forcedeth.c 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  109. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  110. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  111. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  112. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  113. *
  114. * Known bugs:
  115. * We suspect that on some hardware no TX done interrupts are generated.
  116. * This means recovery from netif_stop_queue only happens if the hw timer
  117. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  118. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  119. * If your hardware reliably generates tx done interrupts, then you can remove
  120. * DEV_NEED_TIMERIRQ from the driver_data flags.
  121. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  122. * superfluous timer interrupts from the nic.
  123. */
  124. #ifdef CONFIG_FORCEDETH_NAPI
  125. #define DRIVERNAPI "-NAPI"
  126. #else
  127. #define DRIVERNAPI
  128. #endif
  129. #define FORCEDETH_VERSION "0.57"
  130. #define DRV_NAME "forcedeth"
  131. #include <linux/module.h>
  132. #include <linux/types.h>
  133. #include <linux/pci.h>
  134. #include <linux/interrupt.h>
  135. #include <linux/netdevice.h>
  136. #include <linux/etherdevice.h>
  137. #include <linux/delay.h>
  138. #include <linux/spinlock.h>
  139. #include <linux/ethtool.h>
  140. #include <linux/timer.h>
  141. #include <linux/skbuff.h>
  142. #include <linux/mii.h>
  143. #include <linux/random.h>
  144. #include <linux/init.h>
  145. #include <linux/if_vlan.h>
  146. #include <linux/dma-mapping.h>
  147. #include <asm/irq.h>
  148. #include <asm/io.h>
  149. #include <asm/uaccess.h>
  150. #include <asm/system.h>
  151. #if 0
  152. #define dprintk printk
  153. #else
  154. #define dprintk(x...) do { } while (0)
  155. #endif
  156. /*
  157. * Hardware access:
  158. */
  159. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  160. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  161. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  162. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  163. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  164. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  165. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  166. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  167. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  168. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  169. #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
  170. #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
  171. enum {
  172. NvRegIrqStatus = 0x000,
  173. #define NVREG_IRQSTAT_MIIEVENT 0x040
  174. #define NVREG_IRQSTAT_MASK 0x1ff
  175. NvRegIrqMask = 0x004,
  176. #define NVREG_IRQ_RX_ERROR 0x0001
  177. #define NVREG_IRQ_RX 0x0002
  178. #define NVREG_IRQ_RX_NOBUF 0x0004
  179. #define NVREG_IRQ_TX_ERR 0x0008
  180. #define NVREG_IRQ_TX_OK 0x0010
  181. #define NVREG_IRQ_TIMER 0x0020
  182. #define NVREG_IRQ_LINK 0x0040
  183. #define NVREG_IRQ_RX_FORCED 0x0080
  184. #define NVREG_IRQ_TX_FORCED 0x0100
  185. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  186. #define NVREG_IRQMASK_CPU 0x0040
  187. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  188. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  189. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  190. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  191. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  192. NVREG_IRQ_TX_FORCED))
  193. NvRegUnknownSetupReg6 = 0x008,
  194. #define NVREG_UNKSETUP6_VAL 3
  195. /*
  196. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  197. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  198. */
  199. NvRegPollingInterval = 0x00c,
  200. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  201. #define NVREG_POLL_DEFAULT_CPU 13
  202. NvRegMSIMap0 = 0x020,
  203. NvRegMSIMap1 = 0x024,
  204. NvRegMSIIrqMask = 0x030,
  205. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  206. NvRegMisc1 = 0x080,
  207. #define NVREG_MISC1_PAUSE_TX 0x01
  208. #define NVREG_MISC1_HD 0x02
  209. #define NVREG_MISC1_FORCE 0x3b0f3c
  210. NvRegMacReset = 0x3c,
  211. #define NVREG_MAC_RESET_ASSERT 0x0F3
  212. NvRegTransmitterControl = 0x084,
  213. #define NVREG_XMITCTL_START 0x01
  214. NvRegTransmitterStatus = 0x088,
  215. #define NVREG_XMITSTAT_BUSY 0x01
  216. NvRegPacketFilterFlags = 0x8c,
  217. #define NVREG_PFF_PAUSE_RX 0x08
  218. #define NVREG_PFF_ALWAYS 0x7F0000
  219. #define NVREG_PFF_PROMISC 0x80
  220. #define NVREG_PFF_MYADDR 0x20
  221. #define NVREG_PFF_LOOPBACK 0x10
  222. NvRegOffloadConfig = 0x90,
  223. #define NVREG_OFFLOAD_HOMEPHY 0x601
  224. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  225. NvRegReceiverControl = 0x094,
  226. #define NVREG_RCVCTL_START 0x01
  227. NvRegReceiverStatus = 0x98,
  228. #define NVREG_RCVSTAT_BUSY 0x01
  229. NvRegRandomSeed = 0x9c,
  230. #define NVREG_RNDSEED_MASK 0x00ff
  231. #define NVREG_RNDSEED_FORCE 0x7f00
  232. #define NVREG_RNDSEED_FORCE2 0x2d00
  233. #define NVREG_RNDSEED_FORCE3 0x7400
  234. NvRegTxDeferral = 0xA0,
  235. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  236. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  237. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  238. NvRegRxDeferral = 0xA4,
  239. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  240. NvRegMacAddrA = 0xA8,
  241. NvRegMacAddrB = 0xAC,
  242. NvRegMulticastAddrA = 0xB0,
  243. #define NVREG_MCASTADDRA_FORCE 0x01
  244. NvRegMulticastAddrB = 0xB4,
  245. NvRegMulticastMaskA = 0xB8,
  246. NvRegMulticastMaskB = 0xBC,
  247. NvRegPhyInterface = 0xC0,
  248. #define PHY_RGMII 0x10000000
  249. NvRegTxRingPhysAddr = 0x100,
  250. NvRegRxRingPhysAddr = 0x104,
  251. NvRegRingSizes = 0x108,
  252. #define NVREG_RINGSZ_TXSHIFT 0
  253. #define NVREG_RINGSZ_RXSHIFT 16
  254. NvRegTransmitPoll = 0x10c,
  255. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  256. NvRegLinkSpeed = 0x110,
  257. #define NVREG_LINKSPEED_FORCE 0x10000
  258. #define NVREG_LINKSPEED_10 1000
  259. #define NVREG_LINKSPEED_100 100
  260. #define NVREG_LINKSPEED_1000 50
  261. #define NVREG_LINKSPEED_MASK (0xFFF)
  262. NvRegUnknownSetupReg5 = 0x130,
  263. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  264. NvRegTxWatermark = 0x13c,
  265. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  266. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  267. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  268. NvRegTxRxControl = 0x144,
  269. #define NVREG_TXRXCTL_KICK 0x0001
  270. #define NVREG_TXRXCTL_BIT1 0x0002
  271. #define NVREG_TXRXCTL_BIT2 0x0004
  272. #define NVREG_TXRXCTL_IDLE 0x0008
  273. #define NVREG_TXRXCTL_RESET 0x0010
  274. #define NVREG_TXRXCTL_RXCHECK 0x0400
  275. #define NVREG_TXRXCTL_DESC_1 0
  276. #define NVREG_TXRXCTL_DESC_2 0x02100
  277. #define NVREG_TXRXCTL_DESC_3 0x02200
  278. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  279. #define NVREG_TXRXCTL_VLANINS 0x00080
  280. NvRegTxRingPhysAddrHigh = 0x148,
  281. NvRegRxRingPhysAddrHigh = 0x14C,
  282. NvRegTxPauseFrame = 0x170,
  283. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  284. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  285. NvRegMIIStatus = 0x180,
  286. #define NVREG_MIISTAT_ERROR 0x0001
  287. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  288. #define NVREG_MIISTAT_MASK 0x000f
  289. #define NVREG_MIISTAT_MASK2 0x000f
  290. NvRegUnknownSetupReg4 = 0x184,
  291. #define NVREG_UNKSETUP4_VAL 8
  292. NvRegAdapterControl = 0x188,
  293. #define NVREG_ADAPTCTL_START 0x02
  294. #define NVREG_ADAPTCTL_LINKUP 0x04
  295. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  296. #define NVREG_ADAPTCTL_RUNNING 0x100000
  297. #define NVREG_ADAPTCTL_PHYSHIFT 24
  298. NvRegMIISpeed = 0x18c,
  299. #define NVREG_MIISPEED_BIT8 (1<<8)
  300. #define NVREG_MIIDELAY 5
  301. NvRegMIIControl = 0x190,
  302. #define NVREG_MIICTL_INUSE 0x08000
  303. #define NVREG_MIICTL_WRITE 0x00400
  304. #define NVREG_MIICTL_ADDRSHIFT 5
  305. NvRegMIIData = 0x194,
  306. NvRegWakeUpFlags = 0x200,
  307. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  308. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  309. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  310. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  311. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  312. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  313. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  314. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  315. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  316. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  317. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  318. NvRegPatternCRC = 0x204,
  319. NvRegPatternMask = 0x208,
  320. NvRegPowerCap = 0x268,
  321. #define NVREG_POWERCAP_D3SUPP (1<<30)
  322. #define NVREG_POWERCAP_D2SUPP (1<<26)
  323. #define NVREG_POWERCAP_D1SUPP (1<<25)
  324. NvRegPowerState = 0x26c,
  325. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  326. #define NVREG_POWERSTATE_VALID 0x0100
  327. #define NVREG_POWERSTATE_MASK 0x0003
  328. #define NVREG_POWERSTATE_D0 0x0000
  329. #define NVREG_POWERSTATE_D1 0x0001
  330. #define NVREG_POWERSTATE_D2 0x0002
  331. #define NVREG_POWERSTATE_D3 0x0003
  332. NvRegTxCnt = 0x280,
  333. NvRegTxZeroReXmt = 0x284,
  334. NvRegTxOneReXmt = 0x288,
  335. NvRegTxManyReXmt = 0x28c,
  336. NvRegTxLateCol = 0x290,
  337. NvRegTxUnderflow = 0x294,
  338. NvRegTxLossCarrier = 0x298,
  339. NvRegTxExcessDef = 0x29c,
  340. NvRegTxRetryErr = 0x2a0,
  341. NvRegRxFrameErr = 0x2a4,
  342. NvRegRxExtraByte = 0x2a8,
  343. NvRegRxLateCol = 0x2ac,
  344. NvRegRxRunt = 0x2b0,
  345. NvRegRxFrameTooLong = 0x2b4,
  346. NvRegRxOverflow = 0x2b8,
  347. NvRegRxFCSErr = 0x2bc,
  348. NvRegRxFrameAlignErr = 0x2c0,
  349. NvRegRxLenErr = 0x2c4,
  350. NvRegRxUnicast = 0x2c8,
  351. NvRegRxMulticast = 0x2cc,
  352. NvRegRxBroadcast = 0x2d0,
  353. NvRegTxDef = 0x2d4,
  354. NvRegTxFrame = 0x2d8,
  355. NvRegRxCnt = 0x2dc,
  356. NvRegTxPause = 0x2e0,
  357. NvRegRxPause = 0x2e4,
  358. NvRegRxDropFrame = 0x2e8,
  359. NvRegVlanControl = 0x300,
  360. #define NVREG_VLANCONTROL_ENABLE 0x2000
  361. NvRegMSIXMap0 = 0x3e0,
  362. NvRegMSIXMap1 = 0x3e4,
  363. NvRegMSIXIrqStatus = 0x3f0,
  364. NvRegPowerState2 = 0x600,
  365. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  366. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  367. };
  368. /* Big endian: should work, but is untested */
  369. struct ring_desc {
  370. __le32 buf;
  371. __le32 flaglen;
  372. };
  373. struct ring_desc_ex {
  374. __le32 bufhigh;
  375. __le32 buflow;
  376. __le32 txvlan;
  377. __le32 flaglen;
  378. };
  379. union ring_type {
  380. struct ring_desc* orig;
  381. struct ring_desc_ex* ex;
  382. };
  383. #define FLAG_MASK_V1 0xffff0000
  384. #define FLAG_MASK_V2 0xffffc000
  385. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  386. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  387. #define NV_TX_LASTPACKET (1<<16)
  388. #define NV_TX_RETRYERROR (1<<19)
  389. #define NV_TX_FORCED_INTERRUPT (1<<24)
  390. #define NV_TX_DEFERRED (1<<26)
  391. #define NV_TX_CARRIERLOST (1<<27)
  392. #define NV_TX_LATECOLLISION (1<<28)
  393. #define NV_TX_UNDERFLOW (1<<29)
  394. #define NV_TX_ERROR (1<<30)
  395. #define NV_TX_VALID (1<<31)
  396. #define NV_TX2_LASTPACKET (1<<29)
  397. #define NV_TX2_RETRYERROR (1<<18)
  398. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  399. #define NV_TX2_DEFERRED (1<<25)
  400. #define NV_TX2_CARRIERLOST (1<<26)
  401. #define NV_TX2_LATECOLLISION (1<<27)
  402. #define NV_TX2_UNDERFLOW (1<<28)
  403. /* error and valid are the same for both */
  404. #define NV_TX2_ERROR (1<<30)
  405. #define NV_TX2_VALID (1<<31)
  406. #define NV_TX2_TSO (1<<28)
  407. #define NV_TX2_TSO_SHIFT 14
  408. #define NV_TX2_TSO_MAX_SHIFT 14
  409. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  410. #define NV_TX2_CHECKSUM_L3 (1<<27)
  411. #define NV_TX2_CHECKSUM_L4 (1<<26)
  412. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  413. #define NV_RX_DESCRIPTORVALID (1<<16)
  414. #define NV_RX_MISSEDFRAME (1<<17)
  415. #define NV_RX_SUBSTRACT1 (1<<18)
  416. #define NV_RX_ERROR1 (1<<23)
  417. #define NV_RX_ERROR2 (1<<24)
  418. #define NV_RX_ERROR3 (1<<25)
  419. #define NV_RX_ERROR4 (1<<26)
  420. #define NV_RX_CRCERR (1<<27)
  421. #define NV_RX_OVERFLOW (1<<28)
  422. #define NV_RX_FRAMINGERR (1<<29)
  423. #define NV_RX_ERROR (1<<30)
  424. #define NV_RX_AVAIL (1<<31)
  425. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  426. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  427. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  428. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  429. #define NV_RX2_DESCRIPTORVALID (1<<29)
  430. #define NV_RX2_SUBSTRACT1 (1<<25)
  431. #define NV_RX2_ERROR1 (1<<18)
  432. #define NV_RX2_ERROR2 (1<<19)
  433. #define NV_RX2_ERROR3 (1<<20)
  434. #define NV_RX2_ERROR4 (1<<21)
  435. #define NV_RX2_CRCERR (1<<22)
  436. #define NV_RX2_OVERFLOW (1<<23)
  437. #define NV_RX2_FRAMINGERR (1<<24)
  438. /* error and avail are the same for both */
  439. #define NV_RX2_ERROR (1<<30)
  440. #define NV_RX2_AVAIL (1<<31)
  441. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  442. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  443. /* Miscelaneous hardware related defines: */
  444. #define NV_PCI_REGSZ_VER1 0x270
  445. #define NV_PCI_REGSZ_VER2 0x604
  446. /* various timeout delays: all in usec */
  447. #define NV_TXRX_RESET_DELAY 4
  448. #define NV_TXSTOP_DELAY1 10
  449. #define NV_TXSTOP_DELAY1MAX 500000
  450. #define NV_TXSTOP_DELAY2 100
  451. #define NV_RXSTOP_DELAY1 10
  452. #define NV_RXSTOP_DELAY1MAX 500000
  453. #define NV_RXSTOP_DELAY2 100
  454. #define NV_SETUP5_DELAY 5
  455. #define NV_SETUP5_DELAYMAX 50000
  456. #define NV_POWERUP_DELAY 5
  457. #define NV_POWERUP_DELAYMAX 5000
  458. #define NV_MIIBUSY_DELAY 50
  459. #define NV_MIIPHY_DELAY 10
  460. #define NV_MIIPHY_DELAYMAX 10000
  461. #define NV_MAC_RESET_DELAY 64
  462. #define NV_WAKEUPPATTERNS 5
  463. #define NV_WAKEUPMASKENTRIES 4
  464. /* General driver defaults */
  465. #define NV_WATCHDOG_TIMEO (5*HZ)
  466. #define RX_RING_DEFAULT 128
  467. #define TX_RING_DEFAULT 256
  468. #define RX_RING_MIN 128
  469. #define TX_RING_MIN 64
  470. #define RING_MAX_DESC_VER_1 1024
  471. #define RING_MAX_DESC_VER_2_3 16384
  472. /*
  473. * Difference between the get and put pointers for the tx ring.
  474. * This is used to throttle the amount of data outstanding in the
  475. * tx ring.
