intel_dp.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int dpms_mode;
  47. uint8_t link_bw;
  48. uint8_t lane_count;
  49. uint8_t dpcd[4];
  50. struct i2c_adapter adapter;
  51. struct i2c_algo_dp_aux_data algo;
  52. bool is_pch_edp;
  53. uint8_t train_set[4];
  54. uint8_t link_status[DP_LINK_STATUS_SIZE];
  55. };
  56. /**
  57. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  58. * @intel_dp: DP struct
  59. *
  60. * If a CPU or PCH DP output is attached to an eDP panel, this function
  61. * will return true, and false otherwise.
  62. */
  63. static bool is_edp(struct intel_dp *intel_dp)
  64. {
  65. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  66. }
  67. /**
  68. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  69. * @intel_dp: DP struct
  70. *
  71. * Returns true if the given DP struct corresponds to a PCH DP port attached
  72. * to an eDP panel, false otherwise. Helpful for determining whether we
  73. * may need FDI resources for a given DP output or not.
  74. */
  75. static bool is_pch_edp(struct intel_dp *intel_dp)
  76. {
  77. return intel_dp->is_pch_edp;
  78. }
  79. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  80. {
  81. return container_of(encoder, struct intel_dp, base.base);
  82. }
  83. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  84. {
  85. return container_of(intel_attached_encoder(connector),
  86. struct intel_dp, base);
  87. }
  88. /**
  89. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  90. * @encoder: DRM encoder
  91. *
  92. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  93. * by intel_display.c.
  94. */
  95. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  96. {
  97. struct intel_dp *intel_dp;
  98. if (!encoder)
  99. return false;
  100. intel_dp = enc_to_intel_dp(encoder);
  101. return is_pch_edp(intel_dp);
  102. }
  103. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  104. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  105. static void intel_dp_link_down(struct intel_dp *intel_dp);
  106. void
  107. intel_edp_link_config (struct intel_encoder *intel_encoder,
  108. int *lane_num, int *link_bw)
  109. {
  110. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  111. *lane_num = intel_dp->lane_count;
  112. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  113. *link_bw = 162000;
  114. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  115. *link_bw = 270000;
  116. }
  117. static int
  118. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  119. {
  120. int max_lane_count = 4;
  121. if (intel_dp->dpcd[0] >= 0x11) {
  122. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  123. switch (max_lane_count) {
  124. case 1: case 2: case 4:
  125. break;
  126. default:
  127. max_lane_count = 4;
  128. }
  129. }
  130. return max_lane_count;
  131. }
  132. static int
  133. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  134. {
  135. int max_link_bw = intel_dp->dpcd[1];
  136. switch (max_link_bw) {
  137. case DP_LINK_BW_1_62:
  138. case DP_LINK_BW_2_7:
  139. break;
  140. default:
  141. max_link_bw = DP_LINK_BW_1_62;
  142. break;
  143. }
  144. return max_link_bw;
  145. }
  146. static int
  147. intel_dp_link_clock(uint8_t link_bw)
  148. {
  149. if (link_bw == DP_LINK_BW_2_7)
  150. return 270000;
  151. else
  152. return 162000;
  153. }
  154. /* I think this is a fiction */
  155. static int
  156. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  157. {
  158. struct drm_i915_private *dev_priv = dev->dev_private;
  159. if (is_edp(intel_dp))
  160. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  161. else
  162. return pixel_clock * 3;
  163. }
  164. static int
  165. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  166. {
  167. return (max_link_clock * max_lanes * 8) / 10;
  168. }
  169. static int
  170. intel_dp_mode_valid(struct drm_connector *connector,
  171. struct drm_display_mode *mode)
  172. {
  173. struct intel_dp *intel_dp = intel_attached_dp(connector);
  174. struct drm_device *dev = connector->dev;
  175. struct drm_i915_private *dev_priv = dev->dev_private;
  176. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  177. int max_lanes = intel_dp_max_lane_count(intel_dp);
  178. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  179. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  180. return MODE_PANEL;
  181. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  182. return MODE_PANEL;
  183. }
  184. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  185. which are outside spec tolerances but somehow work by magic */
  186. if (!is_edp(intel_dp) &&
  187. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  188. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  189. return MODE_CLOCK_HIGH;
  190. if (mode->clock < 10000)
  191. return MODE_CLOCK_LOW;
  192. return MODE_OK;
  193. }
  194. static uint32_t
  195. pack_aux(uint8_t *src, int src_bytes)
  196. {
  197. int i;
  198. uint32_t v = 0;
  199. if (src_bytes > 4)
  200. src_bytes = 4;
  201. for (i = 0; i < src_bytes; i++)
  202. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  203. return v;
  204. }
  205. static void
  206. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  207. {
  208. int i;
  209. if (dst_bytes > 4)
  210. dst_bytes = 4;
  211. for (i = 0; i < dst_bytes; i++)
  212. dst[i] = src >> ((3-i) * 8);
  213. }
  214. /* hrawclock is 1/4 the FSB frequency */
  215. static int
  216. intel_hrawclk(struct drm_device *dev)
  217. {
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. uint32_t clkcfg;
  220. clkcfg = I915_READ(CLKCFG);
  221. switch (clkcfg & CLKCFG_FSB_MASK) {
  222. case CLKCFG_FSB_400:
  223. return 100;
  224. case CLKCFG_FSB_533:
  225. return 133;
  226. case CLKCFG_FSB_667:
  227. return 166;
  228. case CLKCFG_FSB_800:
  229. return 200;
  230. case CLKCFG_FSB_1067:
  231. return 266;
  232. case CLKCFG_FSB_1333:
  233. return 333;
  234. /* these two are just a guess; one of them might be right */
  235. case CLKCFG_FSB_1600:
  236. case CLKCFG_FSB_1600_ALT:
  237. return 400;
  238. default:
  239. return 133;
  240. }
  241. }
  242. static int
  243. intel_dp_aux_ch(struct intel_dp *intel_dp,
  244. uint8_t *send, int send_bytes,
  245. uint8_t *recv, int recv_size)
  246. {
  247. uint32_t output_reg = intel_dp->output_reg;
  248. struct drm_device *dev = intel_dp->base.base.dev;
  249. struct drm_i915_private *dev_priv = dev->dev_private;
  250. uint32_t ch_ctl = output_reg + 0x10;
  251. uint32_t ch_data = ch_ctl + 4;
  252. int i;
  253. int recv_bytes;
  254. uint32_t status;
  255. uint32_t aux_clock_divider;
  256. int try, precharge;
  257. /* The clock divider is based off the hrawclk,
  258. * and would like to run at 2MHz. So, take the
  259. * hrawclk value and divide by 2 and use that
  260. *
  261. * Note that PCH attached eDP panels should use a 125MHz input
  262. * clock divider.
