1794. btrfs_set_header_nritems(src, src_nritems - push_items);
  1795. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1796. btrfs_mark_buffer_dirty(src);
  1797. btrfs_mark_buffer_dirty(dst);
  1798. return ret;
  1799. }
  1800. /*
  1801. * try to push data from one node into the next node right in the
  1802. * tree.
  1803. *
  1804. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1805. * error, and > 0 if there was no room in the right hand block.
  1806. *
  1807. * this will only push up to 1/2 the contents of the left node over
  1808. */
  1809. static int balance_node_right(struct btrfs_trans_handle *trans,
  1810. struct btrfs_root *root,
  1811. struct extent_buffer *dst,
  1812. struct extent_buffer *src)
  1813. {
  1814. int push_items = 0;
  1815. int max_push;
  1816. int src_nritems;
  1817. int dst_nritems;
  1818. int ret = 0;
  1819. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1820. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1821. src_nritems = btrfs_header_nritems(src);
  1822. dst_nritems = btrfs_header_nritems(dst);
  1823. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1824. if (push_items <= 0)
  1825. return 1;
  1826. if (src_nritems < 4)
  1827. return 1;
  1828. max_push = src_nritems / 2 + 1;
  1829. /* don't try to empty the node */
  1830. if (max_push >= src_nritems)
  1831. return 1;
  1832. if (max_push < push_items)
  1833. push_items = max_push;
  1834. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1835. btrfs_node_key_ptr_offset(0),
  1836. (dst_nritems) *
  1837. sizeof(struct btrfs_key_ptr));
  1838. copy_extent_buffer(dst, src,
  1839. btrfs_node_key_ptr_offset(0),
  1840. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1841. push_items * sizeof(struct btrfs_key_ptr));
  1842. btrfs_set_header_nritems(src, src_nritems - push_items);
  1843. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1844. btrfs_mark_buffer_dirty(src);
  1845. btrfs_mark_buffer_dirty(dst);
  1846. return ret;
  1847. }
  1848. /*
  1849. * helper function to insert a new root level in the tree.
  1850. * A new node is allocated, and a single item is inserted to
  1851. * point to the existing root
  1852. *
  1853. * returns zero on success or < 0 on failure.
  1854. */
  1855. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1856. struct btrfs_root *root,
  1857. struct btrfs_path *path, int level)
  1858. {
  1859. u64 lower_gen;
  1860. struct extent_buffer *lower;
  1861. struct extent_buffer *c;
  1862. struct extent_buffer *old;
  1863. struct btrfs_disk_key lower_key;
  1864. BUG_ON(path->nodes[level]);
  1865. BUG_ON(path->nodes[level-1] != root->node);
  1866. lower = path->nodes[level-1];
  1867. if (level == 1)
  1868. btrfs_item_key(lower, &lower_key, 0);
  1869. else
  1870. btrfs_node_key(lower, &lower_key, 0);
  1871. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1872. root->root_key.objectid, &lower_key,
  1873. level, root->node->start, 0, 0);
  1874. if (IS_ERR(c))
  1875. return PTR_ERR(c);
  1876. root_add_used(root, root->nodesize);
  1877. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1878. btrfs_set_header_nritems(c, 1);
  1879. btrfs_set_header_level(c, level);
  1880. btrfs_set_header_bytenr(c, c->start);
  1881. btrfs_set_header_generation(c, trans->transid);
  1882. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1883. btrfs_set_header_owner(c, root->root_key.objectid);
  1884. write_extent_buffer(c, root->fs_info->fsid,
  1885. (unsigned long)btrfs_header_fsid(c),
  1886. BTRFS_FSID_SIZE);
  1887. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1888. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1889. BTRFS_UUID_SIZE);
  1890. btrfs_set_node_key(c, &lower_key, 0);
  1891. btrfs_set_node_blockptr(c, 0, lower->start);
  1892. lower_gen = btrfs_header_generation(lower);
  1893. WARN_ON(lower_gen != trans->transid);
  1894. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1895. btrfs_mark_buffer_dirty(c);
  1896. old = root->node;
  1897. rcu_assign_pointer(root->node, c);
  1898. /* the super has an extra ref to root->node */
  1899. free_extent_buffer(old);
  1900. add_root_to_dirty_list(root);
  1901. extent_buffer_get(c);
  1902. path->nodes[level] = c;
  1903. path->locks[level] = BTRFS_WRITE_LOCK;
  1904. path->slots[level] = 0;
  1905. return 0;
  1906. }
  1907. /*
  1908. * worker function to insert a single pointer in a node.
  1909. * the node should have enough room for the pointer already
  1910. *
  1911. * slot and level indicate where you want the key to go, and
  1912. * blocknr is the block the key points to.
  1913. *
  1914. * returns zero on success and < 0 on any error
  1915. */
  1916. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1917. *root, struct btrfs_path *path, struct btrfs_disk_key
  1918. *key, u64 bytenr, int slot, int level)
  1919. {
  1920. struct extent_buffer *lower;
  1921. int nritems;
  1922. BUG_ON(!path->nodes[level]);
  1923. btrfs_assert_tree_locked(path->nodes[level]);
  1924. lower = path->nodes[level];
  1925. nritems = btrfs_header_nritems(lower);
  1926. BUG_ON(slot > nritems);
  1927. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1928. BUG();
  1929. if (slot != nritems) {
  1930. memmove_extent_buffer(lower,
  1931. btrfs_node_key_ptr_offset(slot + 1),
  1932. btrfs_node_key_ptr_offset(slot),
  1933. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1934. }
  1935. btrfs_set_node_key(lower, key, slot);
  1936. btrfs_set_node_blockptr(lower, slot, bytenr);
  1937. WARN_ON(trans->transid == 0);
  1938. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1939. btrfs_set_header_nritems(lower, nritems + 1);
  1940. btrfs_mark_buffer_dirty(lower);
  1941. return 0;
  1942. }
  1943. /*
  1944. * split the node at the specified level in path in two.
  1945. * The path is corrected to point to the appropriate node after the split
  1946. *
  1947. * Before splitting this tries to make some room in the node by pushing
  1948. * left and right, if either one works, it returns right away.
  1949. *
  1950. * returns 0 on success and < 0 on failure
  1951. */
  1952. static noinline int split_node(struct btrfs_trans_handle *trans,
  1953. struct btrfs_root *root,
  1954. struct btrfs_path *path, int level)
  1955. {
  1956. struct extent_buffer *c;
  1957. struct extent_buffer *split;
  1958. struct btrfs_disk_key disk_key;
  1959. int mid;
  1960. int ret;
  1961. int wret;
  1962. u32 c_nritems;
  1963. c = path->nodes[level];
  1964. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1965. if (c == root->node) {
  1966. /* trying to split the root, lets make a new one */
  1967. ret = insert_new_root(trans, root, path, level + 1);
  1968. if (ret)
  1969. return ret;
  1970. } else {
  1971. ret = push_nodes_for_insert(trans, root, path, level);
  1972. c = path->nodes[level];
  1973. if (!ret && btrfs_header_nritems(c) <
  1974. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1975. return 0;
  1976. if (ret < 0)
  1977. return ret;
  1978. }
  1979. c_nritems = btrfs_header_nritems(c);
  1980. mid = (c_nritems + 1) / 2;
  1981. btrfs_node_key(c, &disk_key, mid);
  1982. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1983. root->root_key.objectid,
  1984. &disk_key, level, c->start, 0, 0);
  1985. if (IS_ERR(split))
  1986. return PTR_ERR(split);
  1987. root_add_used(root, root->nodesize);
  1988. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1989. btrfs_set_header_level(split, btrfs_header_level(c));
  1990. btrfs_set_header_bytenr(split, split->start);
  1991. btrfs_set_header_generation(split, trans->transid);
  1992. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1993. btrfs_set_header_owner(split, root->root_key.objectid);
  1994. write_extent_buffer(split, root->fs_info->fsid,
  1995. (unsigned long)btrfs_header_fsid(split),
  1996. BTRFS_FSID_SIZE);
  1997. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1998. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1999. BTRFS_UUID_SIZE);
  2000. copy_extent_buffer(split, c,
  2001. btrfs_node_key_ptr_offset(0),
  2002. btrfs_node_key_ptr_offset(mid),
  2003. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2004. btrfs_set_header_nritems(split, c_nritems - mid);
  2005. btrfs_set_header_nritems(c, mid);
  2006. ret = 0;
  2007. btrfs_mark_buffer_dirty(c);
  2008. btrfs_mark_buffer_dirty(split);
  2009. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  2010. path->slots[level + 1] + 1,
  2011. level + 1);
  2012. if (wret)
  2013. ret = wret;
  2014. if (path->slots[level] >= mid) {
  2015. path->slots[level] -= mid;
  2016. btrfs_tree_unlock(c);
  2017. free_extent_buffer(c);
  2018. path->nodes[level] = split;
  2019. path->slots[level + 1] += 1;
  2020. } else {
  2021. btrfs_tree_unlock(split);
  2022. free_extent_buffer(split);
  2023. }
  2024. return ret;
  2025. }
  2026. /*
  2027. * how many bytes are required to store the items in a leaf. start
  2028. * and nr indicate which items in the leaf to check. This totals up the
