mm.h 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/mutex.h>
  11. #include <linux/debug_locks.h>
  12. #include <linux/backing-dev.h>
  13. #include <linux/mm_types.h>
  14. struct mempolicy;
  15. struct anon_vma;
  16. struct file_ra_state;
  17. struct user_struct;
  18. struct writeback_control;
  19. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  20. extern unsigned long max_mapnr;
  21. #endif
  22. extern unsigned long num_physpages;
  23. extern void * high_memory;
  24. extern int page_cluster;
  25. #ifdef CONFIG_SYSCTL
  26. extern int sysctl_legacy_va_layout;
  27. #else
  28. #define sysctl_legacy_va_layout 0
  29. #endif
  30. #include <asm/page.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/processor.h>
  33. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  34. /*
  35. * Linux kernel virtual memory manager primitives.
  36. * The idea being to have a "virtual" mm in the same way
  37. * we have a virtual fs - giving a cleaner interface to the
  38. * mm details, and allowing different kinds of memory mappings
  39. * (from shared memory to executable loading to arbitrary
  40. * mmap() functions).
  41. */
  42. /*
  43. * This struct defines a memory VMM memory area. There is one of these
  44. * per VM-area/task. A VM area is any part of the process virtual memory
  45. * space that has a special rule for the page-fault handlers (ie a shared
  46. * library, the executable area etc).
  47. */
  48. struct vm_area_struct {
  49. struct mm_struct * vm_mm; /* The address space we belong to. */
  50. unsigned long vm_start; /* Our start address within vm_mm. */
  51. unsigned long vm_end; /* The first byte after our end address
  52. within vm_mm. */
  53. /* linked list of VM areas per task, sorted by address */
  54. struct vm_area_struct *vm_next;
  55. pgprot_t vm_page_prot; /* Access permissions of this VMA. */
  56. unsigned long vm_flags; /* Flags, listed below. */
  57. struct rb_node vm_rb;
  58. /*
  59. * For areas with an address space and backing store,
  60. * linkage into the address_space->i_mmap prio tree, or
  61. * linkage to the list of like vmas hanging off its node, or
  62. * linkage of vma in the address_space->i_mmap_nonlinear list.
  63. */
  64. union {
  65. struct {
  66. struct list_head list;
  67. void *parent; /* aligns with prio_tree_node parent */
  68. struct vm_area_struct *head;
  69. } vm_set;
  70. struct raw_prio_tree_node prio_tree_node;
  71. } shared;
  72. /*
  73. * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
  74. * list, after a COW of one of the file pages. A MAP_SHARED vma
  75. * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
  76. * or brk vma (with NULL file) can only be in an anon_vma list.
  77. */
  78. struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
  79. struct anon_vma *anon_vma; /* Serialized by page_table_lock */
  80. /* Function pointers to deal with this struct. */
  81. struct vm_operations_struct * vm_ops;
  82. /* Information about our backing store: */
  83. unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
  84. units, *not* PAGE_CACHE_SIZE */
  85. struct file * vm_file; /* File we map to (can be NULL). */
  86. void * vm_private_data; /* was vm_pte (shared mem) */
  87. unsigned long vm_truncate_count;/* truncate_count or restart_addr */
  88. #ifndef CONFIG_MMU
  89. atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
  90. #endif
  91. #ifdef CONFIG_NUMA
  92. struct mempolicy *vm_policy; /* NUMA policy for the VMA */
  93. #endif
  94. };
  95. extern struct kmem_cache *vm_area_cachep;
  96. /*
  97. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  98. * disabled, then there's a single shared list of VMAs maintained by the
  99. * system, and mm's subscribe to these individually
  100. */
  101. struct vm_list_struct {
  102. struct vm_list_struct *next;
  103. struct vm_area_struct *vma;
  104. };
  105. #ifndef CONFIG_MMU
  106. extern struct rb_root nommu_vma_tree;
  107. extern struct rw_semaphore nommu_vma_sem;
  108. extern unsigned int kobjsize(const void *objp);
  109. #endif
  110. /*
  111. * vm_flags..
  112. */
  113. #define VM_READ 0x00000001 /* currently active flags */
  114. #define VM_WRITE 0x00000002
  115. #define VM_EXEC 0x00000004
  116. #define VM_SHARED 0x00000008
  117. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  118. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  119. #define VM_MAYWRITE 0x00000020
  120. #define VM_MAYEXEC 0x00000040
  121. #define VM_MAYSHARE 0x00000080
  122. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  123. #define VM_GROWSUP 0x00000200
  124. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  125. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  126. #define VM_EXECUTABLE 0x00001000
  127. #define VM_LOCKED 0x00002000
  128. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  129. /* Used by sys_madvise() */
  130. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  131. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  132. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  133. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  134. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  135. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  136. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  137. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  138. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  139. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  140. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  141. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  142. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  143. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  144. #endif
  145. #ifdef CONFIG_STACK_GROWSUP
  146. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  147. #else
  148. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  149. #endif
  150. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  151. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  152. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  153. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  154. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  155. /*
  156. * mapping from the currently active vm_flags protection bits (the
  157. * low four bits) to a page protection mask..
