numa_32.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/mm.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/memblock.h>
  27. #include <linux/mmzone.h>
  28. #include <linux/highmem.h>
  29. #include <linux/initrd.h>
  30. #include <linux/nodemask.h>
  31. #include <linux/module.h>
  32. #include <linux/kexec.h>
  33. #include <linux/pfn.h>
  34. #include <linux/swap.h>
  35. #include <linux/acpi.h>
  36. #include <asm/e820.h>
  37. #include <asm/setup.h>
  38. #include <asm/mmzone.h>
  39. #include <asm/bios_ebda.h>
  40. #include <asm/proto.h>
  41. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  42. EXPORT_SYMBOL(node_data);
  43. /*
  44. * numa interface - we expect the numa architecture specific code to have
  45. * populated the following initialisation.
  46. *
  47. * 1) node_online_map - the map of all nodes configured (online) in the system
  48. * 2) node_start_pfn - the starting page frame number for a node
  49. * 3) node_end_pfn - the ending page fram number for a node
  50. */
  51. unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  52. unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  53. #ifdef CONFIG_DISCONTIGMEM
  54. /*
  55. * 4) physnode_map - the mapping between a pfn and owning node
  56. * physnode_map keeps track of the physical memory layout of a generic
  57. * numa node on a 64Mb break (each element of the array will
  58. * represent 64Mb of memory and will be marked by the node id. so,
  59. * if the first gig is on node 0, and the second gig is on node 1
  60. * physnode_map will contain:
  61. *
  62. * physnode_map[0-15] = 0;
  63. * physnode_map[16-31] = 1;
  64. * physnode_map[32- ] = -1;
  65. */
  66. s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  67. EXPORT_SYMBOL(physnode_map);
  68. void memory_present(int nid, unsigned long start, unsigned long end)
  69. {
  70. unsigned long pfn;
  71. printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
  72. nid, start, end);
  73. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  74. printk(KERN_DEBUG " ");
  75. for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  76. physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  77. printk(KERN_CONT "%lx ", pfn);
  78. }
  79. printk(KERN_CONT "\n");
  80. }
  81. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  82. unsigned long end_pfn)
  83. {
  84. unsigned long nr_pages = end_pfn - start_pfn;
  85. if (!nr_pages)
  86. return 0;
  87. return (nr_pages + 1) * sizeof(struct page);
  88. }
  89. #endif
  90. extern unsigned long find_max_low_pfn(void);
  91. extern unsigned long highend_pfn, highstart_pfn;
  92. #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
  93. static void *node_remap_start_vaddr[MAX_NUMNODES];
  94. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
  95. /*
  96. * FLAT - support for basic PC memory model with discontig enabled, essentially
  97. * a single node with all available processors in it with a flat
  98. * memory map.
  99. */
  100. static int __init get_memcfg_numa_flat(void)
  101. {
  102. printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
  103. node_start_pfn[0] = 0;
  104. node_end_pfn[0] = max_pfn;
  105. memblock_x86_register_active_regions(0, 0, max_pfn);
  106. /* Indicate there is one node available. */
  107. nodes_clear(node_online_map);
  108. node_set_online(0);
  109. return 1;
  110. }
  111. /*
  112. * Find the highest page frame number we have available for the node
  113. */
  114. static void __init propagate_e820_map_node(int nid)
  115. {
  116. if (node_end_pfn[nid] > max_pfn)
  117. node_end_pfn[nid] = max_pfn;
  118. /*
  119. * if a user has given mem=XXXX, then we need to make sure
  120. * that the node _starts_ before that, too, not just ends
  121. */
  122. if (node_start_pfn[nid] > max_pfn)
  123. node_start_pfn[nid] = max_pfn;
  124. BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
  125. }
  126. /*
  127. * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
  128. * method. For node zero take this from the bottom of memory, for
  129. * subsequent nodes place them at node_remap_start_vaddr which contains
  130. * node local data in physically node local memory. See setup_memory()
  131. * for details.