  2029. * space used both by the item structs and the item data
  2030. */
  2031. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2032. {
  2033. int data_len;
  2034. int nritems = btrfs_header_nritems(l);
  2035. int end = min(nritems, start + nr) - 1;
  2036. if (!nr)
  2037. return 0;
  2038. data_len = btrfs_item_end_nr(l, start);
  2039. data_len = data_len - btrfs_item_offset_nr(l, end);
  2040. data_len += sizeof(struct btrfs_item) * nr;
  2041. WARN_ON(data_len < 0);
  2042. return data_len;
  2043. }
  2044. /*
  2045. * The space between the end of the leaf items and
  2046. * the start of the leaf data. IOW, how much room
  2047. * the leaf has left for both items and data
  2048. */
  2049. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2050. struct extent_buffer *leaf)
  2051. {
  2052. int nritems = btrfs_header_nritems(leaf);
  2053. int ret;
  2054. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2055. if (ret < 0) {
  2056. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2057. "used %d nritems %d\n",
  2058. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2059. leaf_space_used(leaf, 0, nritems), nritems);
  2060. }
  2061. return ret;
  2062. }
  2063. /*
  2064. * min slot controls the lowest index we're willing to push to the
  2065. * right. We'll push up to and including min_slot, but no lower
  2066. */
  2067. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2068. struct btrfs_root *root,
  2069. struct btrfs_path *path,
  2070. int data_size, int empty,
  2071. struct extent_buffer *right,
  2072. int free_space, u32 left_nritems,
  2073. u32 min_slot)
  2074. {
  2075. struct extent_buffer *left = path->nodes[0];
  2076. struct extent_buffer *upper = path->nodes[1];
  2077. struct btrfs_disk_key disk_key;
  2078. int slot;
  2079. u32 i;
  2080. int push_space = 0;
  2081. int push_items = 0;
  2082. struct btrfs_item *item;
  2083. u32 nr;
  2084. u32 right_nritems;
  2085. u32 data_end;
  2086. u32 this_item_size;
  2087. if (empty)
  2088. nr = 0;
  2089. else
  2090. nr = max_t(u32, 1, min_slot);
  2091. if (path->slots[0] >= left_nritems)
  2092. push_space += data_size;
  2093. slot = path->slots[1];
  2094. i = left_nritems - 1;
  2095. while (i >= nr) {
  2096. item = btrfs_item_nr(left, i);
  2097. if (!empty && push_items > 0) {
  2098. if (path->slots[0] > i)
  2099. break;
  2100. if (path->slots[0] == i) {
  2101. int space = btrfs_leaf_free_space(root, left);
  2102. if (space + push_space * 2 > free_space)
  2103. break;
  2104. }
  2105. }
  2106. if (path->slots[0] == i)
  2107. push_space += data_size;
  2108. this_item_size = btrfs_item_size(left, item);
  2109. if (this_item_size + sizeof(*item) + push_space > free_space)
  2110. break;
  2111. push_items++;
  2112. push_space += this_item_size + sizeof(*item);
  2113. if (i == 0)
  2114. break;
  2115. i--;
  2116. }
  2117. if (push_items == 0)
  2118. goto out_unlock;
  2119. if (!empty && push_items == left_nritems)
  2120. WARN_ON(1);
  2121. /* push left to right */
  2122. right_nritems = btrfs_header_nritems(right);
  2123. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2124. push_space -= leaf_data_end(root, left);
  2125. /* make room in the right data area */
  2126. data_end = leaf_data_end(root, right);
  2127. memmove_extent_buffer(right,
  2128. btrfs_leaf_data(right) + data_end - push_space,
  2129. btrfs_leaf_data(right) + data_end,
  2130. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2131. /* copy from the left data area */
  2132. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2133. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2134. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2135. push_space);
  2136. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2137. btrfs_item_nr_offset(0),
  2138. right_nritems * sizeof(struct btrfs_item));
  2139. /* copy the items from left to right */
  2140. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2141. btrfs_item_nr_offset(left_nritems - push_items),
  2142. push_items * sizeof(struct btrfs_item));
  2143. /* update the item pointers */
  2144. right_nritems += push_items;
  2145. btrfs_set_header_nritems(right, right_nritems);
  2146. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2147. for (i = 0; i < right_nritems; i++) {
  2148. item = btrfs_item_nr(right, i);
  2149. push_space -= btrfs_item_size(right, item);
  2150. btrfs_set_item_offset(right, item, push_space);
  2151. }
  2152. left_nritems -= push_items;
  2153. btrfs_set_header_nritems(left, left_nritems);
  2154. if (left_nritems)
  2155. btrfs_mark_buffer_dirty(left);
  2156. else
  2157. clean_tree_block(trans, root, left);
  2158. btrfs_mark_buffer_dirty(right);
  2159. btrfs_item_key(right, &disk_key, 0);
  2160. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2161. btrfs_mark_buffer_dirty(upper);
  2162. /* then fixup the leaf pointer in the path */
  2163. if (path->slots[0] >= left_nritems) {
  2164. path->slots[0] -= left_nritems;
  2165. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2166. clean_tree_block(trans, root, path->nodes[0]);
  2167. btrfs_tree_unlock(path->nodes[0]);
  2168. free_extent_buffer(path->nodes[0]);
  2169. path->nodes[0] = right;
  2170. path->slots[1] += 1;
  2171. } else {
  2172. btrfs_tree_unlock(right);
  2173. free_extent_buffer(right);
  2174. }
  2175. return 0;
  2176. out_unlock:
  2177. btrfs_tree_unlock(right);
  2178. free_extent_buffer(right);
  2179. return 1;
  2180. }
  2181. /*
  2182. * push some data in the path leaf to the right, trying to free up at
  2183. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2184. *
  2185. * returns 1 if the push failed because the other node didn't have enough
  2186. * room, 0 if everything worked out and < 0 if there were major errors.
  2187. *
  2188. * this will push starting from min_slot to the end of the leaf. It won't
  2189. * push any slot lower than min_slot
  2190. */
  2191. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2192. *root, struct btrfs_path *path,
  2193. int min_data_size, int data_size,
  2194. int empty, u32 min_slot)
  2195. {
  2196. struct extent_buffer *left = path->nodes[0];
  2197. struct extent_buffer *right;
  2198. struct extent_buffer *upper;
  2199. int slot;
  2200. int free_space;
  2201. u32 left_nritems;
  2202. int ret;
  2203. if (!path->nodes[1])
  2204. return 1;
  2205. slot = path->slots[1];
  2206. upper = path->nodes[1];
  2207. if (slot >= btrfs_header_nritems(upper) - 1)
  2208. return 1;
  2209. btrfs_assert_tree_locked(path->nodes[1]);
  2210. right = read_node_slot(root, upper, slot + 1);
  2211. if (right == NULL)
  2212. return 1;
  2213. btrfs_tree_lock(right);
  2214. btrfs_set_lock_blocking(right);
  2215. free_space = btrfs_leaf_free_space(root, right);
  2216. if (free_space < data_size)
  2217. goto out_unlock;
  2218. /* cow and double check */
  2219. ret = btrfs_cow_block(trans, root, right, upper,
  2220. slot + 1, &right);
  2221. if (ret)
  2222. goto out_unlock;
  2223. free_space = btrfs_leaf_free_space(root, right);
  2224. if (free_space < data_size)
  2225. goto out_unlock;
  2226. left_nritems = btrfs_header_nritems(left);
  2227. if (left_nritems == 0)
  2228. goto out_unlock;
  2229. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2230. right, free_space, left_nritems, min_slot);
  2231. out_unlock:
  2232. btrfs_tree_unlock(right);
  2233. free_extent_buffer(right);
  2234. return 1;
  2235. }
  2236. /*
  2237. * push some data in the path leaf to the left, trying to free up at
  2238. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2239. *
  2240. * max_slot can put a limit on how far into the leaf we'll push items. The
  2241. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2242. * items
  2243. */
  2244. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2245. struct btrfs_root *root,
  2246. struct btrfs_path *path, int data_size,
  2247. int empty, struct extent_buffer *left,
  2248. int free_space, u32 right_nritems,
  2249. u32 max_slot)
  2250. {
  2251. struct btrfs_disk_key disk_key;
  2252. struct extent_buffer *right = path->nodes[0];
  2253. int i;
  2254. int push_space = 0;
  2255. int push_items = 0;
  2256. struct btrfs_item *item;
  2257. u32 old_left_nritems;
  2258. u32 nr;
  2259. int ret = 0;
  2260. int wret;
  2261. u32 this_item_size;
  2262. u32 old_left_item_size;
  2263. if (empty)
  2264. nr = min(right_nritems, max_slot);
  2265. else
  2266. nr = min(right_nritems - 1, max_slot);
  2267. for (i = 0; i < nr; i++) {
  2268. item = btrfs_item_nr(right, i);
  2269. if (!empty && push_items > 0) {
  2270. if (path->slots[0] < i)
  2271. break;
  2272. if (path->slots[0] == i) {
  2273. int space = btrfs_leaf_free_space(root, right);
  2274. if (space + push_space * 2 > free_space)
  2275. break;
  2276. }
  2277. }
  2278. if (path->slots[0] == i)
  2279. push_space += data_size;
  2280. this_item_size = btrfs_item_size(right, item);
  2281. if (this_item_size + sizeof(*item) + push_space > free_space)
  2282. break;