  158. */
  159. extern pgprot_t protection_map[16];
  160. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  161. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  162. /*
  163. * vm_fault is filled by the the pagefault handler and passed to the vma's
  164. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  165. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  166. *
  167. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  168. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  169. * mapping support.
  170. */
  171. struct vm_fault {
  172. unsigned int flags; /* FAULT_FLAG_xxx flags */
  173. pgoff_t pgoff; /* Logical page offset based on vma */
  174. void __user *virtual_address; /* Faulting virtual address */
  175. struct page *page; /* ->fault handlers should return a
  176. * page here, unless VM_FAULT_NOPAGE
  177. * is set (which is also implied by
  178. * VM_FAULT_ERROR).
  179. */
  180. };
  181. /*
  182. * These are the virtual MM functions - opening of an area, closing and
  183. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  184. * to the functions called when a no-page or a wp-page exception occurs.
  185. */
  186. struct vm_operations_struct {
  187. void (*open)(struct vm_area_struct * area);
  188. void (*close)(struct vm_area_struct * area);
  189. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  190. struct page *(*nopage)(struct vm_area_struct *area,
  191. unsigned long address, int *type);
  192. unsigned long (*nopfn)(struct vm_area_struct *area,
  193. unsigned long address);
  194. /* notification that a previously read-only page is about to become
  195. * writable, if an error is returned it will cause a SIGBUS */
  196. int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
  197. #ifdef CONFIG_NUMA
  198. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  199. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  200. unsigned long addr);
  201. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  202. const nodemask_t *to, unsigned long flags);
  203. #endif
  204. };
  205. struct mmu_gather;
  206. struct inode;
  207. #define page_private(page) ((page)->private)
  208. #define set_page_private(page, v) ((page)->private = (v))
  209. /*
  210. * FIXME: take this include out, include page-flags.h in
  211. * files which need it (119 of them)
  212. */
  213. #include <linux/page-flags.h>
  214. #ifdef CONFIG_DEBUG_VM
  215. #define VM_BUG_ON(cond) BUG_ON(cond)
  216. #else
  217. #define VM_BUG_ON(condition) do { } while(0)
  218. #endif
  219. /*
  220. * Methods to modify the page usage count.
  221. *
  222. * What counts for a page usage:
  223. * - cache mapping (page->mapping)
  224. * - private data (page->private)
  225. * - page mapped in a task's page tables, each mapping
  226. * is counted separately
  227. *
  228. * Also, many kernel routines increase the page count before a critical
  229. * routine so they can be sure the page doesn't go away from under them.
  230. */
  231. /*
  232. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  233. */
  234. static inline int put_page_testzero(struct page *page)
  235. {
  236. VM_BUG_ON(atomic_read(&page->_count) == 0);
  237. return atomic_dec_and_test(&page->_count);
  238. }
  239. /*
  240. * Try to grab a ref unless the page has a refcount of zero, return false if
  241. * that is the case.
  242. */
  243. static inline int get_page_unless_zero(struct page *page)
  244. {
  245. VM_BUG_ON(PageCompound(page));
  246. return atomic_inc_not_zero(&page->_count);
  247. }
  248. static inline struct page *compound_head(struct page *page)
  249. {
  250. if (unlikely(PageTail(page)))
  251. return page->first_page;
  252. return page;
  253. }
  254. static inline int page_count(struct page *page)
  255. {
  256. return atomic_read(&compound_head(page)->_count);
  257. }
  258. static inline void get_page(struct page *page)
  259. {
  260. page = compound_head(page);
  261. VM_BUG_ON(atomic_read(&page->_count) == 0);
  262. atomic_inc(&page->_count);
  263. }
  264. static inline struct page *virt_to_head_page(const void *x)
  265. {
  266. struct page *page = virt_to_page(x);
  267. return compound_head(page);
  268. }
  269. /*
  270. * Setup the page count before being freed into the page allocator for
  271. * the first time (boot or memory hotplug)
  272. */
  273. static inline void init_page_count(struct page *page)
  274. {
  275. atomic_set(&page->_count, 1);
  276. }
  277. void put_page(struct page *page);
  278. void put_pages_list(struct list_head *pages);
  279. void split_page(struct page *page, unsigned int order);
  280. /*
  281. * Compound pages have a destructor function. Provide a
  282. * prototype for that function and accessor functions.