  476. */
  477. #define TX_LIMIT_DIFFERENCE 1
  478. /* rx/tx mac addr + type + vlan + align + slack*/
  479. #define NV_RX_HEADERS (64)
  480. /* even more slack. */
  481. #define NV_RX_ALLOC_PAD (64)
  482. /* maximum mtu size */
  483. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  484. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  485. #define OOM_REFILL (1+HZ/20)
  486. #define POLL_WAIT (1+HZ/100)
  487. #define LINK_TIMEOUT (3*HZ)
  488. #define STATS_INTERVAL (10*HZ)
  489. /*
  490. * desc_ver values:
  491. * The nic supports three different descriptor types:
  492. * - DESC_VER_1: Original
  493. * - DESC_VER_2: support for jumbo frames.
  494. * - DESC_VER_3: 64-bit format.
  495. */
  496. #define DESC_VER_1 1
  497. #define DESC_VER_2 2
  498. #define DESC_VER_3 3
  499. /* PHY defines */
  500. #define PHY_OUI_MARVELL 0x5043
  501. #define PHY_OUI_CICADA 0x03f1
  502. #define PHYID1_OUI_MASK 0x03ff
  503. #define PHYID1_OUI_SHFT 6
  504. #define PHYID2_OUI_MASK 0xfc00
  505. #define PHYID2_OUI_SHFT 10
  506. #define PHY_INIT1 0x0f000
  507. #define PHY_INIT2 0x0e00
  508. #define PHY_INIT3 0x01000
  509. #define PHY_INIT4 0x0200
  510. #define PHY_INIT5 0x0004
  511. #define PHY_INIT6 0x02000
  512. #define PHY_GIGABIT 0x0100
  513. #define PHY_TIMEOUT 0x1
  514. #define PHY_ERROR 0x2
  515. #define PHY_100 0x1
  516. #define PHY_1000 0x2
  517. #define PHY_HALF 0x100
  518. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  519. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  520. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  521. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  522. #define NV_PAUSEFRAME_RX_REQ 0x0010
  523. #define NV_PAUSEFRAME_TX_REQ 0x0020
  524. #define NV_PAUSEFRAME_AUTONEG 0x0040
  525. /* MSI/MSI-X defines */
  526. #define NV_MSI_X_MAX_VECTORS 8
  527. #define NV_MSI_X_VECTORS_MASK 0x000f
  528. #define NV_MSI_CAPABLE 0x0010
  529. #define NV_MSI_X_CAPABLE 0x0020
  530. #define NV_MSI_ENABLED 0x0040
  531. #define NV_MSI_X_ENABLED 0x0080
  532. #define NV_MSI_X_VECTOR_ALL 0x0
  533. #define NV_MSI_X_VECTOR_RX 0x0
  534. #define NV_MSI_X_VECTOR_TX 0x1
  535. #define NV_MSI_X_VECTOR_OTHER 0x2
  536. /* statistics */
  537. struct nv_ethtool_str {
  538. char name[ETH_GSTRING_LEN];
  539. };
  540. static const struct nv_ethtool_str nv_estats_str[] = {
  541. { "tx_bytes" },
  542. { "tx_zero_rexmt" },
  543. { "tx_one_rexmt" },
  544. { "tx_many_rexmt" },
  545. { "tx_late_collision" },
  546. { "tx_fifo_errors" },
  547. { "tx_carrier_errors" },
  548. { "tx_excess_deferral" },
  549. { "tx_retry_error" },
  550. { "tx_deferral" },
  551. { "tx_packets" },
  552. { "tx_pause" },
  553. { "rx_frame_error" },
  554. { "rx_extra_byte" },
  555. { "rx_late_collision" },
  556. { "rx_runt" },
  557. { "rx_frame_too_long" },
  558. { "rx_over_errors" },
  559. { "rx_crc_errors" },
  560. { "rx_frame_align_error" },
  561. { "rx_length_error" },
  562. { "rx_unicast" },
  563. { "rx_multicast" },
  564. { "rx_broadcast" },
  565. { "rx_bytes" },
  566. { "rx_pause" },
  567. { "rx_drop_frame" },
  568. { "rx_packets" },
  569. { "rx_errors_total" }
  570. };
  571. struct nv_ethtool_stats {
  572. u64 tx_bytes;
  573. u64 tx_zero_rexmt;
  574. u64 tx_one_rexmt;
  575. u64 tx_many_rexmt;
  576. u64 tx_late_collision;
  577. u64 tx_fifo_errors;
  578. u64 tx_carrier_errors;
  579. u64 tx_excess_deferral;
  580. u64 tx_retry_error;
  581. u64 tx_deferral;
  582. u64 tx_packets;
  583. u64 tx_pause;
  584. u64 rx_frame_error;
  585. u64 rx_extra_byte;
  586. u64 rx_late_collision;
  587. u64 rx_runt;
  588. u64 rx_frame_too_long;
  589. u64 rx_over_errors;
  590. u64 rx_crc_errors;
  591. u64 rx_frame_align_error;
  592. u64 rx_length_error;
  593. u64 rx_unicast;
  594. u64 rx_multicast;
  595. u64 rx_broadcast;
  596. u64 rx_bytes;
  597. u64 rx_pause;
  598. u64 rx_drop_frame;
  599. u64 rx_packets;
  600. u64 rx_errors_total;
  601. };
  602. /* diagnostics */
  603. #define NV_TEST_COUNT_BASE 3
  604. #define NV_TEST_COUNT_EXTENDED 4
  605. static const struct nv_ethtool_str nv_etests_str[] = {
  606. { "link (online/offline)" },
  607. { "register (offline) " },
  608. { "interrupt (offline) " },
  609. { "loopback (offline) " }
  610. };
  611. struct register_test {
  612. __le32 reg;
  613. __le32 mask;
  614. };
  615. static const struct register_test nv_registers_test[] = {
  616. { NvRegUnknownSetupReg6, 0x01 },
  617. { NvRegMisc1, 0x03c },
  618. { NvRegOffloadConfig, 0x03ff },
  619. { NvRegMulticastAddrA, 0xffffffff },
  620. { NvRegTxWatermark, 0x0ff },
  621. { NvRegWakeUpFlags, 0x07777 },
  622. { 0,0 }
  623. };
  624. /*
  625. * SMP locking:
  626. * All hardware access under dev->priv->lock, except the performance
  627. * critical parts:
  628. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  629. * by the arch code for interrupts.
  630. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  631. * needs dev->priv->lock :-(
  632. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  633. */
  634. /* in dev: base, irq */
  635. struct fe_priv {
  636. spinlock_t lock;
  637. /* General data:
  638. * Locking: spin_lock(&np->lock); */
  639. struct net_device_stats stats;
  640. struct nv_ethtool_stats estats;
  641. int in_shutdown;
  642. u32 linkspeed;
  643. int duplex;
  644. int autoneg;
  645. int fixed_mode;
  646. int phyaddr;
  647. int wolenabled;
  648. unsigned int phy_oui;
  649. u16 gigabit;
  650. int intr_test;
  651. /* General data: RO fields */
  652. dma_addr_t ring_addr;
  653. struct pci_dev *pci_dev;
  654. u32 orig_mac[2];
  655. u32 irqmask;
  656. u32 desc_ver;
  657. u32 txrxctl_bits;
  658. u32 vlanctl_bits;
  659. u32 driver_data;
  660. u32 register_size;
  661. void __iomem *base;
  662. /* rx specific fields.
  663. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  664. */
  665. union ring_type rx_ring;
  666. unsigned int cur_rx, refill_rx;
  667. struct sk_buff **rx_skbuff;
  668. dma_addr_t *rx_dma;
  669. unsigned int rx_buf_sz;
  670. unsigned int pkt_limit;
  671. struct timer_list oom_kick;
  672. struct timer_list nic_poll;
  673. struct timer_list stats_poll;
  674. u32 nic_poll_irq;
  675. int rx_ring_size;
  676. /* media detection workaround.
  677. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  678. */
  679. int need_linktimer;
  680. unsigned long link_timeout;
  681. /*
  682. * tx specific fields.
  683. */
  684. union ring_type tx_ring;
  685. unsigned int next_tx, nic_tx;
  686. struct sk_buff **tx_skbuff;
  687. dma_addr_t *tx_dma;
  688. unsigned int *tx_dma_len;
  689. u32 tx_flags;
  690. int tx_ring_size;
  691. int tx_limit_start;
  692. int tx_limit_stop;
  693. /* vlan fields */
  694. struct vlan_group *vlangrp;
  695. /* msi/msi-x fields */
  696. u32 msi_flags;
  697. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  698. /* flow control */
  699. u32 pause_flags;
  700. };
  701. /*
  702. * Maximum number of loops until we assume that a bit in the irq mask
  703. * is stuck. Overridable with module param.
  704. */
  705. static int max_interrupt_work = 5;
  706. /*
  707. * Optimization can be either throuput mode or cpu mode
  708. *
  709. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  710. * CPU Mode: Interrupts are controlled by a timer.
  711. */
  712. enum {
  713. NV_OPTIMIZATION_MODE_THROUGHPUT,
  714. NV_OPTIMIZATION_MODE_CPU
  715. };
  716. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  717. /*
  718. * Poll interval for timer irq
  719. *
  720. * This interval determines how frequent an interrupt is generated.
  721. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  722. * Min = 0, and Max = 65535
  723. */
  724. static int poll_interval = -1;
  725. /*
  726. * MSI interrupts
  727. */
  728. enum {
  729. NV_MSI_INT_DISABLED,
  730. NV_MSI_INT_ENABLED
  731. };
  732. static int msi = NV_MSI_INT_ENABLED;
  733. /*
  734. * MSIX interrupts
  735. */
  736. enum {
  737. NV_MSIX_INT_DISABLED,
  738. NV_MSIX_INT_ENABLED
  739. };
  740. static int msix = NV_MSIX_INT_ENABLED;
  741. /*
  742. * DMA 64bit
  743. */
  744. enum {
  745. NV_DMA_64BIT_DISABLED,
  746. NV_DMA_64BIT_ENABLED
  747. };
  748. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  749. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  750. {
  751. return netdev_priv(dev);
  752. }
  753. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  754. {
  755. return ((struct fe_priv *)netdev_priv(dev))->base;
  756. }
  757. static inline void pci_push(u8 __iomem *base)
  758. {
  759. /* force out pending posted writes */
  760. readl(base);
  761. }
  762. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  763. {
  764. return le32_to_cpu(prd->flaglen)
  765. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  766. }
  767. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  768. {
  769. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  770. }
  771. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  772. int delay, int delaymax, const char *msg)
  773. {
  774. u8 __iomem *base = get_hwbase(dev);
  775. pci_push(base);
  776. do {
  777. udelay(delay);
  778. delaymax -= delay;
  779. if (delaymax < 0) {
  780. if (msg)
  781. printk(msg);
  782. return 1;
  783. }
  784. } while ((readl(base + offset) & mask) != target);
  785. return 0;
  786. }
  787. #define NV_SETUP_RX_RING 0x01
  788. #define NV_SETUP_TX_RING 0x02
  789. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  790. {
  791. struct fe_priv *np = get_nvpriv(dev);
  792. u8 __iomem *base = get_hwbase(dev);
  793. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  794. if (rxtx_flags & NV_SETUP_RX_RING) {
  795. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  796. }
  797. if (rxtx_flags & NV_SETUP_TX_RING) {
  798. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  799. }
  800. } else {
  801. if (rxtx_flags & NV_SETUP_RX_RING) {
  802. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  803. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  804. }
  805. if (rxtx_flags & NV_SETUP_TX_RING) {
  806. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  807. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  808. }
  809. }
  810. }
  811. static void free_rings(struct net_device *dev)
  812. {
  813. struct fe_priv *np = get_nvpriv(dev);
  814. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  815. if (np->rx_ring.orig)
  816. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  817. np->rx_ring.orig, np->ring_addr);
  818. } else {
  819. if (np->rx_ring.ex)
  820. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  821. np->rx_ring.ex, np->ring_addr);
  822. }
  823. if (np->rx_skbuff)
  824. kfree(np->rx_skbuff);
  825. if (np->rx_dma)
  826. kfree(np->rx_dma);
  827. if (np->tx_skbuff)
  828. kfree(np->tx_skbuff);
  829. if (np->tx_dma)
  830. kfree(np->tx_dma);
  831. if (np->tx_dma_len)
  832. kfree(np->tx_dma_len);
  833. }
  834. static int using_multi_irqs(struct net_device *dev)
  835. {
  836. struct fe_priv *np = get_nvpriv(dev);
  837. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  838. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  839. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  840. return 0;
  841. else
  842. return 1;
  843. }
  844. static void nv_enable_irq(struct net_device *dev)
  845. {
  846. struct fe_priv *np = get_nvpriv(dev);
  847. if (!using_multi_irqs(dev)) {
  848. if (np->msi_flags & NV_MSI_X_ENABLED)
  849. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  850. else
  851. enable_irq(dev->irq);
  852. } else {
  853. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  854. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  855. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  856. }
  857. }
  858. static void nv_disable_irq(struct net_device *dev)
  859. {
  860. struct fe_priv *np = get_nvpriv(dev);
  861. if (!using_multi_irqs(dev)) {
  862. if (np->msi_flags & NV_MSI_X_ENABLED)
  863. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  864. else
  865. disable_irq(dev->irq);
  866. } else {
  867. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  868. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  869. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  870. }
  871. }
  872. /* In MSIX mode, a write to irqmask behaves as XOR */
  873. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  874. {
  875. u8 __iomem *base = get_hwbase(dev);
  876. writel(mask, base + NvRegIrqMask);
  877. }
  878. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  879. {
  880. struct fe_priv *np = get_nvpriv(dev);
  881. u8 __iomem *base = get_hwbase(dev);
  882. if (np->msi_flags & NV_MSI_X_ENABLED) {
  883. writel(mask, base + NvRegIrqMask);
  884. } else {
  885. if (np->msi_flags & NV_MSI_ENABLED)
  886. writel(0, base + NvRegMSIIrqMask);
  887. writel(0, base + NvRegIrqMask);
  888. }
  889. }
  890. #define MII_READ (-1)
  891. /* mii_rw: read/write a register on the PHY.
  892. *
  893. * Caller must guarantee serialization
  894. */
  895. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  896. {
  897. u8 __iomem *base = get_hwbase(dev);
  898. u32 reg;
  899. int retval;
  900. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  901. reg = readl(base + NvRegMIIControl);
  902. if (reg & NVREG_MIICTL_INUSE) {
  903. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  904. udelay(NV_MIIBUSY_DELAY);
  905. }
  906. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  907. if (value != MII_READ) {
  908. writel(value, base + NvRegMIIData);
  909. reg |= NVREG_MIICTL_WRITE;
  910. }
  911. writel(reg, base + NvRegMIIControl);
  912. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  913. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  914. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  915. dev->name, miireg, addr);
  916. retval = -1;
  917. } else if (value != MII_READ) {
  918. /* it was a write operation - fewer failures are detectable */
  919. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  920. dev->name, value, miireg, addr);
  921. retval = 0;
  922. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  923. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  924. dev->name, miireg, addr);
  925. retval = -1;
  926. } else {
  927. retval = readl(base + NvRegMIIData);
  928. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  929. dev->name, miireg, addr, retval);
  930. }
  931. return retval;
  932. }
  933. static int phy_reset(struct net_device *dev)
  934. {
  935. struct fe_priv *np = netdev_priv(dev);
  936. u32 miicontrol;
  937. unsigned int tries = 0;
  938. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  939. miicontrol |= BMCR_RESET;
  940. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  941. return -1;
  942. }
  943. /* wait for 500ms */
  944. msleep(500);
  945. /* must wait till reset is deasserted */
  946. while (miicontrol & BMCR_RESET) {
  947. msleep(10);
  948. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  949. /* FIXME: 100 tries seem excessive */
  950. if (tries++ > 100)
  951. return -1;
  952. }
  953. return 0;
  954. }
  955. static int phy_init(struct net_device *dev)
  956. {
  957. struct fe_priv *np = get_nvpriv(dev);
  958. u8 __iomem *base = get_hwbase(dev);
  959. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  960. /* set advertise register */
  961. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  962. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  963. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  964. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  965. return PHY_ERROR;
  966. }
  967. /* get phy interface type */
  968. phyinterface = readl(base + NvRegPhyInterface);
  969. /* see if gigabit phy */
  970. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  971. if (mii_status & PHY_GIGABIT) {
  972. np->gigabit = PHY_GIGABIT;
  973. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  974. mii_control_1000 &= ~ADVERTISE_1000HALF;
  975. if (phyinterface & PHY_RGMII)
  976. mii_control_1000 |= ADVERTISE_1000FULL;
  977. else
  978. mii_control_1000 &= ~ADVERTISE_1000FULL;
  979. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  980. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  981. return PHY_ERROR;
  982. }
  983. }
  984. else
  985. np->gigabit = 0;
  986. /* reset the phy */
  987. if (phy_reset(dev)) {
  988. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  989. return PHY_ERROR;
  990. }
  991. /* phy vendor specific configuration */
  992. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  993. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  994. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  995. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  996. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  997. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  998. return PHY_ERROR;
  999. }
  1000. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1001. phy_reserved |= PHY_INIT5;
  1002. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1003. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1004. return PHY_ERROR;
  1005. }
  1006. }
  1007. if (np->phy_oui == PHY_OUI_CICADA) {
  1008. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1009. phy_reserved |= PHY_INIT6;
  1010. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1011. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1012. return PHY_ERROR;
  1013. }
  1014. }
  1015. /* some phys clear out pause advertisment on reset, set it back */
  1016. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1017. /* restart auto negotiation */
  1018. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1019. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1020. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1021. return PHY_ERROR;
  1022. }
  1023. return 0;
  1024. }
  1025. static void nv_start_rx(struct net_device *dev)
  1026. {
  1027. struct fe_priv *np = netdev_priv(dev);
  1028. u8 __iomem *base = get_hwbase(dev);
  1029. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1030. /* Already running? Stop it. */
  1031. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  1032. writel(0, base + NvRegReceiverControl);
  1033. pci_push(base);
  1034. }
  1035. writel(np->linkspeed, base + NvRegLinkSpeed);
  1036. pci_push(base);
  1037. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  1038. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1039. dev->name, np->duplex, np->linkspeed);
  1040. pci_push(base);
  1041. }
  1042. static void nv_stop_rx(struct net_device *dev)
  1043. {
  1044. u8 __iomem *base = get_hwbase(dev);
  1045. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1046. writel(0, base + NvRegReceiverControl);
  1047. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1048. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1049. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1050. udelay(NV_RXSTOP_DELAY2);
  1051. writel(0, base + NvRegLinkSpeed);
  1052. }
  1053. static void nv_start_tx(struct net_device *dev)
  1054. {
  1055. u8 __iomem *base = get_hwbase(dev);
  1056. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1057. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  1058. pci_push(base);
  1059. }
  1060. static void nv_stop_tx(struct net_device *dev)
  1061. {
  1062. u8 __iomem *base = get_hwbase(dev);
  1063. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1064. writel(0, base + NvRegTransmitterControl);
  1065. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1066. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1067. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1068. udelay(NV_TXSTOP_DELAY2);
  1069. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  1070. }
  1071. static void nv_txrx_reset(struct net_device *dev)
  1072. {
  1073. struct fe_priv *np = netdev_priv(dev);
  1074. u8 __iomem *base = get_hwbase(dev);
  1075. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1076. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1077. pci_push(base);
  1078. udelay(NV_TXRX_RESET_DELAY);
  1079. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1080. pci_push(base);
  1081. }
  1082. static void nv_mac_reset(struct net_device *dev)
  1083. {
  1084. struct fe_priv *np = netdev_priv(dev);
  1085. u8 __iomem *base = get_hwbase(dev);
  1086. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1087. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1088. pci_push(base);
  1089. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1090. pci_push(base);
  1091. udelay(NV_MAC_RESET_DELAY);
  1092. writel(0, base + NvRegMacReset);
  1093. pci_push(base);
  1094. udelay(NV_MAC_RESET_DELAY);
  1095. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1096. pci_push(base);
  1097. }
  1098. /*
  1099. * nv_get_stats: dev->get_stats function
  1100. * Get latest stats value from the nic.
