smp_twd.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. /*
  2. * linux/arch/arm/kernel/smp_twd.c
  3. *
  4. * Copyright (C) 2002 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/clk.h>
  14. #include <linux/cpufreq.h>
  15. #include <linux/delay.h>
  16. #include <linux/device.h>
  17. #include <linux/err.h>
  18. #include <linux/smp.h>
  19. #include <linux/jiffies.h>
  20. #include <linux/clockchips.h>
  21. #include <linux/irq.h>
  22. #include <linux/io.h>
  23. #include <asm/smp_twd.h>
  24. #include <asm/localtimer.h>
  25. #include <asm/hardware/gic.h>
  26. /* set up by the platform code */
  27. void __iomem *twd_base;
  28. static struct clk *twd_clk;
  29. static unsigned long twd_timer_rate;
  30. static struct clock_event_device __percpu **twd_evt;
  31. static void twd_set_mode(enum clock_event_mode mode,
  32. struct clock_event_device *clk)
  33. {
  34. unsigned long ctrl;
  35. switch (mode) {
  36. case CLOCK_EVT_MODE_PERIODIC:
  37. /* timer load already set up */
  38. ctrl = TWD_TIMER_CONTROL_ENABLE | TWD_TIMER_CONTROL_IT_ENABLE
  39. | TWD_TIMER_CONTROL_PERIODIC;
  40. __raw_writel(twd_timer_rate / HZ, twd_base + TWD_TIMER_LOAD);
  41. break;
  42. case CLOCK_EVT_MODE_ONESHOT:
  43. /* period set, and timer enabled in 'next_event' hook */
  44. ctrl = TWD_TIMER_CONTROL_IT_ENABLE | TWD_TIMER_CONTROL_ONESHOT;
  45. break;
  46. case CLOCK_EVT_MODE_UNUSED:
  47. case CLOCK_EVT_MODE_SHUTDOWN:
  48. default:
  49. ctrl = 0;
  50. }
  51. __raw_writel(ctrl, twd_base + TWD_TIMER_CONTROL);
  52. }
  53. static int twd_set_next_event(unsigned long evt,
  54. struct clock_event_device *unused)
  55. {
  56. unsigned long ctrl = __raw_readl(twd_base + TWD_TIMER_CONTROL);
  57. ctrl |= TWD_TIMER_CONTROL_ENABLE;
  58. __raw_writel(evt, twd_base + TWD_TIMER_COUNTER);
  59. __raw_writel(ctrl, twd_base + TWD_TIMER_CONTROL);
  60. return 0;
  61. }
  62. /*
  63. * local_timer_ack: checks for a local timer interrupt.
  64. *
  65. * If a local timer interrupt has occurred, acknowledge and return 1.
  66. * Otherwise, return 0.
  67. */
  68. int twd_timer_ack(void)
  69. {
  70. if (__raw_readl(twd_base + TWD_TIMER_INTSTAT)) {
  71. __raw_writel(1, twd_base + TWD_TIMER_INTSTAT);
  72. return 1;
  73. }
  74. return 0;
  75. }
  76. void twd_timer_stop(struct clock_event_device *clk)
  77. {
  78. twd_set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  79. disable_percpu_irq(clk->irq);
  80. }
  81. #ifdef CONFIG_CPU_FREQ
  82. /*
  83. * Updates clockevent frequency when the cpu frequency changes.
  84. * Called on the cpu that is changing frequency with interrupts disabled.
  85. */
  86. static void twd_update_frequency(void *data)
  87. {
  88. twd_timer_rate = clk_get_rate(twd_clk);
  89. clockevents_update_freq(*__this_cpu_ptr(twd_evt), twd_timer_rate);
  90. }
  91. static int twd_cpufreq_transition(struct notifier_block *nb,
  92. unsigned long state, void *data)
  93. {
  94. struct cpufreq_freqs *freqs = data;
  95. /*
  96. * The twd clock events must be reprogrammed to account for the new
  97. * frequency. The timer is local to a cpu, so cross-call to the
  98. * changing cpu.
