pci.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744
  1. /*
  2. * pci.c - Low-Level PCI Access in IA-64
  3. *
  4. * Derived from bios32.c of i386 tree.
  5. *
  6. * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  9. * Copyright (C) 2004 Silicon Graphics, Inc.
  10. *
  11. * Note: Above list of copyright holders is incomplete...
  12. */
  13. #include <linux/acpi.h>
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/pci.h>
  17. #include <linux/init.h>
  18. #include <linux/ioport.h>
  19. #include <linux/slab.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/export.h>
  23. #include <asm/machvec.h>
  24. #include <asm/page.h>
  25. #include <asm/system.h>
  26. #include <asm/io.h>
  27. #include <asm/sal.h>
  28. #include <asm/smp.h>
  29. #include <asm/irq.h>
  30. #include <asm/hw_irq.h>
  31. /*
  32. * Low-level SAL-based PCI configuration access functions. Note that SAL
  33. * calls are already serialized (via sal_lock), so we don't need another
  34. * synchronization mechanism here.
  35. */
  36. #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
  37. (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
  38. /* SAL 3.2 adds support for extended config space. */
  39. #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
  40. (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
  41. int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
  42. int reg, int len, u32 *value)
  43. {
  44. u64 addr, data = 0;
  45. int mode, result;
  46. if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  47. return -EINVAL;
  48. if ((seg | reg) <= 255) {
  49. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  50. mode = 0;
  51. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  52. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  53. mode = 1;
  54. } else {
  55. return -EINVAL;
  56. }
  57. result = ia64_sal_pci_config_read(addr, mode, len, &data);
  58. if (result != 0)
  59. return -EINVAL;
  60. *value = (u32) data;
  61. return 0;
  62. }
  63. int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
  64. int reg, int len, u32 value)
  65. {
  66. u64 addr;
  67. int mode, result;
  68. if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  69. return -EINVAL;
  70. if ((seg | reg) <= 255) {
  71. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  72. mode = 0;
  73. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  74. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  75. mode = 1;
  76. } else {
  77. return -EINVAL;
  78. }
  79. result = ia64_sal_pci_config_write(addr, mode, len, value);
  80. if (result != 0)
  81. return -EINVAL;
  82. return 0;
  83. }
  84. static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
  85. int size, u32 *value)
  86. {
  87. return raw_pci_read(pci_domain_nr(bus), bus->number,
  88. devfn, where, size, value);
  89. }
  90. static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
  91. int size, u32 value)
  92. {
  93. return raw_pci_write(pci_domain_nr(bus), bus->number,
  94. devfn, where, size, value);
  95. }
  96. struct pci_ops pci_root_ops = {
  97. .read = pci_read,
  98. .write = pci_write,
  99. };
  100. /* Called by ACPI when it finds a new root bus. */
  101. static struct pci_controller * __devinit
  102. alloc_pci_controller (int seg)
  103. {
  104. struct pci_controller *controller;
  105. controller = kzalloc(sizeof(*controller), GFP_KERNEL);
  106. if (!controller)
  107. return NULL;
  108. controller->segment = seg;
  109. controller->node = -1;
  110. return controller;
  111. }
  112. struct pci_root_info {
  113. struct acpi_device *bridge;
  114. struct pci_controller *controller;
  115. struct list_head resources;
  116. char *name;
  117. };
  118. static unsigned int
  119. new_space (u64 phys_base, int sparse)
  120. {
  121. u64 mmio_base;
  122. int i;
  123. if (phys_base == 0)
  124. return 0; /* legacy I/O port space */
  125. mmio_base = (u64) ioremap(phys_base, 0);
  126. for (i = 0; i < num_io_spaces; i++)
  127. if (io_space[i].mmio_base == mmio_base &&
  128. io_space[i].sparse == sparse)
  129. return i;
  130. if (num_io_spaces == MAX_IO_SPACES) {
  131. printk(KERN_ERR "PCI: Too many IO port spaces "
  132. "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
  133. return ~0;
  134. }
  135. i = num_io_spaces++;
  136. io_space[i].mmio_base = mmio_base;
  137. io_space[i].sparse = sparse;
  138. return i;
  139. }
  140. static u64 __devinit
  141. add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
  142. {
  143. struct resource *resource;
  144. char *name;
  145. unsigned long base, min, max, base_port;
  146. unsigned int sparse = 0, space_nr, len;
  147. resource = kzalloc(sizeof(*resource), GFP_KERNEL);
  148. if (!resource) {
  149. printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
  150. info->name);
  151. goto out;
  152. }
  153. len = strlen(info->name) + 32;
  154. name = kzalloc(len, GFP_KERNEL);
  155. if (!name) {
  156. printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
  157. info->name);
  158. goto free_resource;
  159. }
  160. min = addr->minimum;
  161. max = min + addr->address_length - 1;
  162. if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
  163. sparse = 1;
  164. space_nr = new_space(addr->translation_offset, sparse);
  165. if (space_nr == ~0)
  166. goto free_name;
  167. base = __pa(io_space[space_nr].mmio_base);
  168. base_port = IO_SPACE_BASE(space_nr);
  169. snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
  170. base_port + min, base_port + max);
  171. /*
  172. * The SDM guarantees the legacy 0-64K space is sparse, but if the
  173. * mapping is done by the processor (not the bridge), ACPI may not
  174. * mark it as sparse.
