rt2800pci.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 0;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. /*
  54. * SOC devices don't support MCU requests.
  55. */
  56. if (rt2x00_is_soc(rt2x00dev))
  57. return;
  58. for (i = 0; i < 200; i++) {
  59. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  60. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  61. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  64. break;
  65. udelay(REGISTER_BUSY_DELAY);
  66. }
  67. if (i == 200)
  68. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  69. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  71. }
  72. #ifdef CONFIG_RT2800PCI_SOC
  73. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  74. {
  75. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  76. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  77. }
  78. #else
  79. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  80. {
  81. }
  82. #endif /* CONFIG_RT2800PCI_SOC */
  83. #ifdef CONFIG_RT2800PCI_PCI
  84. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  85. {
  86. struct rt2x00_dev *rt2x00dev = eeprom->data;
  87. u32 reg;
  88. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  89. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  90. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  91. eeprom->reg_data_clock =
  92. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  93. eeprom->reg_chip_select =
  94. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  95. }
  96. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  97. {
  98. struct rt2x00_dev *rt2x00dev = eeprom->data;
  99. u32 reg = 0;
  100. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  103. !!eeprom->reg_data_clock);
  104. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  105. !!eeprom->reg_chip_select);
  106. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  107. }
  108. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  109. {
  110. struct eeprom_93cx6 eeprom;
  111. u32 reg;
  112. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  113. eeprom.data = rt2x00dev;
  114. eeprom.register_read = rt2800pci_eepromregister_read;
  115. eeprom.register_write = rt2800pci_eepromregister_write;
  116. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  117. {
  118. case 0:
  119. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  120. break;
  121. case 1:
  122. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  123. break;
  124. default:
  125. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  126. break;
  127. }
  128. eeprom.reg_data_in = 0;
  129. eeprom.reg_data_out = 0;
  130. eeprom.reg_data_clock = 0;
  131. eeprom.reg_chip_select = 0;
  132. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  133. EEPROM_SIZE / sizeof(u16));
  134. }
  135. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  136. {
  137. return rt2800_efuse_detect(rt2x00dev);
  138. }
  139. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  140. {
  141. rt2800_read_eeprom_efuse(rt2x00dev);
  142. }
  143. #else
  144. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  145. {
  146. }
  147. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  148. {
  149. return 0;
  150. }
  151. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  152. {
  153. }
  154. #endif /* CONFIG_RT2800PCI_PCI */
  155. /*
  156. * Firmware functions
  157. */
  158. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  159. {
  160. return FIRMWARE_RT2860;
  161. }
  162. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  163. const u8 *data, const size_t len)
  164. {
  165. u32 reg;
  166. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  167. /*
  168. * enable Host program ram write selection
  169. */
  170. reg = 0;
  171. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  172. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  173. /*
  174. * Write firmware to device.
  175. */
  176. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  177. data, len);
  178. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  179. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  180. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  181. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  182. return 0;
  183. }
  184. /*
  185. * Initialization functions.
  186. */
  187. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  188. {
  189. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  190. u32 word;
  191. if (entry->queue->qid == QID_RX) {
  192. rt2x00_desc_read(entry_priv->desc, 1, &word);
  193. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  194. } else {
  195. rt2x00_desc_read(entry_priv->desc, 1, &word);
  196. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  197. }
  198. }
  199. static void rt2800pci_clear_entry(struct queue_entry *entry)
  200. {
  201. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  202. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  203. u32 word;
  204. if (entry->queue->qid == QID_RX) {
  205. rt2x00_desc_read(entry_priv->desc, 0, &word);
  206. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  207. rt2x00_desc_write(entry_priv->desc, 0, word);
  208. rt2x00_desc_read(entry_priv->desc, 1, &word);
  209. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  210. rt2x00_desc_write(entry_priv->desc, 1, word);
  211. } else {
  212. rt2x00_desc_read(entry_priv->desc, 1, &word);
  213. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  214. rt2x00_desc_write(entry_priv->desc, 1, word);
  215. }
  216. }
  217. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  218. {
  219. struct queue_entry_priv_pci *entry_priv;
  220. u32 reg;
  221. /*
  222. * Initialize registers.