  283. * These are _only_ valid on the head of a PG_compound page.
  284. */
  285. typedef void compound_page_dtor(struct page *);
  286. static inline void set_compound_page_dtor(struct page *page,
  287. compound_page_dtor *dtor)
  288. {
  289. page[1].lru.next = (void *)dtor;
  290. }
  291. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  292. {
  293. return (compound_page_dtor *)page[1].lru.next;
  294. }
  295. static inline int compound_order(struct page *page)
  296. {
  297. if (!PageHead(page))
  298. return 0;
  299. return (unsigned long)page[1].lru.prev;
  300. }
  301. static inline void set_compound_order(struct page *page, unsigned long order)
  302. {
  303. page[1].lru.prev = (void *)order;
  304. }
  305. /*
  306. * Multiple processes may "see" the same page. E.g. for untouched
  307. * mappings of /dev/null, all processes see the same page full of
  308. * zeroes, and text pages of executables and shared libraries have
  309. * only one copy in memory, at most, normally.
  310. *
  311. * For the non-reserved pages, page_count(page) denotes a reference count.
  312. * page_count() == 0 means the page is free. page->lru is then used for
  313. * freelist management in the buddy allocator.
  314. * page_count() > 0 means the page has been allocated.
  315. *
  316. * Pages are allocated by the slab allocator in order to provide memory
  317. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  318. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  319. * unless a particular usage is carefully commented. (the responsibility of
  320. * freeing the kmalloc memory is the caller's, of course).
  321. *
  322. * A page may be used by anyone else who does a __get_free_page().
  323. * In this case, page_count still tracks the references, and should only
  324. * be used through the normal accessor functions. The top bits of page->flags
  325. * and page->virtual store page management information, but all other fields
  326. * are unused and could be used privately, carefully. The management of this
  327. * page is the responsibility of the one who allocated it, and those who have
  328. * subsequently been given references to it.
  329. *
  330. * The other pages (we may call them "pagecache pages") are completely
  331. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  332. * The following discussion applies only to them.
  333. *
  334. * A pagecache page contains an opaque `private' member, which belongs to the
  335. * page's address_space. Usually, this is the address of a circular list of
  336. * the page's disk buffers. PG_private must be set to tell the VM to call
  337. * into the filesystem to release these pages.
  338. *
  339. * A page may belong to an inode's memory mapping. In this case, page->mapping
  340. * is the pointer to the inode, and page->index is the file offset of the page,
  341. * in units of PAGE_CACHE_SIZE.
  342. *
  343. * If pagecache pages are not associated with an inode, they are said to be
  344. * anonymous pages. These may become associated with the swapcache, and in that
  345. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  346. *
  347. * In either case (swapcache or inode backed), the pagecache itself holds one
  348. * reference to the page. Setting PG_private should also increment the
  349. * refcount. The each user mapping also has a reference to the page.
  350. *
  351. * The pagecache pages are stored in a per-mapping radix tree, which is
  352. * rooted at mapping->page_tree, and indexed by offset.
  353. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  354. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  355. *
  356. * All pagecache pages may be subject to I/O:
  357. * - inode pages may need to be read from disk,
  358. * - inode pages which have been modified and are MAP_SHARED may need
  359. * to be written back to the inode on disk,
  360. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  361. * modified may need to be swapped out to swap space and (later) to be read
  362. * back into memory.
  363. */
  364. /*
  365. * The zone field is never updated after free_area_init_core()
  366. * sets it, so none of the operations on it need to be atomic.
  367. */
  368. /*
  369. * page->flags layout:
  370. *
  371. * There are three possibilities for how page->flags get
  372. * laid out. The first is for the normal case, without
  373. * sparsemem. The second is for sparsemem when there is
  374. * plenty of space for node and section. The last is when
  375. * we have run out of space and have to fall back to an
  376. * alternate (slower) way of determining the node.
  377. *
  378. * No sparsemem: | NODE | ZONE | ... | FLAGS |
  379. * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
  380. * no space for node: | SECTION | ZONE | ... | FLAGS |
  381. */
  382. #ifdef CONFIG_SPARSEMEM
  383. #define SECTIONS_WIDTH SECTIONS_SHIFT
  384. #else
  385. #define SECTIONS_WIDTH 0
  386. #endif
  387. #define ZONES_WIDTH ZONES_SHIFT
  388. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  389. #define NODES_WIDTH NODES_SHIFT
  390. #else
  391. #define NODES_WIDTH 0
  392. #endif
  393. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  394. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  395. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  396. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  397. /*
  398. * We are going to use the flags for the page to node mapping if its in
  399. * there. This includes the case where there is no node, so it is implicit.