  263. */
  264. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  265. if (IS_GEN6(dev))
  266. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  267. else
  268. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  269. } else if (HAS_PCH_SPLIT(dev))
  270. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  271. else
  272. aux_clock_divider = intel_hrawclk(dev) / 2;
  273. if (IS_GEN6(dev))
  274. precharge = 3;
  275. else
  276. precharge = 5;
  277. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  278. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  279. I915_READ(ch_ctl));
  280. return -EBUSY;
  281. }
  282. /* Must try at least 3 times according to DP spec */
  283. for (try = 0; try < 5; try++) {
  284. /* Load the send data into the aux channel data registers */
  285. for (i = 0; i < send_bytes; i += 4)
  286. I915_WRITE(ch_data + i,
  287. pack_aux(send + i, send_bytes - i));
  288. /* Send the command and wait for it to complete */
  289. I915_WRITE(ch_ctl,
  290. DP_AUX_CH_CTL_SEND_BUSY |
  291. DP_AUX_CH_CTL_TIME_OUT_400us |
  292. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  293. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  294. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  295. DP_AUX_CH_CTL_DONE |
  296. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  297. DP_AUX_CH_CTL_RECEIVE_ERROR);
  298. for (;;) {
  299. status = I915_READ(ch_ctl);
  300. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  301. break;
  302. udelay(100);
  303. }
  304. /* Clear done status and any errors */
  305. I915_WRITE(ch_ctl,
  306. status |
  307. DP_AUX_CH_CTL_DONE |
  308. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  309. DP_AUX_CH_CTL_RECEIVE_ERROR);
  310. if (status & DP_AUX_CH_CTL_DONE)
  311. break;
  312. }
  313. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  314. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  315. return -EBUSY;
  316. }
  317. /* Check for timeout or receive error.
  318. * Timeouts occur when the sink is not connected
  319. */
  320. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  321. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  322. return -EIO;
  323. }
  324. /* Timeouts occur when the device isn't connected, so they're
  325. * "normal" -- don't fill the kernel log with these */
  326. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  327. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  328. return -ETIMEDOUT;
  329. }
  330. /* Unload any bytes sent back from the other side */
  331. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  332. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  333. if (recv_bytes > recv_size)
  334. recv_bytes = recv_size;
  335. for (i = 0; i < recv_bytes; i += 4)
  336. unpack_aux(I915_READ(ch_data + i),
  337. recv + i, recv_bytes - i);
  338. return recv_bytes;
  339. }
  340. /* Write data to the aux channel in native mode */
  341. static int
  342. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  343. uint16_t address, uint8_t *send, int send_bytes)
  344. {
  345. int ret;
  346. uint8_t msg[20];
  347. int msg_bytes;
  348. uint8_t ack;
  349. if (send_bytes > 16)
  350. return -1;
  351. msg[0] = AUX_NATIVE_WRITE << 4;
  352. msg[1] = address >> 8;
  353. msg[2] = address & 0xff;
  354. msg[3] = send_bytes - 1;
  355. memcpy(&msg[4], send, send_bytes);
  356. msg_bytes = send_bytes + 4;
  357. for (;;) {
  358. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  359. if (ret < 0)
  360. return ret;
  361. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  362. break;
  363. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  364. udelay(100);
  365. else
  366. return -EIO;
  367. }
  368. return send_bytes;
  369. }
  370. /* Write a single byte to the aux channel in native mode */
  371. static int
  372. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  373. uint16_t address, uint8_t byte)
  374. {
  375. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  376. }
  377. /* read bytes from a native aux channel */
  378. static int
  379. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  380. uint16_t address, uint8_t *recv, int recv_bytes)
  381. {
  382. uint8_t msg[4];
  383. int msg_bytes;
  384. uint8_t reply[20];
  385. int reply_bytes;
  386. uint8_t ack;
  387. int ret;
  388. msg[0] = AUX_NATIVE_READ << 4;
  389. msg[1] = address >> 8;
  390. msg[2] = address & 0xff;
  391. msg[3] = recv_bytes - 1;
  392. msg_bytes = 4;
  393. reply_bytes = recv_bytes + 1;
  394. for (;;) {
  395. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  396. reply, reply_bytes);
  397. if (ret == 0)
  398. return -EPROTO;
  399. if (ret < 0)
  400. return ret;
  401. ack = reply[0];
  402. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  403. memcpy(recv, reply + 1, ret - 1);
  404. return ret - 1;
  405. }
  406. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  407. udelay(100);
  408. else
  409. return -EIO;
  410. }
  411. }
  412. static int
  413. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  414. uint8_t write_byte, uint8_t *read_byte)
  415. {
  416. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  417. struct intel_dp *intel_dp = container_of(adapter,
  418. struct intel_dp,
  419. adapter);
  420. uint16_t address = algo_data->address;
  421. uint8_t msg[5];
  422. uint8_t reply[2];
  423. int msg_bytes;
  424. int reply_bytes;
  425. int ret;
  426. /* Set up the command byte */
  427. if (mode & MODE_I2C_READ)
  428. msg[0] = AUX_I2C_READ << 4;
  429. else
  430. msg[0] = AUX_I2C_WRITE << 4;
  431. if (!(mode & MODE_I2C_STOP))
  432. msg[0] |= AUX_I2C_MOT << 4;
  433. msg[1] = address >> 8;
  434. msg[2] = address;
  435. switch (mode) {
  436. case MODE_I2C_WRITE:
  437. msg[3] = 0;
  438. msg[4] = write_byte;
  439. msg_bytes = 5;
  440. reply_bytes = 1;
  441. break;
  442. case MODE_I2C_READ:
  443. msg[3] = 0;
  444. msg_bytes = 4;
  445. reply_bytes = 2;
  446. break;
  447. default:
  448. msg_bytes = 3;
  449. reply_bytes = 1;
  450. break;
  451. }
  452. for (;;) {
  453. ret = intel_dp_aux_ch(intel_dp,
  454. msg, msg_bytes,
  455. reply, reply_bytes);
  456. if (ret < 0) {
  457. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  458. return ret;
  459. }
  460. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  461. case AUX_I2C_REPLY_ACK:
  462. if (mode == MODE_I2C_READ) {
  463. *read_byte = reply[1];
  464. }
  465. return reply_bytes - 1;
  466. case AUX_I2C_REPLY_NACK:
  467. DRM_DEBUG_KMS("aux_ch nack\n");
  468. return -EREMOTEIO;
  469. case AUX_I2C_REPLY_DEFER:
  470. DRM_DEBUG_KMS("aux_ch defer\n");
  471. udelay(100);
  472. break;
  473. default:
  474. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  475. return -EREMOTEIO;
  476. }
  477. }
  478. }
  479. static int
  480. intel_dp_i2c_init(struct intel_dp *intel_dp,
  481. struct intel_connector *intel_connector, const char *name)
  482. {
  483. DRM_DEBUG_KMS("i2c_init %s\n", name);
  484. intel_dp->algo.running = false;
  485. intel_dp->algo.address = 0;
  486. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  487. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  488. intel_dp->adapter.owner = THIS_MODULE;
  489. intel_dp->adapter.class = I2C_CLASS_DDC;
  490. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  491. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  492. intel_dp->adapter.algo_data = &intel_dp->algo;
  493. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  494. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  495. }
  496. static bool
  497. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  498. struct drm_display_mode *adjusted_mode)
  499. {
  500. struct drm_device *dev = encoder->dev;
  501. struct drm_i915_private *dev_priv = dev->dev_private;
  502. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  503. int lane_count, clock;
  504. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  505. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  506. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  507. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  508. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  509. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  510. mode, adjusted_mode);
  511. /*
  512. * the mode->clock is used to calculate the Data&Link M/N
  513. * of the pipe. For the eDP the fixed clock should be used.
  514. */
  515. mode->clock = dev_priv->panel_fixed_mode->clock;
  516. }
  517. /* Just use VBT values for eDP */
  518. if (is_edp(intel_dp)) {
  519. intel_dp->lane_count = dev_priv->edp.lanes;
  520. intel_dp->link_bw = dev_priv->edp.rate;
  521. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  522. DRM_DEBUG_KMS("eDP link bw %02x lane count %d clock %d\n",
  523. intel_dp->link_bw, intel_dp->lane_count,
  524. adjusted_mode->clock);
  525. return true;
  526. }
  527. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  528. for (clock = 0; clock <= max_clock; clock++) {
  529. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  530. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  531. <= link_avail) {
  532. intel_dp->link_bw = bws[clock];
  533. intel_dp->lane_count = lane_count;
  534. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  535. DRM_DEBUG_KMS("Display port link bw %02x lane "
  536. "count %d clock %d\n",
  537. intel_dp->link_bw, intel_dp->lane_count,
  538. adjusted_mode->clock);
  539. return true;
  540. }
  541. }
  542. }
  543. return false;
  544. }
  545. struct intel_dp_m_n {
  546. uint32_t tu;
  547. uint32_t gmch_m;
  548. uint32_t gmch_n;
  549. uint32_t link_m;
  550. uint32_t link_n;
  551. };
  552. static void
  553. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  554. {
  555. while (*num > 0xffffff || *den > 0xffffff) {
  556. *num >>= 1;
  557. *den >>= 1;
  558. }
  559. }
  560. static void
  561. intel_dp_compute_m_n(int bpp,
  562. int nlanes,
  563. int pixel_clock,
  564. int link_clock,
  565. struct intel_dp_m_n *m_n)
  566. {
  567. m_n->tu = 64;
  568. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  569. m_n->gmch_n = link_clock * nlanes;
  570. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  571. m_n->link_m = pixel_clock;
  572. m_n->link_n = link_clock;
  573. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  574. }
  575. void
  576. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  577. struct drm_display_mode *adjusted_mode)
  578. {
  579. struct drm_device *dev = crtc->dev;
  580. struct drm_mode_config *mode_config = &dev->mode_config;
  581. struct drm_encoder *encoder;
  582. struct drm_i915_private *dev_priv = dev->dev_private;
  583. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  584. int lane_count = 4, bpp = 24;
  585. struct intel_dp_m_n m_n;
  586. /*
  587. * Find the lane count in the intel_encoder private
  588. */
  589. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  590. struct intel_dp *intel_dp;
  591. if (encoder->crtc != crtc)
  592. continue;
  593. intel_dp = enc_to_intel_dp(encoder);
  594. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  595. lane_count = intel_dp->lane_count;
  596. break;
  597. } else if (is_edp(intel_dp)) {
  598. lane_count = dev_priv->edp.lanes;
  599. bpp = dev_priv->edp.bpp;
  600. break;
  601. }
  602. }
  603. /*
  604. * Compute the GMCH and Link ratios. The '3' here is
  605. * the number of bytes_per_pixel post-LUT, which we always
  606. * set up for 8-bits of R/G/B, or 3 bytes total.