  132. */
  133. static void __init allocate_pgdat(int nid)
  134. {
  135. char buf[16];
  136. NODE_DATA(nid) = alloc_remap(nid, ALIGN(sizeof(pg_data_t), PAGE_SIZE));
  137. if (!NODE_DATA(nid)) {
  138. unsigned long pgdat_phys;
  139. pgdat_phys = memblock_find_in_range(min_low_pfn<<PAGE_SHIFT,
  140. max_pfn_mapped<<PAGE_SHIFT,
  141. sizeof(pg_data_t),
  142. PAGE_SIZE);
  143. NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
  144. memset(buf, 0, sizeof(buf));
  145. sprintf(buf, "NODE_DATA %d", nid);
  146. memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
  147. }
  148. printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
  149. nid, (unsigned long)NODE_DATA(nid));
  150. }
  151. /*
  152. * Remap memory allocator
  153. */
  154. static unsigned long node_remap_start_pfn[MAX_NUMNODES];
  155. static void *node_remap_end_vaddr[MAX_NUMNODES];
  156. static void *node_remap_alloc_vaddr[MAX_NUMNODES];
  157. /**
  158. * alloc_remap - Allocate remapped memory
  159. * @nid: NUMA node to allocate memory from
  160. * @size: The size of allocation
  161. *
  162. * Allocate @size bytes from the remap area of NUMA node @nid. The
  163. * size of the remap area is predetermined by init_alloc_remap() and
  164. * only the callers considered there should call this function. For
  165. * more info, please read the comment on top of init_alloc_remap().
  166. *
  167. * The caller must be ready to handle allocation failure from this
  168. * function and fall back to regular memory allocator in such cases.
  169. *
  170. * CONTEXT:
  171. * Single CPU early boot context.
  172. *
  173. * RETURNS:
  174. * Pointer to the allocated memory on success, %NULL on failure.
  175. */
  176. void *alloc_remap(int nid, unsigned long size)
  177. {
  178. void *allocation = node_remap_alloc_vaddr[nid];
  179. size = ALIGN(size, L1_CACHE_BYTES);
  180. if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
  181. return NULL;
  182. node_remap_alloc_vaddr[nid] += size;
  183. memset(allocation, 0, size);
  184. return allocation;
  185. }
  186. #ifdef CONFIG_HIBERNATION
  187. /**
  188. * resume_map_numa_kva - add KVA mapping to the temporary page tables created
  189. * during resume from hibernation
  190. * @pgd_base - temporary resume page directory
  191. */
  192. void resume_map_numa_kva(pgd_t *pgd_base)
  193. {
  194. int node;
  195. for_each_online_node(node) {
  196. unsigned long start_va, start_pfn, nr_pages, pfn;
  197. start_va = (unsigned long)node_remap_start_vaddr[node];
  198. start_pfn = node_remap_start_pfn[node];
  199. nr_pages = (node_remap_end_vaddr[node] -
  200. node_remap_start_vaddr[node]) >> PAGE_SHIFT;
  201. printk(KERN_DEBUG "%s: node %d\n", __func__, node);
  202. for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) {
  203. unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
  204. pgd_t *pgd = pgd_base + pgd_index(vaddr);
  205. pud_t *pud = pud_offset(pgd, vaddr);
  206. pmd_t *pmd = pmd_offset(pud, vaddr);
  207. set_pmd(pmd, pfn_pmd(start_pfn + pfn,
  208. PAGE_KERNEL_LARGE_EXEC));
  209. printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
  210. __func__, vaddr, start_pfn + pfn);
  211. }
  212. }
  213. }
  214. #endif
  215. /**
  216. * init_alloc_remap - Initialize remap allocator for a NUMA node
  217. * @nid: NUMA node to initizlie remap allocator for
  218. *
  219. * NUMA nodes may end up without any lowmem. As allocating pgdat and
  220. * memmap on a different node with lowmem is inefficient, a special
  221. * remap allocator is implemented which can be used by alloc_remap().