  175. */
  176. if (space_nr == 0)
  177. sparse = 1;
  178. resource->name = name;
  179. resource->flags = IORESOURCE_MEM;
  180. resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
  181. resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
  182. insert_resource(&iomem_resource, resource);
  183. return base_port;
  184. free_name:
  185. kfree(name);
  186. free_resource:
  187. kfree(resource);
  188. out:
  189. return ~0;
  190. }
  191. static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
  192. struct acpi_resource_address64 *addr)
  193. {
  194. acpi_status status;
  195. /*
  196. * We're only interested in _CRS descriptors that are
  197. * - address space descriptors for memory or I/O space
  198. * - non-zero size
  199. * - producers, i.e., the address space is routed downstream,
  200. * not consumed by the bridge itself
  201. */
  202. status = acpi_resource_to_address64(resource, addr);
  203. if (ACPI_SUCCESS(status) &&
  204. (addr->resource_type == ACPI_MEMORY_RANGE ||
  205. addr->resource_type == ACPI_IO_RANGE) &&
  206. addr->address_length &&
  207. addr->producer_consumer == ACPI_PRODUCER)
  208. return AE_OK;
  209. return AE_ERROR;
  210. }
  211. static acpi_status __devinit
  212. count_window (struct acpi_resource *resource, void *data)
  213. {
  214. unsigned int *windows = (unsigned int *) data;
  215. struct acpi_resource_address64 addr;
  216. acpi_status status;
  217. status = resource_to_window(resource, &addr);
  218. if (ACPI_SUCCESS(status))
  219. (*windows)++;
  220. return AE_OK;
  221. }
  222. static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
  223. {
  224. struct pci_root_info *info = data;
  225. struct pci_window *window;
  226. struct acpi_resource_address64 addr;
  227. acpi_status status;
  228. unsigned long flags, offset = 0;
  229. struct resource *root;
  230. /* Return AE_OK for non-window resources to keep scanning for more */
  231. status = resource_to_window(res, &addr);
  232. if (!ACPI_SUCCESS(status))
  233. return AE_OK;
  234. if (addr.resource_type == ACPI_MEMORY_RANGE) {
  235. flags = IORESOURCE_MEM;
  236. root = &iomem_resource;
  237. offset = addr.translation_offset;
  238. } else if (addr.resource_type == ACPI_IO_RANGE) {
  239. flags = IORESOURCE_IO;
  240. root = &ioport_resource;
  241. offset = add_io_space(info, &addr);
  242. if (offset == ~0)
  243. return AE_OK;
  244. } else
  245. return AE_OK;
  246. window = &info->controller->window[info->controller->windows++];
  247. window->resource.name = info->name;
  248. window->resource.flags = flags;
  249. window->resource.start = addr.minimum + offset;
  250. window->resource.end = window->resource.start + addr.address_length - 1;
  251. window->resource.child = NULL;
  252. window->offset = offset;
  253. if (insert_resource(root, &window->resource)) {
  254. dev_err(&info->bridge->dev,
  255. "can't allocate host bridge window %pR\n",
  256. &window->resource);
  257. } else {
  258. if (offset)
  259. dev_info(&info->bridge->dev, "host bridge window %pR "
  260. "(PCI address [%#llx-%#llx])\n",
  261. &window->resource,
  262. window->resource.start - offset,
  263. window->resource.end - offset);
  264. else
  265. dev_info(&info->bridge->dev,
  266. "host bridge window %pR\n",
  267. &window->resource);
  268. }
  269. /* HP's firmware has a hack to work around a Windows bug.