  99. */
  100. if (state == CPUFREQ_POSTCHANGE || state == CPUFREQ_RESUMECHANGE)
  101. smp_call_function_single(freqs->cpu, twd_update_frequency,
  102. NULL, 1);
  103. return NOTIFY_OK;
  104. }
  105. static struct notifier_block twd_cpufreq_nb = {
  106. .notifier_call = twd_cpufreq_transition,
  107. };
  108. static int twd_cpufreq_init(void)
  109. {
  110. if (twd_evt && *__this_cpu_ptr(twd_evt) && !IS_ERR(twd_clk))
  111. return cpufreq_register_notifier(&twd_cpufreq_nb,
  112. CPUFREQ_TRANSITION_NOTIFIER);
  113. return 0;
  114. }
  115. core_initcall(twd_cpufreq_init);
  116. #endif
  117. static void __cpuinit twd_calibrate_rate(void)
  118. {
  119. unsigned long count;
  120. u64 waitjiffies;
  121. /*
  122. * If this is the first time round, we need to work out how fast
  123. * the timer ticks
  124. */
  125. if (twd_timer_rate == 0) {
  126. printk(KERN_INFO "Calibrating local timer... ");
  127. /* Wait for a tick to start */
  128. waitjiffies = get_jiffies_64() + 1;
  129. while (get_jiffies_64() < waitjiffies)
  130. udelay(10);
  131. /* OK, now the tick has started, let's get the timer going */
  132. waitjiffies += 5;
  133. /* enable, no interrupt or reload */
  134. __raw_writel(0x1, twd_base + TWD_TIMER_CONTROL);
  135. /* maximum value */
  136. __raw_writel(0xFFFFFFFFU, twd_base + TWD_TIMER_COUNTER);
  137. while (get_jiffies_64() < waitjiffies)
  138. udelay(10);
  139. count = __raw_readl(twd_base + TWD_TIMER_COUNTER);
  140. twd_timer_rate = (0xFFFFFFFFU - count) * (HZ / 5);
  141. printk("%lu.%02luMHz.\n", twd_timer_rate / 1000000,
  142. (twd_timer_rate / 10000) % 100);
  143. }
  144. }
  145. static irqreturn_t twd_handler(int irq, void *dev_id)
  146. {
  147. struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
  148. if (twd_timer_ack()) {
  149. evt->event_handler(evt);
  150. return IRQ_HANDLED;
  151. }
  152. return IRQ_NONE;
  153. }
  154. static struct clk *twd_get_clock(void)
  155. {
  156. struct clk *clk;
  157. int err;
  158. clk = clk_get_sys("smp_twd", NULL);
  159. if (IS_ERR(clk)) {
  160. pr_err("smp_twd: clock not found: %d\n", (int)PTR_ERR(clk));
  161. return clk;
  162. }
  163. err = clk_prepare(clk);
  164. if (err) {
  165. pr_err("smp_twd: clock failed to prepare: %d\n", err);
  166. clk_put(clk);
  167. return ERR_PTR(err);
  168. }
  169. err = clk_enable(clk);
  170. if (err) {
  171. pr_err("smp_twd: clock failed to enable: %d\n", err);
  172. clk_unprepare(clk);
  173. clk_put(clk);
  174. return ERR_PTR(err);
  175. }
  176. return clk;
  177. }
  178. /*
  179. * Setup the local clock events for a CPU.
  180. */
  181. void __cpuinit twd_timer_setup(struct clock_event_device *clk)
  182. {
  183. struct clock_event_device **this_cpu_clk;
  184. if (!twd_evt) {
  185. int err;
  186. twd_evt = alloc_percpu(struct clock_event_device *);
  187. if (!twd_evt) {
  188. pr_err("twd: can't allocate memory\n");
  189. return;
  190. }
  191. err = request_percpu_irq(clk->irq, twd_handler,
  192. "twd", twd_evt);
  193. if (err) {
  194. pr_err("twd: can't register interrupt %d (%d)\n",
  195. clk->irq, err);
  196. return;
  197. }
  198. }
  199. if (!twd_clk)
  200. twd_clk = twd_get_clock();
  201. if (!IS_ERR_OR_NULL(twd_clk))
  202. twd_timer_rate = clk_get_rate(twd_clk);
  203. else
  204. twd_calibrate_rate();
  205. __raw_writel(0, twd_base + TWD_TIMER_CONTROL);
  206. clk->name = "local_timer";
  207. clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
  208. CLOCK_EVT_FEAT_C3STOP;
  209. clk->rating = 350;
  210. clk->set_mode = twd_set_mode;
  211. clk->set_next_event = twd_set_next_event;
  212. this_cpu_clk = __this_cpu_ptr(twd_evt);
  213. *this_cpu_clk = clk;
  214. clockevents_config_and_register(clk, twd_timer_rate,
  215. 0xf, 0xffffffff);
  216. enable_percpu_irq(clk->irq, 0);
  217. }