  400. */
  401. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  402. #define NODE_NOT_IN_PAGE_FLAGS
  403. #endif
  404. #ifndef PFN_SECTION_SHIFT
  405. #define PFN_SECTION_SHIFT 0
  406. #endif
  407. /*
  408. * Define the bit shifts to access each section. For non-existant
  409. * sections we define the shift as 0; that plus a 0 mask ensures
  410. * the compiler will optimise away reference to them.
  411. */
  412. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  413. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  414. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  415. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  416. #ifdef NODE_NOT_IN_PAGEFLAGS
  417. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  418. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  419. SECTIONS_PGOFF : ZONES_PGOFF)
  420. #else
  421. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  422. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  423. NODES_PGOFF : ZONES_PGOFF)
  424. #endif
  425. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  426. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  427. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  428. #endif
  429. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  430. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  431. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  432. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  433. static inline enum zone_type page_zonenum(struct page *page)
  434. {
  435. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  436. }
  437. /*
  438. * The identification function is only used by the buddy allocator for
  439. * determining if two pages could be buddies. We are not really
  440. * identifying a zone since we could be using a the section number
  441. * id if we have not node id available in page flags.
  442. * We guarantee only that it will return the same value for two
  443. * combinable pages in a zone.
  444. */
  445. static inline int page_zone_id(struct page *page)
  446. {
  447. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  448. }
  449. static inline int zone_to_nid(struct zone *zone)
  450. {
  451. #ifdef CONFIG_NUMA
  452. return zone->node;
  453. #else
  454. return 0;
  455. #endif
  456. }
  457. #ifdef NODE_NOT_IN_PAGE_FLAGS
  458. extern int page_to_nid(struct page *page);
  459. #else
  460. static inline int page_to_nid(struct page *page)
  461. {
  462. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  463. }
  464. #endif
  465. static inline struct zone *page_zone(struct page *page)
  466. {
  467. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  468. }
  469. static inline unsigned long page_to_section(struct page *page)
  470. {
  471. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  472. }
  473. static inline void set_page_zone(struct page *page, enum zone_type zone)
  474. {
  475. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  476. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  477. }
  478. static inline void set_page_node(struct page *page, unsigned long node)
  479. {
  480. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  481. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  482. }
  483. static inline void set_page_section(struct page *page, unsigned long section)
  484. {
  485. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  486. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  487. }
  488. static inline void set_page_links(struct page *page, enum zone_type zone,
  489. unsigned long node, unsigned long pfn)
  490. {
  491. set_page_zone(page, zone);
  492. set_page_node(page, node);
  493. set_page_section(page, pfn_to_section_nr(pfn));
  494. }
  495. /*
  496. * Some inline functions in vmstat.h depend on page_zone()
  497. */
  498. #include <linux/vmstat.h>
  499. static __always_inline void *lowmem_page_address(struct page *page)
  500. {
  501. return __va(page_to_pfn(page) << PAGE_SHIFT);
  502. }
  503. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  504. #define HASHED_PAGE_VIRTUAL
  505. #endif
  506. #if defined(WANT_PAGE_VIRTUAL)
  507. #define page_address(page) ((page)->virtual)
  508. #define set_page_address(page, address) \
  509. do { \
  510. (page)->virtual = (address); \
  511. } while(0)
  512. #define page_address_init() do { } while(0)
  513. #endif
  514. #if defined(HASHED_PAGE_VIRTUAL)
  515. void *page_address(struct page *page);
  516. void set_page_address(struct page *page, void *virtual);
  517. void page_address_init(void);
  518. #endif
  519. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  520. #define page_address(page) lowmem_page_address(page)
  521. #define set_page_address(page, address) do { } while(0)
  522. #define page_address_init() do { } while(0)
  523. #endif
  524. /*
  525. * On an anonymous page mapped into a user virtual memory area,
  526. * page->mapping points to its anon_vma, not to a struct address_space;
  527. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  528. *
  529. * Please note that, confusingly, "page_mapping" refers to the inode
  530. * address_space which maps the page from disk; whereas "page_mapped"
  531. * refers to user virtual address space into which the page is mapped.
