vmx.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "irq.h"
  20. #include "vmx.h"
  21. #include "segment_descriptor.h"
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/profile.h>
  27. #include <linux/sched.h>
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. struct vmcs {
  33. u32 revision_id;
  34. u32 abort;
  35. char data[0];
  36. };
  37. struct vcpu_vmx {
  38. struct kvm_vcpu vcpu;
  39. int launched;
  40. u8 fail;
  41. struct kvm_msr_entry *guest_msrs;
  42. struct kvm_msr_entry *host_msrs;
  43. int nmsrs;
  44. int save_nmsrs;
  45. int msr_offset_efer;
  46. #ifdef CONFIG_X86_64
  47. int msr_offset_kernel_gs_base;
  48. #endif
  49. struct vmcs *vmcs;
  50. struct {
  51. int loaded;
  52. u16 fs_sel, gs_sel, ldt_sel;
  53. int gs_ldt_reload_needed;
  54. int fs_reload_needed;
  55. }host_state;
  56. };
  57. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  58. {
  59. return container_of(vcpu, struct vcpu_vmx, vcpu);
  60. }
  61. static int init_rmode_tss(struct kvm *kvm);
  62. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  63. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  64. static struct page *vmx_io_bitmap_a;
  65. static struct page *vmx_io_bitmap_b;
  66. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  67. static struct vmcs_config {
  68. int size;
  69. int order;
  70. u32 revision_id;
  71. u32 pin_based_exec_ctrl;
  72. u32 cpu_based_exec_ctrl;
  73. u32 vmexit_ctrl;
  74. u32 vmentry_ctrl;
  75. } vmcs_config;
  76. #define VMX_SEGMENT_FIELD(seg) \
  77. [VCPU_SREG_##seg] = { \
  78. .selector = GUEST_##seg##_SELECTOR, \
  79. .base = GUEST_##seg##_BASE, \
  80. .limit = GUEST_##seg##_LIMIT, \
  81. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  82. }
  83. static struct kvm_vmx_segment_field {
  84. unsigned selector;
  85. unsigned base;
  86. unsigned limit;
  87. unsigned ar_bytes;
  88. } kvm_vmx_segment_fields[] = {
  89. VMX_SEGMENT_FIELD(CS),
  90. VMX_SEGMENT_FIELD(DS),
  91. VMX_SEGMENT_FIELD(ES),
  92. VMX_SEGMENT_FIELD(FS),
  93. VMX_SEGMENT_FIELD(GS),
  94. VMX_SEGMENT_FIELD(SS),
  95. VMX_SEGMENT_FIELD(TR),
  96. VMX_SEGMENT_FIELD(LDTR),
  97. };
  98. /*
  99. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  100. * away by decrementing the array size.
  101. */
  102. static const u32 vmx_msr_index[] = {
  103. #ifdef CONFIG_X86_64
  104. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  105. #endif
  106. MSR_EFER, MSR_K6_STAR,
  107. };
  108. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  109. static void load_msrs(struct kvm_msr_entry *e, int n)
  110. {
  111. int i;
  112. for (i = 0; i < n; ++i)
  113. wrmsrl(e[i].index, e[i].data);
  114. }
  115. static void save_msrs(struct kvm_msr_entry *e, int n)
  116. {
  117. int i;
  118. for (i = 0; i < n; ++i)
  119. rdmsrl(e[i].index, e[i].data);
  120. }
  121. static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
  122. {
  123. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  124. }
  125. static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
  126. {
  127. int efer_offset = vmx->msr_offset_efer;
  128. return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
  129. msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  130. }
  131. static inline int is_page_fault(u32 intr_info)
  132. {
  133. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  134. INTR_INFO_VALID_MASK)) ==
  135. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  136. }
  137. static inline int is_no_device(u32 intr_info)
  138. {
  139. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  140. INTR_INFO_VALID_MASK)) ==
  141. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  142. }
  143. static inline int is_external_interrupt(u32 intr_info)
  144. {
  145. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  146. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  147. }
  148. static inline int cpu_has_vmx_tpr_shadow(void)
  149. {
  150. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  151. }
  152. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  153. {
  154. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  155. }
  156. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  157. {
  158. int i;
  159. for (i = 0; i < vmx->nmsrs; ++i)
  160. if (vmx->guest_msrs[i].index == msr)
  161. return i;
  162. return -1;
  163. }
  164. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  165. {
  166. int i;
  167. i = __find_msr_index(vmx, msr);
  168. if (i >= 0)
  169. return &vmx->guest_msrs[i];
  170. return NULL;
  171. }
  172. static void vmcs_clear(struct vmcs *vmcs)
  173. {
  174. u64 phys_addr = __pa(vmcs);
  175. u8 error;
  176. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  177. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  178. : "cc", "memory");
  179. if (error)
  180. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  181. vmcs, phys_addr);
  182. }
  183. static void __vcpu_clear(void *arg)
  184. {
  185. struct vcpu_vmx *vmx = arg;
  186. int cpu = raw_smp_processor_id();
  187. if (vmx->vcpu.cpu == cpu)
  188. vmcs_clear(vmx->vmcs);
  189. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  190. per_cpu(current_vmcs, cpu) = NULL;
  191. rdtscll(vmx->vcpu.host_tsc);
  192. }
  193. static void vcpu_clear(struct vcpu_vmx *vmx)
  194. {
  195. if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
  196. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
  197. vmx, 0, 1);
  198. else
  199. __vcpu_clear(vmx);
  200. vmx->launched = 0;
  201. }
  202. static unsigned long vmcs_readl(unsigned long field)
  203. {
  204. unsigned long value;
  205. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  206. : "=a"(value) : "d"(field) : "cc");
  207. return value;
  208. }
  209. static u16 vmcs_read16(unsigned long field)
  210. {
  211. return vmcs_readl(field);
  212. }
  213. static u32 vmcs_read32(unsigned long field)
  214. {
  215. return vmcs_readl(field);
  216. }
  217. static u64 vmcs_read64(unsigned long field)
  218. {
  219. #ifdef CONFIG_X86_64
  220. return vmcs_readl(field);
  221. #else
  222. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  223. #endif
  224. }
  225. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  226. {
  227. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  228. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  229. dump_stack();
  230. }
  231. static void vmcs_writel(unsigned long field, unsigned long value)
  232. {
  233. u8 error;
  234. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  235. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  236. if (unlikely(error))
  237. vmwrite_error(field, value);
  238. }
  239. static void vmcs_write16(unsigned long field, u16 value)
  240. {
  241. vmcs_writel(field, value);
  242. }
  243. static void vmcs_write32(unsigned long field, u32 value)
  244. {
  245. vmcs_writel(field, value);
  246. }
  247. static void vmcs_write64(unsigned long field, u64 value)
  248. {
  249. #ifdef CONFIG_X86_64
  250. vmcs_writel(field, value);
  251. #else
  252. vmcs_writel(field, value);
  253. asm volatile ("");
  254. vmcs_writel(field+1, value >> 32);
  255. #endif
  256. }
  257. static void vmcs_clear_bits(unsigned long field, u32 mask)
  258. {
  259. vmcs_writel(field, vmcs_readl(field) & ~mask);
  260. }
  261. static void vmcs_set_bits(unsigned long field, u32 mask)
  262. {
  263. vmcs_writel(field, vmcs_readl(field) | mask);
  264. }
  265. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  266. {
  267. u32 eb;
  268. eb = 1u << PF_VECTOR;
  269. if (!vcpu->fpu_active)
  270. eb |= 1u << NM_VECTOR;
  271. if (vcpu->guest_debug.enabled)
  272. eb |= 1u << 1;
  273. if (vcpu->rmode.active)
  274. eb = ~0;
  275. vmcs_write32(EXCEPTION_BITMAP, eb);
  276. }
  277. static void reload_tss(void)
  278. {
  279. #ifndef CONFIG_X86_64
  280. /*
  281. * VT restores TR but not its size. Useless.
  282. */
  283. struct descriptor_table gdt;
  284. struct segment_descriptor *descs;
  285. get_gdt(&gdt);
  286. descs = (void *)gdt.base;
  287. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  288. load_TR_desc();
  289. #endif
  290. }
  291. static void load_transition_efer(struct vcpu_vmx *vmx)
  292. {
  293. u64 trans_efer;
  294. int efer_offset = vmx->msr_offset_efer;
  295. trans_efer = vmx->host_msrs[efer_offset].data;
  296. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  297. trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  298. wrmsrl(MSR_EFER, trans_efer);
  299. vmx->vcpu.stat.efer_reload++;
  300. }
  301. static void vmx_save_host_state(struct vcpu_vmx *vmx)
  302. {
  303. if (vmx->host_state.loaded)
  304. return;
  305. vmx->host_state.loaded = 1;
  306. /*
  307. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  308. * allow segment selectors with cpl > 0 or ti == 1.