  1101. * Called with read_lock(&dev_base_lock) held for read -
  1102. * only synchronized against unregister_netdevice.
  1103. */
  1104. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1105. {
  1106. struct fe_priv *np = netdev_priv(dev);
  1107. /* It seems that the nic always generates interrupts and doesn't
  1108. * accumulate errors internally. Thus the current values in np->stats
  1109. * are already up to date.
  1110. */
  1111. return &np->stats;
  1112. }
  1113. /*
  1114. * nv_alloc_rx: fill rx ring entries.
  1115. * Return 1 if the allocations for the skbs failed and the
  1116. * rx engine is without Available descriptors
  1117. */
  1118. static int nv_alloc_rx(struct net_device *dev)
  1119. {
  1120. struct fe_priv *np = netdev_priv(dev);
  1121. unsigned int refill_rx = np->refill_rx;
  1122. int nr;
  1123. while (np->cur_rx != refill_rx) {
  1124. struct sk_buff *skb;
  1125. nr = refill_rx % np->rx_ring_size;
  1126. if (np->rx_skbuff[nr] == NULL) {
  1127. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1128. if (!skb)
  1129. break;
  1130. skb->dev = dev;
  1131. np->rx_skbuff[nr] = skb;
  1132. } else {
  1133. skb = np->rx_skbuff[nr];
  1134. }
  1135. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  1136. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  1137. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1138. np->rx_ring.orig[nr].buf = cpu_to_le32(np->rx_dma[nr]);
  1139. wmb();
  1140. np->rx_ring.orig[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1141. } else {
  1142. np->rx_ring.ex[nr].bufhigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  1143. np->rx_ring.ex[nr].buflow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  1144. wmb();
  1145. np->rx_ring.ex[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1146. }
  1147. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  1148. dev->name, refill_rx);
  1149. refill_rx++;
  1150. }
  1151. np->refill_rx = refill_rx;
  1152. if (np->cur_rx - refill_rx == np->rx_ring_size)
  1153. return 1;
  1154. return 0;
  1155. }
  1156. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1157. #ifdef CONFIG_FORCEDETH_NAPI
  1158. static void nv_do_rx_refill(unsigned long data)
  1159. {
  1160. struct net_device *dev = (struct net_device *) data;
  1161. /* Just reschedule NAPI rx processing */
  1162. netif_rx_schedule(dev);
  1163. }
  1164. #else
  1165. static void nv_do_rx_refill(unsigned long data)
  1166. {
  1167. struct net_device *dev = (struct net_device *) data;
  1168. struct fe_priv *np = netdev_priv(dev);
  1169. if (!using_multi_irqs(dev)) {
  1170. if (np->msi_flags & NV_MSI_X_ENABLED)
  1171. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1172. else
  1173. disable_irq(dev->irq);
  1174. } else {
  1175. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1176. }
  1177. if (nv_alloc_rx(dev)) {
  1178. spin_lock_irq(&np->lock);
  1179. if (!np->in_shutdown)
  1180. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1181. spin_unlock_irq(&np->lock);
  1182. }
  1183. if (!using_multi_irqs(dev)) {
  1184. if (np->msi_flags & NV_MSI_X_ENABLED)
  1185. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1186. else
  1187. enable_irq(dev->irq);
  1188. } else {
  1189. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1190. }
  1191. }
  1192. #endif
  1193. static void nv_init_rx(struct net_device *dev)
  1194. {
  1195. struct fe_priv *np = netdev_priv(dev);
  1196. int i;
  1197. np->cur_rx = np->rx_ring_size;
  1198. np->refill_rx = 0;
  1199. for (i = 0; i < np->rx_ring_size; i++)
  1200. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1201. np->rx_ring.orig[i].flaglen = 0;
  1202. else
  1203. np->rx_ring.ex[i].flaglen = 0;
  1204. }
  1205. static void nv_init_tx(struct net_device *dev)
  1206. {
  1207. struct fe_priv *np = netdev_priv(dev);
  1208. int i;
  1209. np->next_tx = np->nic_tx = 0;
  1210. for (i = 0; i < np->tx_ring_size; i++) {
  1211. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1212. np->tx_ring.orig[i].flaglen = 0;
  1213. else
  1214. np->tx_ring.ex[i].flaglen = 0;
  1215. np->tx_skbuff[i] = NULL;
  1216. np->tx_dma[i] = 0;
  1217. }
  1218. }
  1219. static int nv_init_ring(struct net_device *dev)
  1220. {
  1221. nv_init_tx(dev);
  1222. nv_init_rx(dev);
  1223. return nv_alloc_rx(dev);
  1224. }
  1225. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  1226. {
  1227. struct fe_priv *np = netdev_priv(dev);
  1228. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  1229. dev->name, skbnr);
  1230. if (np->tx_dma[skbnr]) {
  1231. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  1232. np->tx_dma_len[skbnr],
  1233. PCI_DMA_TODEVICE);
  1234. np->tx_dma[skbnr] = 0;
  1235. }
  1236. if (np->tx_skbuff[skbnr]) {
  1237. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  1238. np->tx_skbuff[skbnr] = NULL;
  1239. return 1;
  1240. } else {
  1241. return 0;
  1242. }
  1243. }
  1244. static void nv_drain_tx(struct net_device *dev)
  1245. {
  1246. struct fe_priv *np = netdev_priv(dev);
  1247. unsigned int i;
  1248. for (i = 0; i < np->tx_ring_size; i++) {
  1249. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1250. np->tx_ring.orig[i].flaglen = 0;
  1251. else
  1252. np->tx_ring.ex[i].flaglen = 0;
  1253. if (nv_release_txskb(dev, i))
  1254. np->stats.tx_dropped++;
  1255. }
  1256. }
  1257. static void nv_drain_rx(struct net_device *dev)
  1258. {
  1259. struct fe_priv *np = netdev_priv(dev);
  1260. int i;
  1261. for (i = 0; i < np->rx_ring_size; i++) {
  1262. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1263. np->rx_ring.orig[i].flaglen = 0;
  1264. else
  1265. np->rx_ring.ex[i].flaglen = 0;
  1266. wmb();
  1267. if (np->rx_skbuff[i]) {
  1268. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1269. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1270. PCI_DMA_FROMDEVICE);
  1271. dev_kfree_skb(np->rx_skbuff[i]);
  1272. np->rx_skbuff[i] = NULL;
  1273. }
  1274. }
  1275. }
  1276. static void drain_ring(struct net_device *dev)
  1277. {
  1278. nv_drain_tx(dev);
  1279. nv_drain_rx(dev);
  1280. }
  1281. /*
  1282. * nv_start_xmit: dev->hard_start_xmit function
  1283. * Called with netif_tx_lock held.
  1284. */
  1285. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1286. {
  1287. struct fe_priv *np = netdev_priv(dev);
  1288. u32 tx_flags = 0;
  1289. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1290. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1291. unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
  1292. unsigned int start_nr = np->next_tx % np->tx_ring_size;
  1293. unsigned int i;
  1294. u32 offset = 0;
  1295. u32 bcnt;
  1296. u32 size = skb->len-skb->data_len;
  1297. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1298. u32 tx_flags_vlan = 0;
  1299. /* add fragments to entries count */
  1300. for (i = 0; i < fragments; i++) {
  1301. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1302. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1303. }
  1304. spin_lock_irq(&np->lock);
  1305. if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
  1306. spin_unlock_irq(&np->lock);
  1307. netif_stop_queue(dev);
  1308. return NETDEV_TX_BUSY;
  1309. }
  1310. /* setup the header buffer */
  1311. do {
  1312. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1313. nr = (nr + 1) % np->tx_ring_size;
  1314. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1315. PCI_DMA_TODEVICE);
  1316. np->tx_dma_len[nr] = bcnt;
  1317. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1318. np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
  1319. np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1320. } else {
  1321. np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1322. np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1323. np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1324. }
  1325. tx_flags = np->tx_flags;
  1326. offset += bcnt;
  1327. size -= bcnt;
  1328. } while (size);
  1329. /* setup the fragments */
  1330. for (i = 0; i < fragments; i++) {
  1331. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1332. u32 size = frag->size;
  1333. offset = 0;
  1334. do {
  1335. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1336. nr = (nr + 1) % np->tx_ring_size;
  1337. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1338. PCI_DMA_TODEVICE);
  1339. np->tx_dma_len[nr] = bcnt;
  1340. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1341. np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
  1342. np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1343. } else {
  1344. np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1345. np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1346. np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1347. }
  1348. offset += bcnt;
  1349. size -= bcnt;
  1350. } while (size);
  1351. }
  1352. /* set last fragment flag */
  1353. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1354. np->tx_ring.orig[nr].flaglen |= cpu_to_le32(tx_flags_extra);
  1355. } else {
  1356. np->tx_ring.ex[nr].flaglen |= cpu_to_le32(tx_flags_extra);
  1357. }
  1358. np->tx_skbuff[nr] = skb;
  1359. #ifdef NETIF_F_TSO
  1360. if (skb_is_gso(skb))
  1361. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1362. else
  1363. #endif
  1364. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1365. /* vlan tag */
  1366. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1367. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1368. }
  1369. /* set tx flags */
  1370. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1371. np->tx_ring.orig[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1372. } else {
  1373. np->tx_ring.ex[start_nr].txvlan = cpu_to_le32(tx_flags_vlan);
  1374. np->tx_ring.ex[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1375. }
  1376. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1377. dev->name, np->next_tx, entries, tx_flags_extra);
  1378. {
  1379. int j;
  1380. for (j=0; j<64; j++) {
  1381. if ((j%16) == 0)
  1382. dprintk("\n%03x:", j);
  1383. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1384. }
  1385. dprintk("\n");
  1386. }
  1387. np->next_tx += entries;
  1388. dev->trans_start = jiffies;
  1389. spin_unlock_irq(&np->lock);
  1390. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1391. pci_push(get_hwbase(dev));
  1392. return NETDEV_TX_OK;
  1393. }
  1394. /*
  1395. * nv_tx_done: check for completed packets, release the skbs.
  1396. *
  1397. * Caller must own np->lock.
  1398. */
  1399. static void nv_tx_done(struct net_device *dev)
  1400. {
  1401. struct fe_priv *np = netdev_priv(dev);
  1402. u32 flags;
  1403. unsigned int i;
  1404. struct sk_buff *skb;
  1405. while (np->nic_tx != np->next_tx) {
  1406. i = np->nic_tx % np->tx_ring_size;
  1407. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1408. flags = le32_to_cpu(np->tx_ring.orig[i].flaglen);
  1409. else
  1410. flags = le32_to_cpu(np->tx_ring.ex[i].flaglen);
  1411. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, flags 0x%x.\n",
  1412. dev->name, np->nic_tx, flags);
  1413. if (flags & NV_TX_VALID)
  1414. break;
  1415. if (np->desc_ver == DESC_VER_1) {
  1416. if (flags & NV_TX_LASTPACKET) {
  1417. skb = np->tx_skbuff[i];
  1418. if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1419. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1420. if (flags & NV_TX_UNDERFLOW)
  1421. np->stats.tx_fifo_errors++;
  1422. if (flags & NV_TX_CARRIERLOST)
  1423. np->stats.tx_carrier_errors++;
  1424. np->stats.tx_errors++;
  1425. } else {
  1426. np->stats.tx_packets++;
  1427. np->stats.tx_bytes += skb->len;
  1428. }
  1429. }
  1430. } else {
  1431. if (flags & NV_TX2_LASTPACKET) {
  1432. skb = np->tx_skbuff[i];
  1433. if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1434. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1435. if (flags & NV_TX2_UNDERFLOW)
  1436. np->stats.tx_fifo_errors++;
  1437. if (flags & NV_TX2_CARRIERLOST)
  1438. np->stats.tx_carrier_errors++;
  1439. np->stats.tx_errors++;
  1440. } else {
  1441. np->stats.tx_packets++;
  1442. np->stats.tx_bytes += skb->len;
  1443. }
  1444. }
  1445. }
  1446. nv_release_txskb(dev, i);
  1447. np->nic_tx++;
  1448. }
  1449. if (np->next_tx - np->nic_tx < np->tx_limit_start)
  1450. netif_wake_queue(dev);
  1451. }
  1452. /*
  1453. * nv_tx_timeout: dev->tx_timeout function
  1454. * Called with netif_tx_lock held.
  1455. */
  1456. static void nv_tx_timeout(struct net_device *dev)
  1457. {
  1458. struct fe_priv *np = netdev_priv(dev);
  1459. u8 __iomem *base = get_hwbase(dev);
  1460. u32 status;
  1461. if (np->msi_flags & NV_MSI_X_ENABLED)
  1462. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1463. else
  1464. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1465. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1466. {
  1467. int i;
  1468. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1469. dev->name, (unsigned long)np->ring_addr,
  1470. np->next_tx, np->nic_tx);
  1471. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1472. for (i=0;i<=np->register_size;i+= 32) {
  1473. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1474. i,
  1475. readl(base + i + 0), readl(base + i + 4),
  1476. readl(base + i + 8), readl(base + i + 12),
  1477. readl(base + i + 16), readl(base + i + 20),
  1478. readl(base + i + 24), readl(base + i + 28));
  1479. }
  1480. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1481. for (i=0;i<np->tx_ring_size;i+= 4) {
  1482. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1483. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1484. i,
  1485. le32_to_cpu(np->tx_ring.orig[i].buf),
  1486. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1487. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1488. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1489. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1490. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1491. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1492. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1493. } else {
  1494. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1495. i,
  1496. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1497. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1498. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1499. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1500. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1501. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1502. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1503. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1504. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1505. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1506. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1507. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1508. }
  1509. }
  1510. }
  1511. spin_lock_irq(&np->lock);
  1512. /* 1) stop tx engine */
  1513. nv_stop_tx(dev);
  1514. /* 2) check that the packets were not sent already: */
  1515. nv_tx_done(dev);
  1516. /* 3) if there are dead entries: clear everything */
  1517. if (np->next_tx != np->nic_tx) {
  1518. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1519. nv_drain_tx(dev);
  1520. np->next_tx = np->nic_tx = 0;
  1521. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1522. netif_wake_queue(dev);
  1523. }
  1524. /* 4) restart tx engine */
  1525. nv_start_tx(dev);
  1526. spin_unlock_irq(&np->lock);
  1527. }
  1528. /*
  1529. * Called when the nic notices a mismatch between the actual data len on the
  1530. * wire and the len indicated in the 802 header
  1531. */
  1532. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1533. {
  1534. int hdrlen; /* length of the 802 header */
  1535. int protolen; /* length as stored in the proto field */
  1536. /* 1) calculate len according to header */
  1537. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  1538. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1539. hdrlen = VLAN_HLEN;
  1540. } else {
  1541. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1542. hdrlen = ETH_HLEN;
  1543. }
  1544. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1545. dev->name, datalen, protolen, hdrlen);
  1546. if (protolen > ETH_DATA_LEN)
  1547. return datalen; /* Value in proto field not a len, no checks possible */
  1548. protolen += hdrlen;
  1549. /* consistency checks: */
  1550. if (datalen > ETH_ZLEN) {
  1551. if (datalen >= protolen) {
  1552. /* more data on wire than in 802 header, trim of
  1553. * additional data.