  270. * Ignore these tiny memory ranges */
  271. if (!((window->resource.flags & IORESOURCE_MEM) &&
  272. (window->resource.end - window->resource.start < 16)))
  273. pci_add_resource_offset(&info->resources, &window->resource,
  274. window->offset);
  275. return AE_OK;
  276. }
  277. struct pci_bus * __devinit
  278. pci_acpi_scan_root(struct acpi_pci_root *root)
  279. {
  280. struct acpi_device *device = root->device;
  281. int domain = root->segment;
  282. int bus = root->secondary.start;
  283. struct pci_controller *controller;
  284. unsigned int windows = 0;
  285. struct pci_root_info info;
  286. struct pci_bus *pbus;
  287. char *name;
  288. int pxm;
  289. controller = alloc_pci_controller(domain);
  290. if (!controller)
  291. goto out1;
  292. controller->acpi_handle = device->handle;
  293. pxm = acpi_get_pxm(controller->acpi_handle);
  294. #ifdef CONFIG_NUMA
  295. if (pxm >= 0)
  296. controller->node = pxm_to_node(pxm);
  297. #endif
  298. INIT_LIST_HEAD(&info.resources);
  299. acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
  300. &windows);
  301. if (windows) {
  302. controller->window =
  303. kmalloc_node(sizeof(*controller->window) * windows,
  304. GFP_KERNEL, controller->node);
  305. if (!controller->window)
  306. goto out2;
  307. name = kmalloc(16, GFP_KERNEL);
  308. if (!name)
  309. goto out3;
  310. sprintf(name, "PCI Bus %04x:%02x", domain, bus);
  311. info.bridge = device;
  312. info.controller = controller;
  313. info.name = name;
  314. acpi_walk_resources(device->handle, METHOD_NAME__CRS,
  315. add_window, &info);
  316. }
  317. /*
  318. * See arch/x86/pci/acpi.c.
  319. * The desired pci bus might already be scanned in a quirk. We
  320. * should handle the case here, but it appears that IA64 hasn't
  321. * such quirk. So we just ignore the case now.
  322. */
  323. pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
  324. &info.resources);
  325. if (!pbus) {
  326. pci_free_resource_list(&info.resources);
  327. return NULL;
  328. }
  329. pbus->subordinate = pci_scan_child_bus(pbus);
  330. return pbus;
  331. out3:
  332. kfree(controller->window);
  333. out2:
  334. kfree(controller);
  335. out1:
  336. return NULL;
  337. }
  338. static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
  339. {
  340. unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
  341. struct resource *devr = &dev->resource[idx], *busr;
  342. if (!dev->bus)
  343. return 0;
  344. pci_bus_for_each_resource(dev->bus, busr, i) {
  345. if (!busr || ((busr->flags ^ devr->flags) & type_mask))
  346. continue;
  347. if ((devr->start) && (devr->start >= busr->start) &&
  348. (devr->end <= busr->end))
  349. return 1;
  350. }
  351. return 0;
  352. }
  353. static void __devinit
  354. pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
  355. {
  356. int i;
  357. for (i = start; i < limit; i++) {
  358. if (!dev->resource[i].flags)
  359. continue;
  360. if ((is_valid_resource(dev, i)))
  361. pci_claim_resource(dev, i);
  362. }
  363. }
  364. void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
  365. {
  366. pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
  367. }
  368. EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
  369. static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
  370. {
  371. pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
  372. }
  373. /*
  374. * Called after each bus is probed, but before its children are examined.