  532. */
  533. #define PAGE_MAPPING_ANON 1
  534. extern struct address_space swapper_space;
  535. static inline struct address_space *page_mapping(struct page *page)
  536. {
  537. struct address_space *mapping = page->mapping;
  538. VM_BUG_ON(PageSlab(page));
  539. if (unlikely(PageSwapCache(page)))
  540. mapping = &swapper_space;
  541. #ifdef CONFIG_SLUB
  542. else if (unlikely(PageSlab(page)))
  543. mapping = NULL;
  544. #endif
  545. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  546. mapping = NULL;
  547. return mapping;
  548. }
  549. static inline int PageAnon(struct page *page)
  550. {
  551. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  552. }
  553. /*
  554. * Return the pagecache index of the passed page. Regular pagecache pages
  555. * use ->index whereas swapcache pages use ->private
  556. */
  557. static inline pgoff_t page_index(struct page *page)
  558. {
  559. if (unlikely(PageSwapCache(page)))
  560. return page_private(page);
  561. return page->index;
  562. }
  563. /*
  564. * The atomic page->_mapcount, like _count, starts from -1:
  565. * so that transitions both from it and to it can be tracked,
  566. * using atomic_inc_and_test and atomic_add_negative(-1).
  567. */
  568. static inline void reset_page_mapcount(struct page *page)
  569. {
  570. atomic_set(&(page)->_mapcount, -1);
  571. }
  572. static inline int page_mapcount(struct page *page)
  573. {
  574. return atomic_read(&(page)->_mapcount) + 1;
  575. }
  576. /*
  577. * Return true if this page is mapped into pagetables.
  578. */
  579. static inline int page_mapped(struct page *page)
  580. {
  581. return atomic_read(&(page)->_mapcount) >= 0;
  582. }
  583. /*
  584. * Error return values for the *_nopage functions
  585. */
  586. #define NOPAGE_SIGBUS (NULL)
  587. #define NOPAGE_OOM ((struct page *) (-1))
  588. /*
  589. * Error return values for the *_nopfn functions
  590. */
  591. #define NOPFN_SIGBUS ((unsigned long) -1)
  592. #define NOPFN_OOM ((unsigned long) -2)
  593. #define NOPFN_REFAULT ((unsigned long) -3)
  594. /*
  595. * Different kinds of faults, as returned by handle_mm_fault().
  596. * Used to decide whether a process gets delivered SIGBUS or
  597. * just gets major/minor fault counters bumped up.
  598. */
  599. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  600. #define VM_FAULT_OOM 0x0001
  601. #define VM_FAULT_SIGBUS 0x0002
  602. #define VM_FAULT_MAJOR 0x0004
  603. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  604. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  605. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  606. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
  607. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  608. extern void show_free_areas(void);
  609. #ifdef CONFIG_SHMEM
  610. int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
  611. struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  612. unsigned long addr);
  613. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  614. #else
  615. static inline int shmem_lock(struct file *file, int lock,
  616. struct user_struct *user)
  617. {
  618. return 0;
  619. }
  620. static inline int shmem_set_policy(struct vm_area_struct *vma,
  621. struct mempolicy *new)
  622. {
  623. return 0;
  624. }
  625. static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  626. unsigned long addr)
  627. {
  628. return NULL;
  629. }
  630. #endif
  631. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  632. int shmem_zero_setup(struct vm_area_struct *);
  633. #ifndef CONFIG_MMU
  634. extern unsigned long shmem_get_unmapped_area(struct file *file,
  635. unsigned long addr,
  636. unsigned long len,
  637. unsigned long pgoff,
  638. unsigned long flags);
  639. #endif
  640. extern int can_do_mlock(void);
  641. extern int user_shm_lock(size_t, struct user_struct *);
  642. extern void user_shm_unlock(size_t, struct user_struct *);
  643. /*
  644. * Parameter block passed down to zap_pte_range in exceptional cases.