  1554. */
  1555. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1556. dev->name, protolen);
  1557. return protolen;
  1558. } else {
  1559. /* less data on wire than mentioned in header.
  1560. * Discard the packet.
  1561. */
  1562. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1563. dev->name);
  1564. return -1;
  1565. }
  1566. } else {
  1567. /* short packet. Accept only if 802 values are also short */
  1568. if (protolen > ETH_ZLEN) {
  1569. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1570. dev->name);
  1571. return -1;
  1572. }
  1573. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1574. dev->name, datalen);
  1575. return datalen;
  1576. }
  1577. }
  1578. static int nv_rx_process(struct net_device *dev, int limit)
  1579. {
  1580. struct fe_priv *np = netdev_priv(dev);
  1581. u32 flags;
  1582. u32 vlanflags = 0;
  1583. int count;
  1584. for (count = 0; count < limit; ++count) {
  1585. struct sk_buff *skb;
  1586. int len;
  1587. int i;
  1588. if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
  1589. break; /* we scanned the whole ring - do not continue */
  1590. i = np->cur_rx % np->rx_ring_size;
  1591. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1592. flags = le32_to_cpu(np->rx_ring.orig[i].flaglen);
  1593. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1594. } else {
  1595. flags = le32_to_cpu(np->rx_ring.ex[i].flaglen);
  1596. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1597. vlanflags = le32_to_cpu(np->rx_ring.ex[i].buflow);
  1598. }
  1599. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, flags 0x%x.\n",
  1600. dev->name, np->cur_rx, flags);
  1601. if (flags & NV_RX_AVAIL)
  1602. break; /* still owned by hardware, */
  1603. /*
  1604. * the packet is for us - immediately tear down the pci mapping.
  1605. * TODO: check if a prefetch of the first cacheline improves
  1606. * the performance.
  1607. */
  1608. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1609. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1610. PCI_DMA_FROMDEVICE);
  1611. {
  1612. int j;
  1613. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  1614. for (j=0; j<64; j++) {
  1615. if ((j%16) == 0)
  1616. dprintk("\n%03x:", j);
  1617. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1618. }
  1619. dprintk("\n");
  1620. }
  1621. /* look at what we actually got: */
  1622. if (np->desc_ver == DESC_VER_1) {
  1623. if (!(flags & NV_RX_DESCRIPTORVALID))
  1624. goto next_pkt;
  1625. if (flags & NV_RX_ERROR) {
  1626. if (flags & NV_RX_MISSEDFRAME) {
  1627. np->stats.rx_missed_errors++;
  1628. np->stats.rx_errors++;
  1629. goto next_pkt;
  1630. }
  1631. if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1632. np->stats.rx_errors++;
  1633. goto next_pkt;
  1634. }
  1635. if (flags & NV_RX_CRCERR) {
  1636. np->stats.rx_crc_errors++;
  1637. np->stats.rx_errors++;
  1638. goto next_pkt;
  1639. }
  1640. if (flags & NV_RX_OVERFLOW) {
  1641. np->stats.rx_over_errors++;
  1642. np->stats.rx_errors++;
  1643. goto next_pkt;
  1644. }
  1645. if (flags & NV_RX_ERROR4) {
  1646. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1647. if (len < 0) {
  1648. np->stats.rx_errors++;
  1649. goto next_pkt;
  1650. }
  1651. }
  1652. /* framing errors are soft errors. */
  1653. if (flags & NV_RX_FRAMINGERR) {
  1654. if (flags & NV_RX_SUBSTRACT1) {
  1655. len--;
  1656. }
  1657. }
  1658. }
  1659. } else {
  1660. if (!(flags & NV_RX2_DESCRIPTORVALID))
  1661. goto next_pkt;
  1662. if (flags & NV_RX2_ERROR) {
  1663. if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1664. np->stats.rx_errors++;
  1665. goto next_pkt;
  1666. }
  1667. if (flags & NV_RX2_CRCERR) {
  1668. np->stats.rx_crc_errors++;
  1669. np->stats.rx_errors++;
  1670. goto next_pkt;
  1671. }
  1672. if (flags & NV_RX2_OVERFLOW) {
  1673. np->stats.rx_over_errors++;
  1674. np->stats.rx_errors++;
  1675. goto next_pkt;
  1676. }
  1677. if (flags & NV_RX2_ERROR4) {
  1678. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1679. if (len < 0) {
  1680. np->stats.rx_errors++;
  1681. goto next_pkt;
  1682. }
  1683. }
  1684. /* framing errors are soft errors */
  1685. if (flags & NV_RX2_FRAMINGERR) {
  1686. if (flags & NV_RX2_SUBSTRACT1) {
  1687. len--;
  1688. }
  1689. }
  1690. }
  1691. if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
  1692. flags &= NV_RX2_CHECKSUMMASK;
  1693. if (flags == NV_RX2_CHECKSUMOK1 ||
  1694. flags == NV_RX2_CHECKSUMOK2 ||
  1695. flags == NV_RX2_CHECKSUMOK3) {
  1696. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1697. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1698. } else {
  1699. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1700. }
  1701. }
  1702. }
  1703. /* got a valid packet - forward it to the network core */
  1704. skb = np->rx_skbuff[i];
  1705. np->rx_skbuff[i] = NULL;
  1706. skb_put(skb, len);
  1707. skb->protocol = eth_type_trans(skb, dev);
  1708. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1709. dev->name, np->cur_rx, len, skb->protocol);
  1710. #ifdef CONFIG_FORCEDETH_NAPI
  1711. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1712. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  1713. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1714. else
  1715. netif_receive_skb(skb);
  1716. #else
  1717. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1718. vlan_hwaccel_rx(skb, np->vlangrp,
  1719. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1720. else
  1721. netif_rx(skb);
  1722. #endif
  1723. dev->last_rx = jiffies;
  1724. np->stats.rx_packets++;
  1725. np->stats.rx_bytes += len;
  1726. next_pkt:
  1727. np->cur_rx++;
  1728. }
  1729. return count;
  1730. }
  1731. static void set_bufsize(struct net_device *dev)
  1732. {
  1733. struct fe_priv *np = netdev_priv(dev);
  1734. if (dev->mtu <= ETH_DATA_LEN)
  1735. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1736. else
  1737. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1738. }
  1739. /*
  1740. * nv_change_mtu: dev->change_mtu function
  1741. * Called with dev_base_lock held for read.
  1742. */
  1743. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1744. {
  1745. struct fe_priv *np = netdev_priv(dev);
  1746. int old_mtu;
  1747. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1748. return -EINVAL;
  1749. old_mtu = dev->mtu;
  1750. dev->mtu = new_mtu;
  1751. /* return early if the buffer sizes will not change */
  1752. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1753. return 0;
  1754. if (old_mtu == new_mtu)
  1755. return 0;
  1756. /* synchronized against open : rtnl_lock() held by caller */
  1757. if (netif_running(dev)) {
  1758. u8 __iomem *base = get_hwbase(dev);
  1759. /*
  1760. * It seems that the nic preloads valid ring entries into an
  1761. * internal buffer. The procedure for flushing everything is
  1762. * guessed, there is probably a simpler approach.
  1763. * Changing the MTU is a rare event, it shouldn't matter.
  1764. */
  1765. nv_disable_irq(dev);
  1766. netif_tx_lock_bh(dev);
  1767. spin_lock(&np->lock);
  1768. /* stop engines */
  1769. nv_stop_rx(dev);
  1770. nv_stop_tx(dev);
  1771. nv_txrx_reset(dev);
  1772. /* drain rx queue */
  1773. nv_drain_rx(dev);
  1774. nv_drain_tx(dev);
  1775. /* reinit driver view of the rx queue */
  1776. set_bufsize(dev);
  1777. if (nv_init_ring(dev)) {
  1778. if (!np->in_shutdown)
  1779. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1780. }
  1781. /* reinit nic view of the rx queue */
  1782. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1783. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1784. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  1785. base + NvRegRingSizes);
  1786. pci_push(base);
  1787. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1788. pci_push(base);
  1789. /* restart rx engine */
  1790. nv_start_rx(dev);
  1791. nv_start_tx(dev);
  1792. spin_unlock(&np->lock);
  1793. netif_tx_unlock_bh(dev);
  1794. nv_enable_irq(dev);
  1795. }
  1796. return 0;
  1797. }
  1798. static void nv_copy_mac_to_hw(struct net_device *dev)
  1799. {
  1800. u8 __iomem *base = get_hwbase(dev);
  1801. u32 mac[2];
  1802. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1803. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1804. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1805. writel(mac[0], base + NvRegMacAddrA);
  1806. writel(mac[1], base + NvRegMacAddrB);
  1807. }
  1808. /*
  1809. * nv_set_mac_address: dev->set_mac_address function
  1810. * Called with rtnl_lock() held.
  1811. */
  1812. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1813. {
  1814. struct fe_priv *np = netdev_priv(dev);
  1815. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1816. if (!is_valid_ether_addr(macaddr->sa_data))
  1817. return -EADDRNOTAVAIL;
  1818. /* synchronized against open : rtnl_lock() held by caller */
  1819. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1820. if (netif_running(dev)) {
  1821. netif_tx_lock_bh(dev);
  1822. spin_lock_irq(&np->lock);
  1823. /* stop rx engine */
  1824. nv_stop_rx(dev);
  1825. /* set mac address */
  1826. nv_copy_mac_to_hw(dev);
  1827. /* restart rx engine */
  1828. nv_start_rx(dev);
  1829. spin_unlock_irq(&np->lock);
  1830. netif_tx_unlock_bh(dev);
  1831. } else {
  1832. nv_copy_mac_to_hw(dev);
  1833. }
  1834. return 0;
  1835. }
  1836. /*
  1837. * nv_set_multicast: dev->set_multicast function
  1838. * Called with netif_tx_lock held.
  1839. */
  1840. static void nv_set_multicast(struct net_device *dev)
  1841. {
  1842. struct fe_priv *np = netdev_priv(dev);
  1843. u8 __iomem *base = get_hwbase(dev);
  1844. u32 addr[2];
  1845. u32 mask[2];
  1846. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  1847. memset(addr, 0, sizeof(addr));
  1848. memset(mask, 0, sizeof(mask));
  1849. if (dev->flags & IFF_PROMISC) {
  1850. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1851. pff |= NVREG_PFF_PROMISC;
  1852. } else {
  1853. pff |= NVREG_PFF_MYADDR;
  1854. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1855. u32 alwaysOff[2];
  1856. u32 alwaysOn[2];
  1857. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1858. if (dev->flags & IFF_ALLMULTI) {
  1859. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1860. } else {
  1861. struct dev_mc_list *walk;
  1862. walk = dev->mc_list;
  1863. while (walk != NULL) {
  1864. u32 a, b;
  1865. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1866. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1867. alwaysOn[0] &= a;
  1868. alwaysOff[0] &= ~a;
  1869. alwaysOn[1] &= b;
  1870. alwaysOff[1] &= ~b;
  1871. walk = walk->next;
  1872. }
  1873. }
  1874. addr[0] = alwaysOn[0];
  1875. addr[1] = alwaysOn[1];
  1876. mask[0] = alwaysOn[0] | alwaysOff[0];
  1877. mask[1] = alwaysOn[1] | alwaysOff[1];
  1878. }
  1879. }
  1880. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1881. pff |= NVREG_PFF_ALWAYS;
  1882. spin_lock_irq(&np->lock);
  1883. nv_stop_rx(dev);
  1884. writel(addr[0], base + NvRegMulticastAddrA);
  1885. writel(addr[1], base + NvRegMulticastAddrB);
  1886. writel(mask[0], base + NvRegMulticastMaskA);
  1887. writel(mask[1], base + NvRegMulticastMaskB);
  1888. writel(pff, base + NvRegPacketFilterFlags);
  1889. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1890. dev->name);
  1891. nv_start_rx(dev);
  1892. spin_unlock_irq(&np->lock);
  1893. }
  1894. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  1895. {
  1896. struct fe_priv *np = netdev_priv(dev);
  1897. u8 __iomem *base = get_hwbase(dev);
  1898. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  1899. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  1900. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  1901. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  1902. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  1903. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1904. } else {
  1905. writel(pff, base + NvRegPacketFilterFlags);
  1906. }
  1907. }
  1908. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  1909. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  1910. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  1911. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  1912. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  1913. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1914. } else {
  1915. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  1916. writel(regmisc, base + NvRegMisc1);
  1917. }
  1918. }
  1919. }
  1920. /**
  1921. * nv_update_linkspeed: Setup the MAC according to the link partner
  1922. * @dev: Network device to be configured
  1923. *
  1924. * The function queries the PHY and checks if there is a link partner.
  1925. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1926. * set to 10 MBit HD.
  1927. *
  1928. * The function returns 0 if there is no link partner and 1 if there is
  1929. * a good link partner.
  1930. */
  1931. static int nv_update_linkspeed(struct net_device *dev)
  1932. {
  1933. struct fe_priv *np = netdev_priv(dev);
  1934. u8 __iomem *base = get_hwbase(dev);
  1935. int adv = 0;
  1936. int lpa = 0;
  1937. int adv_lpa, adv_pause, lpa_pause;
  1938. int newls = np->linkspeed;
  1939. int newdup = np->duplex;
  1940. int mii_status;
  1941. int retval = 0;
  1942. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  1943. /* BMSR_LSTATUS is latched, read it twice:
  1944. * we want the current value.