  607. */
  608. intel_dp_compute_m_n(bpp, lane_count,
  609. mode->clock, adjusted_mode->clock, &m_n);
  610. if (HAS_PCH_SPLIT(dev)) {
  611. if (intel_crtc->pipe == 0) {
  612. I915_WRITE(TRANSA_DATA_M1,
  613. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  614. m_n.gmch_m);
  615. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  616. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  617. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  618. } else {
  619. I915_WRITE(TRANSB_DATA_M1,
  620. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  621. m_n.gmch_m);
  622. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  623. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  624. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  625. }
  626. } else {
  627. if (intel_crtc->pipe == 0) {
  628. I915_WRITE(PIPEA_GMCH_DATA_M,
  629. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  630. m_n.gmch_m);
  631. I915_WRITE(PIPEA_GMCH_DATA_N,
  632. m_n.gmch_n);
  633. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  634. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  635. } else {
  636. I915_WRITE(PIPEB_GMCH_DATA_M,
  637. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  638. m_n.gmch_m);
  639. I915_WRITE(PIPEB_GMCH_DATA_N,
  640. m_n.gmch_n);
  641. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  642. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  643. }
  644. }
  645. }
  646. static void
  647. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  648. struct drm_display_mode *adjusted_mode)
  649. {
  650. struct drm_device *dev = encoder->dev;
  651. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  652. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  653. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  654. intel_dp->DP = (DP_VOLTAGE_0_4 |
  655. DP_PRE_EMPHASIS_0);
  656. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  657. intel_dp->DP |= DP_SYNC_HS_HIGH;
  658. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  659. intel_dp->DP |= DP_SYNC_VS_HIGH;
  660. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  661. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  662. else
  663. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  664. switch (intel_dp->lane_count) {
  665. case 1:
  666. intel_dp->DP |= DP_PORT_WIDTH_1;
  667. break;
  668. case 2:
  669. intel_dp->DP |= DP_PORT_WIDTH_2;
  670. break;
  671. case 4:
  672. intel_dp->DP |= DP_PORT_WIDTH_4;
  673. break;
  674. }
  675. if (intel_dp->has_audio)
  676. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  677. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  678. intel_dp->link_configuration[0] = intel_dp->link_bw;
  679. intel_dp->link_configuration[1] = intel_dp->lane_count;
  680. /*
  681. * Check for DPCD version > 1.1 and enhanced framing support
  682. */
  683. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  684. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  685. intel_dp->DP |= DP_ENHANCED_FRAMING;
  686. }
  687. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  688. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  689. intel_dp->DP |= DP_PIPEB_SELECT;
  690. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  691. /* don't miss out required setting for eDP */
  692. intel_dp->DP |= DP_PLL_ENABLE;
  693. if (adjusted_mode->clock < 200000)
  694. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  695. else
  696. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  697. }
  698. }
  699. /* Returns true if the panel was already on when called */
  700. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  701. {
  702. struct drm_device *dev = intel_dp->base.base.dev;
  703. struct drm_i915_private *dev_priv = dev->dev_private;
  704. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  705. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  706. return true;
  707. pp = I915_READ(PCH_PP_CONTROL);
  708. /* ILK workaround: disable reset around power sequence */
  709. pp &= ~PANEL_POWER_RESET;
  710. I915_WRITE(PCH_PP_CONTROL, pp);
  711. POSTING_READ(PCH_PP_CONTROL);
  712. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  713. I915_WRITE(PCH_PP_CONTROL, pp);
  714. POSTING_READ(PCH_PP_CONTROL);
  715. /* Ouch. We need to wait here for some panels, like Dell e6510
  716. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  717. */
  718. msleep(300);
  719. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  720. 5000))
  721. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  722. I915_READ(PCH_PP_STATUS));
  723. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  724. I915_WRITE(PCH_PP_CONTROL, pp);
  725. POSTING_READ(PCH_PP_CONTROL);
  726. return false;
  727. }
  728. static void ironlake_edp_panel_off (struct drm_device *dev)
  729. {
  730. struct drm_i915_private *dev_priv = dev->dev_private;
  731. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  732. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  733. pp = I915_READ(PCH_PP_CONTROL);
  734. /* ILK workaround: disable reset around power sequence */
  735. pp &= ~PANEL_POWER_RESET;
  736. I915_WRITE(PCH_PP_CONTROL, pp);
  737. POSTING_READ(PCH_PP_CONTROL);
  738. pp &= ~POWER_TARGET_ON;
  739. I915_WRITE(PCH_PP_CONTROL, pp);
  740. POSTING_READ(PCH_PP_CONTROL);
  741. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  742. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  743. I915_READ(PCH_PP_STATUS));
  744. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  745. I915_WRITE(PCH_PP_CONTROL, pp);
  746. POSTING_READ(PCH_PP_CONTROL);
  747. /* Ouch. We need to wait here for some panels, like Dell e6510
  748. * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
  749. */
  750. msleep(300);
  751. }
  752. static void ironlake_edp_backlight_on (struct drm_device *dev)
  753. {
  754. struct drm_i915_private *dev_priv = dev->dev_private;
  755. u32 pp;
  756. DRM_DEBUG_KMS("\n");
  757. /*
  758. * If we enable the backlight right away following a panel power
  759. * on, we may see slight flicker as the panel syncs with the eDP
  760. * link. So delay a bit to make sure the image is solid before
  761. * allowing it to appear.