  645. */
  646. struct zap_details {
  647. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  648. struct address_space *check_mapping; /* Check page->mapping if set */
  649. pgoff_t first_index; /* Lowest page->index to unmap */
  650. pgoff_t last_index; /* Highest page->index to unmap */
  651. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  652. unsigned long truncate_count; /* Compare vm_truncate_count */
  653. };
  654. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  655. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  656. unsigned long size, struct zap_details *);
  657. unsigned long unmap_vmas(struct mmu_gather **tlb,
  658. struct vm_area_struct *start_vma, unsigned long start_addr,
  659. unsigned long end_addr, unsigned long *nr_accounted,
  660. struct zap_details *);
  661. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  662. unsigned long end, unsigned long floor, unsigned long ceiling);
  663. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  664. unsigned long floor, unsigned long ceiling);
  665. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  666. struct vm_area_struct *vma);
  667. int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
  668. unsigned long size, pgprot_t prot);
  669. void unmap_mapping_range(struct address_space *mapping,
  670. loff_t const holebegin, loff_t const holelen, int even_cows);
  671. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  672. loff_t const holebegin, loff_t const holelen)
  673. {
  674. unmap_mapping_range(mapping, holebegin, holelen, 0);
  675. }
  676. extern int vmtruncate(struct inode * inode, loff_t offset);
  677. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  678. #ifdef CONFIG_MMU
  679. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  680. unsigned long address, int write_access);
  681. #else
  682. static inline int handle_mm_fault(struct mm_struct *mm,
  683. struct vm_area_struct *vma, unsigned long address,
  684. int write_access)
  685. {
  686. /* should never happen if there's no MMU */
  687. BUG();
  688. return VM_FAULT_SIGBUS;
  689. }
  690. #endif
  691. extern int make_pages_present(unsigned long addr, unsigned long end);
  692. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  693. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  694. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  695. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  696. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  697. extern void do_invalidatepage(struct page *page, unsigned long offset);
  698. int __set_page_dirty_nobuffers(struct page *page);
  699. int __set_page_dirty_no_writeback(struct page *page);
  700. int redirty_page_for_writepage(struct writeback_control *wbc,
  701. struct page *page);
  702. int FASTCALL(set_page_dirty(struct page *page));
  703. int set_page_dirty_lock(struct page *page);
  704. int clear_page_dirty_for_io(struct page *page);
  705. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  706. unsigned long old_addr, struct vm_area_struct *new_vma,
  707. unsigned long new_addr, unsigned long len);
  708. extern unsigned long do_mremap(unsigned long addr,
  709. unsigned long old_len, unsigned long new_len,
  710. unsigned long flags, unsigned long new_addr);
  711. extern int mprotect_fixup(struct vm_area_struct *vma,
  712. struct vm_area_struct **pprev, unsigned long start,
  713. unsigned long end, unsigned long newflags);
  714. /*
  715. * A callback you can register to apply pressure to ageable caches.
  716. *
  717. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  718. * look through the least-recently-used 'nr_to_scan' entries and
  719. * attempt to free them up. It should return the number of objects
  720. * which remain in the cache. If it returns -1, it means it cannot do
  721. * any scanning at this time (eg. there is a risk of deadlock).
  722. *
  723. * The 'gfpmask' refers to the allocation we are currently trying to
  724. * fulfil.
  725. *
  726. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  727. * querying the cache size, so a fastpath for that case is appropriate.
  728. */
  729. struct shrinker {
  730. int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
  731. int seeks; /* seeks to recreate an obj */
  732. /* These are for internal use */
  733. struct list_head list;
  734. long nr; /* objs pending delete */
  735. };
  736. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  737. extern void register_shrinker(struct shrinker *);
  738. extern void unregister_shrinker(struct shrinker *);
  739. int vma_wants_writenotify(struct vm_area_struct *vma);
  740. extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
  741. #ifdef __PAGETABLE_PUD_FOLDED
  742. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  743. unsigned long address)
  744. {
  745. return 0;
  746. }
  747. #else
  748. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  749. #endif
  750. #ifdef __PAGETABLE_PMD_FOLDED
  751. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  752. unsigned long address)
  753. {
  754. return 0;
  755. }
  756. #else
  757. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  758. #endif
  759. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  760. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  761. /*
  762. * The following ifdef needed to get the 4level-fixup.h header to work.
  763. * Remove it when 4level-fixup.h has been removed.
  764. */
  765. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  766. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  767. {
  768. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  769. NULL: pud_offset(pgd, address);
  770. }
  771. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  772. {
  773. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  774. NULL: pmd_offset(pud, address);
  775. }
  776. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  777. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  778. /*
  779. * We tuck a spinlock to guard each pagetable page into its struct page,
  780. * at page->private, with BUILD_BUG_ON to make sure that this will not
  781. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  782. * When freeing, reset page->mapping so free_pages_check won't complain.