  309. */
  310. vmx->host_state.ldt_sel = read_ldt();
  311. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  312. vmx->host_state.fs_sel = read_fs();
  313. if (!(vmx->host_state.fs_sel & 7)) {
  314. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  315. vmx->host_state.fs_reload_needed = 0;
  316. } else {
  317. vmcs_write16(HOST_FS_SELECTOR, 0);
  318. vmx->host_state.fs_reload_needed = 1;
  319. }
  320. vmx->host_state.gs_sel = read_gs();
  321. if (!(vmx->host_state.gs_sel & 7))
  322. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  323. else {
  324. vmcs_write16(HOST_GS_SELECTOR, 0);
  325. vmx->host_state.gs_ldt_reload_needed = 1;
  326. }
  327. #ifdef CONFIG_X86_64
  328. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  329. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  330. #else
  331. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  332. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  333. #endif
  334. #ifdef CONFIG_X86_64
  335. if (is_long_mode(&vmx->vcpu)) {
  336. save_msrs(vmx->host_msrs +
  337. vmx->msr_offset_kernel_gs_base, 1);
  338. }
  339. #endif
  340. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  341. if (msr_efer_need_save_restore(vmx))
  342. load_transition_efer(vmx);
  343. }
  344. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  345. {
  346. unsigned long flags;
  347. if (!vmx->host_state.loaded)
  348. return;
  349. vmx->host_state.loaded = 0;
  350. if (vmx->host_state.fs_reload_needed)
  351. load_fs(vmx->host_state.fs_sel);
  352. if (vmx->host_state.gs_ldt_reload_needed) {
  353. load_ldt(vmx->host_state.ldt_sel);
  354. /*
  355. * If we have to reload gs, we must take care to
  356. * preserve our gs base.
  357. */
  358. local_irq_save(flags);
  359. load_gs(vmx->host_state.gs_sel);
  360. #ifdef CONFIG_X86_64
  361. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  362. #endif
  363. local_irq_restore(flags);
  364. }
  365. reload_tss();
  366. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  367. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  368. if (msr_efer_need_save_restore(vmx))
  369. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  370. }
  371. /*
  372. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  373. * vcpu mutex is already taken.
  374. */
  375. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  376. {
  377. struct vcpu_vmx *vmx = to_vmx(vcpu);
  378. u64 phys_addr = __pa(vmx->vmcs);
  379. u64 tsc_this, delta;
  380. if (vcpu->cpu != cpu) {
  381. vcpu_clear(vmx);
  382. kvm_migrate_apic_timer(vcpu);
  383. }
  384. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  385. u8 error;
  386. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  387. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  388. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  389. : "cc");
  390. if (error)
  391. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  392. vmx->vmcs, phys_addr);
  393. }
  394. if (vcpu->cpu != cpu) {
  395. struct descriptor_table dt;
  396. unsigned long sysenter_esp;
  397. vcpu->cpu = cpu;
  398. /*
  399. * Linux uses per-cpu TSS and GDT, so set these when switching
  400. * processors.
  401. */
  402. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  403. get_gdt(&dt);
  404. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  405. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  406. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  407. /*
  408. * Make sure the time stamp counter is monotonous.
  409. */
  410. rdtscll(tsc_this);
  411. delta = vcpu->host_tsc - tsc_this;
  412. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  413. }
  414. }
  415. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  416. {
  417. vmx_load_host_state(to_vmx(vcpu));
  418. kvm_put_guest_fpu(vcpu);
  419. }
  420. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  421. {
  422. if (vcpu->fpu_active)
  423. return;
  424. vcpu->fpu_active = 1;
  425. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  426. if (vcpu->cr0 & X86_CR0_TS)
  427. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  428. update_exception_bitmap(vcpu);
  429. }
  430. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  431. {
  432. if (!vcpu->fpu_active)
  433. return;
  434. vcpu->fpu_active = 0;
  435. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  436. update_exception_bitmap(vcpu);
  437. }
  438. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  439. {
  440. vcpu_clear(to_vmx(vcpu));
  441. }
  442. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  443. {
  444. return vmcs_readl(GUEST_RFLAGS);
  445. }
  446. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  447. {
  448. vmcs_writel(GUEST_RFLAGS, rflags);
  449. }
  450. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  451. {
  452. unsigned long rip;
  453. u32 interruptibility;
  454. rip = vmcs_readl(GUEST_RIP);
  455. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  456. vmcs_writel(GUEST_RIP, rip);
  457. /*
  458. * We emulated an instruction, so temporary interrupt blocking
  459. * should be removed, if set.
  460. */
  461. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  462. if (interruptibility & 3)
  463. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  464. interruptibility & ~3);
  465. vcpu->interrupt_window_open = 1;
  466. }
  467. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  468. {
  469. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  470. vmcs_readl(GUEST_RIP));
  471. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  472. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  473. GP_VECTOR |
  474. INTR_TYPE_EXCEPTION |
  475. INTR_INFO_DELIEVER_CODE_MASK |
  476. INTR_INFO_VALID_MASK);
  477. }
  478. /*
  479. * Swap MSR entry in host/guest MSR entry array.
  480. */
  481. #ifdef CONFIG_X86_64
  482. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  483. {
  484. struct kvm_msr_entry tmp;
  485. tmp = vmx->guest_msrs[to];
  486. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  487. vmx->guest_msrs[from] = tmp;
  488. tmp = vmx->host_msrs[to];
  489. vmx->host_msrs[to] = vmx->host_msrs[from];
  490. vmx->host_msrs[from] = tmp;
  491. }
  492. #endif
  493. /*
  494. * Set up the vmcs to automatically save and restore system
  495. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  496. * mode, as fiddling with msrs is very expensive.
  497. */
  498. static void setup_msrs(struct vcpu_vmx *vmx)
  499. {
  500. int save_nmsrs;
  501. save_nmsrs = 0;
  502. #ifdef CONFIG_X86_64
  503. if (is_long_mode(&vmx->vcpu)) {
  504. int index;
  505. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  506. if (index >= 0)
  507. move_msr_up(vmx, index, save_nmsrs++);
  508. index = __find_msr_index(vmx, MSR_LSTAR);
  509. if (index >= 0)
  510. move_msr_up(vmx, index, save_nmsrs++);
  511. index = __find_msr_index(vmx, MSR_CSTAR);
  512. if (index >= 0)
  513. move_msr_up(vmx, index, save_nmsrs++);
  514. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  515. if (index >= 0)
  516. move_msr_up(vmx, index, save_nmsrs++);
  517. /*
  518. * MSR_K6_STAR is only needed on long mode guests, and only
  519. * if efer.sce is enabled.
  520. */
  521. index = __find_msr_index(vmx, MSR_K6_STAR);
  522. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  523. move_msr_up(vmx, index, save_nmsrs++);
  524. }
  525. #endif
  526. vmx->save_nmsrs = save_nmsrs;
  527. #ifdef CONFIG_X86_64
  528. vmx->msr_offset_kernel_gs_base =
  529. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  530. #endif
  531. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  532. }
  533. /*
  534. * reads and returns guest's timestamp counter "register"
  535. * guest_tsc = host_tsc + tsc_offset -- 21.3
  536. */
  537. static u64 guest_read_tsc(void)
  538. {
  539. u64 host_tsc, tsc_offset;
  540. rdtscll(host_tsc);
  541. tsc_offset = vmcs_read64(TSC_OFFSET);
  542. return host_tsc + tsc_offset;
  543. }
  544. /*
  545. * writes 'guest_tsc' into guest's timestamp counter "register"
  546. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  547. */
  548. static void guest_write_tsc(u64 guest_tsc)
  549. {
  550. u64 host_tsc;
  551. rdtscll(host_tsc);
  552. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  553. }
  554. /*
  555. * Reads an msr value (of 'msr_index') into 'pdata'.
  556. * Returns 0 on success, non-0 otherwise.
  557. * Assumes vcpu_load() was already called.
  558. */
  559. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  560. {
  561. u64 data;
  562. struct kvm_msr_entry *msr;
  563. if (!pdata) {
  564. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  565. return -EINVAL;
  566. }
  567. switch (msr_index) {
  568. #ifdef CONFIG_X86_64
  569. case MSR_FS_BASE:
  570. data = vmcs_readl(GUEST_FS_BASE);
  571. break;
  572. case MSR_GS_BASE:
  573. data = vmcs_readl(GUEST_GS_BASE);
  574. break;
  575. case MSR_EFER:
  576. return kvm_get_msr_common(vcpu, msr_index, pdata);
  577. #endif
  578. case MSR_IA32_TIME_STAMP_COUNTER:
  579. data = guest_read_tsc();
  580. break;
  581. case MSR_IA32_SYSENTER_CS:
  582. data = vmcs_read32(GUEST_SYSENTER_CS);
  583. break;
  584. case MSR_IA32_SYSENTER_EIP:
  585. data = vmcs_readl(GUEST_SYSENTER_EIP);
  586. break;
  587. case MSR_IA32_SYSENTER_ESP:
  588. data = vmcs_readl(GUEST_SYSENTER_ESP);
  589. break;
  590. default:
  591. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  592. if (msr) {
  593. data = msr->data;
  594. break;
  595. }
  596. return kvm_get_msr_common(vcpu, msr_index, pdata);
  597. }
  598. *pdata = data;
  599. return 0;
  600. }
  601. /*
  602. * Writes msr value into into the appropriate "register".