  222. *
  223. * For each node, the amount of memory which will be necessary for
  224. * pgdat and memmap is calculated and two memory areas of the size are
  225. * allocated - one in the node and the other in lowmem; then, the area
  226. * in the node is remapped to the lowmem area.
  227. *
  228. * As pgdat and memmap must be allocated in lowmem anyway, this
  229. * doesn't waste lowmem address space; however, the actual lowmem
  230. * which gets remapped over is wasted. The amount shouldn't be
  231. * problematic on machines this feature will be used.
  232. *
  233. * Initialization failure isn't fatal. alloc_remap() is used
  234. * opportunistically and the callers will fall back to other memory
  235. * allocation mechanisms on failure.
  236. */
  237. static __init void init_alloc_remap(int nid)
  238. {
  239. unsigned long size, pfn;
  240. u64 node_pa, remap_pa;
  241. void *remap_va;
  242. /*
  243. * The acpi/srat node info can show hot-add memroy zones where
  244. * memory could be added but not currently present.
  245. */
  246. printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
  247. nid, node_start_pfn[nid], node_end_pfn[nid]);
  248. if (node_start_pfn[nid] > max_pfn)
  249. return;
  250. if (!node_end_pfn[nid])
  251. return;
  252. if (node_end_pfn[nid] > max_pfn)
  253. node_end_pfn[nid] = max_pfn;
  254. /* calculate the necessary space aligned to large page size */
  255. size = node_memmap_size_bytes(nid, node_start_pfn[nid],
  256. min(node_end_pfn[nid], max_pfn));
  257. size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
  258. size = ALIGN(size, LARGE_PAGE_BYTES);
  259. /* allocate node memory and the lowmem remap area */
  260. node_pa = memblock_find_in_range(node_start_pfn[nid] << PAGE_SHIFT,
  261. (u64)node_end_pfn[nid] << PAGE_SHIFT,
  262. size, LARGE_PAGE_BYTES);
  263. if (node_pa == MEMBLOCK_ERROR) {
  264. pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
  265. size, nid);
  266. return;
  267. }
  268. memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM");
  269. remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
  270. max_low_pfn << PAGE_SHIFT,
  271. size, LARGE_PAGE_BYTES);
  272. if (remap_pa == MEMBLOCK_ERROR) {
  273. pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
  274. size, nid);
  275. memblock_x86_free_range(node_pa, node_pa + size);
  276. return;
  277. }
  278. memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG");
  279. remap_va = phys_to_virt(remap_pa);
  280. /* perform actual remap */
  281. for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE)
  282. set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT),
  283. (node_pa >> PAGE_SHIFT) + pfn,
  284. PAGE_KERNEL_LARGE);
  285. /* initialize remap allocator parameters */
  286. node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
  287. node_remap_start_vaddr[nid] = remap_va;
  288. node_remap_end_vaddr[nid] = remap_va + size;
  289. node_remap_alloc_vaddr[nid] = remap_va;
  290. printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
  291. nid, node_pa, node_pa + size, remap_va, remap_va + size);
  292. }
  293. static int get_memcfg_numaq(void)
  294. {
  295. #ifdef CONFIG_X86_NUMAQ
  296. int nid;
  297. if (numa_off)
  298. return 0;
  299. if (numaq_numa_init() < 0) {
  300. nodes_clear(numa_nodes_parsed);
  301. remove_all_active_ranges();
  302. return 0;
  303. }
  304. for_each_node_mask(nid, numa_nodes_parsed)
  305. node_set_online(nid);
  306. sort_node_map();
  307. return 1;
  308. #else
  309. return 0;
  310. #endif
  311. }
  312. static int get_memcfg_from_srat(void)
  313. {
  314. #ifdef CONFIG_ACPI_NUMA
  315. int nid;