  223. */
  224. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  225. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  226. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  227. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  228. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  229. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  230. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  231. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  232. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  233. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  234. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  235. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  236. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  237. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  238. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  239. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  240. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  241. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  242. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  243. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  244. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  245. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  246. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  247. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  248. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  249. /*
  250. * Enable global DMA configuration
  251. */
  252. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  253. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  254. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  255. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  256. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  257. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  258. return 0;
  259. }
  260. /*
  261. * Device state switch handlers.
  262. */
  263. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  264. enum dev_state state)
  265. {
  266. u32 reg;
  267. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  268. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  269. (state == STATE_RADIO_RX_ON) ||
  270. (state == STATE_RADIO_RX_ON_LINK));
  271. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  272. }
  273. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  274. enum dev_state state)
  275. {
  276. int mask = (state == STATE_RADIO_IRQ_ON) ||
  277. (state == STATE_RADIO_IRQ_ON_ISR);
  278. u32 reg;
  279. /*
  280. * When interrupts are being enabled, the interrupt registers
  281. * should clear the register to assure a clean state.
  282. */
  283. if (state == STATE_RADIO_IRQ_ON) {
  284. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  285. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  286. }
  287. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  288. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  289. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  290. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  291. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  292. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  293. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  294. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  295. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  296. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  297. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  298. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  299. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  300. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  301. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  302. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  303. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  304. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  305. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  306. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  307. }
  308. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  309. {
  310. u32 reg;
  311. /*
  312. * Reset DMA indexes
  313. */
  314. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  315. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  316. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  317. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  318. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  319. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  320. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  321. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  322. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  323. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  324. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  325. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  326. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  327. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  328. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  329. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  330. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  331. return 0;
  332. }
  333. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  334. {
  335. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  336. rt2800pci_init_queues(rt2x00dev)))
  337. return -EIO;
  338. return rt2800_enable_radio(rt2x00dev);
  339. }
  340. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  341. {
  342. u32 reg;
  343. rt2800_disable_radio(rt2x00dev);
  344. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  345. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  346. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  347. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  348. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  349. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  350. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  351. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  352. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  353. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  354. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  355. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  356. }
  357. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  358. enum dev_state state)
  359. {
  360. /*
  361. * Always put the device to sleep (even when we intend to wakeup!)
  362. * if the device is booting and wasn't asleep it will return
  363. * failure when attempting to wakeup.
  364. */
  365. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  366. if (state == STATE_AWAKE) {
  367. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  368. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  369. }
  370. return 0;
  371. }
  372. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  373. enum dev_state state)
  374. {
  375. int retval = 0;
  376. switch (state) {
  377. case STATE_RADIO_ON:
  378. /*
  379. * Before the radio can be enabled, the device first has
  380. * to be woken up. After that it needs a bit of time
  381. * to be fully awake and then the radio can be enabled.
  382. */
  383. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  384. msleep(1);
  385. retval = rt2800pci_enable_radio(rt2x00dev);
  386. break;
  387. case STATE_RADIO_OFF:
  388. /*
  389. * After the radio has been disabled, the device should
  390. * be put to sleep for powersaving.