  2283. push_items++;
  2284. push_space += this_item_size + sizeof(*item);
  2285. }
  2286. if (push_items == 0) {
  2287. ret = 1;
  2288. goto out;
  2289. }
  2290. if (!empty && push_items == btrfs_header_nritems(right))
  2291. WARN_ON(1);
  2292. /* push data from right to left */
  2293. copy_extent_buffer(left, right,
  2294. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2295. btrfs_item_nr_offset(0),
  2296. push_items * sizeof(struct btrfs_item));
  2297. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2298. btrfs_item_offset_nr(right, push_items - 1);
  2299. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2300. leaf_data_end(root, left) - push_space,
  2301. btrfs_leaf_data(right) +
  2302. btrfs_item_offset_nr(right, push_items - 1),
  2303. push_space);
  2304. old_left_nritems = btrfs_header_nritems(left);
  2305. BUG_ON(old_left_nritems <= 0);
  2306. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2307. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2308. u32 ioff;
  2309. item = btrfs_item_nr(left, i);
  2310. ioff = btrfs_item_offset(left, item);
  2311. btrfs_set_item_offset(left, item,
  2312. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2313. }
  2314. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2315. /* fixup right node */
  2316. if (push_items > right_nritems) {
  2317. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2318. right_nritems);
  2319. WARN_ON(1);
  2320. }
  2321. if (push_items < right_nritems) {
  2322. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2323. leaf_data_end(root, right);
  2324. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2325. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2326. btrfs_leaf_data(right) +
  2327. leaf_data_end(root, right), push_space);
  2328. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2329. btrfs_item_nr_offset(push_items),
  2330. (btrfs_header_nritems(right) - push_items) *
  2331. sizeof(struct btrfs_item));
  2332. }
  2333. right_nritems -= push_items;
  2334. btrfs_set_header_nritems(right, right_nritems);
  2335. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2336. for (i = 0; i < right_nritems; i++) {
  2337. item = btrfs_item_nr(right, i);
  2338. push_space = push_space - btrfs_item_size(right, item);
  2339. btrfs_set_item_offset(right, item, push_space);
  2340. }
  2341. btrfs_mark_buffer_dirty(left);
  2342. if (right_nritems)
  2343. btrfs_mark_buffer_dirty(right);
  2344. else
  2345. clean_tree_block(trans, root, right);
  2346. btrfs_item_key(right, &disk_key, 0);
  2347. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2348. if (wret)
  2349. ret = wret;
  2350. /* then fixup the leaf pointer in the path */
  2351. if (path->slots[0] < push_items) {
  2352. path->slots[0] += old_left_nritems;
  2353. btrfs_tree_unlock(path->nodes[0]);
  2354. free_extent_buffer(path->nodes[0]);
  2355. path->nodes[0] = left;
  2356. path->slots[1] -= 1;
  2357. } else {
  2358. btrfs_tree_unlock(left);
  2359. free_extent_buffer(left);
  2360. path->slots[0] -= push_items;
  2361. }
  2362. BUG_ON(path->slots[0] < 0);
  2363. return ret;
  2364. out:
  2365. btrfs_tree_unlock(left);
  2366. free_extent_buffer(left);
  2367. return ret;
  2368. }
  2369. /*
  2370. * push some data in the path leaf to the left, trying to free up at
  2371. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2372. *
  2373. * max_slot can put a limit on how far into the leaf we'll push items. The
  2374. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2375. * items
  2376. */
  2377. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2378. *root, struct btrfs_path *path, int min_data_size,
  2379. int data_size, int empty, u32 max_slot)
  2380. {
  2381. struct extent_buffer *right = path->nodes[0];
  2382. struct extent_buffer *left;
  2383. int slot;
  2384. int free_space;
  2385. u32 right_nritems;
  2386. int ret = 0;
  2387. slot = path->slots[1];
  2388. if (slot == 0)
  2389. return 1;
  2390. if (!path->nodes[1])
  2391. return 1;
  2392. right_nritems = btrfs_header_nritems(right);
  2393. if (right_nritems == 0)
  2394. return 1;
  2395. btrfs_assert_tree_locked(path->nodes[1]);
  2396. left = read_node_slot(root, path->nodes[1], slot - 1);
  2397. if (left == NULL)
  2398. return 1;
  2399. btrfs_tree_lock(left);
  2400. btrfs_set_lock_blocking(left);
  2401. free_space = btrfs_leaf_free_space(root, left);
  2402. if (free_space < data_size) {
  2403. ret = 1;
  2404. goto out;
  2405. }
  2406. /* cow and double check */
  2407. ret = btrfs_cow_block(trans, root, left,
  2408. path->nodes[1], slot - 1, &left);
  2409. if (ret) {
  2410. /* we hit -ENOSPC, but it isn't fatal here */
  2411. ret = 1;
  2412. goto out;
  2413. }
  2414. free_space = btrfs_leaf_free_space(root, left);
  2415. if (free_space < data_size) {
  2416. ret = 1;
  2417. goto out;
  2418. }
  2419. return __push_leaf_left(trans, root, path, min_data_size,
  2420. empty, left, free_space, right_nritems,
  2421. max_slot);
  2422. out:
  2423. btrfs_tree_unlock(left);
  2424. free_extent_buffer(left);
  2425. return ret;
  2426. }
  2427. /*
  2428. * split the path's leaf in two, making sure there is at least data_size
  2429. * available for the resulting leaf level of the path.
  2430. *
  2431. * returns 0 if all went well and < 0 on failure.
  2432. */
  2433. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2434. struct btrfs_root *root,
  2435. struct btrfs_path *path,
  2436. struct extent_buffer *l,
  2437. struct extent_buffer *right,
  2438. int slot, int mid, int nritems)
  2439. {
  2440. int data_copy_size;
  2441. int rt_data_off;
  2442. int i;
  2443. int ret = 0;
  2444. int wret;
  2445. struct btrfs_disk_key disk_key;
  2446. nritems = nritems - mid;
  2447. btrfs_set_header_nritems(right, nritems);
  2448. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2449. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2450. btrfs_item_nr_offset(mid),
  2451. nritems * sizeof(struct btrfs_item));
  2452. copy_extent_buffer(right, l,
  2453. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2454. data_copy_size, btrfs_leaf_data(l) +
  2455. leaf_data_end(root, l), data_copy_size);
  2456. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2457. btrfs_item_end_nr(l, mid);
  2458. for (i = 0; i < nritems; i++) {
  2459. struct btrfs_item *item = btrfs_item_nr(right, i);
  2460. u32 ioff;
  2461. ioff = btrfs_item_offset(right, item);
  2462. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2463. }
  2464. btrfs_set_header_nritems(l, mid);
  2465. ret = 0;
  2466. btrfs_item_key(right, &disk_key, 0);
  2467. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2468. path->slots[1] + 1, 1);
  2469. if (wret)
  2470. ret = wret;
  2471. btrfs_mark_buffer_dirty(right);
  2472. btrfs_mark_buffer_dirty(l);
  2473. BUG_ON(path->slots[0] != slot);
  2474. if (mid <= slot) {
  2475. btrfs_tree_unlock(path->nodes[0]);
  2476. free_extent_buffer(path->nodes[0]);
  2477. path->nodes[0] = right;
  2478. path->slots[0] -= mid;
  2479. path->slots[1] += 1;
  2480. } else {
  2481. btrfs_tree_unlock(right);
  2482. free_extent_buffer(right);
  2483. }
  2484. BUG_ON(path->slots[0] < 0);
  2485. return ret;
  2486. }
  2487. /*
  2488. * double splits happen when we need to insert a big item in the middle
  2489. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2490. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2491. * A B C
  2492. *
  2493. * We avoid this by trying to push the items on either side of our target
  2494. * into the adjacent leaves. If all goes well we can avoid the double split
  2495. * completely.
  2496. */
  2497. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2498. struct btrfs_root *root,
  2499. struct btrfs_path *path,
  2500. int data_size)
  2501. {
  2502. int ret;
  2503. int progress = 0;
  2504. int slot;
  2505. u32 nritems;
  2506. slot = path->slots[0];
  2507. /*
  2508. * try to push all the items after our slot into the
  2509. * right leaf
  2510. */
  2511. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2512. if (ret < 0)
  2513. return ret;
  2514. if (ret == 0)
  2515. progress++;
  2516. nritems = btrfs_header_nritems(path->nodes[0]);
  2517. /*
  2518. * our goal is to get our slot at the start or end of a leaf. If
  2519. * we've done so we're done
  2520. */
  2521. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2522. return 0;
  2523. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2524. return 0;
  2525. /* try to push all the items before our slot into the next leaf */
  2526. slot = path->slots[0];
  2527. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2528. if (ret < 0)
  2529. return ret;
  2530. if (ret == 0)
  2531. progress++;
  2532. if (progress)
  2533. return 0;
  2534. return 1;
  2535. }
  2536. /*
  2537. * split the path's leaf in two, making sure there is at least data_size
  2538. * available for the resulting leaf level of the path.
  2539. *
  2540. * returns 0 if all went well and < 0 on failure.