  316. if (numa_off)
  317. return 0;
  318. if (x86_acpi_numa_init() < 0) {
  319. nodes_clear(numa_nodes_parsed);
  320. remove_all_active_ranges();
  321. return 0;
  322. }
  323. for_each_node_mask(nid, numa_nodes_parsed)
  324. node_set_online(nid);
  325. sort_node_map();
  326. return 1;
  327. #else
  328. return 0;
  329. #endif
  330. }
  331. static void get_memcfg_numa(void)
  332. {
  333. if (get_memcfg_numaq())
  334. return;
  335. if (get_memcfg_from_srat())
  336. return;
  337. get_memcfg_numa_flat();
  338. }
  339. void __init initmem_init(void)
  340. {
  341. int nid;
  342. get_memcfg_numa();
  343. numa_init_array();
  344. for_each_online_node(nid)
  345. init_alloc_remap(nid);
  346. #ifdef CONFIG_HIGHMEM
  347. highstart_pfn = highend_pfn = max_pfn;
  348. if (max_pfn > max_low_pfn)
  349. highstart_pfn = max_low_pfn;
  350. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  351. pages_to_mb(highend_pfn - highstart_pfn));
  352. num_physpages = highend_pfn;
  353. high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
  354. #else
  355. num_physpages = max_low_pfn;
  356. high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
  357. #endif
  358. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  359. pages_to_mb(max_low_pfn));
  360. printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
  361. max_low_pfn, highstart_pfn);
  362. printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
  363. (ulong) pfn_to_kaddr(max_low_pfn));
  364. for_each_online_node(nid)
  365. allocate_pgdat(nid);
  366. printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
  367. (ulong) pfn_to_kaddr(highstart_pfn));
  368. for_each_online_node(nid)
  369. propagate_e820_map_node(nid);
  370. for_each_online_node(nid) {
  371. memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
  372. NODE_DATA(nid)->node_id = nid;
  373. }
  374. setup_bootmem_allocator();
  375. }
  376. #ifdef CONFIG_MEMORY_HOTPLUG
  377. static int paddr_to_nid(u64 addr)
  378. {
  379. int nid;
  380. unsigned long pfn = PFN_DOWN(addr);
  381. for_each_node(nid)
  382. if (node_start_pfn[nid] <= pfn &&
  383. pfn < node_end_pfn[nid])
  384. return nid;
  385. return -1;
  386. }
  387. /*
  388. * This function is used to ask node id BEFORE memmap and mem_section's
  389. * initialization (pfn_to_nid() can't be used yet).
  390. * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
  391. */
  392. int memory_add_physaddr_to_nid(u64 addr)
  393. {
  394. int nid = paddr_to_nid(addr);
  395. return (nid >= 0) ? nid : 0;
  396. }
  397. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  398. #endif
  399. /* temporary shim, will go away soon */
  400. int __init numa_add_memblk(int nid, u64 start, u64 end)
  401. {
  402. unsigned long start_pfn = start >> PAGE_SHIFT;
  403. unsigned long end_pfn = end >> PAGE_SHIFT;
  404. printk(KERN_DEBUG "nid %d start_pfn %08lx end_pfn %08lx\n",
  405. nid, start_pfn, end_pfn);
  406. if (start >= (u64)max_pfn << PAGE_SHIFT) {
  407. printk(KERN_INFO "Ignoring SRAT pfns: %08lx - %08lx\n",
  408. start_pfn, end_pfn);
  409. return 0;
  410. }
  411. node_set_online(nid);
  412. memblock_x86_register_active_regions(nid, start_pfn,
  413. min(end_pfn, max_pfn));
  414. if (!node_has_online_mem(nid)) {
  415. node_start_pfn[nid] = start_pfn;
  416. node_end_pfn[nid] = end_pfn;
  417. } else {
  418. node_start_pfn[nid] = min(node_start_pfn[nid], start_pfn);
  419. node_end_pfn[nid] = max(node_end_pfn[nid], end_pfn);
  420. }
  421. return 0;
  422. }
  423. /* temporary shim, will go away soon */
  424. void __init numa_set_distance(int from, int to, int distance)
  425. {
  426. /* nada */
  427. }