  762. */
  763. msleep(300);
  764. pp = I915_READ(PCH_PP_CONTROL);
  765. pp |= EDP_BLC_ENABLE;
  766. I915_WRITE(PCH_PP_CONTROL, pp);
  767. }
  768. static void ironlake_edp_backlight_off (struct drm_device *dev)
  769. {
  770. struct drm_i915_private *dev_priv = dev->dev_private;
  771. u32 pp;
  772. DRM_DEBUG_KMS("\n");
  773. pp = I915_READ(PCH_PP_CONTROL);
  774. pp &= ~EDP_BLC_ENABLE;
  775. I915_WRITE(PCH_PP_CONTROL, pp);
  776. }
  777. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  778. {
  779. struct drm_device *dev = encoder->dev;
  780. struct drm_i915_private *dev_priv = dev->dev_private;
  781. u32 dpa_ctl;
  782. DRM_DEBUG_KMS("\n");
  783. dpa_ctl = I915_READ(DP_A);
  784. dpa_ctl |= DP_PLL_ENABLE;
  785. I915_WRITE(DP_A, dpa_ctl);
  786. POSTING_READ(DP_A);
  787. udelay(200);
  788. }
  789. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  790. {
  791. struct drm_device *dev = encoder->dev;
  792. struct drm_i915_private *dev_priv = dev->dev_private;
  793. u32 dpa_ctl;
  794. dpa_ctl = I915_READ(DP_A);
  795. dpa_ctl &= ~DP_PLL_ENABLE;
  796. I915_WRITE(DP_A, dpa_ctl);
  797. POSTING_READ(DP_A);
  798. udelay(200);
  799. }
  800. static void intel_dp_prepare(struct drm_encoder *encoder)
  801. {
  802. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  803. struct drm_device *dev = encoder->dev;
  804. struct drm_i915_private *dev_priv = dev->dev_private;
  805. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  806. if (is_edp(intel_dp)) {
  807. ironlake_edp_backlight_off(dev);
  808. ironlake_edp_panel_on(intel_dp);
  809. if (!is_pch_edp(intel_dp))
  810. ironlake_edp_pll_on(encoder);
  811. else
  812. ironlake_edp_pll_off(encoder);
  813. }
  814. if (dp_reg & DP_PORT_EN)
  815. intel_dp_link_down(intel_dp);
  816. }
  817. static void intel_dp_commit(struct drm_encoder *encoder)
  818. {
  819. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  820. struct drm_device *dev = encoder->dev;
  821. intel_dp_start_link_train(intel_dp);
  822. if (is_edp(intel_dp))
  823. ironlake_edp_panel_on(intel_dp);
  824. intel_dp_complete_link_train(intel_dp);
  825. if (is_edp(intel_dp))
  826. ironlake_edp_backlight_on(dev);
  827. }
  828. static void
  829. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  830. {
  831. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  832. struct drm_device *dev = encoder->dev;
  833. struct drm_i915_private *dev_priv = dev->dev_private;
  834. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  835. if (mode != DRM_MODE_DPMS_ON) {
  836. if (is_edp(intel_dp))
  837. ironlake_edp_backlight_off(dev);
  838. if (dp_reg & DP_PORT_EN)
  839. intel_dp_link_down(intel_dp);
  840. if (is_edp(intel_dp))
  841. ironlake_edp_panel_off(dev);
  842. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  843. ironlake_edp_pll_off(encoder);
  844. } else {
  845. if (!(dp_reg & DP_PORT_EN)) {
  846. if (is_edp(intel_dp))
  847. ironlake_edp_panel_on(intel_dp);
  848. intel_dp_start_link_train(intel_dp);
  849. intel_dp_complete_link_train(intel_dp);
  850. if (is_edp(intel_dp))
  851. ironlake_edp_backlight_on(dev);
  852. }
  853. }
  854. intel_dp->dpms_mode = mode;
  855. }
  856. /*
  857. * Fetch AUX CH registers 0x202 - 0x207 which contain
  858. * link status information
  859. */
  860. static bool
  861. intel_dp_get_link_status(struct intel_dp *intel_dp)
  862. {
  863. int ret;
  864. ret = intel_dp_aux_native_read(intel_dp,
  865. DP_LANE0_1_STATUS,
  866. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  867. if (ret != DP_LINK_STATUS_SIZE)
  868. return false;
  869. return true;
  870. }
  871. static uint8_t
  872. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  873. int r)
  874. {
  875. return link_status[r - DP_LANE0_1_STATUS];
  876. }
  877. static uint8_t
  878. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  879. int lane)
  880. {
  881. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  882. int s = ((lane & 1) ?
  883. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  884. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  885. uint8_t l = intel_dp_link_status(link_status, i);
  886. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  887. }
  888. static uint8_t
  889. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  890. int lane)
  891. {
  892. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  893. int s = ((lane & 1) ?
  894. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  895. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  896. uint8_t l = intel_dp_link_status(link_status, i);
  897. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  898. }
  899. #if 0
  900. static char *voltage_names[] = {
  901. "0.4V", "0.6V", "0.8V", "1.2V"
  902. };
  903. static char *pre_emph_names[] = {
  904. "0dB", "3.5dB", "6dB", "9.5dB"
  905. };
  906. static char *link_train_names[] = {
  907. "pattern 1", "pattern 2", "idle", "off"
  908. };
  909. #endif
  910. /*
  911. * These are source-specific values; current Intel hardware supports
  912. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  913. */
  914. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  915. static uint8_t
  916. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  917. {
  918. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  919. case DP_TRAIN_VOLTAGE_SWING_400:
  920. return DP_TRAIN_PRE_EMPHASIS_6;
  921. case DP_TRAIN_VOLTAGE_SWING_600:
  922. return DP_TRAIN_PRE_EMPHASIS_6;
  923. case DP_TRAIN_VOLTAGE_SWING_800:
  924. return DP_TRAIN_PRE_EMPHASIS_3_5;
  925. case DP_TRAIN_VOLTAGE_SWING_1200:
  926. default:
  927. return DP_TRAIN_PRE_EMPHASIS_0;
  928. }
  929. }
  930. static void
  931. intel_get_adjust_train(struct intel_dp *intel_dp)
  932. {
  933. uint8_t v = 0;
  934. uint8_t p = 0;
  935. int lane;
  936. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  937. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  938. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  939. if (this_v > v)
  940. v = this_v;
  941. if (this_p > p)
  942. p = this_p;
  943. }
  944. if (v >= I830_DP_VOLTAGE_MAX)
  945. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  946. if (p >= intel_dp_pre_emphasis_max(v))