  783. */
  784. #define __pte_lockptr(page) &((page)->ptl)
  785. #define pte_lock_init(_page) do { \
  786. spin_lock_init(__pte_lockptr(_page)); \
  787. } while (0)
  788. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  789. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  790. #else
  791. /*
  792. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  793. */
  794. #define pte_lock_init(page) do {} while (0)
  795. #define pte_lock_deinit(page) do {} while (0)
  796. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  797. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  798. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  799. ({ \
  800. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  801. pte_t *__pte = pte_offset_map(pmd, address); \
  802. *(ptlp) = __ptl; \
  803. spin_lock(__ptl); \
  804. __pte; \
  805. })
  806. #define pte_unmap_unlock(pte, ptl) do { \
  807. spin_unlock(ptl); \
  808. pte_unmap(pte); \
  809. } while (0)
  810. #define pte_alloc_map(mm, pmd, address) \
  811. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  812. NULL: pte_offset_map(pmd, address))
  813. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  814. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  815. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  816. #define pte_alloc_kernel(pmd, address) \
  817. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  818. NULL: pte_offset_kernel(pmd, address))
  819. extern void free_area_init(unsigned long * zones_size);
  820. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  821. unsigned long * zones_size, unsigned long zone_start_pfn,
  822. unsigned long *zholes_size);
  823. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  824. /*
  825. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  826. * zones, allocate the backing mem_map and account for memory holes in a more
  827. * architecture independent manner. This is a substitute for creating the
  828. * zone_sizes[] and zholes_size[] arrays and passing them to
  829. * free_area_init_node()
  830. *
  831. * An architecture is expected to register range of page frames backed by
  832. * physical memory with add_active_range() before calling
  833. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  834. * usage, an architecture is expected to do something like
  835. *
  836. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  837. * max_highmem_pfn};
  838. * for_each_valid_physical_page_range()
  839. * add_active_range(node_id, start_pfn, end_pfn)
  840. * free_area_init_nodes(max_zone_pfns);
  841. *
  842. * If the architecture guarantees that there are no holes in the ranges
  843. * registered with add_active_range(), free_bootmem_active_regions()
  844. * will call free_bootmem_node() for each registered physical page range.
  845. * Similarly sparse_memory_present_with_active_regions() calls
  846. * memory_present() for each range when SPARSEMEM is enabled.
  847. *
  848. * See mm/page_alloc.c for more information on each function exposed by
  849. * CONFIG_ARCH_POPULATES_NODE_MAP
  850. */
  851. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  852. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  853. unsigned long end_pfn);
  854. extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  855. unsigned long new_end_pfn);
  856. extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
  857. unsigned long end_pfn);
  858. extern void remove_all_active_ranges(void);
  859. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  860. unsigned long end_pfn);
  861. extern void get_pfn_range_for_nid(unsigned int nid,
  862. unsigned long *start_pfn, unsigned long *end_pfn);
  863. extern unsigned long find_min_pfn_with_active_regions(void);
  864. extern unsigned long find_max_pfn_with_active_regions(void);
  865. extern void free_bootmem_with_active_regions(int nid,
  866. unsigned long max_low_pfn);
  867. extern void sparse_memory_present_with_active_regions(int nid);
  868. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  869. extern int early_pfn_to_nid(unsigned long pfn);
  870. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  871. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  872. extern void set_dma_reserve(unsigned long new_dma_reserve);
  873. extern void memmap_init_zone(unsigned long, int, unsigned long,
  874. unsigned long, enum memmap_context);
  875. extern void setup_per_zone_pages_min(void);
  876. extern void mem_init(void);
  877. extern void show_mem(void);
  878. extern void si_meminfo(struct sysinfo * val);
  879. extern void si_meminfo_node(struct sysinfo *val, int nid);
  880. #ifdef CONFIG_NUMA
  881. extern void setup_per_cpu_pageset(void);
  882. #else
  883. static inline void setup_per_cpu_pageset(void) {}
  884. #endif
  885. /* prio_tree.c */
  886. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  887. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  888. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  889. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  890. struct prio_tree_iter *iter);
  891. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  892. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  893. (vma = vma_prio_tree_next(vma, iter)); )
  894. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  895. struct list_head *list)
  896. {
  897. vma->shared.vm_set.parent = NULL;
  898. list_add_tail(&vma->shared.vm_set.list, list);
  899. }
  900. /* mmap.c */
  901. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  902. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  903. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  904. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  905. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  906. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  907. struct mempolicy *);
  908. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  909. extern int split_vma(struct mm_struct *,
  910. struct vm_area_struct *, unsigned long addr, int new_below);
  911. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  912. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  913. struct rb_node **, struct rb_node *);
  914. extern void unlink_file_vma(struct vm_area_struct *);
  915. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  916. unsigned long addr, unsigned long len, pgoff_t pgoff);