  2541. */
  2542. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2543. struct btrfs_root *root,
  2544. struct btrfs_key *ins_key,
  2545. struct btrfs_path *path, int data_size,
  2546. int extend)
  2547. {
  2548. struct btrfs_disk_key disk_key;
  2549. struct extent_buffer *l;
  2550. u32 nritems;
  2551. int mid;
  2552. int slot;
  2553. struct extent_buffer *right;
  2554. int ret = 0;
  2555. int wret;
  2556. int split;
  2557. int num_doubles = 0;
  2558. int tried_avoid_double = 0;
  2559. l = path->nodes[0];
  2560. slot = path->slots[0];
  2561. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2562. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2563. return -EOVERFLOW;
  2564. /* first try to make some room by pushing left and right */
  2565. if (data_size) {
  2566. wret = push_leaf_right(trans, root, path, data_size,
  2567. data_size, 0, 0);
  2568. if (wret < 0)
  2569. return wret;
  2570. if (wret) {
  2571. wret = push_leaf_left(trans, root, path, data_size,
  2572. data_size, 0, (u32)-1);
  2573. if (wret < 0)
  2574. return wret;
  2575. }
  2576. l = path->nodes[0];
  2577. /* did the pushes work? */
  2578. if (btrfs_leaf_free_space(root, l) >= data_size)
  2579. return 0;
  2580. }
  2581. if (!path->nodes[1]) {
  2582. ret = insert_new_root(trans, root, path, 1);
  2583. if (ret)
  2584. return ret;
  2585. }
  2586. again:
  2587. split = 1;
  2588. l = path->nodes[0];
  2589. slot = path->slots[0];
  2590. nritems = btrfs_header_nritems(l);
  2591. mid = (nritems + 1) / 2;
  2592. if (mid <= slot) {
  2593. if (nritems == 1 ||
  2594. leaf_space_used(l, mid, nritems - mid) + data_size >
  2595. BTRFS_LEAF_DATA_SIZE(root)) {
  2596. if (slot >= nritems) {
  2597. split = 0;
  2598. } else {
  2599. mid = slot;
  2600. if (mid != nritems &&
  2601. leaf_space_used(l, mid, nritems - mid) +
  2602. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2603. if (data_size && !tried_avoid_double)
  2604. goto push_for_double;
  2605. split = 2;
  2606. }
  2607. }
  2608. }
  2609. } else {
  2610. if (leaf_space_used(l, 0, mid) + data_size >
  2611. BTRFS_LEAF_DATA_SIZE(root)) {
  2612. if (!extend && data_size && slot == 0) {
  2613. split = 0;
  2614. } else if ((extend || !data_size) && slot == 0) {
  2615. mid = 1;
  2616. } else {
  2617. mid = slot;
  2618. if (mid != nritems &&
  2619. leaf_space_used(l, mid, nritems - mid) +
  2620. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2621. if (data_size && !tried_avoid_double)
  2622. goto push_for_double;
  2623. split = 2 ;
  2624. }
  2625. }
  2626. }
  2627. }
  2628. if (split == 0)
  2629. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2630. else
  2631. btrfs_item_key(l, &disk_key, mid);
  2632. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2633. root->root_key.objectid,
  2634. &disk_key, 0, l->start, 0, 0);
  2635. if (IS_ERR(right))
  2636. return PTR_ERR(right);
  2637. root_add_used(root, root->leafsize);
  2638. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2639. btrfs_set_header_bytenr(right, right->start);
  2640. btrfs_set_header_generation(right, trans->transid);
  2641. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2642. btrfs_set_header_owner(right, root->root_key.objectid);
  2643. btrfs_set_header_level(right, 0);
  2644. write_extent_buffer(right, root->fs_info->fsid,
  2645. (unsigned long)btrfs_header_fsid(right),
  2646. BTRFS_FSID_SIZE);
  2647. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2648. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2649. BTRFS_UUID_SIZE);
  2650. if (split == 0) {
  2651. if (mid <= slot) {
  2652. btrfs_set_header_nritems(right, 0);
  2653. wret = insert_ptr(trans, root, path,
  2654. &disk_key, right->start,
  2655. path->slots[1] + 1, 1);
  2656. if (wret)
  2657. ret = wret;
  2658. btrfs_tree_unlock(path->nodes[0]);
  2659. free_extent_buffer(path->nodes[0]);
  2660. path->nodes[0] = right;
  2661. path->slots[0] = 0;
  2662. path->slots[1] += 1;
  2663. } else {
  2664. btrfs_set_header_nritems(right, 0);
  2665. wret = insert_ptr(trans, root, path,
  2666. &disk_key,
  2667. right->start,
  2668. path->slots[1], 1);
  2669. if (wret)
  2670. ret = wret;
  2671. btrfs_tree_unlock(path->nodes[0]);
  2672. free_extent_buffer(path->nodes[0]);
  2673. path->nodes[0] = right;
  2674. path->slots[0] = 0;
  2675. if (path->slots[1] == 0) {
  2676. wret = fixup_low_keys(trans, root,
  2677. path, &disk_key, 1);
  2678. if (wret)
  2679. ret = wret;
  2680. }
  2681. }
  2682. btrfs_mark_buffer_dirty(right);
  2683. return ret;
  2684. }
  2685. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2686. BUG_ON(ret);
  2687. if (split == 2) {
  2688. BUG_ON(num_doubles != 0);
  2689. num_doubles++;
  2690. goto again;
  2691. }
  2692. return ret;
  2693. push_for_double:
  2694. push_for_double_split(trans, root, path, data_size);
  2695. tried_avoid_double = 1;
  2696. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2697. return 0;
  2698. goto again;
  2699. }
  2700. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2701. struct btrfs_root *root,
  2702. struct btrfs_path *path, int ins_len)
  2703. {
  2704. struct btrfs_key key;
  2705. struct extent_buffer *leaf;
  2706. struct btrfs_file_extent_item *fi;
  2707. u64 extent_len = 0;
  2708. u32 item_size;
  2709. int ret;
  2710. leaf = path->nodes[0];
  2711. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2712. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2713. key.type != BTRFS_EXTENT_CSUM_KEY);
  2714. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2715. return 0;
  2716. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2717. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2718. fi = btrfs_item_ptr(leaf, path->slots[0],
  2719. struct btrfs_file_extent_item);
  2720. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2721. }
  2722. btrfs_release_path(path);
  2723. path->keep_locks = 1;
  2724. path->search_for_split = 1;
  2725. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2726. path->search_for_split = 0;
  2727. if (ret < 0)
  2728. goto err;
  2729. ret = -EAGAIN;
  2730. leaf = path->nodes[0];
  2731. /* if our item isn't there or got smaller, return now */
  2732. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2733. goto err;
  2734. /* the leaf has changed, it now has room. return now */
  2735. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2736. goto err;
  2737. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2738. fi = btrfs_item_ptr(leaf, path->slots[0],
  2739. struct btrfs_file_extent_item);
  2740. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2741. goto err;
  2742. }
  2743. btrfs_set_path_blocking(path);
  2744. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2745. if (ret)
  2746. goto err;
  2747. path->keep_locks = 0;
  2748. btrfs_unlock_up_safe(path, 1);
  2749. return 0;
  2750. err:
  2751. path->keep_locks = 0;
  2752. return ret;
  2753. }
  2754. static noinline int split_item(struct btrfs_trans_handle *trans,
  2755. struct btrfs_root *root,
  2756. struct btrfs_path *path,
  2757. struct btrfs_key *new_key,
  2758. unsigned long split_offset)
  2759. {
  2760. struct extent_buffer *leaf;
  2761. struct btrfs_item *item;
  2762. struct btrfs_item *new_item;
  2763. int slot;
  2764. char *buf;
  2765. u32 nritems;
  2766. u32 item_size;
  2767. u32 orig_offset;
  2768. struct btrfs_disk_key disk_key;
  2769. leaf = path->nodes[0];
  2770. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2771. btrfs_set_path_blocking(path);
  2772. item = btrfs_item_nr(leaf, path->slots[0]);
  2773. orig_offset = btrfs_item_offset(leaf, item);
  2774. item_size = btrfs_item_size(leaf, item);
  2775. buf = kmalloc(item_size, GFP_NOFS);
  2776. if (!buf)
  2777. return -ENOMEM;
  2778. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2779. path->slots[0]), item_size);
  2780. slot = path->slots[0] + 1;
  2781. nritems = btrfs_header_nritems(leaf);
  2782. if (slot != nritems) {
  2783. /* shift the items */
  2784. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2785. btrfs_item_nr_offset(slot),
  2786. (nritems - slot) * sizeof(struct btrfs_item));
  2787. }
  2788. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2789. btrfs_set_item_key(leaf, &disk_key, slot);
  2790. new_item = btrfs_item_nr(leaf, slot);
  2791. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2792. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2793. btrfs_set_item_offset(leaf, item,
  2794. orig_offset + item_size - split_offset);
  2795. btrfs_set_item_size(leaf, item, split_offset);
  2796. btrfs_set_header_nritems(leaf, nritems + 1);
  2797. /* write the data for the start of the original item */
  2798. write_extent_buffer(leaf, buf,
  2799. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2800. split_offset);
  2801. /* write the data for the new item */
  2802. write_extent_buffer(leaf, buf + split_offset,
  2803. btrfs_item_ptr_offset(leaf, slot),
  2804. item_size - split_offset);
  2805. btrfs_mark_buffer_dirty(leaf);
  2806. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2807. kfree(buf);
  2808. return 0;
  2809. }
  2810. /*
  2811. * This function splits a single item into two items,
  2812. * giving 'new_key' to the new item and splitting the
  2813. * old one at split_offset (from the start of the item).