  947. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  948. for (lane = 0; lane < 4; lane++)
  949. intel_dp->train_set[lane] = v | p;
  950. }
  951. static uint32_t
  952. intel_dp_signal_levels(struct intel_dp *intel_dp)
  953. {
  954. struct drm_device *dev = intel_dp->base.base.dev;
  955. struct drm_i915_private *dev_priv = dev->dev_private;
  956. uint32_t signal_levels = 0;
  957. u8 train_set = intel_dp->train_set[0];
  958. u32 vswing = train_set & DP_TRAIN_VOLTAGE_SWING_MASK;
  959. u32 preemphasis = train_set & DP_TRAIN_PRE_EMPHASIS_MASK;
  960. if (is_edp(intel_dp)) {
  961. vswing = dev_priv->edp.vswing;
  962. preemphasis = dev_priv->edp.preemphasis;
  963. }
  964. switch (vswing) {
  965. case DP_TRAIN_VOLTAGE_SWING_400:
  966. default:
  967. signal_levels |= DP_VOLTAGE_0_4;
  968. break;
  969. case DP_TRAIN_VOLTAGE_SWING_600:
  970. signal_levels |= DP_VOLTAGE_0_6;
  971. break;
  972. case DP_TRAIN_VOLTAGE_SWING_800:
  973. signal_levels |= DP_VOLTAGE_0_8;
  974. break;
  975. case DP_TRAIN_VOLTAGE_SWING_1200:
  976. signal_levels |= DP_VOLTAGE_1_2;
  977. break;
  978. }
  979. switch (preemphasis) {
  980. case DP_TRAIN_PRE_EMPHASIS_0:
  981. default:
  982. signal_levels |= DP_PRE_EMPHASIS_0;
  983. break;
  984. case DP_TRAIN_PRE_EMPHASIS_3_5:
  985. signal_levels |= DP_PRE_EMPHASIS_3_5;
  986. break;
  987. case DP_TRAIN_PRE_EMPHASIS_6:
  988. signal_levels |= DP_PRE_EMPHASIS_6;
  989. break;
  990. case DP_TRAIN_PRE_EMPHASIS_9_5:
  991. signal_levels |= DP_PRE_EMPHASIS_9_5;
  992. break;
  993. }
  994. return signal_levels;
  995. }
  996. /* Gen6's DP voltage swing and pre-emphasis control */
  997. static uint32_t
  998. intel_gen6_edp_signal_levels(uint8_t train_set)
  999. {
  1000. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  1001. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1002. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  1003. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1004. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  1005. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1006. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  1007. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1008. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  1009. default:
  1010. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  1011. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  1012. }
  1013. }
  1014. static uint8_t
  1015. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1016. int lane)
  1017. {
  1018. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1019. int s = (lane & 1) * 4;
  1020. uint8_t l = intel_dp_link_status(link_status, i);
  1021. return (l >> s) & 0xf;
  1022. }
  1023. /* Check for clock recovery is done on all channels */
  1024. static bool
  1025. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1026. {
  1027. int lane;
  1028. uint8_t lane_status;
  1029. for (lane = 0; lane < lane_count; lane++) {
  1030. lane_status = intel_get_lane_status(link_status, lane);
  1031. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1032. return false;
  1033. }
  1034. return true;
  1035. }
  1036. /* Check to see if channel eq is done on all channels */
  1037. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1038. DP_LANE_CHANNEL_EQ_DONE|\
  1039. DP_LANE_SYMBOL_LOCKED)
  1040. static bool
  1041. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1042. {
  1043. uint8_t lane_align;
  1044. uint8_t lane_status;
  1045. int lane;
  1046. lane_align = intel_dp_link_status(intel_dp->link_status,
  1047. DP_LANE_ALIGN_STATUS_UPDATED);
  1048. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1049. return false;
  1050. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1051. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1052. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1053. return false;
  1054. }
  1055. return true;
  1056. }
  1057. static bool
  1058. intel_dp_aux_handshake_required(struct intel_dp *intel_dp)
  1059. {
  1060. struct drm_device *dev = intel_dp->base.base.dev;
  1061. struct drm_i915_private *dev_priv = dev->dev_private;
  1062. if (is_edp(intel_dp) && dev_priv->no_aux_handshake)
  1063. return false;
  1064. return true;
  1065. }
  1066. static bool
  1067. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1068. uint32_t dp_reg_value,
  1069. uint8_t dp_train_pat)
  1070. {
  1071. struct drm_device *dev = intel_dp->base.base.dev;
  1072. struct drm_i915_private *dev_priv = dev->dev_private;
  1073. int ret;
  1074. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1075. POSTING_READ(intel_dp->output_reg);
  1076. if (!intel_dp_aux_handshake_required(intel_dp))
  1077. return true;
  1078. intel_dp_aux_native_write_1(intel_dp,
  1079. DP_TRAINING_PATTERN_SET,
  1080. dp_train_pat);
  1081. ret = intel_dp_aux_native_write(intel_dp,
  1082. DP_TRAINING_LANE0_SET,
  1083. intel_dp->train_set, 4);
  1084. if (ret != 4)
  1085. return false;
  1086. return true;
  1087. }
  1088. /* Enable corresponding port and start training pattern 1 */
  1089. static void
  1090. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1091. {
  1092. struct drm_device *dev = intel_dp->base.base.dev;
  1093. struct drm_i915_private *dev_priv = dev->dev_private;
  1094. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1095. int i;
  1096. uint8_t voltage;
  1097. bool clock_recovery = false;
  1098. int tries;
  1099. u32 reg;
  1100. uint32_t DP = intel_dp->DP;
  1101. /* Enable output, wait for it to become active */
  1102. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1103. POSTING_READ(intel_dp->output_reg);
  1104. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1105. if (intel_dp_aux_handshake_required(intel_dp))
  1106. /* Write the link configuration data */
  1107. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1108. intel_dp->link_configuration,
  1109. DP_LINK_CONFIGURATION_SIZE);
  1110. DP |= DP_PORT_EN;
  1111. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1112. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1113. else
  1114. DP &= ~DP_LINK_TRAIN_MASK;
  1115. memset(intel_dp->train_set, 0, 4);
  1116. voltage = 0xff;
  1117. tries = 0;
  1118. clock_recovery = false;
  1119. for (;;) {