  917. extern void exit_mmap(struct mm_struct *);
  918. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  919. extern int install_special_mapping(struct mm_struct *mm,
  920. unsigned long addr, unsigned long len,
  921. unsigned long flags, struct page **pages);
  922. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  923. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  924. unsigned long len, unsigned long prot,
  925. unsigned long flag, unsigned long pgoff);
  926. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  927. unsigned long len, unsigned long flags,
  928. unsigned int vm_flags, unsigned long pgoff,
  929. int accountable);
  930. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  931. unsigned long len, unsigned long prot,
  932. unsigned long flag, unsigned long offset)
  933. {
  934. unsigned long ret = -EINVAL;
  935. if ((offset + PAGE_ALIGN(len)) < offset)
  936. goto out;
  937. if (!(offset & ~PAGE_MASK))
  938. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  939. out:
  940. return ret;
  941. }
  942. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  943. extern unsigned long do_brk(unsigned long, unsigned long);
  944. /* filemap.c */
  945. extern unsigned long page_unuse(struct page *);
  946. extern void truncate_inode_pages(struct address_space *, loff_t);
  947. extern void truncate_inode_pages_range(struct address_space *,
  948. loff_t lstart, loff_t lend);
  949. /* generic vm_area_ops exported for stackable file systems */
  950. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  951. /* mm/page-writeback.c */
  952. int write_one_page(struct page *page, int wait);
  953. /* readahead.c */
  954. #define VM_MAX_READAHEAD 128 /* kbytes */
  955. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  956. #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
  957. * turning readahead off */
  958. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  959. pgoff_t offset, unsigned long nr_to_read);
  960. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  961. pgoff_t offset, unsigned long nr_to_read);
  962. void page_cache_sync_readahead(struct address_space *mapping,
  963. struct file_ra_state *ra,
  964. struct file *filp,
  965. pgoff_t offset,
  966. unsigned long size);
  967. void page_cache_async_readahead(struct address_space *mapping,
  968. struct file_ra_state *ra,
  969. struct file *filp,
  970. struct page *pg,
  971. pgoff_t offset,
  972. unsigned long size);
  973. unsigned long max_sane_readahead(unsigned long nr);
  974. /* Do stack extension */
  975. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  976. #ifdef CONFIG_IA64
  977. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  978. #endif
  979. extern int expand_stack_downwards(struct vm_area_struct *vma,
  980. unsigned long address);
  981. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  982. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  983. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  984. struct vm_area_struct **pprev);
  985. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  986. NULL if none. Assume start_addr < end_addr. */
  987. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  988. {
  989. struct vm_area_struct * vma = find_vma(mm,start_addr);
  990. if (vma && end_addr <= vma->vm_start)
  991. vma = NULL;
  992. return vma;
  993. }
  994. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  995. {
  996. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  997. }
  998. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  999. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1000. struct page *vmalloc_to_page(void *addr);
  1001. unsigned long vmalloc_to_pfn(void *addr);
  1002. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1003. unsigned long pfn, unsigned long size, pgprot_t);
  1004. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1005. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1006. unsigned long pfn);
  1007. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1008. unsigned int foll_flags);
  1009. #define FOLL_WRITE 0x01 /* check pte is writable */
  1010. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1011. #define FOLL_GET 0x04 /* do get_page on page */
  1012. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  1013. typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
  1014. void *data);
  1015. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1016. unsigned long size, pte_fn_t fn, void *data);
  1017. #ifdef CONFIG_PROC_FS
  1018. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1019. #else
  1020. static inline void vm_stat_account(struct mm_struct *mm,
  1021. unsigned long flags, struct file *file, long pages)
  1022. {
  1023. }
  1024. #endif /* CONFIG_PROC_FS */
  1025. #ifndef CONFIG_DEBUG_PAGEALLOC
  1026. static inline void
  1027. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1028. #endif
  1029. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1030. #ifdef __HAVE_ARCH_GATE_AREA
  1031. int in_gate_area_no_task(unsigned long addr);
  1032. int in_gate_area(struct task_struct *task, unsigned long addr);
  1033. #else
  1034. int in_gate_area_no_task(unsigned long addr);
  1035. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1036. #endif /* __HAVE_ARCH_GATE_AREA */
  1037. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  1038. void __user *, size_t *, loff_t *);
  1039. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1040. unsigned long lru_pages);
  1041. void drop_pagecache(void);
  1042. void drop_slab(void);
  1043. #ifndef CONFIG_MMU
  1044. #define randomize_va_space 0
  1045. #else
  1046. extern int randomize_va_space;
  1047. #endif
  1048. const char * arch_vma_name(struct vm_area_struct *vma);
  1049. struct page *sparse_early_mem_map_populate(unsigned long pnum, int nid);
  1050. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1051. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1052. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1053. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1054. void *vmemmap_alloc_block(unsigned long size, int node);
  1055. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1056. int vmemmap_populate_basepages(struct page *start_page,
  1057. unsigned long pages, int node);
  1058. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1059. #endif /* __KERNEL__ */
  1060. #endif /* _LINUX_MM_H */