  2814. *
  2815. * The path may be released by this operation. After
  2816. * the split, the path is pointing to the old item. The
  2817. * new item is going to be in the same node as the old one.
  2818. *
  2819. * Note, the item being split must be smaller enough to live alone on
  2820. * a tree block with room for one extra struct btrfs_item
  2821. *
  2822. * This allows us to split the item in place, keeping a lock on the
  2823. * leaf the entire time.
  2824. */
  2825. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2826. struct btrfs_root *root,
  2827. struct btrfs_path *path,
  2828. struct btrfs_key *new_key,
  2829. unsigned long split_offset)
  2830. {
  2831. int ret;
  2832. ret = setup_leaf_for_split(trans, root, path,
  2833. sizeof(struct btrfs_item));
  2834. if (ret)
  2835. return ret;
  2836. ret = split_item(trans, root, path, new_key, split_offset);
  2837. return ret;
  2838. }
  2839. /*
  2840. * This function duplicate a item, giving 'new_key' to the new item.
  2841. * It guarantees both items live in the same tree leaf and the new item
  2842. * is contiguous with the original item.
  2843. *
  2844. * This allows us to split file extent in place, keeping a lock on the
  2845. * leaf the entire time.
  2846. */
  2847. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2848. struct btrfs_root *root,
  2849. struct btrfs_path *path,
  2850. struct btrfs_key *new_key)
  2851. {
  2852. struct extent_buffer *leaf;
  2853. int ret;
  2854. u32 item_size;
  2855. leaf = path->nodes[0];
  2856. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2857. ret = setup_leaf_for_split(trans, root, path,
  2858. item_size + sizeof(struct btrfs_item));
  2859. if (ret)
  2860. return ret;
  2861. path->slots[0]++;
  2862. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2863. item_size, item_size +
  2864. sizeof(struct btrfs_item), 1);
  2865. BUG_ON(ret);
  2866. leaf = path->nodes[0];
  2867. memcpy_extent_buffer(leaf,
  2868. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2869. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2870. item_size);
  2871. return 0;
  2872. }
  2873. /*
  2874. * make the item pointed to by the path smaller. new_size indicates
  2875. * how small to make it, and from_end tells us if we just chop bytes
  2876. * off the end of the item or if we shift the item to chop bytes off
  2877. * the front.
  2878. */
  2879. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2880. struct btrfs_root *root,
  2881. struct btrfs_path *path,
  2882. u32 new_size, int from_end)
  2883. {
  2884. int slot;
  2885. struct extent_buffer *leaf;
  2886. struct btrfs_item *item;
  2887. u32 nritems;
  2888. unsigned int data_end;
  2889. unsigned int old_data_start;
  2890. unsigned int old_size;
  2891. unsigned int size_diff;
  2892. int i;
  2893. leaf = path->nodes[0];
  2894. slot = path->slots[0];
  2895. old_size = btrfs_item_size_nr(leaf, slot);
  2896. if (old_size == new_size)
  2897. return 0;
  2898. nritems = btrfs_header_nritems(leaf);
  2899. data_end = leaf_data_end(root, leaf);
  2900. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2901. size_diff = old_size - new_size;
  2902. BUG_ON(slot < 0);
  2903. BUG_ON(slot >= nritems);
  2904. /*
  2905. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2906. */
  2907. /* first correct the data pointers */
  2908. for (i = slot; i < nritems; i++) {
  2909. u32 ioff;
  2910. item = btrfs_item_nr(leaf, i);
  2911. ioff = btrfs_item_offset(leaf, item);
  2912. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2913. }
  2914. /* shift the data */
  2915. if (from_end) {
  2916. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2917. data_end + size_diff, btrfs_leaf_data(leaf) +
  2918. data_end, old_data_start + new_size - data_end);
  2919. } else {
  2920. struct btrfs_disk_key disk_key;
  2921. u64 offset;
  2922. btrfs_item_key(leaf, &disk_key, slot);
  2923. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2924. unsigned long ptr;
  2925. struct btrfs_file_extent_item *fi;
  2926. fi = btrfs_item_ptr(leaf, slot,
  2927. struct btrfs_file_extent_item);
  2928. fi = (struct btrfs_file_extent_item *)(
  2929. (unsigned long)fi - size_diff);
  2930. if (btrfs_file_extent_type(leaf, fi) ==
  2931. BTRFS_FILE_EXTENT_INLINE) {
  2932. ptr = btrfs_item_ptr_offset(leaf, slot);
  2933. memmove_extent_buffer(leaf, ptr,
  2934. (unsigned long)fi,
  2935. offsetof(struct btrfs_file_extent_item,
  2936. disk_bytenr));
  2937. }
  2938. }
  2939. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2940. data_end + size_diff, btrfs_leaf_data(leaf) +
  2941. data_end, old_data_start - data_end);
  2942. offset = btrfs_disk_key_offset(&disk_key);
  2943. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2944. btrfs_set_item_key(leaf, &disk_key, slot);
  2945. if (slot == 0)
  2946. fixup_low_keys(trans, root, path, &disk_key, 1);
  2947. }
  2948. item = btrfs_item_nr(leaf, slot);
  2949. btrfs_set_item_size(leaf, item, new_size);
  2950. btrfs_mark_buffer_dirty(leaf);
  2951. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2952. btrfs_print_leaf(root, leaf);
  2953. BUG();
  2954. }
  2955. return 0;
  2956. }
  2957. /*
  2958. * make the item pointed to by the path bigger, data_size is the new size.
  2959. */
  2960. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2961. struct btrfs_root *root, struct btrfs_path *path,
  2962. u32 data_size)
  2963. {
  2964. int slot;
  2965. struct extent_buffer *leaf;
  2966. struct btrfs_item *item;
  2967. u32 nritems;
  2968. unsigned int data_end;
  2969. unsigned int old_data;
  2970. unsigned int old_size;
  2971. int i;
  2972. leaf = path->nodes[0];
  2973. nritems = btrfs_header_nritems(leaf);
  2974. data_end = leaf_data_end(root, leaf);
  2975. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2976. btrfs_print_leaf(root, leaf);
  2977. BUG();
  2978. }
  2979. slot = path->slots[0];
  2980. old_data = btrfs_item_end_nr(leaf, slot);
  2981. BUG_ON(slot < 0);
  2982. if (slot >= nritems) {
  2983. btrfs_print_leaf(root, leaf);
  2984. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2985. slot, nritems);
  2986. BUG_ON(1);
  2987. }
  2988. /*
  2989. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2990. */
  2991. /* first correct the data pointers */
  2992. for (i = slot; i < nritems; i++) {
  2993. u32 ioff;
  2994. item = btrfs_item_nr(leaf, i);
  2995. ioff = btrfs_item_offset(leaf, item);
  2996. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2997. }
  2998. /* shift the data */
  2999. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3000. data_end - data_size, btrfs_leaf_data(leaf) +
  3001. data_end, old_data - data_end);
  3002. data_end = old_data;
  3003. old_size = btrfs_item_size_nr(leaf, slot);
  3004. item = btrfs_item_nr(leaf, slot);
  3005. btrfs_set_item_size(leaf, item, old_size + data_size);
  3006. btrfs_mark_buffer_dirty(leaf);
  3007. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3008. btrfs_print_leaf(root, leaf);
  3009. BUG();
  3010. }
  3011. return 0;
  3012. }
  3013. /*
  3014. * Given a key and some data, insert items into the tree.
  3015. * This does all the path init required, making room in the tree if needed.
  3016. * Returns the number of keys that were inserted.