  603. * Returns 0 on success, non-0 otherwise.
  604. * Assumes vcpu_load() was already called.
  605. */
  606. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  607. {
  608. struct vcpu_vmx *vmx = to_vmx(vcpu);
  609. struct kvm_msr_entry *msr;
  610. int ret = 0;
  611. switch (msr_index) {
  612. #ifdef CONFIG_X86_64
  613. case MSR_EFER:
  614. ret = kvm_set_msr_common(vcpu, msr_index, data);
  615. if (vmx->host_state.loaded)
  616. load_transition_efer(vmx);
  617. break;
  618. case MSR_FS_BASE:
  619. vmcs_writel(GUEST_FS_BASE, data);
  620. break;
  621. case MSR_GS_BASE:
  622. vmcs_writel(GUEST_GS_BASE, data);
  623. break;
  624. #endif
  625. case MSR_IA32_SYSENTER_CS:
  626. vmcs_write32(GUEST_SYSENTER_CS, data);
  627. break;
  628. case MSR_IA32_SYSENTER_EIP:
  629. vmcs_writel(GUEST_SYSENTER_EIP, data);
  630. break;
  631. case MSR_IA32_SYSENTER_ESP:
  632. vmcs_writel(GUEST_SYSENTER_ESP, data);
  633. break;
  634. case MSR_IA32_TIME_STAMP_COUNTER:
  635. guest_write_tsc(data);
  636. break;
  637. default:
  638. msr = find_msr_entry(vmx, msr_index);
  639. if (msr) {
  640. msr->data = data;
  641. if (vmx->host_state.loaded)
  642. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  643. break;
  644. }
  645. ret = kvm_set_msr_common(vcpu, msr_index, data);
  646. }
  647. return ret;
  648. }
  649. /*
  650. * Sync the rsp and rip registers into the vcpu structure. This allows
  651. * registers to be accessed by indexing vcpu->regs.
  652. */
  653. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  654. {
  655. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  656. vcpu->rip = vmcs_readl(GUEST_RIP);
  657. }
  658. /*
  659. * Syncs rsp and rip back into the vmcs. Should be called after possible
  660. * modification.
  661. */
  662. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  663. {
  664. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  665. vmcs_writel(GUEST_RIP, vcpu->rip);
  666. }
  667. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  668. {
  669. unsigned long dr7 = 0x400;
  670. int old_singlestep;
  671. old_singlestep = vcpu->guest_debug.singlestep;
  672. vcpu->guest_debug.enabled = dbg->enabled;
  673. if (vcpu->guest_debug.enabled) {
  674. int i;
  675. dr7 |= 0x200; /* exact */
  676. for (i = 0; i < 4; ++i) {
  677. if (!dbg->breakpoints[i].enabled)
  678. continue;
  679. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  680. dr7 |= 2 << (i*2); /* global enable */
  681. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  682. }
  683. vcpu->guest_debug.singlestep = dbg->singlestep;
  684. } else
  685. vcpu->guest_debug.singlestep = 0;
  686. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  687. unsigned long flags;
  688. flags = vmcs_readl(GUEST_RFLAGS);
  689. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  690. vmcs_writel(GUEST_RFLAGS, flags);
  691. }
  692. update_exception_bitmap(vcpu);
  693. vmcs_writel(GUEST_DR7, dr7);
  694. return 0;
  695. }
  696. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  697. {
  698. u32 idtv_info_field;
  699. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  700. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  701. if (is_external_interrupt(idtv_info_field))
  702. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  703. else
  704. printk("pending exception: not handled yet\n");
  705. }
  706. return -1;
  707. }
  708. static __init int cpu_has_kvm_support(void)
  709. {
  710. unsigned long ecx = cpuid_ecx(1);
  711. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  712. }
  713. static __init int vmx_disabled_by_bios(void)
  714. {
  715. u64 msr;
  716. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  717. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  718. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  719. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  720. /* locked but not enabled */
  721. }
  722. static void hardware_enable(void *garbage)
  723. {
  724. int cpu = raw_smp_processor_id();
  725. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  726. u64 old;
  727. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  728. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  729. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  730. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  731. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  732. /* enable and lock */
  733. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  734. MSR_IA32_FEATURE_CONTROL_LOCKED |
  735. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  736. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  737. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  738. : "memory", "cc");
  739. }
  740. static void hardware_disable(void *garbage)
  741. {
  742. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  743. }
  744. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  745. u32 msr, u32* result)
  746. {
  747. u32 vmx_msr_low, vmx_msr_high;
  748. u32 ctl = ctl_min | ctl_opt;
  749. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  750. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  751. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  752. /* Ensure minimum (required) set of control bits are supported. */
  753. if (ctl_min & ~ctl)
  754. return -EIO;
  755. *result = ctl;
  756. return 0;
  757. }
  758. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  759. {
  760. u32 vmx_msr_low, vmx_msr_high;
  761. u32 min, opt;
  762. u32 _pin_based_exec_control = 0;
  763. u32 _cpu_based_exec_control = 0;
  764. u32 _vmexit_control = 0;
  765. u32 _vmentry_control = 0;
  766. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  767. opt = 0;
  768. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  769. &_pin_based_exec_control) < 0)
  770. return -EIO;
  771. min = CPU_BASED_HLT_EXITING |
  772. #ifdef CONFIG_X86_64
  773. CPU_BASED_CR8_LOAD_EXITING |
  774. CPU_BASED_CR8_STORE_EXITING |
  775. #endif
  776. CPU_BASED_USE_IO_BITMAPS |
  777. CPU_BASED_MOV_DR_EXITING |
  778. CPU_BASED_USE_TSC_OFFSETING;
  779. #ifdef CONFIG_X86_64
  780. opt = CPU_BASED_TPR_SHADOW;
  781. #else
  782. opt = 0;
  783. #endif
  784. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  785. &_cpu_based_exec_control) < 0)
  786. return -EIO;
  787. #ifdef CONFIG_X86_64
  788. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  789. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  790. ~CPU_BASED_CR8_STORE_EXITING;
  791. #endif
  792. min = 0;
  793. #ifdef CONFIG_X86_64
  794. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  795. #endif
  796. opt = 0;
  797. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  798. &_vmexit_control) < 0)
  799. return -EIO;
  800. min = opt = 0;
  801. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  802. &_vmentry_control) < 0)
  803. return -EIO;
  804. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  805. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  806. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  807. return -EIO;
  808. #ifdef CONFIG_X86_64
  809. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  810. if (vmx_msr_high & (1u<<16))
  811. return -EIO;
  812. #endif
  813. /* Require Write-Back (WB) memory type for VMCS accesses. */
  814. if (((vmx_msr_high >> 18) & 15) != 6)
  815. return -EIO;
  816. vmcs_conf->size = vmx_msr_high & 0x1fff;
  817. vmcs_conf->order = get_order(vmcs_config.size);
  818. vmcs_conf->revision_id = vmx_msr_low;
  819. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  820. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  821. vmcs_conf->vmexit_ctrl = _vmexit_control;
  822. vmcs_conf->vmentry_ctrl = _vmentry_control;
  823. return 0;
  824. }
  825. static struct vmcs *alloc_vmcs_cpu(int cpu)
  826. {
  827. int node = cpu_to_node(cpu);
  828. struct page *pages;
  829. struct vmcs *vmcs;
  830. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  831. if (!pages)
  832. return NULL;
  833. vmcs = page_address(pages);
  834. memset(vmcs, 0, vmcs_config.size);
  835. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  836. return vmcs;
  837. }
  838. static struct vmcs *alloc_vmcs(void)
  839. {
  840. return alloc_vmcs_cpu(raw_smp_processor_id());
  841. }
  842. static void free_vmcs(struct vmcs *vmcs)
  843. {
  844. free_pages((unsigned long)vmcs, vmcs_config.order);
  845. }
  846. static void free_kvm_area(void)
  847. {
  848. int cpu;
  849. for_each_online_cpu(cpu)
  850. free_vmcs(per_cpu(vmxarea, cpu));
  851. }
  852. static __init int alloc_kvm_area(void)
  853. {
  854. int cpu;
  855. for_each_online_cpu(cpu) {
  856. struct vmcs *vmcs;
  857. vmcs = alloc_vmcs_cpu(cpu);
  858. if (!vmcs) {
  859. free_kvm_area();
  860. return -ENOMEM;
  861. }
  862. per_cpu(vmxarea, cpu) = vmcs;
  863. }
  864. return 0;
  865. }
  866. static __init int hardware_setup(void)
  867. {
  868. if (setup_vmcs_config(&vmcs_config) < 0)
  869. return -EIO;
  870. return alloc_kvm_area();
  871. }
  872. static __exit void hardware_unsetup(void)
  873. {
  874. free_kvm_area();
  875. }
  876. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  877. {
  878. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  879. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  880. vmcs_write16(sf->selector, save->selector);
  881. vmcs_writel(sf->base, save->base);
  882. vmcs_write32(sf->limit, save->limit);
  883. vmcs_write32(sf->ar_bytes, save->ar);
  884. } else {
  885. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  886. << AR_DPL_SHIFT;
  887. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  888. }
  889. }
  890. static void enter_pmode(struct kvm_vcpu *vcpu)
  891. {
  892. unsigned long flags;
  893. vcpu->rmode.active = 0;
  894. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  895. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  896. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  897. flags = vmcs_readl(GUEST_RFLAGS);
  898. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  899. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  900. vmcs_writel(GUEST_RFLAGS, flags);