  1945. */
  1946. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1947. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1948. if (!(mii_status & BMSR_LSTATUS)) {
  1949. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1950. dev->name);
  1951. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1952. newdup = 0;
  1953. retval = 0;
  1954. goto set_speed;
  1955. }
  1956. if (np->autoneg == 0) {
  1957. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1958. dev->name, np->fixed_mode);
  1959. if (np->fixed_mode & LPA_100FULL) {
  1960. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1961. newdup = 1;
  1962. } else if (np->fixed_mode & LPA_100HALF) {
  1963. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1964. newdup = 0;
  1965. } else if (np->fixed_mode & LPA_10FULL) {
  1966. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1967. newdup = 1;
  1968. } else {
  1969. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1970. newdup = 0;
  1971. }
  1972. retval = 1;
  1973. goto set_speed;
  1974. }
  1975. /* check auto negotiation is complete */
  1976. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1977. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1978. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1979. newdup = 0;
  1980. retval = 0;
  1981. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1982. goto set_speed;
  1983. }
  1984. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1985. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1986. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1987. dev->name, adv, lpa);
  1988. retval = 1;
  1989. if (np->gigabit == PHY_GIGABIT) {
  1990. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1991. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  1992. if ((control_1000 & ADVERTISE_1000FULL) &&
  1993. (status_1000 & LPA_1000FULL)) {
  1994. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1995. dev->name);
  1996. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1997. newdup = 1;
  1998. goto set_speed;
  1999. }
  2000. }
  2001. /* FIXME: handle parallel detection properly */
  2002. adv_lpa = lpa & adv;
  2003. if (adv_lpa & LPA_100FULL) {
  2004. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2005. newdup = 1;
  2006. } else if (adv_lpa & LPA_100HALF) {
  2007. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2008. newdup = 0;
  2009. } else if (adv_lpa & LPA_10FULL) {
  2010. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2011. newdup = 1;
  2012. } else if (adv_lpa & LPA_10HALF) {
  2013. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2014. newdup = 0;
  2015. } else {
  2016. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2017. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2018. newdup = 0;
  2019. }
  2020. set_speed:
  2021. if (np->duplex == newdup && np->linkspeed == newls)
  2022. return retval;
  2023. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2024. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2025. np->duplex = newdup;
  2026. np->linkspeed = newls;
  2027. if (np->gigabit == PHY_GIGABIT) {
  2028. phyreg = readl(base + NvRegRandomSeed);
  2029. phyreg &= ~(0x3FF00);
  2030. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2031. phyreg |= NVREG_RNDSEED_FORCE3;
  2032. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2033. phyreg |= NVREG_RNDSEED_FORCE2;
  2034. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2035. phyreg |= NVREG_RNDSEED_FORCE;
  2036. writel(phyreg, base + NvRegRandomSeed);
  2037. }
  2038. phyreg = readl(base + NvRegPhyInterface);
  2039. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2040. if (np->duplex == 0)
  2041. phyreg |= PHY_HALF;
  2042. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2043. phyreg |= PHY_100;
  2044. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2045. phyreg |= PHY_1000;
  2046. writel(phyreg, base + NvRegPhyInterface);
  2047. if (phyreg & PHY_RGMII) {
  2048. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2049. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2050. else
  2051. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2052. } else {
  2053. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2054. }
  2055. writel(txreg, base + NvRegTxDeferral);
  2056. if (np->desc_ver == DESC_VER_1) {
  2057. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2058. } else {
  2059. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2060. txreg = NVREG_TX_WM_DESC2_3_1000;
  2061. else
  2062. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2063. }
  2064. writel(txreg, base + NvRegTxWatermark);
  2065. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2066. base + NvRegMisc1);
  2067. pci_push(base);
  2068. writel(np->linkspeed, base + NvRegLinkSpeed);
  2069. pci_push(base);
  2070. pause_flags = 0;
  2071. /* setup pause frame */
  2072. if (np->duplex != 0) {
  2073. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2074. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2075. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2076. switch (adv_pause) {
  2077. case ADVERTISE_PAUSE_CAP:
  2078. if (lpa_pause & LPA_PAUSE_CAP) {
  2079. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2080. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2081. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2082. }
  2083. break;
  2084. case ADVERTISE_PAUSE_ASYM:
  2085. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2086. {
  2087. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2088. }
  2089. break;
  2090. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2091. if (lpa_pause & LPA_PAUSE_CAP)
  2092. {
  2093. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2094. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2095. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2096. }
  2097. if (lpa_pause == LPA_PAUSE_ASYM)
  2098. {
  2099. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2100. }
  2101. break;
  2102. }
  2103. } else {
  2104. pause_flags = np->pause_flags;
  2105. }
  2106. }
  2107. nv_update_pause(dev, pause_flags);
  2108. return retval;
  2109. }
  2110. static void nv_linkchange(struct net_device *dev)
  2111. {
  2112. if (nv_update_linkspeed(dev)) {
  2113. if (!netif_carrier_ok(dev)) {
  2114. netif_carrier_on(dev);
  2115. printk(KERN_INFO "%s: link up.\n", dev->name);
  2116. nv_start_rx(dev);
  2117. }
  2118. } else {
  2119. if (netif_carrier_ok(dev)) {
  2120. netif_carrier_off(dev);
  2121. printk(KERN_INFO "%s: link down.\n", dev->name);
  2122. nv_stop_rx(dev);
  2123. }
  2124. }
  2125. }
  2126. static void nv_link_irq(struct net_device *dev)
  2127. {
  2128. u8 __iomem *base = get_hwbase(dev);
  2129. u32 miistat;
  2130. miistat = readl(base + NvRegMIIStatus);
  2131. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2132. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2133. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2134. nv_linkchange(dev);
  2135. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2136. }
  2137. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  2138. {
  2139. struct net_device *dev = (struct net_device *) data;
  2140. struct fe_priv *np = netdev_priv(dev);
  2141. u8 __iomem *base = get_hwbase(dev);
  2142. u32 events;
  2143. int i;
  2144. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2145. for (i=0; ; i++) {
  2146. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2147. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2148. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2149. } else {
  2150. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2151. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2152. }
  2153. pci_push(base);
  2154. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2155. if (!(events & np->irqmask))
  2156. break;
  2157. spin_lock(&np->lock);
  2158. nv_tx_done(dev);
  2159. spin_unlock(&np->lock);
  2160. if (events & NVREG_IRQ_LINK) {
  2161. spin_lock(&np->lock);
  2162. nv_link_irq(dev);
  2163. spin_unlock(&np->lock);
  2164. }
  2165. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2166. spin_lock(&np->lock);
  2167. nv_linkchange(dev);
  2168. spin_unlock(&np->lock);
  2169. np->link_timeout = jiffies + LINK_TIMEOUT;
  2170. }
  2171. if (events & (NVREG_IRQ_TX_ERR)) {
  2172. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2173. dev->name, events);
  2174. }
  2175. if (events & (NVREG_IRQ_UNKNOWN)) {
  2176. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2177. dev->name, events);
  2178. }
  2179. #ifdef CONFIG_FORCEDETH_NAPI
  2180. if (events & NVREG_IRQ_RX_ALL) {
  2181. netif_rx_schedule(dev);
  2182. /* Disable furthur receive irq's */
  2183. spin_lock(&np->lock);
  2184. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2185. if (np->msi_flags & NV_MSI_X_ENABLED)
  2186. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2187. else
  2188. writel(np->irqmask, base + NvRegIrqMask);
  2189. spin_unlock(&np->lock);
  2190. }
  2191. #else
  2192. nv_rx_process(dev, dev->weight);
  2193. if (nv_alloc_rx(dev)) {
  2194. spin_lock(&np->lock);
  2195. if (!np->in_shutdown)
  2196. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2197. spin_unlock(&np->lock);
  2198. }
  2199. #endif
  2200. if (i > max_interrupt_work) {
  2201. spin_lock(&np->lock);
  2202. /* disable interrupts on the nic */
  2203. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2204. writel(0, base + NvRegIrqMask);
  2205. else
  2206. writel(np->irqmask, base + NvRegIrqMask);
  2207. pci_push(base);
  2208. if (!np->in_shutdown) {
  2209. np->nic_poll_irq = np->irqmask;
  2210. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2211. }
  2212. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2213. spin_unlock(&np->lock);
  2214. break;
  2215. }
  2216. }
  2217. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2218. return IRQ_RETVAL(i);
  2219. }
  2220. static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
  2221. {
  2222. struct net_device *dev = (struct net_device *) data;
  2223. struct fe_priv *np = netdev_priv(dev);
  2224. u8 __iomem *base = get_hwbase(dev);
  2225. u32 events;
  2226. int i;
  2227. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2228. for (i=0; ; i++) {
  2229. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2230. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2231. pci_push(base);
  2232. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2233. if (!(events & np->irqmask))
  2234. break;
  2235. spin_lock_irq(&np->lock);
  2236. nv_tx_done(dev);
  2237. spin_unlock_irq(&np->lock);
  2238. if (events & (NVREG_IRQ_TX_ERR)) {
  2239. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2240. dev->name, events);
  2241. }
  2242. if (i > max_interrupt_work) {
  2243. spin_lock_irq(&np->lock);
  2244. /* disable interrupts on the nic */
  2245. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2246. pci_push(base);
  2247. if (!np->in_shutdown) {
  2248. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2249. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2250. }
  2251. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2252. spin_unlock_irq(&np->lock);
  2253. break;
  2254. }
  2255. }
  2256. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2257. return IRQ_RETVAL(i);
  2258. }
  2259. #ifdef CONFIG_FORCEDETH_NAPI
  2260. static int nv_napi_poll(struct net_device *dev, int *budget)
  2261. {
  2262. int pkts, limit = min(*budget, dev->quota);
  2263. struct fe_priv *np = netdev_priv(dev);
  2264. u8 __iomem *base = get_hwbase(dev);
  2265. pkts = nv_rx_process(dev, limit);
  2266. if (nv_alloc_rx(dev)) {
  2267. spin_lock_irq(&np->lock);
  2268. if (!np->in_shutdown)
  2269. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2270. spin_unlock_irq(&np->lock);
  2271. }
  2272. if (pkts < limit) {
  2273. /* all done, no more packets present */
  2274. netif_rx_complete(dev);
  2275. /* re-enable receive interrupts */
  2276. spin_lock_irq(&np->lock);
  2277. np->irqmask |= NVREG_IRQ_RX_ALL;
  2278. if (np->msi_flags & NV_MSI_X_ENABLED)
  2279. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2280. else
  2281. writel(np->irqmask, base + NvRegIrqMask);
  2282. spin_unlock_irq(&np->lock);
  2283. return 0;
  2284. } else {
  2285. /* used up our quantum, so reschedule */
  2286. dev->quota -= pkts;
  2287. *budget -= pkts;
  2288. return 1;
  2289. }
  2290. }
  2291. #endif
  2292. #ifdef CONFIG_FORCEDETH_NAPI
  2293. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  2294. {
  2295. struct net_device *dev = (struct net_device *) data;
  2296. u8 __iomem *base = get_hwbase(dev);
  2297. u32 events;
  2298. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2299. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2300. if (events) {
  2301. netif_rx_schedule(dev);
  2302. /* disable receive interrupts on the nic */
  2303. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2304. pci_push(base);
  2305. }
  2306. return IRQ_HANDLED;
  2307. }
  2308. #else
  2309. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  2310. {
  2311. struct net_device *dev = (struct net_device *) data;
  2312. struct fe_priv *np = netdev_priv(dev);
  2313. u8 __iomem *base = get_hwbase(dev);
  2314. u32 events;
  2315. int i;
  2316. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2317. for (i=0; ; i++) {
  2318. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2319. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2320. pci_push(base);
  2321. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2322. if (!(events & np->irqmask))
  2323. break;
  2324. nv_rx_process(dev, dev->weight);
  2325. if (nv_alloc_rx(dev)) {
  2326. spin_lock_irq(&np->lock);
  2327. if (!np->in_shutdown)
  2328. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2329. spin_unlock_irq(&np->lock);
  2330. }
  2331. if (i > max_interrupt_work) {
  2332. spin_lock_irq(&np->lock);
  2333. /* disable interrupts on the nic */
  2334. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2335. pci_push(base);
  2336. if (!np->in_shutdown) {
  2337. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  2338. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2339. }
  2340. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  2341. spin_unlock_irq(&np->lock);
  2342. break;
  2343. }
  2344. }
  2345. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  2346. return IRQ_RETVAL(i);
  2347. }
  2348. #endif
  2349. static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
  2350. {
  2351. struct net_device *dev = (struct net_device *) data;
  2352. struct fe_priv *np = netdev_priv(dev);
  2353. u8 __iomem *base = get_hwbase(dev);
  2354. u32 events;
  2355. int i;
  2356. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  2357. for (i=0; ; i++) {
  2358. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  2359. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2360. pci_push(base);
  2361. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2362. if (!(events & np->irqmask))
  2363. break;
  2364. if (events & NVREG_IRQ_LINK) {
  2365. spin_lock_irq(&np->lock);
  2366. nv_link_irq(dev);
  2367. spin_unlock_irq(&np->lock);
  2368. }
  2369. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2370. spin_lock_irq(&np->lock);
  2371. nv_linkchange(dev);
  2372. spin_unlock_irq(&np->lock);
  2373. np->link_timeout = jiffies + LINK_TIMEOUT;
  2374. }
  2375. if (events & (NVREG_IRQ_UNKNOWN)) {
  2376. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2377. dev->name, events);
  2378. }
  2379. if (i > max_interrupt_work) {
  2380. spin_lock_irq(&np->lock);
  2381. /* disable interrupts on the nic */
  2382. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2383. pci_push(base);
  2384. if (!np->in_shutdown) {
  2385. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2386. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2387. }
  2388. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2389. spin_unlock_irq(&np->lock);
  2390. break;
  2391. }
  2392. }
  2393. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2394. return IRQ_RETVAL(i);
  2395. }
  2396. static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
  2397. {
  2398. struct net_device *dev = (struct net_device *) data;
  2399. struct fe_priv *np = netdev_priv(dev);
  2400. u8 __iomem *base = get_hwbase(dev);
  2401. u32 events;
  2402. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  2403. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2404. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2405. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  2406. } else {
  2407. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2408. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  2409. }
  2410. pci_push(base);
  2411. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2412. if (!(events & NVREG_IRQ_TIMER))
  2413. return IRQ_RETVAL(0);
  2414. spin_lock(&np->lock);
  2415. np->intr_test = 1;
  2416. spin_unlock(&np->lock);
  2417. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  2418. return IRQ_RETVAL(1);
  2419. }
  2420. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2421. {
  2422. u8 __iomem *base = get_hwbase(dev);
  2423. int i;
  2424. u32 msixmap = 0;
  2425. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2426. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2427. * the remaining 8 interrupts.