  3017. */
  3018. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3019. struct btrfs_root *root,
  3020. struct btrfs_path *path,
  3021. struct btrfs_key *cpu_key, u32 *data_size,
  3022. int nr)
  3023. {
  3024. struct extent_buffer *leaf;
  3025. struct btrfs_item *item;
  3026. int ret = 0;
  3027. int slot;
  3028. int i;
  3029. u32 nritems;
  3030. u32 total_data = 0;
  3031. u32 total_size = 0;
  3032. unsigned int data_end;
  3033. struct btrfs_disk_key disk_key;
  3034. struct btrfs_key found_key;
  3035. for (i = 0; i < nr; i++) {
  3036. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3037. BTRFS_LEAF_DATA_SIZE(root)) {
  3038. break;
  3039. nr = i;
  3040. }
  3041. total_data += data_size[i];
  3042. total_size += data_size[i] + sizeof(struct btrfs_item);
  3043. }
  3044. BUG_ON(nr == 0);
  3045. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3046. if (ret == 0)
  3047. return -EEXIST;
  3048. if (ret < 0)
  3049. goto out;
  3050. leaf = path->nodes[0];
  3051. nritems = btrfs_header_nritems(leaf);
  3052. data_end = leaf_data_end(root, leaf);
  3053. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3054. for (i = nr; i >= 0; i--) {
  3055. total_data -= data_size[i];
  3056. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3057. if (total_size < btrfs_leaf_free_space(root, leaf))
  3058. break;
  3059. }
  3060. nr = i;
  3061. }
  3062. slot = path->slots[0];
  3063. BUG_ON(slot < 0);
  3064. if (slot != nritems) {
  3065. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3066. item = btrfs_item_nr(leaf, slot);
  3067. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3068. /* figure out how many keys we can insert in here */
  3069. total_data = data_size[0];
  3070. for (i = 1; i < nr; i++) {
  3071. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3072. break;
  3073. total_data += data_size[i];
  3074. }
  3075. nr = i;
  3076. if (old_data < data_end) {
  3077. btrfs_print_leaf(root, leaf);
  3078. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3079. slot, old_data, data_end);
  3080. BUG_ON(1);
  3081. }
  3082. /*
  3083. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3084. */
  3085. /* first correct the data pointers */
  3086. for (i = slot; i < nritems; i++) {
  3087. u32 ioff;
  3088. item = btrfs_item_nr(leaf, i);
  3089. ioff = btrfs_item_offset(leaf, item);
  3090. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3091. }
  3092. /* shift the items */
  3093. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3094. btrfs_item_nr_offset(slot),
  3095. (nritems - slot) * sizeof(struct btrfs_item));
  3096. /* shift the data */
  3097. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3098. data_end - total_data, btrfs_leaf_data(leaf) +
  3099. data_end, old_data - data_end);
  3100. data_end = old_data;
  3101. } else {
  3102. /*
  3103. * this sucks but it has to be done, if we are inserting at
  3104. * the end of the leaf only insert 1 of the items, since we
  3105. * have no way of knowing whats on the next leaf and we'd have
  3106. * to drop our current locks to figure it out
  3107. */
  3108. nr = 1;
  3109. }
  3110. /* setup the item for the new data */
  3111. for (i = 0; i < nr; i++) {
  3112. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3113. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3114. item = btrfs_item_nr(leaf, slot + i);
  3115. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3116. data_end -= data_size[i];
  3117. btrfs_set_item_size(leaf, item, data_size[i]);
  3118. }
  3119. btrfs_set_header_nritems(leaf, nritems + nr);
  3120. btrfs_mark_buffer_dirty(leaf);
  3121. ret = 0;
  3122. if (slot == 0) {
  3123. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3124. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3125. }
  3126. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3127. btrfs_print_leaf(root, leaf);
  3128. BUG();
  3129. }
  3130. out:
  3131. if (!ret)
  3132. ret = nr;
  3133. return ret;
  3134. }
  3135. /*
  3136. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3137. * to save stack depth by doing the bulk of the work in a function
  3138. * that doesn't call btrfs_search_slot
  3139. */
  3140. int setup_items_for_insert(struct btrfs_trans_handle *trans,
  3141. struct btrfs_root *root, struct btrfs_path *path,
  3142. struct btrfs_key *cpu_key, u32 *data_size,
  3143. u32 total_data, u32 total_size, int nr)
  3144. {
  3145. struct btrfs_item *item;
  3146. int i;
  3147. u32 nritems;
  3148. unsigned int data_end;
  3149. struct btrfs_disk_key disk_key;
  3150. int ret;
  3151. struct extent_buffer *leaf;
  3152. int slot;
  3153. leaf = path->nodes[0];
  3154. slot = path->slots[0];
  3155. nritems = btrfs_header_nritems(leaf);
  3156. data_end = leaf_data_end(root, leaf);
  3157. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3158. btrfs_print_leaf(root, leaf);
  3159. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3160. total_size, btrfs_leaf_free_space(root, leaf));
  3161. BUG();
  3162. }
  3163. if (slot != nritems) {
  3164. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3165. if (old_data < data_end) {
  3166. btrfs_print_leaf(root, leaf);
  3167. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3168. slot, old_data, data_end);
  3169. BUG_ON(1);
  3170. }
  3171. /*
  3172. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3173. */
  3174. /* first correct the data pointers */
  3175. for (i = slot; i < nritems; i++) {
  3176. u32 ioff;
  3177. item = btrfs_item_nr(leaf, i);
  3178. ioff = btrfs_item_offset(leaf, item);
  3179. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3180. }
  3181. /* shift the items */
  3182. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3183. btrfs_item_nr_offset(slot),
  3184. (nritems - slot) * sizeof(struct btrfs_item));
  3185. /* shift the data */
  3186. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3187. data_end - total_data, btrfs_leaf_data(leaf) +
  3188. data_end, old_data - data_end);
  3189. data_end = old_data;
  3190. }
  3191. /* setup the item for the new data */
  3192. for (i = 0; i < nr; i++) {
  3193. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3194. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3195. item = btrfs_item_nr(leaf, slot + i);
  3196. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3197. data_end -= data_size[i];
  3198. btrfs_set_item_size(leaf, item, data_size[i]);
  3199. }
  3200. btrfs_set_header_nritems(leaf, nritems + nr);
  3201. ret = 0;
  3202. if (slot == 0) {
  3203. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3204. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3205. }
  3206. btrfs_unlock_up_safe(path, 1);
  3207. btrfs_mark_buffer_dirty(leaf);
  3208. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3209. btrfs_print_leaf(root, leaf);
  3210. BUG();
  3211. }
  3212. return ret;
  3213. }
  3214. /*
  3215. * Given a key and some data, insert items into the tree.
  3216. * This does all the path init required, making room in the tree if needed.
  3217. */
  3218. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3219. struct btrfs_root *root,
  3220. struct btrfs_path *path,
  3221. struct btrfs_key *cpu_key, u32 *data_size,
  3222. int nr)
  3223. {
  3224. int ret = 0;
  3225. int slot;
  3226. int i;
  3227. u32 total_size = 0;
  3228. u32 total_data = 0;
  3229. for (i = 0; i < nr; i++)
  3230. total_data += data_size[i];
  3231. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3232. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3233. if (ret == 0)
  3234. return -EEXIST;
  3235. if (ret < 0)
  3236. goto out;
  3237. slot = path->slots[0];
  3238. BUG_ON(slot < 0);
  3239. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3240. total_data, total_size, nr);
  3241. out:
  3242. return ret;
  3243. }
  3244. /*
  3245. * Given a key and some data, insert an item into the tree.
  3246. * This does all the path init required, making room in the tree if needed.
  3247. */
  3248. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3249. *root, struct btrfs_key *cpu_key, void *data, u32
  3250. data_size)
  3251. {
  3252. int ret = 0;
  3253. struct btrfs_path *path;
  3254. struct extent_buffer *leaf;
  3255. unsigned long ptr;
  3256. path = btrfs_alloc_path();
  3257. if (!path)
  3258. return -ENOMEM;
  3259. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3260. if (!ret) {
  3261. leaf = path->nodes[0];
  3262. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3263. write_extent_buffer(leaf, data, ptr, data_size);
  3264. btrfs_mark_buffer_dirty(leaf);
  3265. }
  3266. btrfs_free_path(path);
  3267. return ret;
  3268. }
  3269. /*
  3270. * delete the pointer from a given node.
  3271. *
  3272. * the tree should have been previously balanced so the deletion does not
  3273. * empty a node.
  3274. */
  3275. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3276. struct btrfs_path *path, int level, int slot)
  3277. {
  3278. struct extent_buffer *parent = path->nodes[level];
  3279. u32 nritems;
  3280. int ret = 0;
  3281. int wret;
  3282. nritems = btrfs_header_nritems(parent);
  3283. if (slot != nritems - 1) {
  3284. memmove_extent_buffer(parent,
  3285. btrfs_node_key_ptr_offset(slot),
  3286. btrfs_node_key_ptr_offset(slot + 1),
  3287. sizeof(struct btrfs_key_ptr) *
  3288. (nritems - slot - 1));
  3289. }
  3290. nritems--;
  3291. btrfs_set_header_nritems(parent, nritems);
  3292. if (nritems == 0 && parent == root->node) {
  3293. BUG_ON(btrfs_header_level(root->node) != 1);
  3294. /* just turn the root into a leaf and break */
  3295. btrfs_set_header_level(root->node, 0);
  3296. } else if (slot == 0) {
  3297. struct btrfs_disk_key disk_key;
  3298. btrfs_node_key(parent, &disk_key, 0);
  3299. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3300. if (wret)
  3301. ret = wret;
  3302. }
  3303. btrfs_mark_buffer_dirty(parent);
  3304. return ret;
  3305. }
  3306. /*
  3307. * a helper function to delete the leaf pointed to by path->slots[1] and
  3308. * path->nodes[1].
  3309. *
  3310. * This deletes the pointer in path->nodes[1] and frees the leaf
  3311. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3312. *
  3313. * The path must have already been setup for deleting the leaf, including
  3314. * all the proper balancing. path->nodes[1] must be locked.