  391. */
  392. rt2800pci_disable_radio(rt2x00dev);
  393. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  394. break;
  395. case STATE_RADIO_RX_ON:
  396. case STATE_RADIO_RX_ON_LINK:
  397. case STATE_RADIO_RX_OFF:
  398. case STATE_RADIO_RX_OFF_LINK:
  399. rt2800pci_toggle_rx(rt2x00dev, state);
  400. break;
  401. case STATE_RADIO_IRQ_ON:
  402. case STATE_RADIO_IRQ_ON_ISR:
  403. case STATE_RADIO_IRQ_OFF:
  404. case STATE_RADIO_IRQ_OFF_ISR:
  405. rt2800pci_toggle_irq(rt2x00dev, state);
  406. break;
  407. case STATE_DEEP_SLEEP:
  408. case STATE_SLEEP:
  409. case STATE_STANDBY:
  410. case STATE_AWAKE:
  411. retval = rt2800pci_set_state(rt2x00dev, state);
  412. break;
  413. default:
  414. retval = -ENOTSUPP;
  415. break;
  416. }
  417. if (unlikely(retval))
  418. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  419. state, retval);
  420. return retval;
  421. }
  422. /*
  423. * TX descriptor initialization
  424. */
  425. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  426. {
  427. return (__le32 *) entry->skb->data;
  428. }
  429. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  430. struct txentry_desc *txdesc)
  431. {
  432. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  433. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  434. __le32 *txd = entry_priv->desc;
  435. u32 word;
  436. /*
  437. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  438. * must contains a TXWI structure + 802.11 header + padding + 802.11
  439. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  440. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  441. * data. It means that LAST_SEC0 is always 0.
  442. */
  443. /*
  444. * Initialize TX descriptor
  445. */
  446. rt2x00_desc_read(txd, 0, &word);
  447. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  448. rt2x00_desc_write(txd, 0, word);
  449. rt2x00_desc_read(txd, 1, &word);
  450. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  451. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  452. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  453. rt2x00_set_field32(&word, TXD_W1_BURST,
  454. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  455. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  456. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  457. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  458. rt2x00_desc_write(txd, 1, word);
  459. rt2x00_desc_read(txd, 2, &word);
  460. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  461. skbdesc->skb_dma + TXWI_DESC_SIZE);
  462. rt2x00_desc_write(txd, 2, word);
  463. rt2x00_desc_read(txd, 3, &word);
  464. rt2x00_set_field32(&word, TXD_W3_WIV,
  465. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  466. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  467. rt2x00_desc_write(txd, 3, word);
  468. /*
  469. * Register descriptor details in skb frame descriptor.
  470. */
  471. skbdesc->desc = txd;
  472. skbdesc->desc_len = TXD_DESC_SIZE;
  473. }
  474. /*
  475. * TX data initialization
  476. */
  477. static void rt2800pci_kick_tx_queue(struct data_queue *queue)
  478. {
  479. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  480. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  481. unsigned int qidx = 0;
  482. if (queue->qid == QID_MGMT)
  483. qidx = 5;
  484. else
  485. qidx = queue->qid;
  486. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
  487. }
  488. static void rt2800pci_kill_tx_queue(struct data_queue *queue)
  489. {
  490. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  491. u32 reg;
  492. if (queue->qid == QID_BEACON) {
  493. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  494. return;
  495. }
  496. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  497. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
  498. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
  499. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
  500. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
  501. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  502. }
  503. /*
  504. * RX control handlers
  505. */
  506. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  507. struct rxdone_entry_desc *rxdesc)
  508. {
  509. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  510. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  511. __le32 *rxd = entry_priv->desc;
  512. u32 word;
  513. rt2x00_desc_read(rxd, 3, &word);
  514. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  515. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  516. /*
  517. * Unfortunately we don't know the cipher type used during
  518. * decryption. This prevents us from correct providing
  519. * correct statistics through debugfs.
  520. */
  521. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  522. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  523. /*
  524. * Hardware has stripped IV/EIV data from 802.11 frame during
  525. * decryption. Unfortunately the descriptor doesn't contain
  526. * any fields with the EIV/IV data either, so they can't
  527. * be restored by rt2x00lib.
  528. */
  529. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  530. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  531. rxdesc->flags |= RX_FLAG_DECRYPTED;
  532. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  533. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  534. }
  535. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  536. rxdesc->dev_flags |= RXDONE_MY_BSS;
  537. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  538. rxdesc->dev_flags |= RXDONE_L2PAD;
  539. /*
  540. * Process the RXWI structure that is at the start of the buffer.
  541. */
  542. rt2800_process_rxwi(entry, rxdesc);
  543. /*
  544. * Set RX IDX in register to inform hardware that we have handled
  545. * this entry and it is available for reuse again.
  546. */
  547. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  548. }
  549. /*
  550. * Interrupt functions.