  2428. */
  2429. for (i = 0; i < 8; i++) {
  2430. if ((irqmask >> i) & 0x1) {
  2431. msixmap |= vector << (i << 2);
  2432. }
  2433. }
  2434. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2435. msixmap = 0;
  2436. for (i = 0; i < 8; i++) {
  2437. if ((irqmask >> (i + 8)) & 0x1) {
  2438. msixmap |= vector << (i << 2);
  2439. }
  2440. }
  2441. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2442. }
  2443. static int nv_request_irq(struct net_device *dev, int intr_test)
  2444. {
  2445. struct fe_priv *np = get_nvpriv(dev);
  2446. u8 __iomem *base = get_hwbase(dev);
  2447. int ret = 1;
  2448. int i;
  2449. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2450. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2451. np->msi_x_entry[i].entry = i;
  2452. }
  2453. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2454. np->msi_flags |= NV_MSI_X_ENABLED;
  2455. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  2456. /* Request irq for rx handling */
  2457. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  2458. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2459. pci_disable_msix(np->pci_dev);
  2460. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2461. goto out_err;
  2462. }
  2463. /* Request irq for tx handling */
  2464. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  2465. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2466. pci_disable_msix(np->pci_dev);
  2467. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2468. goto out_free_rx;
  2469. }
  2470. /* Request irq for link and timer handling */
  2471. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  2472. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2473. pci_disable_msix(np->pci_dev);
  2474. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2475. goto out_free_tx;
  2476. }
  2477. /* map interrupts to their respective vector */
  2478. writel(0, base + NvRegMSIXMap0);
  2479. writel(0, base + NvRegMSIXMap1);
  2480. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2481. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2482. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2483. } else {
  2484. /* Request irq for all interrupts */
  2485. if ((!intr_test &&
  2486. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2487. (intr_test &&
  2488. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2489. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2490. pci_disable_msix(np->pci_dev);
  2491. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2492. goto out_err;
  2493. }
  2494. /* map interrupts to vector 0 */
  2495. writel(0, base + NvRegMSIXMap0);
  2496. writel(0, base + NvRegMSIXMap1);
  2497. }
  2498. }
  2499. }
  2500. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2501. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2502. np->msi_flags |= NV_MSI_ENABLED;
  2503. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2504. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2505. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2506. pci_disable_msi(np->pci_dev);
  2507. np->msi_flags &= ~NV_MSI_ENABLED;
  2508. goto out_err;
  2509. }
  2510. /* map interrupts to vector 0 */
  2511. writel(0, base + NvRegMSIMap0);
  2512. writel(0, base + NvRegMSIMap1);
  2513. /* enable msi vector 0 */
  2514. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2515. }
  2516. }
  2517. if (ret != 0) {
  2518. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2519. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
  2520. goto out_err;
  2521. }
  2522. return 0;
  2523. out_free_tx:
  2524. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  2525. out_free_rx:
  2526. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  2527. out_err:
  2528. return 1;
  2529. }
  2530. static void nv_free_irq(struct net_device *dev)
  2531. {
  2532. struct fe_priv *np = get_nvpriv(dev);
  2533. int i;
  2534. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2535. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2536. free_irq(np->msi_x_entry[i].vector, dev);
  2537. }
  2538. pci_disable_msix(np->pci_dev);
  2539. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2540. } else {
  2541. free_irq(np->pci_dev->irq, dev);
  2542. if (np->msi_flags & NV_MSI_ENABLED) {
  2543. pci_disable_msi(np->pci_dev);
  2544. np->msi_flags &= ~NV_MSI_ENABLED;
  2545. }
  2546. }
  2547. }
  2548. static void nv_do_nic_poll(unsigned long data)
  2549. {
  2550. struct net_device *dev = (struct net_device *) data;
  2551. struct fe_priv *np = netdev_priv(dev);
  2552. u8 __iomem *base = get_hwbase(dev);
  2553. u32 mask = 0;
  2554. /*
  2555. * First disable irq(s) and then
  2556. * reenable interrupts on the nic, we have to do this before calling
  2557. * nv_nic_irq because that may decide to do otherwise
  2558. */
  2559. if (!using_multi_irqs(dev)) {
  2560. if (np->msi_flags & NV_MSI_X_ENABLED)
  2561. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2562. else
  2563. disable_irq_lockdep(dev->irq);
  2564. mask = np->irqmask;
  2565. } else {
  2566. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2567. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2568. mask |= NVREG_IRQ_RX_ALL;
  2569. }
  2570. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2571. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2572. mask |= NVREG_IRQ_TX_ALL;
  2573. }
  2574. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2575. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2576. mask |= NVREG_IRQ_OTHER;
  2577. }
  2578. }
  2579. np->nic_poll_irq = 0;
  2580. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2581. writel(mask, base + NvRegIrqMask);
  2582. pci_push(base);
  2583. if (!using_multi_irqs(dev)) {
  2584. nv_nic_irq(0, dev, NULL);
  2585. if (np->msi_flags & NV_MSI_X_ENABLED)
  2586. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2587. else
  2588. enable_irq_lockdep(dev->irq);
  2589. } else {
  2590. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2591. nv_nic_irq_rx(0, dev, NULL);
  2592. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2593. }
  2594. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2595. nv_nic_irq_tx(0, dev, NULL);
  2596. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2597. }
  2598. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2599. nv_nic_irq_other(0, dev, NULL);
  2600. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2601. }
  2602. }
  2603. }
  2604. #ifdef CONFIG_NET_POLL_CONTROLLER
  2605. static void nv_poll_controller(struct net_device *dev)
  2606. {
  2607. nv_do_nic_poll((unsigned long) dev);
  2608. }
  2609. #endif
  2610. static void nv_do_stats_poll(unsigned long data)
  2611. {
  2612. struct net_device *dev = (struct net_device *) data;
  2613. struct fe_priv *np = netdev_priv(dev);
  2614. u8 __iomem *base = get_hwbase(dev);
  2615. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  2616. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  2617. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  2618. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  2619. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  2620. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  2621. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  2622. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  2623. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  2624. np->estats.tx_deferral += readl(base + NvRegTxDef);
  2625. np->estats.tx_packets += readl(base + NvRegTxFrame);
  2626. np->estats.tx_pause += readl(base + NvRegTxPause);
  2627. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  2628. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  2629. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  2630. np->estats.rx_runt += readl(base + NvRegRxRunt);
  2631. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  2632. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  2633. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  2634. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  2635. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  2636. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  2637. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  2638. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  2639. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  2640. np->estats.rx_pause += readl(base + NvRegRxPause);
  2641. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  2642. np->estats.rx_packets =
  2643. np->estats.rx_unicast +
  2644. np->estats.rx_multicast +
  2645. np->estats.rx_broadcast;
  2646. np->estats.rx_errors_total =
  2647. np->estats.rx_crc_errors +
  2648. np->estats.rx_over_errors +
  2649. np->estats.rx_frame_error +
  2650. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  2651. np->estats.rx_late_collision +
  2652. np->estats.rx_runt +
  2653. np->estats.rx_frame_too_long;
  2654. if (!np->in_shutdown)
  2655. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  2656. }
  2657. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2658. {
  2659. struct fe_priv *np = netdev_priv(dev);
  2660. strcpy(info->driver, "forcedeth");
  2661. strcpy(info->version, FORCEDETH_VERSION);
  2662. strcpy(info->bus_info, pci_name(np->pci_dev));
  2663. }
  2664. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2665. {
  2666. struct fe_priv *np = netdev_priv(dev);
  2667. wolinfo->supported = WAKE_MAGIC;
  2668. spin_lock_irq(&np->lock);
  2669. if (np->wolenabled)
  2670. wolinfo->wolopts = WAKE_MAGIC;
  2671. spin_unlock_irq(&np->lock);
  2672. }
  2673. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2674. {
  2675. struct fe_priv *np = netdev_priv(dev);
  2676. u8 __iomem *base = get_hwbase(dev);
  2677. u32 flags = 0;
  2678. if (wolinfo->wolopts == 0) {
  2679. np->wolenabled = 0;
  2680. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  2681. np->wolenabled = 1;
  2682. flags = NVREG_WAKEUPFLAGS_ENABLE;
  2683. }
  2684. if (netif_running(dev)) {
  2685. spin_lock_irq(&np->lock);
  2686. writel(flags, base + NvRegWakeUpFlags);
  2687. spin_unlock_irq(&np->lock);
  2688. }
  2689. return 0;
  2690. }
  2691. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2692. {
  2693. struct fe_priv *np = netdev_priv(dev);
  2694. int adv;
  2695. spin_lock_irq(&np->lock);
  2696. ecmd->port = PORT_MII;
  2697. if (!netif_running(dev)) {
  2698. /* We do not track link speed / duplex setting if the
  2699. * interface is disabled. Force a link check */
  2700. if (nv_update_linkspeed(dev)) {
  2701. if (!netif_carrier_ok(dev))
  2702. netif_carrier_on(dev);
  2703. } else {
  2704. if (netif_carrier_ok(dev))
  2705. netif_carrier_off(dev);
  2706. }
  2707. }
  2708. if (netif_carrier_ok(dev)) {
  2709. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2710. case NVREG_LINKSPEED_10:
  2711. ecmd->speed = SPEED_10;
  2712. break;
  2713. case NVREG_LINKSPEED_100:
  2714. ecmd->speed = SPEED_100;
  2715. break;
  2716. case NVREG_LINKSPEED_1000:
  2717. ecmd->speed = SPEED_1000;
  2718. break;
  2719. }
  2720. ecmd->duplex = DUPLEX_HALF;
  2721. if (np->duplex)
  2722. ecmd->duplex = DUPLEX_FULL;
  2723. } else {
  2724. ecmd->speed = -1;
  2725. ecmd->duplex = -1;
  2726. }
  2727. ecmd->autoneg = np->autoneg;
  2728. ecmd->advertising = ADVERTISED_MII;
  2729. if (np->autoneg) {
  2730. ecmd->advertising |= ADVERTISED_Autoneg;
  2731. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2732. if (adv & ADVERTISE_10HALF)
  2733. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2734. if (adv & ADVERTISE_10FULL)
  2735. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2736. if (adv & ADVERTISE_100HALF)
  2737. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2738. if (adv & ADVERTISE_100FULL)
  2739. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2740. if (np->gigabit == PHY_GIGABIT) {
  2741. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2742. if (adv & ADVERTISE_1000FULL)
  2743. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2744. }
  2745. }
  2746. ecmd->supported = (SUPPORTED_Autoneg |
  2747. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2748. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2749. SUPPORTED_MII);
  2750. if (np->gigabit == PHY_GIGABIT)
  2751. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2752. ecmd->phy_address = np->phyaddr;
  2753. ecmd->transceiver = XCVR_EXTERNAL;
  2754. /* ignore maxtxpkt, maxrxpkt for now */
  2755. spin_unlock_irq(&np->lock);
  2756. return 0;
  2757. }
  2758. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2759. {
  2760. struct fe_priv *np = netdev_priv(dev);
  2761. if (ecmd->port != PORT_MII)
  2762. return -EINVAL;
  2763. if (ecmd->transceiver != XCVR_EXTERNAL)
  2764. return -EINVAL;
  2765. if (ecmd->phy_address != np->phyaddr) {
  2766. /* TODO: support switching between multiple phys. Should be
  2767. * trivial, but not enabled due to lack of test hardware. */
  2768. return -EINVAL;
  2769. }
  2770. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2771. u32 mask;
  2772. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2773. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2774. if (np->gigabit == PHY_GIGABIT)
  2775. mask |= ADVERTISED_1000baseT_Full;
  2776. if ((ecmd->advertising & mask) == 0)
  2777. return -EINVAL;
  2778. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2779. /* Note: autonegotiation disable, speed 1000 intentionally
  2780. * forbidden - noone should need that. */
  2781. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2782. return -EINVAL;
  2783. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2784. return -EINVAL;
  2785. } else {
  2786. return -EINVAL;
  2787. }
  2788. netif_carrier_off(dev);
  2789. if (netif_running(dev)) {
  2790. nv_disable_irq(dev);
  2791. netif_tx_lock_bh(dev);
  2792. spin_lock(&np->lock);
  2793. /* stop engines */
  2794. nv_stop_rx(dev);
  2795. nv_stop_tx(dev);
  2796. spin_unlock(&np->lock);
  2797. netif_tx_unlock_bh(dev);
  2798. }
  2799. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2800. int adv, bmcr;
  2801. np->autoneg = 1;
  2802. /* advertise only what has been requested */
  2803. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2804. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2805. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2806. adv |= ADVERTISE_10HALF;
  2807. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2808. adv |= ADVERTISE_10FULL;
  2809. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2810. adv |= ADVERTISE_100HALF;
  2811. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2812. adv |= ADVERTISE_100FULL;
  2813. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  2814. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2815. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2816. adv |= ADVERTISE_PAUSE_ASYM;
  2817. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2818. if (np->gigabit == PHY_GIGABIT) {
  2819. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2820. adv &= ~ADVERTISE_1000FULL;
  2821. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2822. adv |= ADVERTISE_1000FULL;
  2823. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2824. }
  2825. if (netif_running(dev))
  2826. printk(KERN_INFO "%s: link down.\n", dev->name);
  2827. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2828. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2829. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2830. } else {
  2831. int adv, bmcr;
  2832. np->autoneg = 0;
  2833. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2834. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2835. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2836. adv |= ADVERTISE_10HALF;
  2837. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2838. adv |= ADVERTISE_10FULL;
  2839. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2840. adv |= ADVERTISE_100HALF;
  2841. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2842. adv |= ADVERTISE_100FULL;
  2843. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  2844. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  2845. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2846. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2847. }
  2848. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  2849. adv |= ADVERTISE_PAUSE_ASYM;
  2850. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2851. }
  2852. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2853. np->fixed_mode = adv;
  2854. if (np->gigabit == PHY_GIGABIT) {
  2855. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2856. adv &= ~ADVERTISE_1000FULL;
  2857. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2858. }
  2859. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2860. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  2861. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2862. bmcr |= BMCR_FULLDPLX;
  2863. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2864. bmcr |= BMCR_SPEED100;
  2865. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2866. if (np->phy_oui == PHY_OUI_MARVELL) {
  2867. /* reset the phy */
  2868. if (phy_reset(dev)) {
  2869. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2870. return -EINVAL;
  2871. }
  2872. } else if (netif_running(dev)) {
  2873. /* Wait a bit and then reconfigure the nic. */
  2874. udelay(10);
  2875. nv_linkchange(dev);
  2876. }
  2877. }
  2878. if (netif_running(dev)) {
  2879. nv_start_rx(dev);
  2880. nv_start_tx(dev);
  2881. nv_enable_irq(dev);
  2882. }
  2883. return 0;
  2884. }
  2885. #define FORCEDETH_REGS_VER 1
  2886. static int nv_get_regs_len(struct net_device *dev)
  2887. {
  2888. struct fe_priv *np = netdev_priv(dev);
  2889. return np->register_size;
  2890. }
  2891. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2892. {
  2893. struct fe_priv *np = netdev_priv(dev);
  2894. u8 __iomem *base = get_hwbase(dev);
  2895. u32 *rbuf = buf;
  2896. int i;
  2897. regs->version = FORCEDETH_REGS_VER;
  2898. spin_lock_irq(&np->lock);
  2899. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  2900. rbuf[i] = readl(base + i*sizeof(u32));
  2901. spin_unlock_irq(&np->lock);
  2902. }
  2903. static int nv_nway_reset(struct net_device *dev)
  2904. {
  2905. struct fe_priv *np = netdev_priv(dev);
  2906. int ret;
  2907. if (np->autoneg) {
  2908. int bmcr;
  2909. netif_carrier_off(dev);
  2910. if (netif_running(dev)) {
  2911. nv_disable_irq(dev);
  2912. netif_tx_lock_bh(dev);
  2913. spin_lock(&np->lock);
  2914. /* stop engines */
  2915. nv_stop_rx(dev);
  2916. nv_stop_tx(dev);
  2917. spin_unlock(&np->lock);
  2918. netif_tx_unlock_bh(dev);
  2919. printk(KERN_INFO "%s: link down.\n", dev->name);
  2920. }
  2921. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2922. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2923. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2924. if (netif_running(dev)) {
  2925. nv_start_rx(dev);
  2926. nv_start_tx(dev);
  2927. nv_enable_irq(dev);
  2928. }
  2929. ret = 0;
  2930. } else {
  2931. ret = -EINVAL;
  2932. }
  2933. return ret;
  2934. }
  2935. static int nv_set_tso(struct net_device *dev, u32 value)
  2936. {
  2937. struct fe_priv *np = netdev_priv(dev);
  2938. if ((np->driver_data & DEV_HAS_CHECKSUM))
  2939. return ethtool_op_set_tso(dev, value);
  2940. else
  2941. return -EOPNOTSUPP;
  2942. }
  2943. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2944. {
  2945. struct fe_priv *np = netdev_priv(dev);
  2946. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2947. ring->rx_mini_max_pending = 0;
  2948. ring->rx_jumbo_max_pending = 0;
  2949. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2950. ring->rx_pending = np->rx_ring_size;
  2951. ring->rx_mini_pending = 0;
  2952. ring->rx_jumbo_pending = 0;
  2953. ring->tx_pending = np->tx_ring_size;
  2954. }
  2955. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2956. {
  2957. struct fe_priv *np = netdev_priv(dev);
  2958. u8 __iomem *base = get_hwbase(dev);
  2959. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
  2960. dma_addr_t ring_addr;
  2961. if (ring->rx_pending < RX_RING_MIN ||
  2962. ring->tx_pending < TX_RING_MIN ||
  2963. ring->rx_mini_pending != 0 ||
  2964. ring->rx_jumbo_pending != 0 ||
  2965. (np->desc_ver == DESC_VER_1 &&
  2966. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  2967. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  2968. (np->desc_ver != DESC_VER_1 &&
  2969. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  2970. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  2971. return -EINVAL;
  2972. }
  2973. /* allocate new rings */
  2974. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2975. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  2976. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  2977. &ring_addr);
  2978. } else {
  2979. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  2980. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  2981. &ring_addr);
  2982. }
  2983. rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
  2984. rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
  2985. tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
  2986. tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
  2987. tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
  2988. if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
  2989. /* fall back to old rings */
  2990. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2991. if (rxtx_ring)
  2992. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  2993. rxtx_ring, ring_addr);
  2994. } else {
  2995. if (rxtx_ring)
  2996. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  2997. rxtx_ring, ring_addr);
  2998. }
  2999. if (rx_skbuff)
  3000. kfree(rx_skbuff);
  3001. if (rx_dma)
  3002. kfree(rx_dma);
  3003. if (tx_skbuff)
  3004. kfree(tx_skbuff);
  3005. if (tx_dma)
  3006. kfree(tx_dma);
  3007. if (tx_dma_len)
  3008. kfree(tx_dma_len);
  3009. goto exit;
  3010. }
  3011. if (netif_running(dev)) {
  3012. nv_disable_irq(dev);
  3013. netif_tx_lock_bh(dev);
  3014. spin_lock(&np->lock);
  3015. /* stop engines */
  3016. nv_stop_rx(dev);
  3017. nv_stop_tx(dev);
  3018. nv_txrx_reset(dev);
  3019. /* drain queues */
  3020. nv_drain_rx(dev);
  3021. nv_drain_tx(dev);
  3022. /* delete queues */
  3023. free_rings(dev);
  3024. }
  3025. /* set new values */
  3026. np->rx_ring_size = ring->rx_pending;
  3027. np->tx_ring_size = ring->tx_pending;
  3028. np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