  1120. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1121. uint32_t signal_levels;
  1122. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1123. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1124. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1125. } else {
  1126. signal_levels = intel_dp_signal_levels(intel_dp);
  1127. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1128. }
  1129. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1130. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1131. else
  1132. reg = DP | DP_LINK_TRAIN_PAT_1;
  1133. if (!intel_dp_set_link_train(intel_dp, reg,
  1134. DP_TRAINING_PATTERN_1))
  1135. break;
  1136. /* Set training pattern 1 */
  1137. udelay(500);
  1138. if (intel_dp_aux_handshake_required(intel_dp)) {
  1139. break;
  1140. } else {
  1141. if (!intel_dp_get_link_status(intel_dp))
  1142. break;
  1143. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1144. clock_recovery = true;
  1145. break;
  1146. }
  1147. /* Check to see if we've tried the max voltage */
  1148. for (i = 0; i < intel_dp->lane_count; i++)
  1149. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1150. break;
  1151. if (i == intel_dp->lane_count)
  1152. break;
  1153. /* Check to see if we've tried the same voltage 5 times */
  1154. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1155. ++tries;
  1156. if (tries == 5)
  1157. break;
  1158. } else
  1159. tries = 0;
  1160. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1161. /* Compute new intel_dp->train_set as requested by target */
  1162. intel_get_adjust_train(intel_dp);
  1163. }
  1164. }
  1165. intel_dp->DP = DP;
  1166. }
  1167. static void
  1168. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1169. {
  1170. struct drm_device *dev = intel_dp->base.base.dev;
  1171. struct drm_i915_private *dev_priv = dev->dev_private;
  1172. bool channel_eq = false;
  1173. int tries;
  1174. u32 reg;
  1175. uint32_t DP = intel_dp->DP;
  1176. /* channel equalization */
  1177. tries = 0;
  1178. channel_eq = false;
  1179. for (;;) {
  1180. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1181. uint32_t signal_levels;
  1182. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1183. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1184. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1185. } else {
  1186. signal_levels = intel_dp_signal_levels(intel_dp);
  1187. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1188. }
  1189. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1190. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1191. else
  1192. reg = DP | DP_LINK_TRAIN_PAT_2;
  1193. /* channel eq pattern */
  1194. if (!intel_dp_set_link_train(intel_dp, reg,
  1195. DP_TRAINING_PATTERN_2))
  1196. break;
  1197. udelay(500);
  1198. if (!intel_dp_aux_handshake_required(intel_dp)) {
  1199. break;
  1200. } else {
  1201. if (!intel_dp_get_link_status(intel_dp))
  1202. break;
  1203. if (intel_channel_eq_ok(intel_dp)) {
  1204. channel_eq = true;
  1205. break;
  1206. }
  1207. /* Try 5 times */
  1208. if (tries > 5)
  1209. break;
  1210. /* Compute new intel_dp->train_set as requested by target */
  1211. intel_get_adjust_train(intel_dp);
  1212. ++tries;
  1213. }
  1214. }
  1215. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1216. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1217. else
  1218. reg = DP | DP_LINK_TRAIN_OFF;
  1219. I915_WRITE(intel_dp->output_reg, reg);
  1220. POSTING_READ(intel_dp->output_reg);
  1221. intel_dp_aux_native_write_1(intel_dp,
  1222. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1223. }
  1224. static void
  1225. intel_dp_link_down(struct intel_dp *intel_dp)
  1226. {
  1227. struct drm_device *dev = intel_dp->base.base.dev;
  1228. struct drm_i915_private *dev_priv = dev->dev_private;
  1229. uint32_t DP = intel_dp->DP;
  1230. DRM_DEBUG_KMS("\n");
  1231. if (is_edp(intel_dp)) {
  1232. DP &= ~DP_PLL_ENABLE;
  1233. I915_WRITE(intel_dp->output_reg, DP);
  1234. POSTING_READ(intel_dp->output_reg);
  1235. udelay(100);
  1236. }
  1237. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1238. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1239. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1240. } else {
  1241. DP &= ~DP_LINK_TRAIN_MASK;
  1242. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1243. }
  1244. POSTING_READ(intel_dp->output_reg);
  1245. msleep(17);
  1246. if (is_edp(intel_dp))
  1247. DP |= DP_LINK_TRAIN_OFF;
  1248. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1249. POSTING_READ(intel_dp->output_reg);
  1250. }
  1251. /*
  1252. * According to DP spec
  1253. * 5.1.2:
  1254. * 1. Read DPCD
  1255. * 2. Configure link according to Receiver Capabilities
  1256. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1257. * 4. Check link status on receipt of hot-plug interrupt
  1258. */
  1259. static void
  1260. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1261. {
  1262. if (!intel_dp->base.base.crtc)
  1263. return;
  1264. if (!intel_dp_get_link_status(intel_dp)) {
  1265. intel_dp_link_down(intel_dp);
  1266. return;
  1267. }
  1268. if (!intel_channel_eq_ok(intel_dp)) {
  1269. intel_dp_start_link_train(intel_dp);
  1270. intel_dp_complete_link_train(intel_dp);
  1271. }
  1272. }
  1273. static enum drm_connector_status
  1274. ironlake_dp_detect(struct drm_connector *connector)
  1275. {
  1276. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1277. enum drm_connector_status status;
  1278. /* Can't disconnect eDP */
  1279. if (is_edp(intel_dp))
  1280. return connector_status_connected;
  1281. status = connector_status_disconnected;
  1282. if (intel_dp_aux_native_read(intel_dp,
  1283. 0x000, intel_dp->dpcd,
  1284. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1285. {
  1286. if (intel_dp->dpcd[0] != 0)
  1287. status = connector_status_connected;
  1288. }
  1289. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1290. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1291. return status;
  1292. }
  1293. /**
  1294. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1295. *
  1296. * \return true if DP port is connected.
  1297. * \return false if DP port is disconnected.