  551. */
  552. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  553. {
  554. struct ieee80211_conf conf = { .flags = 0 };
  555. struct rt2x00lib_conf libconf = { .conf = &conf };
  556. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  557. }
  558. static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
  559. {
  560. struct rt2x00_dev *rt2x00dev = dev_instance;
  561. u32 reg = rt2x00dev->irqvalue[0];
  562. /*
  563. * 1 - Pre TBTT interrupt.
  564. */
  565. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  566. rt2x00lib_pretbtt(rt2x00dev);
  567. /*
  568. * 2 - Beacondone interrupt.
  569. */
  570. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  571. rt2x00lib_beacondone(rt2x00dev);
  572. /*
  573. * 3 - Rx ring done interrupt.
  574. */
  575. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  576. rt2x00pci_rxdone(rt2x00dev);
  577. /*
  578. * 4 - Tx done interrupt.
  579. */
  580. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  581. rt2800_txdone(rt2x00dev);
  582. /*
  583. * 5 - Auto wakeup interrupt.
  584. */
  585. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  586. rt2800pci_wakeup(rt2x00dev);
  587. /* Enable interrupts again. */
  588. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  589. STATE_RADIO_IRQ_ON_ISR);
  590. return IRQ_HANDLED;
  591. }
  592. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  593. {
  594. struct rt2x00_dev *rt2x00dev = dev_instance;
  595. u32 reg;
  596. /* Read status and ACK all interrupts */
  597. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  598. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  599. if (!reg)
  600. return IRQ_NONE;
  601. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  602. return IRQ_HANDLED;
  603. /* Store irqvalue for use in the interrupt thread. */
  604. rt2x00dev->irqvalue[0] = reg;
  605. /* Disable interrupts, will be enabled again in the interrupt thread. */
  606. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  607. STATE_RADIO_IRQ_OFF_ISR);
  608. return IRQ_WAKE_THREAD;
  609. }
  610. /*
  611. * Device probe functions.
  612. */
  613. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  614. {
  615. /*
  616. * Read EEPROM into buffer
  617. */
  618. if (rt2x00_is_soc(rt2x00dev))
  619. rt2800pci_read_eeprom_soc(rt2x00dev);
  620. else if (rt2800pci_efuse_detect(rt2x00dev))
  621. rt2800pci_read_eeprom_efuse(rt2x00dev);
  622. else
  623. rt2800pci_read_eeprom_pci(rt2x00dev);
  624. return rt2800_validate_eeprom(rt2x00dev);
  625. }
  626. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  627. {
  628. int retval;
  629. /*
  630. * Allocate eeprom data.
  631. */
  632. retval = rt2800pci_validate_eeprom(rt2x00dev);
  633. if (retval)
  634. return retval;
  635. retval = rt2800_init_eeprom(rt2x00dev);
  636. if (retval)
  637. return retval;
  638. /*
  639. * Initialize hw specifications.
  640. */
  641. retval = rt2800_probe_hw_mode(rt2x00dev);
  642. if (retval)
  643. return retval;
  644. /*
  645. * This device has multiple filters for control frames
  646. * and has a separate filter for PS Poll frames.
  647. */
  648. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  649. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  650. /*
  651. * This device has a pre tbtt interrupt and thus fetches
  652. * a new beacon directly prior to transmission.
  653. */
  654. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  655. /*
  656. * This device requires firmware.
  657. */
  658. if (!rt2x00_is_soc(rt2x00dev))
  659. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  660. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  661. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  662. if (!modparam_nohwcrypt)
  663. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  664. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  665. /*
  666. * Set the rssi offset.