  3029. np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
  3030. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3031. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3032. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3033. } else {
  3034. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3035. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3036. }
  3037. np->rx_skbuff = (struct sk_buff**)rx_skbuff;
  3038. np->rx_dma = (dma_addr_t*)rx_dma;
  3039. np->tx_skbuff = (struct sk_buff**)tx_skbuff;
  3040. np->tx_dma = (dma_addr_t*)tx_dma;
  3041. np->tx_dma_len = (unsigned int*)tx_dma_len;
  3042. np->ring_addr = ring_addr;
  3043. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3044. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3045. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3046. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3047. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3048. if (netif_running(dev)) {
  3049. /* reinit driver view of the queues */
  3050. set_bufsize(dev);
  3051. if (nv_init_ring(dev)) {
  3052. if (!np->in_shutdown)
  3053. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3054. }
  3055. /* reinit nic view of the queues */
  3056. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3057. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3058. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3059. base + NvRegRingSizes);
  3060. pci_push(base);
  3061. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3062. pci_push(base);
  3063. /* restart engines */
  3064. nv_start_rx(dev);
  3065. nv_start_tx(dev);
  3066. spin_unlock(&np->lock);
  3067. netif_tx_unlock_bh(dev);
  3068. nv_enable_irq(dev);
  3069. }
  3070. return 0;
  3071. exit:
  3072. return -ENOMEM;
  3073. }
  3074. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3075. {
  3076. struct fe_priv *np = netdev_priv(dev);
  3077. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3078. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3079. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3080. }
  3081. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3082. {
  3083. struct fe_priv *np = netdev_priv(dev);
  3084. int adv, bmcr;
  3085. if ((!np->autoneg && np->duplex == 0) ||
  3086. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3087. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3088. dev->name);
  3089. return -EINVAL;
  3090. }
  3091. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3092. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3093. return -EINVAL;
  3094. }
  3095. netif_carrier_off(dev);
  3096. if (netif_running(dev)) {
  3097. nv_disable_irq(dev);
  3098. netif_tx_lock_bh(dev);
  3099. spin_lock(&np->lock);
  3100. /* stop engines */
  3101. nv_stop_rx(dev);
  3102. nv_stop_tx(dev);
  3103. spin_unlock(&np->lock);
  3104. netif_tx_unlock_bh(dev);
  3105. }
  3106. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3107. if (pause->rx_pause)
  3108. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3109. if (pause->tx_pause)
  3110. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3111. if (np->autoneg && pause->autoneg) {
  3112. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3113. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3114. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3115. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3116. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3117. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3118. adv |= ADVERTISE_PAUSE_ASYM;
  3119. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3120. if (netif_running(dev))
  3121. printk(KERN_INFO "%s: link down.\n", dev->name);
  3122. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3123. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3124. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3125. } else {
  3126. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3127. if (pause->rx_pause)
  3128. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3129. if (pause->tx_pause)
  3130. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3131. if (!netif_running(dev))
  3132. nv_update_linkspeed(dev);
  3133. else
  3134. nv_update_pause(dev, np->pause_flags);
  3135. }
  3136. if (netif_running(dev)) {
  3137. nv_start_rx(dev);
  3138. nv_start_tx(dev);
  3139. nv_enable_irq(dev);
  3140. }
  3141. return 0;
  3142. }
  3143. static u32 nv_get_rx_csum(struct net_device *dev)
  3144. {
  3145. struct fe_priv *np = netdev_priv(dev);
  3146. return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
  3147. }
  3148. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3149. {
  3150. struct fe_priv *np = netdev_priv(dev);
  3151. u8 __iomem *base = get_hwbase(dev);
  3152. int retcode = 0;
  3153. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3154. if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
  3155. (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
  3156. /* already set or unset */
  3157. return 0;
  3158. }
  3159. if (data) {
  3160. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3161. } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
  3162. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3163. } else {
  3164. printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
  3165. return -EINVAL;
  3166. }
  3167. if (netif_running(dev)) {
  3168. spin_lock_irq(&np->lock);
  3169. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3170. spin_unlock_irq(&np->lock);
  3171. }
  3172. } else {
  3173. return -EINVAL;
  3174. }
  3175. return retcode;
  3176. }
  3177. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3178. {
  3179. struct fe_priv *np = netdev_priv(dev);
  3180. if (np->driver_data & DEV_HAS_CHECKSUM)
  3181. return ethtool_op_set_tx_hw_csum(dev, data);
  3182. else
  3183. return -EOPNOTSUPP;
  3184. }
  3185. static int nv_set_sg(struct net_device *dev, u32 data)
  3186. {
  3187. struct fe_priv *np = netdev_priv(dev);
  3188. if (np->driver_data & DEV_HAS_CHECKSUM)
  3189. return ethtool_op_set_sg(dev, data);
  3190. else
  3191. return -EOPNOTSUPP;
  3192. }
  3193. static int nv_get_stats_count(struct net_device *dev)
  3194. {
  3195. struct fe_priv *np = netdev_priv(dev);
  3196. if (np->driver_data & DEV_HAS_STATISTICS)
  3197. return sizeof(struct nv_ethtool_stats)/sizeof(u64);
  3198. else
  3199. return 0;
  3200. }
  3201. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3202. {
  3203. struct fe_priv *np = netdev_priv(dev);
  3204. /* update stats */
  3205. nv_do_stats_poll((unsigned long)dev);
  3206. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  3207. }
  3208. static int nv_self_test_count(struct net_device *dev)
  3209. {
  3210. struct fe_priv *np = netdev_priv(dev);
  3211. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3212. return NV_TEST_COUNT_EXTENDED;
  3213. else
  3214. return NV_TEST_COUNT_BASE;
  3215. }
  3216. static int nv_link_test(struct net_device *dev)
  3217. {
  3218. struct fe_priv *np = netdev_priv(dev);
  3219. int mii_status;
  3220. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3221. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3222. /* check phy link status */
  3223. if (!(mii_status & BMSR_LSTATUS))
  3224. return 0;
  3225. else
  3226. return 1;
  3227. }
  3228. static int nv_register_test(struct net_device *dev)
  3229. {
  3230. u8 __iomem *base = get_hwbase(dev);
  3231. int i = 0;
  3232. u32 orig_read, new_read;
  3233. do {
  3234. orig_read = readl(base + nv_registers_test[i].reg);
  3235. /* xor with mask to toggle bits */
  3236. orig_read ^= nv_registers_test[i].mask;
  3237. writel(orig_read, base + nv_registers_test[i].reg);
  3238. new_read = readl(base + nv_registers_test[i].reg);
  3239. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3240. return 0;
  3241. /* restore original value */
  3242. orig_read ^= nv_registers_test[i].mask;
  3243. writel(orig_read, base + nv_registers_test[i].reg);
  3244. } while (nv_registers_test[++i].reg != 0);
  3245. return 1;
  3246. }
  3247. static int nv_interrupt_test(struct net_device *dev)
  3248. {
  3249. struct fe_priv *np = netdev_priv(dev);
  3250. u8 __iomem *base = get_hwbase(dev);
  3251. int ret = 1;
  3252. int testcnt;
  3253. u32 save_msi_flags, save_poll_interval = 0;
  3254. if (netif_running(dev)) {
  3255. /* free current irq */
  3256. nv_free_irq(dev);
  3257. save_poll_interval = readl(base+NvRegPollingInterval);
  3258. }
  3259. /* flag to test interrupt handler */
  3260. np->intr_test = 0;
  3261. /* setup test irq */
  3262. save_msi_flags = np->msi_flags;
  3263. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3264. np->msi_flags |= 0x001; /* setup 1 vector */
  3265. if (nv_request_irq(dev, 1))
  3266. return 0;
  3267. /* setup timer interrupt */
  3268. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3269. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3270. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3271. /* wait for at least one interrupt */
  3272. msleep(100);
  3273. spin_lock_irq(&np->lock);
  3274. /* flag should be set within ISR */
  3275. testcnt = np->intr_test;
  3276. if (!testcnt)
  3277. ret = 2;
  3278. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3279. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3280. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3281. else
  3282. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3283. spin_unlock_irq(&np->lock);
  3284. nv_free_irq(dev);
  3285. np->msi_flags = save_msi_flags;
  3286. if (netif_running(dev)) {
  3287. writel(save_poll_interval, base + NvRegPollingInterval);
  3288. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3289. /* restore original irq */
  3290. if (nv_request_irq(dev, 0))
  3291. return 0;
  3292. }
  3293. return ret;
  3294. }
  3295. static int nv_loopback_test(struct net_device *dev)
  3296. {
  3297. struct fe_priv *np = netdev_priv(dev);
  3298. u8 __iomem *base = get_hwbase(dev);
  3299. struct sk_buff *tx_skb, *rx_skb;
  3300. dma_addr_t test_dma_addr;
  3301. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  3302. u32 flags;
  3303. int len, i, pkt_len;
  3304. u8 *pkt_data;
  3305. u32 filter_flags = 0;
  3306. u32 misc1_flags = 0;
  3307. int ret = 1;
  3308. if (netif_running(dev)) {
  3309. nv_disable_irq(dev);
  3310. filter_flags = readl(base + NvRegPacketFilterFlags);
  3311. misc1_flags = readl(base + NvRegMisc1);
  3312. } else {
  3313. nv_txrx_reset(dev);
  3314. }
  3315. /* reinit driver view of the rx queue */
  3316. set_bufsize(dev);
  3317. nv_init_ring(dev);
  3318. /* setup hardware for loopback */
  3319. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  3320. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  3321. /* reinit nic view of the rx queue */
  3322. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3323. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3324. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3325. base + NvRegRingSizes);
  3326. pci_push(base);
  3327. /* restart rx engine */
  3328. nv_start_rx(dev);
  3329. nv_start_tx(dev);
  3330. /* setup packet for tx */
  3331. pkt_len = ETH_DATA_LEN;
  3332. tx_skb = dev_alloc_skb(pkt_len);
  3333. pkt_data = skb_put(tx_skb, pkt_len);
  3334. for (i = 0; i < pkt_len; i++)
  3335. pkt_data[i] = (u8)(i & 0xff);
  3336. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  3337. tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
  3338. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3339. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  3340. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3341. } else {
  3342. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  3343. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  3344. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3345. }
  3346. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3347. pci_push(get_hwbase(dev));
  3348. msleep(500);
  3349. /* check for rx of the packet */
  3350. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3351. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  3352. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  3353. } else {
  3354. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  3355. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  3356. }
  3357. if (flags & NV_RX_AVAIL) {
  3358. ret = 0;
  3359. } else if (np->desc_ver == DESC_VER_1) {
  3360. if (flags & NV_RX_ERROR)
  3361. ret = 0;
  3362. } else {
  3363. if (flags & NV_RX2_ERROR) {
  3364. ret = 0;
  3365. }
  3366. }
  3367. if (ret) {
  3368. if (len != pkt_len) {
  3369. ret = 0;
  3370. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  3371. dev->name, len, pkt_len);
  3372. } else {
  3373. rx_skb = np->rx_skbuff[0];
  3374. for (i = 0; i < pkt_len; i++) {
  3375. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  3376. ret = 0;
  3377. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  3378. dev->name, i);
  3379. break;
  3380. }
  3381. }
  3382. }
  3383. } else {
  3384. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  3385. }
  3386. pci_unmap_page(np->pci_dev, test_dma_addr,
  3387. tx_skb->end-tx_skb->data,
  3388. PCI_DMA_TODEVICE);
  3389. dev_kfree_skb_any(tx_skb);
  3390. /* stop engines */
  3391. nv_stop_rx(dev);
  3392. nv_stop_tx(dev);
  3393. nv_txrx_reset(dev);
  3394. /* drain rx queue */
  3395. nv_drain_rx(dev);
  3396. nv_drain_tx(dev);
  3397. if (netif_running(dev)) {
  3398. writel(misc1_flags, base + NvRegMisc1);
  3399. writel(filter_flags, base + NvRegPacketFilterFlags);
  3400. nv_enable_irq(dev);
  3401. }
  3402. return ret;
  3403. }
  3404. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  3405. {
  3406. struct fe_priv *np = netdev_priv(dev);
  3407. u8 __iomem *base = get_hwbase(dev);
  3408. int result;
  3409. memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
  3410. if (!nv_link_test(dev)) {
  3411. test->flags |= ETH_TEST_FL_FAILED;
  3412. buffer[0] = 1;
  3413. }
  3414. if (test->flags & ETH_TEST_FL_OFFLINE) {
  3415. if (netif_running(dev)) {
  3416. netif_stop_queue(dev);
  3417. netif_poll_disable(dev);
  3418. netif_tx_lock_bh(dev);
  3419. spin_lock_irq(&np->lock);
  3420. nv_disable_hw_interrupts(dev, np->irqmask);
  3421. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3422. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3423. } else {
  3424. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3425. }
  3426. /* stop engines */
  3427. nv_stop_rx(dev);
  3428. nv_stop_tx(dev);
  3429. nv_txrx_reset(dev);
  3430. /* drain rx queue */
  3431. nv_drain_rx(dev);
  3432. nv_drain_tx(dev);
  3433. spin_unlock_irq(&np->lock);
  3434. netif_tx_unlock_bh(dev);
  3435. }
  3436. if (!nv_register_test(dev)) {
  3437. test->flags |= ETH_TEST_FL_FAILED;
  3438. buffer[1] = 1;
  3439. }
  3440. result = nv_interrupt_test(dev);
  3441. if (result != 1) {
  3442. test->flags |= ETH_TEST_FL_FAILED;
  3443. buffer[2] = 1;
  3444. }
  3445. if (result == 0) {
  3446. /* bail out */
  3447. return;
  3448. }
  3449. if (!nv_loopback_test(dev)) {
  3450. test->flags |= ETH_TEST_FL_FAILED;
  3451. buffer[3] = 1;
  3452. }
  3453. if (netif_running(dev)) {
  3454. /* reinit driver view of the rx queue */
  3455. set_bufsize(dev);
  3456. if (nv_init_ring(dev)) {
  3457. if (!np->in_shutdown)
  3458. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3459. }
  3460. /* reinit nic view of the rx queue */
  3461. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3462. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3463. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3464. base + NvRegRingSizes);
  3465. pci_push(base);
  3466. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3467. pci_push(base);
  3468. /* restart rx engine */
  3469. nv_start_rx(dev);
  3470. nv_start_tx(dev);
  3471. netif_start_queue(dev);
  3472. netif_poll_enable(dev);
  3473. nv_enable_hw_interrupts(dev, np->irqmask);
  3474. }
  3475. }
  3476. }
  3477. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  3478. {
  3479. switch (stringset) {
  3480. case ETH_SS_STATS:
  3481. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  3482. break;
  3483. case ETH_SS_TEST:
  3484. memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
  3485. break;
  3486. }
  3487. }
  3488. static struct ethtool_ops ops = {
  3489. .get_drvinfo = nv_get_drvinfo,
  3490. .get_link = ethtool_op_get_link,
  3491. .get_wol = nv_get_wol,
  3492. .set_wol = nv_set_wol,
  3493. .get_settings = nv_get_settings,
  3494. .set_settings = nv_set_settings,
  3495. .get_regs_len = nv_get_regs_len,
  3496. .get_regs = nv_get_regs,
  3497. .nway_reset = nv_nway_reset,
  3498. .get_perm_addr = ethtool_op_get_perm_addr,
  3499. .get_tso = ethtool_op_get_tso,
  3500. .set_tso = nv_set_tso,
  3501. .get_ringparam = nv_get_ringparam,
  3502. .set_ringparam = nv_set_ringparam,
  3503. .get_pauseparam = nv_get_pauseparam,
  3504. .set_pauseparam = nv_set_pauseparam,
  3505. .get_rx_csum = nv_get_rx_csum,
  3506. .set_rx_csum = nv_set_rx_csum,
  3507. .get_tx_csum = ethtool_op_get_tx_csum,
  3508. .set_tx_csum = nv_set_tx_csum,
  3509. .get_sg = ethtool_op_get_sg,
  3510. .set_sg = nv_set_sg,
  3511. .get_strings = nv_get_strings,
  3512. .get_stats_count = nv_get_stats_count,
  3513. .get_ethtool_stats = nv_get_ethtool_stats,
  3514. .self_test_count = nv_self_test_count,
  3515. .self_test = nv_self_test,
  3516. };
  3517. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  3518. {
  3519. struct fe_priv *np = get_nvpriv(dev);
  3520. spin_lock_irq(&np->lock);
  3521. /* save vlan group */
  3522. np->vlangrp = grp;
  3523. if (grp) {
  3524. /* enable vlan on MAC */
  3525. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  3526. } else {
  3527. /* disable vlan on MAC */
  3528. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  3529. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  3530. }
  3531. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3532. spin_unlock_irq(&np->lock);
  3533. };
  3534. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  3535. {
  3536. /* nothing to do */
  3537. };
  3538. static int nv_open(struct net_device *dev)
  3539. {
  3540. struct fe_priv *np = netdev_priv(dev);
  3541. u8 __iomem *base = get_hwbase(dev);
  3542. int ret = 1;
  3543. int oom, i;
  3544. dprintk(KERN_DEBUG "nv_open: begin\n");
  3545. /* erase previous misconfiguration */
  3546. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3547. nv_mac_reset(dev);
  3548. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3549. writel(0, base + NvRegMulticastAddrB);
  3550. writel(0, base + NvRegMulticastMaskA);
  3551. writel(0, base + NvRegMulticastMaskB);
  3552. writel(0, base + NvRegPacketFilterFlags);
  3553. writel(0, base + NvRegTransmitterControl);
  3554. writel(0, base + NvRegReceiverControl);
  3555. writel(0, base + NvRegAdapterControl);
  3556. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  3557. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  3558. /* initialize descriptor rings */
  3559. set_bufsize(dev);
  3560. oom = nv_init_ring(dev);
  3561. writel(0, base + NvRegLinkSpeed);
  3562. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  3563. nv_txrx_reset(dev);
  3564. writel(0, base + NvRegUnknownSetupReg6);
  3565. np->in_shutdown = 0;
  3566. /* give hw rings */
  3567. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3568. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3569. base + NvRegRingSizes);
  3570. writel(np->linkspeed, base + NvRegLinkSpeed);
  3571. if (np->desc_ver == DESC_VER_1)
  3572. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  3573. else
  3574. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  3575. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3576. writel(np->vlanctl_bits, base + NvRegVlanControl);
  3577. pci_push(base);
  3578. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  3579. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  3580. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  3581. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  3582. writel(0, base + NvRegUnknownSetupReg4);
  3583. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3584. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3585. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  3586. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  3587. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  3588. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3589. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  3590. get_random_bytes(&i, sizeof(i));
  3591. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  3592. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  3593. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  3594. if (poll_interval == -1) {
  3595. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  3596. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  3597. else
  3598. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3599. }
  3600. else
  3601. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  3602. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3603. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  3604. base + NvRegAdapterControl);
  3605. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  3606. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  3607. if (np->wolenabled)
  3608. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  3609. i = readl(base + NvRegPowerState);
  3610. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  3611. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  3612. pci_push(base);
  3613. udelay(10);
  3614. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  3615. nv_disable_hw_interrupts(dev, np->irqmask);
  3616. pci_push(base);
  3617. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3618. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3619. pci_push(base);
  3620. if (nv_request_irq(dev, 0)) {
  3621. goto out_drain;
  3622. }
  3623. /* ask for interrupts */
  3624. nv_enable_hw_interrupts(dev, np->irqmask);
  3625. spin_lock_irq(&np->lock);
  3626. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3627. writel(0, base + NvRegMulticastAddrB);
  3628. writel(0, base + NvRegMulticastMaskA);
  3629. writel(0, base + NvRegMulticastMaskB);
  3630. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  3631. /* One manual link speed update: Interrupts are enabled, future link
  3632. * speed changes cause interrupts and are handled by nv_link_irq().