  375. */
  376. void __devinit
  377. pcibios_fixup_bus (struct pci_bus *b)
  378. {
  379. struct pci_dev *dev;
  380. if (b->self) {
  381. pci_read_bridge_bases(b);
  382. pcibios_fixup_bridge_resources(b->self);
  383. }
  384. list_for_each_entry(dev, &b->devices, bus_list)
  385. pcibios_fixup_device_resources(dev);
  386. platform_pci_fixup_bus(b);
  387. }
  388. void pcibios_set_master (struct pci_dev *dev)
  389. {
  390. /* No special bus mastering setup handling */
  391. }
  392. void __devinit
  393. pcibios_update_irq (struct pci_dev *dev, int irq)
  394. {
  395. pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
  396. /* ??? FIXME -- record old value for shutdown. */
  397. }
  398. int
  399. pcibios_enable_device (struct pci_dev *dev, int mask)
  400. {
  401. int ret;
  402. ret = pci_enable_resources(dev, mask);
  403. if (ret < 0)
  404. return ret;
  405. if (!dev->msi_enabled)
  406. return acpi_pci_irq_enable(dev);
  407. return 0;
  408. }
  409. void
  410. pcibios_disable_device (struct pci_dev *dev)
  411. {
  412. BUG_ON(atomic_read(&dev->enable_cnt));
  413. if (!dev->msi_enabled)
  414. acpi_pci_irq_disable(dev);
  415. }
  416. resource_size_t
  417. pcibios_align_resource (void *data, const struct resource *res,
  418. resource_size_t size, resource_size_t align)
  419. {
  420. return res->start;
  421. }
  422. /*
  423. * PCI BIOS setup, always defaults to SAL interface
  424. */
  425. char * __init
  426. pcibios_setup (char *str)
  427. {
  428. return str;
  429. }
  430. int
  431. pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
  432. enum pci_mmap_state mmap_state, int write_combine)
  433. {
  434. unsigned long size = vma->vm_end - vma->vm_start;
  435. pgprot_t prot;
  436. /*
  437. * I/O space cannot be accessed via normal processor loads and
  438. * stores on this platform.
  439. */
  440. if (mmap_state == pci_mmap_io)
  441. /*
  442. * XXX we could relax this for I/O spaces for which ACPI
  443. * indicates that the space is 1-to-1 mapped. But at the
  444. * moment, we don't support multiple PCI address spaces and
  445. * the legacy I/O space is not 1-to-1 mapped, so this is moot.
  446. */
  447. return -EINVAL;
  448. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  449. return -EINVAL;
  450. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  451. vma->vm_page_prot);
  452. /*
  453. * If the user requested WC, the kernel uses UC or WC for this region,
  454. * and the chipset supports WC, we can use WC. Otherwise, we have to
  455. * use the same attribute the kernel uses.
  456. */
  457. if (write_combine &&
  458. ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
  459. (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
  460. efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
  461. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  462. else
  463. vma->vm_page_prot = prot;
  464. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  465. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  466. return -EAGAIN;
  467. return 0;
  468. }
  469. /**
  470. * ia64_pci_get_legacy_mem - generic legacy mem routine
  471. * @bus: bus to get legacy memory base address for
  472. *
  473. * Find the base of legacy memory for @bus. This is typically the first
  474. * megabyte of bus address space for @bus or is simply 0 on platforms whose
  475. * chipsets support legacy I/O and memory routing. Returns the base address
  476. * or an error pointer if an error occurred.
  477. *
  478. * This is the ia64 generic version of this routine. Other platforms
  479. * are free to override it with a machine vector.
  480. */
  481. char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
  482. {
  483. return (char *)__IA64_UNCACHED_OFFSET;
  484. }
  485. /**
  486. * pci_mmap_legacy_page_range - map legacy memory space to userland
  487. * @bus: bus whose legacy space we're mapping
  488. * @vma: vma passed in by mmap
  489. *
  490. * Map legacy memory space for this device back to userspace using a machine
  491. * vector to get the base address.
  492. */
  493. int
  494. pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
  495. enum pci_mmap_state mmap_state)
  496. {
  497. unsigned long size = vma->vm_end - vma->vm_start;
  498. pgprot_t prot;
  499. char *addr;
  500. /* We only support mmap'ing of legacy memory space */
  501. if (mmap_state != pci_mmap_mem)
  502. return -ENOSYS;
  503. /*
  504. * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
  505. * for more details.