  667. */
  668. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  669. return 0;
  670. }
  671. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  672. .tx = rt2x00mac_tx,
  673. .start = rt2x00mac_start,
  674. .stop = rt2x00mac_stop,
  675. .add_interface = rt2x00mac_add_interface,
  676. .remove_interface = rt2x00mac_remove_interface,
  677. .config = rt2x00mac_config,
  678. .configure_filter = rt2x00mac_configure_filter,
  679. .set_key = rt2x00mac_set_key,
  680. .sw_scan_start = rt2x00mac_sw_scan_start,
  681. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  682. .get_stats = rt2x00mac_get_stats,
  683. .get_tkip_seq = rt2800_get_tkip_seq,
  684. .set_rts_threshold = rt2800_set_rts_threshold,
  685. .bss_info_changed = rt2x00mac_bss_info_changed,
  686. .conf_tx = rt2800_conf_tx,
  687. .get_tsf = rt2800_get_tsf,
  688. .rfkill_poll = rt2x00mac_rfkill_poll,
  689. .ampdu_action = rt2800_ampdu_action,
  690. };
  691. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  692. .register_read = rt2x00pci_register_read,
  693. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  694. .register_write = rt2x00pci_register_write,
  695. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  696. .register_multiread = rt2x00pci_register_multiread,
  697. .register_multiwrite = rt2x00pci_register_multiwrite,
  698. .regbusy_read = rt2x00pci_regbusy_read,
  699. .drv_write_firmware = rt2800pci_write_firmware,
  700. .drv_init_registers = rt2800pci_init_registers,
  701. .drv_get_txwi = rt2800pci_get_txwi,
  702. };
  703. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  704. .irq_handler = rt2800pci_interrupt,
  705. .irq_handler_thread = rt2800pci_interrupt_thread,
  706. .probe_hw = rt2800pci_probe_hw,
  707. .get_firmware_name = rt2800pci_get_firmware_name,
  708. .check_firmware = rt2800_check_firmware,
  709. .load_firmware = rt2800_load_firmware,
  710. .initialize = rt2x00pci_initialize,
  711. .uninitialize = rt2x00pci_uninitialize,
  712. .get_entry_state = rt2800pci_get_entry_state,
  713. .clear_entry = rt2800pci_clear_entry,
  714. .set_device_state = rt2800pci_set_device_state,
  715. .rfkill_poll = rt2800_rfkill_poll,
  716. .link_stats = rt2800_link_stats,
  717. .reset_tuner = rt2800_reset_tuner,
  718. .link_tuner = rt2800_link_tuner,
  719. .write_tx_desc = rt2800pci_write_tx_desc,
  720. .write_tx_data = rt2800_write_tx_data,
  721. .write_beacon = rt2800_write_beacon,
  722. .kick_tx_queue = rt2800pci_kick_tx_queue,
  723. .kill_tx_queue = rt2800pci_kill_tx_queue,
  724. .fill_rxdone = rt2800pci_fill_rxdone,
  725. .config_shared_key = rt2800_config_shared_key,
  726. .config_pairwise_key = rt2800_config_pairwise_key,
  727. .config_filter = rt2800_config_filter,
  728. .config_intf = rt2800_config_intf,
  729. .config_erp = rt2800_config_erp,
  730. .config_ant = rt2800_config_ant,
  731. .config = rt2800_config,
  732. };
  733. static const struct data_queue_desc rt2800pci_queue_rx = {
  734. .entry_num = RX_ENTRIES,
  735. .data_size = AGGREGATION_SIZE,
  736. .desc_size = RXD_DESC_SIZE,
  737. .priv_size = sizeof(struct queue_entry_priv_pci),
  738. };
  739. static const struct data_queue_desc rt2800pci_queue_tx = {
  740. .entry_num = TX_ENTRIES,
  741. .data_size = AGGREGATION_SIZE,
  742. .desc_size = TXD_DESC_SIZE,
  743. .priv_size = sizeof(struct queue_entry_priv_pci),
  744. };
  745. static const struct data_queue_desc rt2800pci_queue_bcn = {
  746. .entry_num = 8 * BEACON_ENTRIES,
  747. .data_size = 0, /* No DMA required for beacons */
  748. .desc_size = TXWI_DESC_SIZE,
  749. .priv_size = sizeof(struct queue_entry_priv_pci),
  750. };
  751. static const struct rt2x00_ops rt2800pci_ops = {
  752. .name = KBUILD_MODNAME,
  753. .max_sta_intf = 1,
  754. .max_ap_intf = 8,
  755. .eeprom_size = EEPROM_SIZE,
  756. .rf_size = RF_SIZE,
  757. .tx_queues = NUM_TX_QUEUES,
  758. .extra_tx_headroom = TXWI_DESC_SIZE,
  759. .rx = &rt2800pci_queue_rx,
  760. .tx = &rt2800pci_queue_tx,
  761. .bcn = &rt2800pci_queue_bcn,
  762. .lib = &rt2800pci_rt2x00_ops,
  763. .drv = &rt2800pci_rt2800_ops,
  764. .hw = &rt2800pci_mac80211_ops,
  765. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  766. .debugfs = &rt2800_rt2x00debug,
  767. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  768. };
  769. /*
  770. * RT2800pci module information.