  901. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  902. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  903. update_exception_bitmap(vcpu);
  904. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  905. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  906. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  907. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  908. vmcs_write16(GUEST_SS_SELECTOR, 0);
  909. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  910. vmcs_write16(GUEST_CS_SELECTOR,
  911. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  912. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  913. }
  914. static gva_t rmode_tss_base(struct kvm* kvm)
  915. {
  916. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  917. return base_gfn << PAGE_SHIFT;
  918. }
  919. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  920. {
  921. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  922. save->selector = vmcs_read16(sf->selector);
  923. save->base = vmcs_readl(sf->base);
  924. save->limit = vmcs_read32(sf->limit);
  925. save->ar = vmcs_read32(sf->ar_bytes);
  926. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  927. vmcs_write32(sf->limit, 0xffff);
  928. vmcs_write32(sf->ar_bytes, 0xf3);
  929. }
  930. static void enter_rmode(struct kvm_vcpu *vcpu)
  931. {
  932. unsigned long flags;
  933. vcpu->rmode.active = 1;
  934. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  935. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  936. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  937. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  938. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  939. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  940. flags = vmcs_readl(GUEST_RFLAGS);
  941. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  942. flags |= IOPL_MASK | X86_EFLAGS_VM;
  943. vmcs_writel(GUEST_RFLAGS, flags);
  944. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  945. update_exception_bitmap(vcpu);
  946. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  947. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  948. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  949. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  950. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  951. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  952. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  953. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  954. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  955. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  956. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  957. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  958. init_rmode_tss(vcpu->kvm);
  959. }
  960. #ifdef CONFIG_X86_64
  961. static void enter_lmode(struct kvm_vcpu *vcpu)
  962. {
  963. u32 guest_tr_ar;
  964. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  965. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  966. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  967. __FUNCTION__);
  968. vmcs_write32(GUEST_TR_AR_BYTES,
  969. (guest_tr_ar & ~AR_TYPE_MASK)
  970. | AR_TYPE_BUSY_64_TSS);
  971. }
  972. vcpu->shadow_efer |= EFER_LMA;
  973. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  974. vmcs_write32(VM_ENTRY_CONTROLS,
  975. vmcs_read32(VM_ENTRY_CONTROLS)
  976. | VM_ENTRY_IA32E_MODE);
  977. }
  978. static void exit_lmode(struct kvm_vcpu *vcpu)
  979. {
  980. vcpu->shadow_efer &= ~EFER_LMA;
  981. vmcs_write32(VM_ENTRY_CONTROLS,
  982. vmcs_read32(VM_ENTRY_CONTROLS)
  983. & ~VM_ENTRY_IA32E_MODE);
  984. }
  985. #endif
  986. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  987. {
  988. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  989. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  990. }
  991. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  992. {
  993. vmx_fpu_deactivate(vcpu);
  994. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  995. enter_pmode(vcpu);
  996. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  997. enter_rmode(vcpu);
  998. #ifdef CONFIG_X86_64
  999. if (vcpu->shadow_efer & EFER_LME) {
  1000. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1001. enter_lmode(vcpu);
  1002. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1003. exit_lmode(vcpu);
  1004. }
  1005. #endif
  1006. vmcs_writel(CR0_READ_SHADOW, cr0);
  1007. vmcs_writel(GUEST_CR0,
  1008. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1009. vcpu->cr0 = cr0;
  1010. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1011. vmx_fpu_activate(vcpu);
  1012. }
  1013. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1014. {
  1015. vmcs_writel(GUEST_CR3, cr3);
  1016. if (vcpu->cr0 & X86_CR0_PE)
  1017. vmx_fpu_deactivate(vcpu);
  1018. }
  1019. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1020. {
  1021. vmcs_writel(CR4_READ_SHADOW, cr4);
  1022. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  1023. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1024. vcpu->cr4 = cr4;
  1025. }
  1026. #ifdef CONFIG_X86_64
  1027. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1028. {
  1029. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1030. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1031. vcpu->shadow_efer = efer;
  1032. if (efer & EFER_LMA) {
  1033. vmcs_write32(VM_ENTRY_CONTROLS,
  1034. vmcs_read32(VM_ENTRY_CONTROLS) |
  1035. VM_ENTRY_IA32E_MODE);
  1036. msr->data = efer;
  1037. } else {
  1038. vmcs_write32(VM_ENTRY_CONTROLS,
  1039. vmcs_read32(VM_ENTRY_CONTROLS) &
  1040. ~VM_ENTRY_IA32E_MODE);
  1041. msr->data = efer & ~EFER_LME;
  1042. }
  1043. setup_msrs(vmx);
  1044. }
  1045. #endif
  1046. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1047. {
  1048. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1049. return vmcs_readl(sf->base);
  1050. }
  1051. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1052. struct kvm_segment *var, int seg)
  1053. {
  1054. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1055. u32 ar;
  1056. var->base = vmcs_readl(sf->base);
  1057. var->limit = vmcs_read32(sf->limit);
  1058. var->selector = vmcs_read16(sf->selector);
  1059. ar = vmcs_read32(sf->ar_bytes);
  1060. if (ar & AR_UNUSABLE_MASK)
  1061. ar = 0;
  1062. var->type = ar & 15;
  1063. var->s = (ar >> 4) & 1;
  1064. var->dpl = (ar >> 5) & 3;
  1065. var->present = (ar >> 7) & 1;
  1066. var->avl = (ar >> 12) & 1;
  1067. var->l = (ar >> 13) & 1;
  1068. var->db = (ar >> 14) & 1;
  1069. var->g = (ar >> 15) & 1;
  1070. var->unusable = (ar >> 16) & 1;
  1071. }
  1072. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1073. {
  1074. u32 ar;
  1075. if (var->unusable)
  1076. ar = 1 << 16;
  1077. else {
  1078. ar = var->type & 15;
  1079. ar |= (var->s & 1) << 4;
  1080. ar |= (var->dpl & 3) << 5;
  1081. ar |= (var->present & 1) << 7;
  1082. ar |= (var->avl & 1) << 12;
  1083. ar |= (var->l & 1) << 13;
  1084. ar |= (var->db & 1) << 14;
  1085. ar |= (var->g & 1) << 15;
  1086. }
  1087. if (ar == 0) /* a 0 value means unusable */
  1088. ar = AR_UNUSABLE_MASK;
  1089. return ar;
  1090. }
  1091. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1092. struct kvm_segment *var, int seg)
  1093. {
  1094. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1095. u32 ar;
  1096. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1097. vcpu->rmode.tr.selector = var->selector;
  1098. vcpu->rmode.tr.base = var->base;
  1099. vcpu->rmode.tr.limit = var->limit;
  1100. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1101. return;
  1102. }
  1103. vmcs_writel(sf->base, var->base);
  1104. vmcs_write32(sf->limit, var->limit);
  1105. vmcs_write16(sf->selector, var->selector);
  1106. if (vcpu->rmode.active && var->s) {
  1107. /*
  1108. * Hack real-mode segments into vm86 compatibility.
  1109. */
  1110. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1111. vmcs_writel(sf->base, 0xf0000);
  1112. ar = 0xf3;
  1113. } else
  1114. ar = vmx_segment_access_rights(var);
  1115. vmcs_write32(sf->ar_bytes, ar);
  1116. }
  1117. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1118. {
  1119. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1120. *db = (ar >> 14) & 1;
  1121. *l = (ar >> 13) & 1;
  1122. }
  1123. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1124. {
  1125. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1126. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1127. }
  1128. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1129. {
  1130. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1131. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1132. }
  1133. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1134. {
  1135. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1136. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1137. }
  1138. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1139. {
  1140. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1141. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1142. }
  1143. static int init_rmode_tss(struct kvm* kvm)
  1144. {
  1145. struct page *p1, *p2, *p3;
  1146. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1147. char *page;
  1148. p1 = gfn_to_page(kvm, fn++);
  1149. p2 = gfn_to_page(kvm, fn++);
  1150. p3 = gfn_to_page(kvm, fn);
  1151. if (!p1 || !p2 || !p3) {
  1152. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1153. return 0;
  1154. }
  1155. page = kmap_atomic(p1, KM_USER0);
  1156. clear_page(page);
  1157. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1158. kunmap_atomic(page, KM_USER0);
  1159. page = kmap_atomic(p2, KM_USER0);
  1160. clear_page(page);
  1161. kunmap_atomic(page, KM_USER0);
  1162. page = kmap_atomic(p3, KM_USER0);
  1163. clear_page(page);
  1164. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1165. kunmap_atomic(page, KM_USER0);
  1166. return 1;
  1167. }
  1168. static void seg_setup(int seg)
  1169. {
  1170. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1171. vmcs_write16(sf->selector, 0);
  1172. vmcs_writel(sf->base, 0);
  1173. vmcs_write32(sf->limit, 0xffff);
  1174. vmcs_write32(sf->ar_bytes, 0x93);
  1175. }
  1176. /*
  1177. * Sets up the vmcs for emulated real mode.