  506. */
  507. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  508. return -EINVAL;
  509. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  510. vma->vm_page_prot);
  511. addr = pci_get_legacy_mem(bus);
  512. if (IS_ERR(addr))
  513. return PTR_ERR(addr);
  514. vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
  515. vma->vm_page_prot = prot;
  516. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  517. size, vma->vm_page_prot))
  518. return -EAGAIN;
  519. return 0;
  520. }
  521. /**
  522. * ia64_pci_legacy_read - read from legacy I/O space
  523. * @bus: bus to read
  524. * @port: legacy port value
  525. * @val: caller allocated storage for returned value
  526. * @size: number of bytes to read
  527. *
  528. * Simply reads @size bytes from @port and puts the result in @val.
  529. *
  530. * Again, this (and the write routine) are generic versions that can be
  531. * overridden by the platform. This is necessary on platforms that don't
  532. * support legacy I/O routing or that hard fail on legacy I/O timeouts.
  533. */
  534. int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
  535. {
  536. int ret = size;
  537. switch (size) {
  538. case 1:
  539. *val = inb(port);
  540. break;
  541. case 2:
  542. *val = inw(port);
  543. break;
  544. case 4:
  545. *val = inl(port);
  546. break;
  547. default:
  548. ret = -EINVAL;
  549. break;
  550. }
  551. return ret;
  552. }
  553. /**
  554. * ia64_pci_legacy_write - perform a legacy I/O write
  555. * @bus: bus pointer
  556. * @port: port to write
  557. * @val: value to write
  558. * @size: number of bytes to write from @val
  559. *
  560. * Simply writes @size bytes of @val to @port.
  561. */
  562. int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
  563. {
  564. int ret = size;
  565. switch (size) {
  566. case 1:
  567. outb(val, port);
  568. break;
  569. case 2:
  570. outw(val, port);
  571. break;
  572. case 4:
  573. outl(val, port);
  574. break;
  575. default:
  576. ret = -EINVAL;
  577. break;
  578. }
  579. return ret;
  580. }
  581. /**
  582. * set_pci_cacheline_size - determine cacheline size for PCI devices
  583. *
  584. * We want to use the line-size of the outer-most cache. We assume
  585. * that this line-size is the same for all CPUs.
  586. *
  587. * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
  588. */
  589. static void __init set_pci_dfl_cacheline_size(void)
  590. {
  591. unsigned long levels, unique_caches;
  592. long status;
  593. pal_cache_config_info_t cci;
  594. status = ia64_pal_cache_summary(&levels, &unique_caches);
  595. if (status != 0) {
  596. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
  597. "(status=%ld)\n", __func__, status);
  598. return;
  599. }
  600. status = ia64_pal_cache_config_info(levels - 1,
  601. /* cache_type (data_or_unified)= */ 2, &cci);
  602. if (status != 0) {
  603. printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
  604. "(status=%ld)\n", __func__, status);
  605. return;
  606. }
  607. pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
  608. }
  609. u64 ia64_dma_get_required_mask(struct device *dev)
  610. {
  611. u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
  612. u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
  613. u64 mask;
  614. if (!high_totalram) {
  615. /* convert to mask just covering totalram */
  616. low_totalram = (1 << (fls(low_totalram) - 1));
  617. low_totalram += low_totalram - 1;
  618. mask = low_totalram;
  619. } else {
  620. high_totalram = (1 << (fls(high_totalram) - 1));
  621. high_totalram += high_totalram - 1;
  622. mask = (((u64)high_totalram) << 32) + 0xffffffff;
  623. }
  624. return mask;
  625. }
  626. EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
  627. u64 dma_get_required_mask(struct device *dev)
  628. {
  629. return platform_dma_get_required_mask(dev);
  630. }
  631. EXPORT_SYMBOL_GPL(dma_get_required_mask);
  632. static int __init pcibios_init(void)
  633. {
  634. set_pci_dfl_cacheline_size();
  635. return 0;
  636. }
  637. subsys_initcall(pcibios_init);