  3315. */
  3316. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3317. struct btrfs_root *root,
  3318. struct btrfs_path *path,
  3319. struct extent_buffer *leaf)
  3320. {
  3321. int ret;
  3322. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3323. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3324. if (ret)
  3325. return ret;
  3326. /*
  3327. * btrfs_free_extent is expensive, we want to make sure we
  3328. * aren't holding any locks when we call it
  3329. */
  3330. btrfs_unlock_up_safe(path, 0);
  3331. root_sub_used(root, leaf->len);
  3332. btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
  3333. return 0;
  3334. }
  3335. /*
  3336. * delete the item at the leaf level in path. If that empties
  3337. * the leaf, remove it from the tree
  3338. */
  3339. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3340. struct btrfs_path *path, int slot, int nr)
  3341. {
  3342. struct extent_buffer *leaf;
  3343. struct btrfs_item *item;
  3344. int last_off;
  3345. int dsize = 0;
  3346. int ret = 0;
  3347. int wret;
  3348. int i;
  3349. u32 nritems;
  3350. leaf = path->nodes[0];
  3351. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3352. for (i = 0; i < nr; i++)
  3353. dsize += btrfs_item_size_nr(leaf, slot + i);
  3354. nritems = btrfs_header_nritems(leaf);
  3355. if (slot + nr != nritems) {
  3356. int data_end = leaf_data_end(root, leaf);
  3357. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3358. data_end + dsize,
  3359. btrfs_leaf_data(leaf) + data_end,
  3360. last_off - data_end);
  3361. for (i = slot + nr; i < nritems; i++) {
  3362. u32 ioff;
  3363. item = btrfs_item_nr(leaf, i);
  3364. ioff = btrfs_item_offset(leaf, item);
  3365. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3366. }
  3367. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3368. btrfs_item_nr_offset(slot + nr),
  3369. sizeof(struct btrfs_item) *
  3370. (nritems - slot - nr));
  3371. }
  3372. btrfs_set_header_nritems(leaf, nritems - nr);
  3373. nritems -= nr;
  3374. /* delete the leaf if we've emptied it */
  3375. if (nritems == 0) {
  3376. if (leaf == root->node) {
  3377. btrfs_set_header_level(leaf, 0);
  3378. } else {
  3379. btrfs_set_path_blocking(path);
  3380. clean_tree_block(trans, root, leaf);
  3381. ret = btrfs_del_leaf(trans, root, path, leaf);
  3382. BUG_ON(ret);
  3383. }
  3384. } else {
  3385. int used = leaf_space_used(leaf, 0, nritems);
  3386. if (slot == 0) {
  3387. struct btrfs_disk_key disk_key;
  3388. btrfs_item_key(leaf, &disk_key, 0);
  3389. wret = fixup_low_keys(trans, root, path,
  3390. &disk_key, 1);
  3391. if (wret)
  3392. ret = wret;
  3393. }
  3394. /* delete the leaf if it is mostly empty */
  3395. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3396. /* push_leaf_left fixes the path.
  3397. * make sure the path still points to our leaf
  3398. * for possible call to del_ptr below
  3399. */
  3400. slot = path->slots[1];
  3401. extent_buffer_get(leaf);
  3402. btrfs_set_path_blocking(path);
  3403. wret = push_leaf_left(trans, root, path, 1, 1,
  3404. 1, (u32)-1);
  3405. if (wret < 0 && wret != -ENOSPC)
  3406. ret = wret;
  3407. if (path->nodes[0] == leaf &&
  3408. btrfs_header_nritems(leaf)) {
  3409. wret = push_leaf_right(trans, root, path, 1,
  3410. 1, 1, 0);
  3411. if (wret < 0 && wret != -ENOSPC)
  3412. ret = wret;
  3413. }
  3414. if (btrfs_header_nritems(leaf) == 0) {
  3415. path->slots[1] = slot;
  3416. ret = btrfs_del_leaf(trans, root, path, leaf);
  3417. BUG_ON(ret);
  3418. free_extent_buffer(leaf);
  3419. } else {
  3420. /* if we're still in the path, make sure
  3421. * we're dirty. Otherwise, one of the
  3422. * push_leaf functions must have already
  3423. * dirtied this buffer
  3424. */
  3425. if (path->nodes[0] == leaf)
  3426. btrfs_mark_buffer_dirty(leaf);
  3427. free_extent_buffer(leaf);
  3428. }
  3429. } else {
  3430. btrfs_mark_buffer_dirty(leaf);
  3431. }
  3432. }
  3433. return ret;
  3434. }
  3435. /*
  3436. * search the tree again to find a leaf with lesser keys
  3437. * returns 0 if it found something or 1 if there are no lesser leaves.
  3438. * returns < 0 on io errors.
  3439. *
  3440. * This may release the path, and so you may lose any locks held at the
  3441. * time you call it.
  3442. */
  3443. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3444. {
  3445. struct btrfs_key key;
  3446. struct btrfs_disk_key found_key;
  3447. int ret;
  3448. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3449. if (key.offset > 0)
  3450. key.offset--;
  3451. else if (key.type > 0)
  3452. key.type--;
  3453. else if (key.objectid > 0)
  3454. key.objectid--;
  3455. else
  3456. return 1;
  3457. btrfs_release_path(path);
  3458. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3459. if (ret < 0)
  3460. return ret;
  3461. btrfs_item_key(path->nodes[0], &found_key, 0);
  3462. ret = comp_keys(&found_key, &key);
  3463. if (ret < 0)
  3464. return 0;
  3465. return 1;
  3466. }
  3467. /*
  3468. * A helper function to walk down the tree starting at min_key, and looking
  3469. * for nodes or leaves that are either in cache or have a minimum
  3470. * transaction id. This is used by the btree defrag code, and tree logging
  3471. *
  3472. * This does not cow, but it does stuff the starting key it finds back
  3473. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3474. * key and get a writable path.
  3475. *
  3476. * This does lock as it descends, and path->keep_locks should be set
  3477. * to 1 by the caller.
  3478. *
  3479. * This honors path->lowest_level to prevent descent past a given level
  3480. * of the tree.
  3481. *
  3482. * min_trans indicates the oldest transaction that you are interested
  3483. * in walking through. Any nodes or leaves older than min_trans are
  3484. * skipped over (without reading them).
  3485. *
  3486. * returns zero if something useful was found, < 0 on error and 1 if there
  3487. * was nothing in the tree that matched the search criteria.
  3488. */
  3489. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3490. struct btrfs_key *max_key,
  3491. struct btrfs_path *path, int cache_only,
  3492. u64 min_trans)
  3493. {
  3494. struct extent_buffer *cur;
  3495. struct btrfs_key found_key;
  3496. int slot;
  3497. int sret;
  3498. u32 nritems;
  3499. int level;
  3500. int ret = 1;
  3501. WARN_ON(!path->keep_locks);
  3502. again:
  3503. cur = btrfs_read_lock_root_node(root);
  3504. level = btrfs_header_level(cur);
  3505. WARN_ON(path->nodes[level]);
  3506. path->nodes[level] = cur;
  3507. path->locks[level] = BTRFS_READ_LOCK;
  3508. if (btrfs_header_generation(cur) < min_trans) {
  3509. ret = 1;
  3510. goto out;
  3511. }
  3512. while (1) {
  3513. nritems = btrfs_header_nritems(cur);
  3514. level = btrfs_header_level(cur);
  3515. sret = bin_search(cur, min_key, level, &slot);
  3516. /* at the lowest level, we're done, setup the path and exit */
  3517. if (level == path->lowest_level) {
  3518. if (slot >= nritems)
  3519. goto find_next_key;
  3520. ret = 0;
  3521. path->slots[level] = slot;
  3522. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3523. goto out;
  3524. }
  3525. if (sret && slot > 0)
  3526. slot--;
  3527. /*
  3528. * check this node pointer against the cache_only and
  3529. * min_trans parameters. If it isn't in cache or is too
  3530. * old, skip to the next one.
  3531. */
  3532. while (slot < nritems) {
  3533. u64 blockptr;
  3534. u64 gen;
  3535. struct extent_buffer *tmp;
  3536. struct btrfs_disk_key disk_key;
  3537. blockptr = btrfs_node_blockptr(cur, slot);
  3538. gen = btrfs_node_ptr_generation(cur, slot);
  3539. if (gen < min_trans) {
  3540. slot++;
  3541. continue;
  3542. }
  3543. if (!cache_only)
  3544. break;
  3545. if (max_key) {
  3546. btrfs_node_key(cur, &disk_key, slot);
  3547. if (comp_keys(&disk_key, max_key) >= 0) {
  3548. ret = 1;
  3549. goto out;
  3550. }
  3551. }
  3552. tmp = btrfs_find_tree_block(root, blockptr,
  3553. btrfs_level_size(root, level - 1));
  3554. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3555. free_extent_buffer(tmp);
  3556. break;
  3557. }
  3558. if (tmp)
  3559. free_extent_buffer(tmp);
  3560. slot++;
  3561. }
  3562. find_next_key:
  3563. /*
  3564. * we didn't find a candidate key in this node, walk forward
  3565. * and find another one
  3566. */
  3567. if (slot >= nritems) {
  3568. path->slots[level] = slot;
  3569. btrfs_set_path_blocking(path);
  3570. sret = btrfs_find_next_key(root, path, min_key, level,
  3571. cache_only, min_trans);
  3572. if (sret == 0) {
  3573. btrfs_release_path(path);
  3574. goto again;
  3575. } else {
  3576. goto out;
  3577. }
  3578. }
  3579. /* save our key for returning back */
  3580. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3581. path->slots[level] = slot;
  3582. if (level == path->lowest_level) {
  3583. ret = 0;
  3584. unlock_up(path, level, 1);
  3585. goto out;
  3586. }
  3587. btrfs_set_path_blocking(path);
  3588. cur = read_node_slot(root, cur, slot);
  3589. BUG_ON(!cur);
  3590. btrfs_tree_read_lock(cur);
  3591. path->locks[level - 1] = BTRFS_READ_LOCK;
  3592. path->nodes[level - 1] = cur;
  3593. unlock_up(path, level, 1);
  3594. btrfs_clear_path_blocking(path, NULL, 0);
  3595. }
  3596. out:
  3597. if (ret == 0)
  3598. memcpy(min_key, &found_key, sizeof(found_key));
  3599. btrfs_set_path_blocking(path);
  3600. return ret;
  3601. }
  3602. /*
  3603. * this is similar to btrfs_next_leaf, but does not try to preserve
  3604. * and fixup the path. It looks for and returns the next key in the
  3605. * tree based on the current path and the cache_only and min_trans
  3606. * parameters.