  1178. */
  1179. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1180. {
  1181. u32 host_sysenter_cs;
  1182. u32 junk;
  1183. unsigned long a;
  1184. struct descriptor_table dt;
  1185. int i;
  1186. int ret = 0;
  1187. unsigned long kvm_vmx_return;
  1188. u64 msr;
  1189. u32 exec_control;
  1190. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1191. ret = -ENOMEM;
  1192. goto out;
  1193. }
  1194. vmx->vcpu.rmode.active = 0;
  1195. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1196. set_cr8(&vmx->vcpu, 0);
  1197. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1198. if (vmx->vcpu.vcpu_id == 0)
  1199. msr |= MSR_IA32_APICBASE_BSP;
  1200. kvm_set_apic_base(&vmx->vcpu, msr);
  1201. fx_init(&vmx->vcpu);
  1202. /*
  1203. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1204. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1205. */
  1206. if (vmx->vcpu.vcpu_id == 0) {
  1207. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1208. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1209. } else {
  1210. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
  1211. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
  1212. }
  1213. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1214. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1215. seg_setup(VCPU_SREG_DS);
  1216. seg_setup(VCPU_SREG_ES);
  1217. seg_setup(VCPU_SREG_FS);
  1218. seg_setup(VCPU_SREG_GS);
  1219. seg_setup(VCPU_SREG_SS);
  1220. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1221. vmcs_writel(GUEST_TR_BASE, 0);
  1222. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1223. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1224. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1225. vmcs_writel(GUEST_LDTR_BASE, 0);
  1226. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1227. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1228. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1229. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1230. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1231. vmcs_writel(GUEST_RFLAGS, 0x02);
  1232. if (vmx->vcpu.vcpu_id == 0)
  1233. vmcs_writel(GUEST_RIP, 0xfff0);
  1234. else
  1235. vmcs_writel(GUEST_RIP, 0);
  1236. vmcs_writel(GUEST_RSP, 0);
  1237. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1238. vmcs_writel(GUEST_DR7, 0x400);
  1239. vmcs_writel(GUEST_GDTR_BASE, 0);
  1240. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1241. vmcs_writel(GUEST_IDTR_BASE, 0);
  1242. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1243. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1244. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1245. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1246. /* I/O */
  1247. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1248. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1249. guest_write_tsc(0);
  1250. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1251. /* Special registers */
  1252. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1253. /* Control */
  1254. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1255. vmcs_config.pin_based_exec_ctrl);
  1256. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1257. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1258. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1259. #ifdef CONFIG_X86_64
  1260. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1261. CPU_BASED_CR8_LOAD_EXITING;
  1262. #endif
  1263. }
  1264. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1265. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1266. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1267. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1268. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1269. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1270. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1271. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1272. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1273. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1274. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1275. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1276. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1277. #ifdef CONFIG_X86_64
  1278. rdmsrl(MSR_FS_BASE, a);
  1279. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1280. rdmsrl(MSR_GS_BASE, a);
  1281. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1282. #else
  1283. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1284. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1285. #endif
  1286. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1287. get_idt(&dt);
  1288. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1289. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1290. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1291. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1292. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1293. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1294. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1295. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1296. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1297. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1298. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1299. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1300. for (i = 0; i < NR_VMX_MSR; ++i) {
  1301. u32 index = vmx_msr_index[i];
  1302. u32 data_low, data_high;
  1303. u64 data;
  1304. int j = vmx->nmsrs;
  1305. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1306. continue;
  1307. if (wrmsr_safe(index, data_low, data_high) < 0)
  1308. continue;
  1309. data = data_low | ((u64)data_high << 32);
  1310. vmx->host_msrs[j].index = index;
  1311. vmx->host_msrs[j].reserved = 0;
  1312. vmx->host_msrs[j].data = data;
  1313. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1314. ++vmx->nmsrs;
  1315. }
  1316. setup_msrs(vmx);
  1317. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1318. /* 22.2.1, 20.8.1 */
  1319. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1320. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1321. #ifdef CONFIG_X86_64
  1322. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1323. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1324. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1325. page_to_phys(vmx->vcpu.apic->regs_page));
  1326. vmcs_write32(TPR_THRESHOLD, 0);
  1327. #endif
  1328. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1329. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1330. vmx->vcpu.cr0 = 0x60000010;
  1331. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
  1332. vmx_set_cr4(&vmx->vcpu, 0);
  1333. #ifdef CONFIG_X86_64
  1334. vmx_set_efer(&vmx->vcpu, 0);
  1335. #endif
  1336. vmx_fpu_activate(&vmx->vcpu);
  1337. update_exception_bitmap(&vmx->vcpu);
  1338. return 0;
  1339. out:
  1340. return ret;
  1341. }
  1342. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1343. {
  1344. u16 ent[2];
  1345. u16 cs;
  1346. u16 ip;
  1347. unsigned long flags;
  1348. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1349. u16 sp = vmcs_readl(GUEST_RSP);
  1350. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1351. if (sp > ss_limit || sp < 6 ) {
  1352. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1353. __FUNCTION__,
  1354. vmcs_readl(GUEST_RSP),
  1355. vmcs_readl(GUEST_SS_BASE),
  1356. vmcs_read32(GUEST_SS_LIMIT));
  1357. return;
  1358. }
  1359. if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
  1360. X86EMUL_CONTINUE) {
  1361. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1362. return;
  1363. }
  1364. flags = vmcs_readl(GUEST_RFLAGS);
  1365. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1366. ip = vmcs_readl(GUEST_RIP);
  1367. if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
  1368. emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
  1369. emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
  1370. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1371. return;
  1372. }
  1373. vmcs_writel(GUEST_RFLAGS, flags &
  1374. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1375. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1376. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1377. vmcs_writel(GUEST_RIP, ent[0]);
  1378. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1379. }
  1380. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1381. {
  1382. if (vcpu->rmode.active) {
  1383. inject_rmode_irq(vcpu, irq);
  1384. return;
  1385. }
  1386. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1387. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1388. }
  1389. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1390. {
  1391. int word_index = __ffs(vcpu->irq_summary);
  1392. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1393. int irq = word_index * BITS_PER_LONG + bit_index;
  1394. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1395. if (!vcpu->irq_pending[word_index])
  1396. clear_bit(word_index, &vcpu->irq_summary);
  1397. vmx_inject_irq(vcpu, irq);
  1398. }
  1399. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1400. struct kvm_run *kvm_run)
  1401. {
  1402. u32 cpu_based_vm_exec_control;
  1403. vcpu->interrupt_window_open =
  1404. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1405. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1406. if (vcpu->interrupt_window_open &&
  1407. vcpu->irq_summary &&
  1408. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1409. /*
  1410. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1411. */
  1412. kvm_do_inject_irq(vcpu);
  1413. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1414. if (!vcpu->interrupt_window_open &&
  1415. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1416. /*
  1417. * Interrupts blocked. Wait for unblock.
  1418. */
  1419. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1420. else
  1421. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1422. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1423. }
  1424. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1425. {
  1426. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1427. set_debugreg(dbg->bp[0], 0);
  1428. set_debugreg(dbg->bp[1], 1);
  1429. set_debugreg(dbg->bp[2], 2);
  1430. set_debugreg(dbg->bp[3], 3);
  1431. if (dbg->singlestep) {
  1432. unsigned long flags;
  1433. flags = vmcs_readl(GUEST_RFLAGS);
  1434. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1435. vmcs_writel(GUEST_RFLAGS, flags);
  1436. }
  1437. }
  1438. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1439. int vec, u32 err_code)
  1440. {
  1441. if (!vcpu->rmode.active)
  1442. return 0;
  1443. /*
  1444. * Instruction with address size override prefix opcode 0x67
  1445. * Cause the #SS fault with 0 error code in VM86 mode.