  771. */
  772. #ifdef CONFIG_RT2800PCI_PCI
  773. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  774. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  775. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  776. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  777. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  778. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  779. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  780. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  781. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  782. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  783. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  784. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  785. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  786. #ifdef CONFIG_RT2800PCI_RT30XX
  787. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  788. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  789. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  790. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  791. #endif
  792. #ifdef CONFIG_RT2800PCI_RT35XX
  793. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  794. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  795. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  796. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  797. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  798. #endif
  799. { 0, }
  800. };
  801. #endif /* CONFIG_RT2800PCI_PCI */
  802. MODULE_AUTHOR(DRV_PROJECT);
  803. MODULE_VERSION(DRV_VERSION);
  804. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  805. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  806. #ifdef CONFIG_RT2800PCI_PCI
  807. MODULE_FIRMWARE(FIRMWARE_RT2860);
  808. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  809. #endif /* CONFIG_RT2800PCI_PCI */
  810. MODULE_LICENSE("GPL");
  811. #ifdef CONFIG_RT2800PCI_SOC
  812. static int rt2800soc_probe(struct platform_device *pdev)
  813. {
  814. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  815. }
  816. static struct platform_driver rt2800soc_driver = {
  817. .driver = {
  818. .name = "rt2800_wmac",
  819. .owner = THIS_MODULE,
  820. .mod_name = KBUILD_MODNAME,
  821. },
  822. .probe = rt2800soc_probe,
  823. .remove = __devexit_p(rt2x00soc_remove),
  824. .suspend = rt2x00soc_suspend,
  825. .resume = rt2x00soc_resume,
  826. };
  827. #endif /* CONFIG_RT2800PCI_SOC */
  828. #ifdef CONFIG_RT2800PCI_PCI
  829. static struct pci_driver rt2800pci_driver = {
  830. .name = KBUILD_MODNAME,
  831. .id_table = rt2800pci_device_table,
  832. .probe = rt2x00pci_probe,
  833. .remove = __devexit_p(rt2x00pci_remove),
  834. .suspend = rt2x00pci_suspend,
  835. .resume = rt2x00pci_resume,
  836. };
  837. #endif /* CONFIG_RT2800PCI_PCI */
  838. static int __init rt2800pci_init(void)
  839. {
  840. int ret = 0;
  841. #ifdef CONFIG_RT2800PCI_SOC
  842. ret = platform_driver_register(&rt2800soc_driver);
  843. if (ret)
  844. return ret;
  845. #endif
  846. #ifdef CONFIG_RT2800PCI_PCI
  847. ret = pci_register_driver(&rt2800pci_driver);
  848. if (ret) {
  849. #ifdef CONFIG_RT2800PCI_SOC
  850. platform_driver_unregister(&rt2800soc_driver);
  851. #endif
  852. return ret;
  853. }
  854. #endif
  855. return ret;
  856. }
  857. static void __exit rt2800pci_exit(void)
  858. {
  859. #ifdef CONFIG_RT2800PCI_PCI
  860. pci_unregister_driver(&rt2800pci_driver);
  861. #endif
  862. #ifdef CONFIG_RT2800PCI_SOC
  863. platform_driver_unregister(&rt2800soc_driver);
  864. #endif
  865. }
  866. module_init(rt2800pci_init);
  867. module_exit(rt2800pci_exit);