  3607. *
  3608. * 0 is returned if another key is found, < 0 if there are any errors
  3609. * and 1 is returned if there are no higher keys in the tree
  3610. *
  3611. * path->keep_locks should be set to 1 on the search made before
  3612. * calling this function.
  3613. */
  3614. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3615. struct btrfs_key *key, int level,
  3616. int cache_only, u64 min_trans)
  3617. {
  3618. int slot;
  3619. struct extent_buffer *c;
  3620. WARN_ON(!path->keep_locks);
  3621. while (level < BTRFS_MAX_LEVEL) {
  3622. if (!path->nodes[level])
  3623. return 1;
  3624. slot = path->slots[level] + 1;
  3625. c = path->nodes[level];
  3626. next:
  3627. if (slot >= btrfs_header_nritems(c)) {
  3628. int ret;
  3629. int orig_lowest;
  3630. struct btrfs_key cur_key;
  3631. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3632. !path->nodes[level + 1])
  3633. return 1;
  3634. if (path->locks[level + 1]) {
  3635. level++;
  3636. continue;
  3637. }
  3638. slot = btrfs_header_nritems(c) - 1;
  3639. if (level == 0)
  3640. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3641. else
  3642. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3643. orig_lowest = path->lowest_level;
  3644. btrfs_release_path(path);
  3645. path->lowest_level = level;
  3646. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3647. 0, 0);
  3648. path->lowest_level = orig_lowest;
  3649. if (ret < 0)
  3650. return ret;
  3651. c = path->nodes[level];
  3652. slot = path->slots[level];
  3653. if (ret == 0)
  3654. slot++;
  3655. goto next;
  3656. }
  3657. if (level == 0)
  3658. btrfs_item_key_to_cpu(c, key, slot);
  3659. else {
  3660. u64 blockptr = btrfs_node_blockptr(c, slot);
  3661. u64 gen = btrfs_node_ptr_generation(c, slot);
  3662. if (cache_only) {
  3663. struct extent_buffer *cur;
  3664. cur = btrfs_find_tree_block(root, blockptr,
  3665. btrfs_level_size(root, level - 1));
  3666. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3667. slot++;
  3668. if (cur)
  3669. free_extent_buffer(cur);
  3670. goto next;
  3671. }
  3672. free_extent_buffer(cur);
  3673. }
  3674. if (gen < min_trans) {
  3675. slot++;
  3676. goto next;
  3677. }
  3678. btrfs_node_key_to_cpu(c, key, slot);
  3679. }
  3680. return 0;
  3681. }
  3682. return 1;
  3683. }
  3684. /*
  3685. * search the tree again to find a leaf with greater keys
  3686. * returns 0 if it found something or 1 if there are no greater leaves.
  3687. * returns < 0 on io errors.
  3688. */
  3689. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3690. {
  3691. int slot;
  3692. int level;
  3693. struct extent_buffer *c;
  3694. struct extent_buffer *next;
  3695. struct btrfs_key key;
  3696. u32 nritems;
  3697. int ret;
  3698. int old_spinning = path->leave_spinning;
  3699. int next_rw_lock = 0;
  3700. nritems = btrfs_header_nritems(path->nodes[0]);
  3701. if (nritems == 0)
  3702. return 1;
  3703. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3704. again:
  3705. level = 1;
  3706. next = NULL;
  3707. next_rw_lock = 0;
  3708. btrfs_release_path(path);
  3709. path->keep_locks = 1;
  3710. path->leave_spinning = 1;
  3711. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3712. path->keep_locks = 0;
  3713. if (ret < 0)
  3714. return ret;
  3715. nritems = btrfs_header_nritems(path->nodes[0]);
  3716. /*
  3717. * by releasing the path above we dropped all our locks. A balance
  3718. * could have added more items next to the key that used to be
  3719. * at the very end of the block. So, check again here and
  3720. * advance the path if there are now more items available.
  3721. */
  3722. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3723. if (ret == 0)
  3724. path->slots[0]++;
  3725. ret = 0;
  3726. goto done;
  3727. }
  3728. while (level < BTRFS_MAX_LEVEL) {
  3729. if (!path->nodes[level]) {
  3730. ret = 1;
  3731. goto done;
  3732. }
  3733. slot = path->slots[level] + 1;
  3734. c = path->nodes[level];
  3735. if (slot >= btrfs_header_nritems(c)) {
  3736. level++;
  3737. if (level == BTRFS_MAX_LEVEL) {
  3738. ret = 1;
  3739. goto done;
  3740. }
  3741. continue;
  3742. }
  3743. if (next) {
  3744. btrfs_tree_unlock_rw(next, next_rw_lock);
  3745. free_extent_buffer(next);
  3746. }
  3747. next = c;
  3748. next_rw_lock = path->locks[level];
  3749. ret = read_block_for_search(NULL, root, path, &next, level,
  3750. slot, &key);
  3751. if (ret == -EAGAIN)
  3752. goto again;
  3753. if (ret < 0) {
  3754. btrfs_release_path(path);
  3755. goto done;
  3756. }
  3757. if (!path->skip_locking) {
  3758. ret = btrfs_try_tree_read_lock(next);
  3759. if (!ret) {
  3760. btrfs_set_path_blocking(path);
  3761. btrfs_tree_read_lock(next);
  3762. btrfs_clear_path_blocking(path, next,
  3763. BTRFS_READ_LOCK);
  3764. }
  3765. next_rw_lock = BTRFS_READ_LOCK;
  3766. }
  3767. break;
  3768. }
  3769. path->slots[level] = slot;
  3770. while (1) {
  3771. level--;
  3772. c = path->nodes[level];
  3773. if (path->locks[level])
  3774. btrfs_tree_unlock_rw(c, path->locks[level]);
  3775. free_extent_buffer(c);
  3776. path->nodes[level] = next;
  3777. path->slots[level] = 0;
  3778. if (!path->skip_locking)
  3779. path->locks[level] = next_rw_lock;
  3780. if (!level)
  3781. break;
  3782. ret = read_block_for_search(NULL, root, path, &next, level,
  3783. 0, &key);
  3784. if (ret == -EAGAIN)
  3785. goto again;
  3786. if (ret < 0) {
  3787. btrfs_release_path(path);
  3788. goto done;
  3789. }
  3790. if (!path->skip_locking) {
  3791. ret = btrfs_try_tree_read_lock(next);
  3792. if (!ret) {
  3793. btrfs_set_path_blocking(path);
  3794. btrfs_tree_read_lock(next);
  3795. btrfs_clear_path_blocking(path, next,
  3796. BTRFS_READ_LOCK);
  3797. }
  3798. next_rw_lock = BTRFS_READ_LOCK;
  3799. }
  3800. }
  3801. ret = 0;
  3802. done:
  3803. unlock_up(path, 0, 1);
  3804. path->leave_spinning = old_spinning;
  3805. if (!old_spinning)
  3806. btrfs_set_path_blocking(path);
  3807. return ret;
  3808. }
  3809. /*
  3810. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3811. * searching until it gets past min_objectid or finds an item of 'type'
  3812. *
  3813. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3814. */
  3815. int btrfs_previous_item(struct btrfs_root *root,
  3816. struct btrfs_path *path, u64 min_objectid,
  3817. int type)
  3818. {
  3819. struct btrfs_key found_key;
  3820. struct extent_buffer *leaf;
  3821. u32 nritems;
  3822. int ret;
  3823. while (1) {
  3824. if (path->slots[0] == 0) {
  3825. btrfs_set_path_blocking(path);
  3826. ret = btrfs_prev_leaf(root, path);
  3827. if (ret != 0)
  3828. return ret;
  3829. } else {
  3830. path->slots[0]--;
  3831. }
  3832. leaf = path->nodes[0];
  3833. nritems = btrfs_header_nritems(leaf);
  3834. if (nritems == 0)
  3835. return 1;
  3836. if (path->slots[0] == nritems)
  3837. path->slots[0]--;
  3838. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3839. if (found_key.objectid < min_objectid)
  3840. break;
  3841. if (found_key.type == type)
  3842. return 0;
  3843. if (found_key.objectid == min_objectid &&
  3844. found_key.type < type)
  3845. break;
  3846. }
  3847. return 1;
  3848. }