  1446. */
  1447. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1448. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1449. return 1;
  1450. return 0;
  1451. }
  1452. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1453. {
  1454. u32 intr_info, error_code;
  1455. unsigned long cr2, rip;
  1456. u32 vect_info;
  1457. enum emulation_result er;
  1458. int r;
  1459. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1460. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1461. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1462. !is_page_fault(intr_info)) {
  1463. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1464. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1465. }
  1466. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1467. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1468. set_bit(irq, vcpu->irq_pending);
  1469. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1470. }
  1471. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1472. asm ("int $2");
  1473. return 1;
  1474. }
  1475. if (is_no_device(intr_info)) {
  1476. vmx_fpu_activate(vcpu);
  1477. return 1;
  1478. }
  1479. error_code = 0;
  1480. rip = vmcs_readl(GUEST_RIP);
  1481. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1482. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1483. if (is_page_fault(intr_info)) {
  1484. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1485. mutex_lock(&vcpu->kvm->lock);
  1486. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1487. if (r < 0) {
  1488. mutex_unlock(&vcpu->kvm->lock);
  1489. return r;
  1490. }
  1491. if (!r) {
  1492. mutex_unlock(&vcpu->kvm->lock);
  1493. return 1;
  1494. }
  1495. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1496. mutex_unlock(&vcpu->kvm->lock);
  1497. switch (er) {
  1498. case EMULATE_DONE:
  1499. return 1;
  1500. case EMULATE_DO_MMIO:
  1501. ++vcpu->stat.mmio_exits;
  1502. return 0;
  1503. case EMULATE_FAIL:
  1504. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1505. break;
  1506. default:
  1507. BUG();
  1508. }
  1509. }
  1510. if (vcpu->rmode.active &&
  1511. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1512. error_code)) {
  1513. if (vcpu->halt_request) {
  1514. vcpu->halt_request = 0;
  1515. return kvm_emulate_halt(vcpu);
  1516. }
  1517. return 1;
  1518. }
  1519. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1520. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1521. return 0;
  1522. }
  1523. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1524. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1525. kvm_run->ex.error_code = error_code;
  1526. return 0;
  1527. }
  1528. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1529. struct kvm_run *kvm_run)
  1530. {
  1531. ++vcpu->stat.irq_exits;
  1532. return 1;
  1533. }
  1534. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1535. {
  1536. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1537. return 0;
  1538. }
  1539. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1540. {
  1541. u64 exit_qualification;
  1542. int size, down, in, string, rep;
  1543. unsigned port;
  1544. ++vcpu->stat.io_exits;
  1545. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1546. string = (exit_qualification & 16) != 0;
  1547. if (string) {
  1548. if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
  1549. return 0;
  1550. return 1;
  1551. }
  1552. size = (exit_qualification & 7) + 1;
  1553. in = (exit_qualification & 8) != 0;
  1554. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1555. rep = (exit_qualification & 32) != 0;
  1556. port = exit_qualification >> 16;
  1557. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1558. }
  1559. static void
  1560. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1561. {
  1562. /*
  1563. * Patch in the VMCALL instruction:
  1564. */
  1565. hypercall[0] = 0x0f;
  1566. hypercall[1] = 0x01;
  1567. hypercall[2] = 0xc1;
  1568. hypercall[3] = 0xc3;
  1569. }
  1570. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1571. {
  1572. u64 exit_qualification;
  1573. int cr;
  1574. int reg;
  1575. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1576. cr = exit_qualification & 15;
  1577. reg = (exit_qualification >> 8) & 15;
  1578. switch ((exit_qualification >> 4) & 3) {
  1579. case 0: /* mov to cr */
  1580. switch (cr) {
  1581. case 0:
  1582. vcpu_load_rsp_rip(vcpu);
  1583. set_cr0(vcpu, vcpu->regs[reg]);
  1584. skip_emulated_instruction(vcpu);
  1585. return 1;
  1586. case 3:
  1587. vcpu_load_rsp_rip(vcpu);
  1588. set_cr3(vcpu, vcpu->regs[reg]);
  1589. skip_emulated_instruction(vcpu);
  1590. return 1;
  1591. case 4:
  1592. vcpu_load_rsp_rip(vcpu);
  1593. set_cr4(vcpu, vcpu->regs[reg]);
  1594. skip_emulated_instruction(vcpu);
  1595. return 1;
  1596. case 8:
  1597. vcpu_load_rsp_rip(vcpu);
  1598. set_cr8(vcpu, vcpu->regs[reg]);
  1599. skip_emulated_instruction(vcpu);
  1600. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1601. return 0;
  1602. };
  1603. break;
  1604. case 2: /* clts */
  1605. vcpu_load_rsp_rip(vcpu);
  1606. vmx_fpu_deactivate(vcpu);
  1607. vcpu->cr0 &= ~X86_CR0_TS;
  1608. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1609. vmx_fpu_activate(vcpu);
  1610. skip_emulated_instruction(vcpu);
  1611. return 1;
  1612. case 1: /*mov from cr*/
  1613. switch (cr) {
  1614. case 3:
  1615. vcpu_load_rsp_rip(vcpu);
  1616. vcpu->regs[reg] = vcpu->cr3;
  1617. vcpu_put_rsp_rip(vcpu);
  1618. skip_emulated_instruction(vcpu);
  1619. return 1;
  1620. case 8:
  1621. vcpu_load_rsp_rip(vcpu);
  1622. vcpu->regs[reg] = get_cr8(vcpu);
  1623. vcpu_put_rsp_rip(vcpu);
  1624. skip_emulated_instruction(vcpu);
  1625. return 1;
  1626. }
  1627. break;
  1628. case 3: /* lmsw */
  1629. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1630. skip_emulated_instruction(vcpu);
  1631. return 1;
  1632. default:
  1633. break;
  1634. }
  1635. kvm_run->exit_reason = 0;
  1636. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1637. (int)(exit_qualification >> 4) & 3, cr);
  1638. return 0;
  1639. }
  1640. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1641. {
  1642. u64 exit_qualification;
  1643. unsigned long val;
  1644. int dr, reg;
  1645. /*
  1646. * FIXME: this code assumes the host is debugging the guest.
  1647. * need to deal with guest debugging itself too.
  1648. */
  1649. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1650. dr = exit_qualification & 7;
  1651. reg = (exit_qualification >> 8) & 15;
  1652. vcpu_load_rsp_rip(vcpu);
  1653. if (exit_qualification & 16) {
  1654. /* mov from dr */
  1655. switch (dr) {
  1656. case 6:
  1657. val = 0xffff0ff0;
  1658. break;
  1659. case 7:
  1660. val = 0x400;
  1661. break;
  1662. default:
  1663. val = 0;
  1664. }
  1665. vcpu->regs[reg] = val;
  1666. } else {
  1667. /* mov to dr */
  1668. }
  1669. vcpu_put_rsp_rip(vcpu);
  1670. skip_emulated_instruction(vcpu);
  1671. return 1;
  1672. }
  1673. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1674. {
  1675. kvm_emulate_cpuid(vcpu);
  1676. return 1;
  1677. }
  1678. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1679. {
  1680. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1681. u64 data;
  1682. if (vmx_get_msr(vcpu, ecx, &data)) {
  1683. vmx_inject_gp(vcpu, 0);
  1684. return 1;
  1685. }
  1686. /* FIXME: handling of bits 32:63 of rax, rdx */
  1687. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1688. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1689. skip_emulated_instruction(vcpu);
  1690. return 1;
  1691. }
  1692. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1693. {
  1694. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1695. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1696. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1697. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1698. vmx_inject_gp(vcpu, 0);
  1699. return 1;
  1700. }
  1701. skip_emulated_instruction(vcpu);
  1702. return 1;
  1703. }
  1704. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1705. struct kvm_run *kvm_run)
  1706. {
  1707. return 1;
  1708. }
  1709. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1710. struct kvm_run *kvm_run)
  1711. {
  1712. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1713. kvm_run->cr8 = get_cr8(vcpu);
  1714. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1715. if (irqchip_in_kernel(vcpu->kvm))
  1716. kvm_run->ready_for_interrupt_injection = 1;
  1717. else
  1718. kvm_run->ready_for_interrupt_injection =
  1719. (vcpu->interrupt_window_open &&
  1720. vcpu->irq_summary == 0);
  1721. }
  1722. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1723. struct kvm_run *kvm_run)
  1724. {
  1725. u32 cpu_based_vm_exec_control;
  1726. /* clear pending irq */
  1727. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1728. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1729. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1730. /*
  1731. * If the user space waits to inject interrupts, exit as soon as
  1732. * possible
  1733. */
  1734. if (kvm_run->request_interrupt_window &&
  1735. !vcpu->irq_summary) {
  1736. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1737. ++vcpu->stat.irq_window_exits;
  1738. return 0;
  1739. }
  1740. return 1;
  1741. }
  1742. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1743. {
  1744. skip_emulated_instruction(vcpu);
  1745. return kvm_emulate_halt(vcpu);
  1746. }
  1747. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1748. {
  1749. skip_emulated_instruction(vcpu);
  1750. return kvm_hypercall(vcpu, kvm_run);
  1751. }
  1752. /*
  1753. * The exit handlers return 1 if the exit was handled fully and guest execution
  1754. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1755. * to be done to userspace and return 0.
  1756. */
  1757. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1758. struct kvm_run *kvm_run) = {
  1759. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1760. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1761. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1762. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1763. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1764. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1765. [EXIT_REASON_CPUID] = handle_cpuid,
  1766. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1767. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1768. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1769. [EXIT_REASON_HLT] = handle_halt,
  1770. [EXIT_REASON_VMCALL] = handle_vmcall,
  1771. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold
  1772. };
  1773. static const int kvm_vmx_max_exit_handlers =
  1774. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1775. /*
  1776. * The guest has exited. See if we can fix it or if we need userspace
  1777. * assistance.