  3633. */
  3634. {
  3635. u32 miistat;
  3636. miistat = readl(base + NvRegMIIStatus);
  3637. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  3638. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  3639. }
  3640. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  3641. * to init hw */
  3642. np->linkspeed = 0;
  3643. ret = nv_update_linkspeed(dev);
  3644. nv_start_rx(dev);
  3645. nv_start_tx(dev);
  3646. netif_start_queue(dev);
  3647. netif_poll_enable(dev);
  3648. if (ret) {
  3649. netif_carrier_on(dev);
  3650. } else {
  3651. printk("%s: no link during initialization.\n", dev->name);
  3652. netif_carrier_off(dev);
  3653. }
  3654. if (oom)
  3655. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3656. /* start statistics timer */
  3657. if (np->driver_data & DEV_HAS_STATISTICS)
  3658. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3659. spin_unlock_irq(&np->lock);
  3660. return 0;
  3661. out_drain:
  3662. drain_ring(dev);
  3663. return ret;
  3664. }
  3665. static int nv_close(struct net_device *dev)
  3666. {
  3667. struct fe_priv *np = netdev_priv(dev);
  3668. u8 __iomem *base;
  3669. spin_lock_irq(&np->lock);
  3670. np->in_shutdown = 1;
  3671. spin_unlock_irq(&np->lock);
  3672. netif_poll_disable(dev);
  3673. synchronize_irq(dev->irq);
  3674. del_timer_sync(&np->oom_kick);
  3675. del_timer_sync(&np->nic_poll);
  3676. del_timer_sync(&np->stats_poll);
  3677. netif_stop_queue(dev);
  3678. spin_lock_irq(&np->lock);
  3679. nv_stop_tx(dev);
  3680. nv_stop_rx(dev);
  3681. nv_txrx_reset(dev);
  3682. /* disable interrupts on the nic or we will lock up */
  3683. base = get_hwbase(dev);
  3684. nv_disable_hw_interrupts(dev, np->irqmask);
  3685. pci_push(base);
  3686. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  3687. spin_unlock_irq(&np->lock);
  3688. nv_free_irq(dev);
  3689. drain_ring(dev);
  3690. if (np->wolenabled)
  3691. nv_start_rx(dev);
  3692. /* FIXME: power down nic */
  3693. return 0;
  3694. }
  3695. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  3696. {
  3697. struct net_device *dev;
  3698. struct fe_priv *np;
  3699. unsigned long addr;
  3700. u8 __iomem *base;
  3701. int err, i;
  3702. u32 powerstate, txreg;
  3703. dev = alloc_etherdev(sizeof(struct fe_priv));
  3704. err = -ENOMEM;
  3705. if (!dev)
  3706. goto out;
  3707. np = netdev_priv(dev);
  3708. np->pci_dev = pci_dev;
  3709. spin_lock_init(&np->lock);
  3710. SET_MODULE_OWNER(dev);
  3711. SET_NETDEV_DEV(dev, &pci_dev->dev);
  3712. init_timer(&np->oom_kick);
  3713. np->oom_kick.data = (unsigned long) dev;
  3714. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  3715. init_timer(&np->nic_poll);
  3716. np->nic_poll.data = (unsigned long) dev;
  3717. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  3718. init_timer(&np->stats_poll);
  3719. np->stats_poll.data = (unsigned long) dev;
  3720. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  3721. err = pci_enable_device(pci_dev);
  3722. if (err) {
  3723. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  3724. err, pci_name(pci_dev));
  3725. goto out_free;
  3726. }
  3727. pci_set_master(pci_dev);
  3728. err = pci_request_regions(pci_dev, DRV_NAME);
  3729. if (err < 0)
  3730. goto out_disable;
  3731. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
  3732. np->register_size = NV_PCI_REGSZ_VER2;
  3733. else
  3734. np->register_size = NV_PCI_REGSZ_VER1;
  3735. err = -EINVAL;
  3736. addr = 0;
  3737. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3738. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  3739. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  3740. pci_resource_len(pci_dev, i),
  3741. pci_resource_flags(pci_dev, i));
  3742. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  3743. pci_resource_len(pci_dev, i) >= np->register_size) {
  3744. addr = pci_resource_start(pci_dev, i);
  3745. break;
  3746. }
  3747. }
  3748. if (i == DEVICE_COUNT_RESOURCE) {
  3749. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  3750. pci_name(pci_dev));
  3751. goto out_relreg;
  3752. }
  3753. /* copy of driver data */
  3754. np->driver_data = id->driver_data;
  3755. /* handle different descriptor versions */
  3756. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  3757. /* packet format 3: supports 40-bit addressing */
  3758. np->desc_ver = DESC_VER_3;
  3759. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  3760. if (dma_64bit) {
  3761. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3762. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  3763. pci_name(pci_dev));
  3764. } else {
  3765. dev->features |= NETIF_F_HIGHDMA;
  3766. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  3767. }
  3768. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3769. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
  3770. pci_name(pci_dev));
  3771. }
  3772. }
  3773. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  3774. /* packet format 2: supports jumbo frames */
  3775. np->desc_ver = DESC_VER_2;
  3776. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  3777. } else {
  3778. /* original packet format */
  3779. np->desc_ver = DESC_VER_1;
  3780. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  3781. }
  3782. np->pkt_limit = NV_PKTLIMIT_1;
  3783. if (id->driver_data & DEV_HAS_LARGEDESC)
  3784. np->pkt_limit = NV_PKTLIMIT_2;
  3785. if (id->driver_data & DEV_HAS_CHECKSUM) {
  3786. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3787. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  3788. #ifdef NETIF_F_TSO
  3789. dev->features |= NETIF_F_TSO;
  3790. #endif
  3791. }
  3792. np->vlanctl_bits = 0;
  3793. if (id->driver_data & DEV_HAS_VLAN) {
  3794. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  3795. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  3796. dev->vlan_rx_register = nv_vlan_rx_register;
  3797. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  3798. }
  3799. np->msi_flags = 0;
  3800. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  3801. np->msi_flags |= NV_MSI_CAPABLE;
  3802. }
  3803. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  3804. np->msi_flags |= NV_MSI_X_CAPABLE;
  3805. }
  3806. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  3807. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  3808. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  3809. }
  3810. err = -ENOMEM;
  3811. np->base = ioremap(addr, np->register_size);
  3812. if (!np->base)
  3813. goto out_relreg;
  3814. dev->base_addr = (unsigned long)np->base;
  3815. dev->irq = pci_dev->irq;
  3816. np->rx_ring_size = RX_RING_DEFAULT;
  3817. np->tx_ring_size = TX_RING_DEFAULT;
  3818. np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
  3819. np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
  3820. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3821. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  3822. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  3823. &np->ring_addr);
  3824. if (!np->rx_ring.orig)
  3825. goto out_unmap;
  3826. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3827. } else {
  3828. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  3829. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  3830. &np->ring_addr);
  3831. if (!np->rx_ring.ex)
  3832. goto out_unmap;
  3833. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3834. }
  3835. np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
  3836. np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
  3837. np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
  3838. np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
  3839. np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
  3840. if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
  3841. goto out_freering;
  3842. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3843. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3844. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3845. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3846. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3847. dev->open = nv_open;
  3848. dev->stop = nv_close;
  3849. dev->hard_start_xmit = nv_start_xmit;
  3850. dev->get_stats = nv_get_stats;
  3851. dev->change_mtu = nv_change_mtu;
  3852. dev->set_mac_address = nv_set_mac_address;
  3853. dev->set_multicast_list = nv_set_multicast;
  3854. #ifdef CONFIG_NET_POLL_CONTROLLER
  3855. dev->poll_controller = nv_poll_controller;
  3856. #endif
  3857. dev->weight = 64;
  3858. #ifdef CONFIG_FORCEDETH_NAPI
  3859. dev->poll = nv_napi_poll;
  3860. #endif
  3861. SET_ETHTOOL_OPS(dev, &ops);
  3862. dev->tx_timeout = nv_tx_timeout;
  3863. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  3864. pci_set_drvdata(pci_dev, dev);
  3865. /* read the mac address */
  3866. base = get_hwbase(dev);
  3867. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  3868. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  3869. /* check the workaround bit for correct mac address order */
  3870. txreg = readl(base + NvRegTransmitPoll);
  3871. if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  3872. /* mac address is already in correct order */
  3873. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  3874. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  3875. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  3876. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  3877. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  3878. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  3879. } else {
  3880. /* need to reverse mac address to correct order */
  3881. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  3882. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  3883. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  3884. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  3885. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  3886. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  3887. /* set permanent address to be correct aswell */
  3888. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  3889. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  3890. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  3891. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  3892. }
  3893. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3894. if (!is_valid_ether_addr(dev->perm_addr)) {
  3895. /*
  3896. * Bad mac address. At least one bios sets the mac address
  3897. * to 01:23:45:67:89:ab
  3898. */
  3899. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  3900. pci_name(pci_dev),
  3901. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3902. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3903. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  3904. dev->dev_addr[0] = 0x00;
  3905. dev->dev_addr[1] = 0x00;
  3906. dev->dev_addr[2] = 0x6c;
  3907. get_random_bytes(&dev->dev_addr[3], 3);
  3908. }
  3909. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  3910. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3911. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3912. /* set mac address */
  3913. nv_copy_mac_to_hw(dev);
  3914. /* disable WOL */
  3915. writel(0, base + NvRegWakeUpFlags);
  3916. np->wolenabled = 0;
  3917. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  3918. u8 revision_id;
  3919. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  3920. /* take phy and nic out of low power mode */
  3921. powerstate = readl(base + NvRegPowerState2);
  3922. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  3923. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  3924. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  3925. revision_id >= 0xA3)
  3926. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  3927. writel(powerstate, base + NvRegPowerState2);
  3928. }
  3929. if (np->desc_ver == DESC_VER_1) {
  3930. np->tx_flags = NV_TX_VALID;
  3931. } else {
  3932. np->tx_flags = NV_TX2_VALID;
  3933. }
  3934. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  3935. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3936. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3937. np->msi_flags |= 0x0003;
  3938. } else {
  3939. np->irqmask = NVREG_IRQMASK_CPU;
  3940. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3941. np->msi_flags |= 0x0001;
  3942. }
  3943. if (id->driver_data & DEV_NEED_TIMERIRQ)
  3944. np->irqmask |= NVREG_IRQ_TIMER;
  3945. if (id->driver_data & DEV_NEED_LINKTIMER) {
  3946. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  3947. np->need_linktimer = 1;
  3948. np->link_timeout = jiffies + LINK_TIMEOUT;
  3949. } else {
  3950. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  3951. np->need_linktimer = 0;
  3952. }
  3953. /* find a suitable phy */
  3954. for (i = 1; i <= 32; i++) {
  3955. int id1, id2;
  3956. int phyaddr = i & 0x1F;
  3957. spin_lock_irq(&np->lock);
  3958. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  3959. spin_unlock_irq(&np->lock);
  3960. if (id1 < 0 || id1 == 0xffff)
  3961. continue;
  3962. spin_lock_irq(&np->lock);
  3963. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  3964. spin_unlock_irq(&np->lock);
  3965. if (id2 < 0 || id2 == 0xffff)
  3966. continue;
  3967. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  3968. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  3969. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  3970. pci_name(pci_dev), id1, id2, phyaddr);
  3971. np->phyaddr = phyaddr;
  3972. np->phy_oui = id1 | id2;
  3973. break;
  3974. }
  3975. if (i == 33) {
  3976. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  3977. pci_name(pci_dev));
  3978. goto out_error;
  3979. }
  3980. /* reset it */
  3981. phy_init(dev);
  3982. /* set default link speed settings */
  3983. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3984. np->duplex = 0;
  3985. np->autoneg = 1;
  3986. err = register_netdev(dev);
  3987. if (err) {
  3988. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  3989. goto out_error;
  3990. }
  3991. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  3992. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  3993. pci_name(pci_dev));
  3994. return 0;
  3995. out_error:
  3996. pci_set_drvdata(pci_dev, NULL);
  3997. out_freering:
  3998. free_rings(dev);
  3999. out_unmap:
  4000. iounmap(get_hwbase(dev));
  4001. out_relreg:
  4002. pci_release_regions(pci_dev);
  4003. out_disable:
  4004. pci_disable_device(pci_dev);
  4005. out_free:
  4006. free_netdev(dev);
  4007. out:
  4008. return err;
  4009. }
  4010. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4011. {
  4012. struct net_device *dev = pci_get_drvdata(pci_dev);
  4013. struct fe_priv *np = netdev_priv(dev);
  4014. u8 __iomem *base = get_hwbase(dev);
  4015. unregister_netdev(dev);
  4016. /* special op: write back the misordered MAC address - otherwise
  4017. * the next nv_probe would see a wrong address.
  4018. */
  4019. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4020. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4021. /* free all structures */
  4022. free_rings(dev);
  4023. iounmap(get_hwbase(dev));
  4024. pci_release_regions(pci_dev);
  4025. pci_disable_device(pci_dev);
  4026. free_netdev(dev);
  4027. pci_set_drvdata(pci_dev, NULL);
  4028. }
  4029. static struct pci_device_id pci_tbl[] = {
  4030. { /* nForce Ethernet Controller */
  4031. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4032. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4033. },
  4034. { /* nForce2 Ethernet Controller */
  4035. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4036. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4037. },
  4038. { /* nForce3 Ethernet Controller */
  4039. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4040. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4041. },
  4042. { /* nForce3 Ethernet Controller */
  4043. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4044. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4045. },
  4046. { /* nForce3 Ethernet Controller */
  4047. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4048. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4049. },
  4050. { /* nForce3 Ethernet Controller */
  4051. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4052. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4053. },
  4054. { /* nForce3 Ethernet Controller */
  4055. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4056. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4057. },
  4058. { /* CK804 Ethernet Controller */
  4059. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4060. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4061. },
  4062. { /* CK804 Ethernet Controller */
  4063. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4064. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4065. },
  4066. { /* MCP04 Ethernet Controller */
  4067. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4068. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4069. },
  4070. { /* MCP04 Ethernet Controller */
  4071. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4072. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4073. },
  4074. { /* MCP51 Ethernet Controller */
  4075. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4076. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4077. },
  4078. { /* MCP51 Ethernet Controller */
  4079. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4080. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4081. },
  4082. { /* MCP55 Ethernet Controller */
  4083. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4084. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4085. },
  4086. { /* MCP55 Ethernet Controller */
  4087. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4088. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4089. },
  4090. { /* MCP61 Ethernet Controller */
  4091. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4092. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4093. },
  4094. { /* MCP61 Ethernet Controller */
  4095. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4096. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4097. },
  4098. { /* MCP61 Ethernet Controller */
  4099. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4100. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4101. },
  4102. { /* MCP61 Ethernet Controller */
  4103. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4104. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4105. },
  4106. { /* MCP65 Ethernet Controller */
  4107. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4108. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4109. },
  4110. { /* MCP65 Ethernet Controller */
  4111. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4112. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4113. },
  4114. { /* MCP65 Ethernet Controller */
  4115. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4116. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4117. },
  4118. { /* MCP65 Ethernet Controller */
  4119. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4120. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4121. },
  4122. {0,},
  4123. };
  4124. static struct pci_driver driver = {
  4125. .name = "forcedeth",
  4126. .id_table = pci_tbl,
  4127. .probe = nv_probe,
  4128. .remove = __devexit_p(nv_remove),
  4129. };
  4130. static int __init init_nic(void)
  4131. {
  4132. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  4133. return pci_register_driver(&driver);
  4134. }
  4135. static void __exit exit_nic(void)
  4136. {
  4137. pci_unregister_driver(&driver);
  4138. }
  4139. module_param(max_interrupt_work, int, 0);
  4140. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  4141. module_param(optimization_mode, int, 0);
  4142. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  4143. module_param(poll_interval, int, 0);
  4144. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  4145. module_param(msi, int, 0);
  4146. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4147. module_param(msix, int, 0);
  4148. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4149. module_param(dma_64bit, int, 0);
  4150. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  4151. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  4152. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  4153. MODULE_LICENSE("GPL");
  4154. MODULE_DEVICE_TABLE(pci, pci_tbl);
  4155. module_init(init_nic);
  4156. module_exit(exit_nic);