  1778. */
  1779. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1780. {
  1781. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1782. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1783. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1784. if (unlikely(vmx->fail)) {
  1785. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1786. kvm_run->fail_entry.hardware_entry_failure_reason
  1787. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1788. return 0;
  1789. }
  1790. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1791. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1792. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1793. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1794. if (exit_reason < kvm_vmx_max_exit_handlers
  1795. && kvm_vmx_exit_handlers[exit_reason])
  1796. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1797. else {
  1798. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1799. kvm_run->hw.hardware_exit_reason = exit_reason;
  1800. }
  1801. return 0;
  1802. }
  1803. /*
  1804. * Check if userspace requested an interrupt window, and that the
  1805. * interrupt window is open.
  1806. *
  1807. * No need to exit to userspace if we already have an interrupt queued.
  1808. */
  1809. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1810. struct kvm_run *kvm_run)
  1811. {
  1812. return (!vcpu->irq_summary &&
  1813. kvm_run->request_interrupt_window &&
  1814. vcpu->interrupt_window_open &&
  1815. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1816. }
  1817. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1818. {
  1819. }
  1820. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1821. {
  1822. int max_irr, tpr;
  1823. if (!vm_need_tpr_shadow(vcpu->kvm))
  1824. return;
  1825. if (!kvm_lapic_enabled(vcpu) ||
  1826. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1827. vmcs_write32(TPR_THRESHOLD, 0);
  1828. return;
  1829. }
  1830. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1831. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1832. }
  1833. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1834. {
  1835. u32 cpu_based_vm_exec_control;
  1836. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1837. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1838. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1839. }
  1840. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1841. {
  1842. u32 idtv_info_field, intr_info_field;
  1843. int has_ext_irq, interrupt_window_open;
  1844. int vector;
  1845. kvm_inject_pending_timer_irqs(vcpu);
  1846. update_tpr_threshold(vcpu);
  1847. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1848. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1849. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1850. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1851. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1852. /* TODO: fault when IDT_Vectoring */
  1853. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1854. }
  1855. if (has_ext_irq)
  1856. enable_irq_window(vcpu);
  1857. return;
  1858. }
  1859. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1860. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1861. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1862. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1863. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1864. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1865. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1866. if (unlikely(has_ext_irq))
  1867. enable_irq_window(vcpu);
  1868. return;
  1869. }
  1870. if (!has_ext_irq)
  1871. return;
  1872. interrupt_window_open =
  1873. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1874. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1875. if (interrupt_window_open) {
  1876. vector = kvm_cpu_get_interrupt(vcpu);
  1877. vmx_inject_irq(vcpu, vector);
  1878. kvm_timer_intr_post(vcpu, vector);
  1879. } else
  1880. enable_irq_window(vcpu);
  1881. }
  1882. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1883. {
  1884. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1885. int r;
  1886. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1887. printk("vcpu %d received sipi with vector # %x\n",
  1888. vcpu->vcpu_id, vcpu->sipi_vector);
  1889. kvm_lapic_reset(vcpu);
  1890. vmx_vcpu_setup(vmx);
  1891. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1892. }
  1893. preempted:
  1894. if (vcpu->guest_debug.enabled)
  1895. kvm_guest_debug_pre(vcpu);
  1896. again:
  1897. r = kvm_mmu_reload(vcpu);
  1898. if (unlikely(r))
  1899. goto out;
  1900. preempt_disable();
  1901. vmx_save_host_state(vmx);
  1902. kvm_load_guest_fpu(vcpu);
  1903. /*
  1904. * Loading guest fpu may have cleared host cr0.ts
  1905. */
  1906. vmcs_writel(HOST_CR0, read_cr0());
  1907. local_irq_disable();
  1908. if (signal_pending(current)) {
  1909. local_irq_enable();
  1910. preempt_enable();
  1911. r = -EINTR;
  1912. kvm_run->exit_reason = KVM_EXIT_INTR;
  1913. ++vcpu->stat.signal_exits;
  1914. goto out;
  1915. }
  1916. if (irqchip_in_kernel(vcpu->kvm))
  1917. vmx_intr_assist(vcpu);
  1918. else if (!vcpu->mmio_read_completed)
  1919. do_interrupt_requests(vcpu, kvm_run);
  1920. vcpu->guest_mode = 1;
  1921. if (vcpu->requests)
  1922. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1923. vmx_flush_tlb(vcpu);
  1924. asm (
  1925. /* Store host registers */
  1926. #ifdef CONFIG_X86_64
  1927. "push %%rax; push %%rbx; push %%rdx;"
  1928. "push %%rsi; push %%rdi; push %%rbp;"
  1929. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1930. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1931. "push %%rcx \n\t"
  1932. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1933. #else
  1934. "pusha; push %%ecx \n\t"
  1935. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1936. #endif
  1937. /* Check if vmlaunch of vmresume is needed */
  1938. "cmp $0, %1 \n\t"
  1939. /* Load guest registers. Don't clobber flags. */
  1940. #ifdef CONFIG_X86_64
  1941. "mov %c[cr2](%3), %%rax \n\t"
  1942. "mov %%rax, %%cr2 \n\t"
  1943. "mov %c[rax](%3), %%rax \n\t"
  1944. "mov %c[rbx](%3), %%rbx \n\t"
  1945. "mov %c[rdx](%3), %%rdx \n\t"
  1946. "mov %c[rsi](%3), %%rsi \n\t"
  1947. "mov %c[rdi](%3), %%rdi \n\t"
  1948. "mov %c[rbp](%3), %%rbp \n\t"
  1949. "mov %c[r8](%3), %%r8 \n\t"
  1950. "mov %c[r9](%3), %%r9 \n\t"
  1951. "mov %c[r10](%3), %%r10 \n\t"
  1952. "mov %c[r11](%3), %%r11 \n\t"
  1953. "mov %c[r12](%3), %%r12 \n\t"
  1954. "mov %c[r13](%3), %%r13 \n\t"
  1955. "mov %c[r14](%3), %%r14 \n\t"
  1956. "mov %c[r15](%3), %%r15 \n\t"
  1957. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1958. #else
  1959. "mov %c[cr2](%3), %%eax \n\t"
  1960. "mov %%eax, %%cr2 \n\t"
  1961. "mov %c[rax](%3), %%eax \n\t"
  1962. "mov %c[rbx](%3), %%ebx \n\t"
  1963. "mov %c[rdx](%3), %%edx \n\t"
  1964. "mov %c[rsi](%3), %%esi \n\t"
  1965. "mov %c[rdi](%3), %%edi \n\t"
  1966. "mov %c[rbp](%3), %%ebp \n\t"
  1967. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1968. #endif
  1969. /* Enter guest mode */
  1970. "jne .Llaunched \n\t"
  1971. ASM_VMX_VMLAUNCH "\n\t"
  1972. "jmp .Lkvm_vmx_return \n\t"
  1973. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1974. ".Lkvm_vmx_return: "
  1975. /* Save guest registers, load host registers, keep flags */
  1976. #ifdef CONFIG_X86_64
  1977. "xchg %3, (%%rsp) \n\t"
  1978. "mov %%rax, %c[rax](%3) \n\t"
  1979. "mov %%rbx, %c[rbx](%3) \n\t"
  1980. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1981. "mov %%rdx, %c[rdx](%3) \n\t"
  1982. "mov %%rsi, %c[rsi](%3) \n\t"
  1983. "mov %%rdi, %c[rdi](%3) \n\t"
  1984. "mov %%rbp, %c[rbp](%3) \n\t"
  1985. "mov %%r8, %c[r8](%3) \n\t"
  1986. "mov %%r9, %c[r9](%3) \n\t"
  1987. "mov %%r10, %c[r10](%3) \n\t"
  1988. "mov %%r11, %c[r11](%3) \n\t"
  1989. "mov %%r12, %c[r12](%3) \n\t"
  1990. "mov %%r13, %c[r13](%3) \n\t"
  1991. "mov %%r14, %c[r14](%3) \n\t"
  1992. "mov %%r15, %c[r15](%3) \n\t"
  1993. "mov %%cr2, %%rax \n\t"
  1994. "mov %%rax, %c[cr2](%3) \n\t"
  1995. "mov (%%rsp), %3 \n\t"
  1996. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1997. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1998. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1999. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  2000. #else
  2001. "xchg %3, (%%esp) \n\t"
  2002. "mov %%eax, %c[rax](%3) \n\t"
  2003. "mov %%ebx, %c[rbx](%3) \n\t"
  2004. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  2005. "mov %%edx, %c[rdx](%3) \n\t"
  2006. "mov %%esi, %c[rsi](%3) \n\t"
  2007. "mov %%edi, %c[rdi](%3) \n\t"
  2008. "mov %%ebp, %c[rbp](%3) \n\t"
  2009. "mov %%cr2, %%eax \n\t"
  2010. "mov %%eax, %c[cr2](%3) \n\t"
  2011. "mov (%%esp), %3 \n\t"
  2012. "pop %%ecx; popa \n\t"
  2013. #endif
  2014. "setbe %0 \n\t"
  2015. : "=q" (vmx->fail)
  2016. : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
  2017. "c"(vcpu),
  2018. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  2019. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  2020. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  2021. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  2022. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  2023. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  2024. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  2025. #ifdef CONFIG_X86_64
  2026. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  2027. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  2028. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  2029. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  2030. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  2031. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  2032. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  2033. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  2034. #endif
  2035. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  2036. : "cc", "memory" );
  2037. vcpu->guest_mode = 0;
  2038. local_irq_enable();
  2039. ++vcpu->stat.exits;
  2040. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2041. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2042. vmx->launched = 1;
  2043. preempt_enable();
  2044. /*
  2045. * Profile KVM exit RIPs:
  2046. */
  2047. if (unlikely(prof_on == KVM_PROFILING))
  2048. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  2049. r = kvm_handle_exit(kvm_run, vcpu);
  2050. if (r > 0) {
  2051. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2052. r = -EINTR;
  2053. kvm_run->exit_reason = KVM_EXIT_INTR;
  2054. ++vcpu->stat.request_irq_exits;
  2055. goto out;
  2056. }
  2057. if (!need_resched()) {
  2058. ++vcpu->stat.light_exits;
  2059. goto again;
  2060. }
  2061. }
  2062. out:
  2063. if (r > 0) {
  2064. kvm_resched(vcpu);
  2065. goto preempted;
  2066. }
  2067. post_kvm_run_save(vcpu, kvm_run);
  2068. return r;
  2069. }
  2070. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  2071. unsigned long addr,
  2072. u32 err_code)
  2073. {
  2074. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2075. ++vcpu->stat.pf_guest;
  2076. if (is_page_fault(vect_info)) {
  2077. printk(KERN_DEBUG "inject_page_fault: "
  2078. "double fault 0x%lx @ 0x%lx\n",
  2079. addr, vmcs_readl(GUEST_RIP));
  2080. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  2081. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2082. DF_VECTOR |
  2083. INTR_TYPE_EXCEPTION |
  2084. INTR_INFO_DELIEVER_CODE_MASK |
  2085. INTR_INFO_VALID_MASK);
  2086. return;
  2087. }
  2088. vcpu->cr2 = addr;
  2089. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  2090. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2091. PF_VECTOR |
  2092. INTR_TYPE_EXCEPTION |
  2093. INTR_INFO_DELIEVER_CODE_MASK |
  2094. INTR_INFO_VALID_MASK);
  2095. }
  2096. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2097. {
  2098. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2099. if (vmx->vmcs) {
  2100. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2101. free_vmcs(vmx->vmcs);
  2102. vmx->vmcs = NULL;
  2103. }
  2104. }
  2105. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2106. {
  2107. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2108. vmx_free_vmcs(vcpu);
  2109. kfree(vmx->host_msrs);
  2110. kfree(vmx->guest_msrs);
  2111. kvm_vcpu_uninit(vcpu);
  2112. kmem_cache_free(kvm_vcpu_cache, vmx);
  2113. }
  2114. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2115. {
  2116. int err;
  2117. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2118. int cpu;
  2119. if (!vmx)
  2120. return ERR_PTR(-ENOMEM);
  2121. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2122. if (err)
  2123. goto free_vcpu;
  2124. if (irqchip_in_kernel(kvm)) {
  2125. err = kvm_create_lapic(&vmx->vcpu);
  2126. if (err < 0)
  2127. goto free_vcpu;
  2128. }
  2129. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2130. if (!vmx->guest_msrs) {
  2131. err = -ENOMEM;
  2132. goto uninit_vcpu;
  2133. }
  2134. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2135. if (!vmx->host_msrs)
  2136. goto free_guest_msrs;
  2137. vmx->vmcs = alloc_vmcs();
  2138. if (!vmx->vmcs)
  2139. goto free_msrs;
  2140. vmcs_clear(vmx->vmcs);
  2141. cpu = get_cpu();
  2142. vmx_vcpu_load(&vmx->vcpu, cpu);
  2143. err = vmx_vcpu_setup(vmx);
  2144. vmx_vcpu_put(&vmx->vcpu);
  2145. put_cpu();
  2146. if (err)
  2147. goto free_vmcs;
  2148. return &vmx->vcpu;
  2149. free_vmcs:
  2150. free_vmcs(vmx->vmcs);
  2151. free_msrs:
  2152. kfree(vmx->host_msrs);
  2153. free_guest_msrs:
  2154. kfree(vmx->guest_msrs);
  2155. uninit_vcpu:
  2156. kvm_vcpu_uninit(&vmx->vcpu);
  2157. free_vcpu:
  2158. kmem_cache_free(kvm_vcpu_cache, vmx);
  2159. return ERR_PTR(err);
  2160. }
  2161. static void __init vmx_check_processor_compat(void *rtn)
  2162. {
  2163. struct vmcs_config vmcs_conf;
  2164. *(int *)rtn = 0;
  2165. if (setup_vmcs_config(&vmcs_conf) < 0)
  2166. *(int *)rtn = -EIO;
  2167. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2168. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2169. smp_processor_id());
  2170. *(int *)rtn = -EIO;
  2171. }
  2172. }
  2173. static struct kvm_x86_ops vmx_x86_ops = {
  2174. .cpu_has_kvm_support = cpu_has_kvm_support,
  2175. .disabled_by_bios = vmx_disabled_by_bios,
  2176. .hardware_setup = hardware_setup,
  2177. .hardware_unsetup = hardware_unsetup,
  2178. .check_processor_compatibility = vmx_check_processor_compat,
  2179. .hardware_enable = hardware_enable,
  2180. .hardware_disable = hardware_disable,
  2181. .vcpu_create = vmx_create_vcpu,
  2182. .vcpu_free = vmx_free_vcpu,
  2183. .vcpu_load = vmx_vcpu_load,
  2184. .vcpu_put = vmx_vcpu_put,
  2185. .vcpu_decache = vmx_vcpu_decache,
  2186. .set_guest_debug = set_guest_debug,
  2187. .get_msr = vmx_get_msr,
  2188. .set_msr = vmx_set_msr,
  2189. .get_segment_base = vmx_get_segment_base,
  2190. .get_segment = vmx_get_segment,
  2191. .set_segment = vmx_set_segment,
  2192. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2193. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2194. .set_cr0 = vmx_set_cr0,
  2195. .set_cr3 = vmx_set_cr3,
  2196. .set_cr4 = vmx_set_cr4,
  2197. #ifdef CONFIG_X86_64
  2198. .set_efer = vmx_set_efer,
  2199. #endif
  2200. .get_idt = vmx_get_idt,
  2201. .set_idt = vmx_set_idt,
  2202. .get_gdt = vmx_get_gdt,
  2203. .set_gdt = vmx_set_gdt,
  2204. .cache_regs = vcpu_load_rsp_rip,
  2205. .decache_regs = vcpu_put_rsp_rip,
  2206. .get_rflags = vmx_get_rflags,
  2207. .set_rflags = vmx_set_rflags,
  2208. .tlb_flush = vmx_flush_tlb,
  2209. .inject_page_fault = vmx_inject_page_fault,
  2210. .inject_gp = vmx_inject_gp,
  2211. .run = vmx_vcpu_run,
  2212. .skip_emulated_instruction = skip_emulated_instruction,
  2213. .patch_hypercall = vmx_patch_hypercall,
  2214. .get_irq = vmx_get_irq,
  2215. .set_irq = vmx_inject_irq,
  2216. };
  2217. static int __init vmx_init(void)
  2218. {
  2219. void *iova;
  2220. int r;
  2221. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2222. if (!vmx_io_bitmap_a)
  2223. return -ENOMEM;
  2224. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2225. if (!vmx_io_bitmap_b) {
  2226. r = -ENOMEM;
  2227. goto out;
  2228. }
  2229. /*
  2230. * Allow direct access to the PC debug port (it is often used for I/O
  2231. * delays, but the vmexits simply slow things down).
  2232. */
  2233. iova = kmap(vmx_io_bitmap_a);
  2234. memset(iova, 0xff, PAGE_SIZE);
  2235. clear_bit(0x80, iova);
  2236. kunmap(vmx_io_bitmap_a);
  2237. iova = kmap(vmx_io_bitmap_b);
  2238. memset(iova, 0xff, PAGE_SIZE);
  2239. kunmap(vmx_io_bitmap_b);
  2240. r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2241. if (r)
  2242. goto out1;
  2243. return 0;
  2244. out1:
  2245. __free_page(vmx_io_bitmap_b);
  2246. out:
  2247. __free_page(vmx_io_bitmap_a);
  2248. return r;
  2249. }
  2250. static void __exit vmx_exit(void)
  2251. {
  2252. __free_page(vmx_io_bitmap_b);
  2253. __free_page(vmx_io_bitmap_a);
  2254. kvm_exit_x86();
  2255. }
  2256. module_init(vmx_init)
  2257. module_exit(vmx_exit)