  1298. */
  1299. static enum drm_connector_status
  1300. intel_dp_detect(struct drm_connector *connector, bool force)
  1301. {
  1302. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1303. struct drm_device *dev = intel_dp->base.base.dev;
  1304. struct drm_i915_private *dev_priv = dev->dev_private;
  1305. uint32_t temp, bit;
  1306. enum drm_connector_status status;
  1307. intel_dp->has_audio = false;
  1308. if (HAS_PCH_SPLIT(dev))
  1309. return ironlake_dp_detect(connector);
  1310. switch (intel_dp->output_reg) {
  1311. case DP_B:
  1312. bit = DPB_HOTPLUG_INT_STATUS;
  1313. break;
  1314. case DP_C:
  1315. bit = DPC_HOTPLUG_INT_STATUS;
  1316. break;
  1317. case DP_D:
  1318. bit = DPD_HOTPLUG_INT_STATUS;
  1319. break;
  1320. default:
  1321. return connector_status_unknown;
  1322. }
  1323. temp = I915_READ(PORT_HOTPLUG_STAT);
  1324. if ((temp & bit) == 0)
  1325. return connector_status_disconnected;
  1326. status = connector_status_disconnected;
  1327. if (intel_dp_aux_native_read(intel_dp,
  1328. 0x000, intel_dp->dpcd,
  1329. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1330. {
  1331. if (intel_dp->dpcd[0] != 0)
  1332. status = connector_status_connected;
  1333. }
  1334. return status;
  1335. }
  1336. static int intel_dp_get_modes(struct drm_connector *connector)
  1337. {
  1338. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1339. struct drm_device *dev = intel_dp->base.base.dev;
  1340. struct drm_i915_private *dev_priv = dev->dev_private;
  1341. int ret;
  1342. /* We should parse the EDID data and find out if it has an audio sink
  1343. */
  1344. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1345. if (ret) {
  1346. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1347. struct drm_display_mode *newmode;
  1348. list_for_each_entry(newmode, &connector->probed_modes,
  1349. head) {
  1350. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1351. dev_priv->panel_fixed_mode =
  1352. drm_mode_duplicate(dev, newmode);
  1353. break;
  1354. }
  1355. }
  1356. }
  1357. return ret;
  1358. }
  1359. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1360. if (is_edp(intel_dp)) {
  1361. if (dev_priv->panel_fixed_mode != NULL) {
  1362. struct drm_display_mode *mode;
  1363. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1364. drm_mode_probed_add(connector, mode);
  1365. return 1;
  1366. }
  1367. }
  1368. return 0;
  1369. }
  1370. static void
  1371. intel_dp_destroy (struct drm_connector *connector)
  1372. {
  1373. drm_sysfs_connector_remove(connector);
  1374. drm_connector_cleanup(connector);
  1375. kfree(connector);
  1376. }
  1377. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1378. {
  1379. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1380. i2c_del_adapter(&intel_dp->adapter);
  1381. drm_encoder_cleanup(encoder);
  1382. kfree(intel_dp);
  1383. }
  1384. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1385. .dpms = intel_dp_dpms,
  1386. .mode_fixup = intel_dp_mode_fixup,
  1387. .prepare = intel_dp_prepare,
  1388. .mode_set = intel_dp_mode_set,
  1389. .commit = intel_dp_commit,
  1390. };
  1391. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1392. .dpms = drm_helper_connector_dpms,
  1393. .detect = intel_dp_detect,
  1394. .fill_modes = drm_helper_probe_single_connector_modes,
  1395. .destroy = intel_dp_destroy,
  1396. };
  1397. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1398. .get_modes = intel_dp_get_modes,
  1399. .mode_valid = intel_dp_mode_valid,
  1400. .best_encoder = intel_best_encoder,
  1401. };
  1402. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1403. .destroy = intel_dp_encoder_destroy,
  1404. };
  1405. static void
  1406. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1407. {
  1408. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1409. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1410. intel_dp_check_link_status(intel_dp);
  1411. }
  1412. /* Return which DP Port should be selected for Transcoder DP control */
  1413. int
  1414. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1415. {
  1416. struct drm_device *dev = crtc->dev;
  1417. struct drm_mode_config *mode_config = &dev->mode_config;
  1418. struct drm_encoder *encoder;
  1419. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1420. struct intel_dp *intel_dp;
  1421. if (encoder->crtc != crtc)
  1422. continue;
  1423. intel_dp = enc_to_intel_dp(encoder);
  1424. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1425. return intel_dp->output_reg;
  1426. }
  1427. return -1;
  1428. }
  1429. /* check the VBT to see whether the eDP is on DP-D port */
  1430. bool intel_dpd_is_edp(struct drm_device *dev)
  1431. {
  1432. struct drm_i915_private *dev_priv = dev->dev_private;
  1433. struct child_device_config *p_child;
  1434. int i;
  1435. if (!dev_priv->child_dev_num)
  1436. return false;
  1437. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1438. p_child = dev_priv->child_dev + i;
  1439. if (p_child->dvo_port == PORT_IDPD &&
  1440. p_child->device_type == DEVICE_TYPE_eDP)
  1441. return true;
  1442. }
  1443. return false;
  1444. }
  1445. void
  1446. intel_dp_init(struct drm_device *dev, int output_reg)
  1447. {
  1448. struct drm_i915_private *dev_priv = dev->dev_private;
  1449. struct drm_connector *connector;
  1450. struct intel_dp *intel_dp;
  1451. struct intel_encoder *intel_encoder;
  1452. struct intel_connector *intel_connector;
  1453. const char *name = NULL;
  1454. int type;
  1455. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1456. if (!intel_dp)
  1457. return;
  1458. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1459. if (!intel_connector) {
  1460. kfree(intel_dp);
  1461. return;
  1462. }
  1463. intel_encoder = &intel_dp->base;
  1464. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1465. if (intel_dpd_is_edp(dev))
  1466. intel_dp->is_pch_edp = true;
  1467. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1468. type = DRM_MODE_CONNECTOR_eDP;
  1469. intel_encoder->type = INTEL_OUTPUT_EDP;
  1470. } else {
  1471. type = DRM_MODE_CONNECTOR_DisplayPort;
  1472. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1473. }
  1474. connector = &intel_connector->base;
  1475. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1476. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1477. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1478. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1479. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1480. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1481. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1482. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1483. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1484. if (is_edp(intel_dp))
  1485. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1486. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1487. connector->interlace_allowed = true;
  1488. connector->doublescan_allowed = 0;
  1489. intel_dp->output_reg = output_reg;
  1490. intel_dp->has_audio = false;
  1491. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1492. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1493. DRM_MODE_ENCODER_TMDS);
  1494. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1495. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1496. drm_sysfs_connector_add(connector);
  1497. /* Set up the DDC bus. */
  1498. switch (output_reg) {
  1499. case DP_A:
  1500. name = "DPDDC-A";
  1501. break;
  1502. case DP_B:
  1503. case PCH_DP_B:
  1504. dev_priv->hotplug_supported_mask |=
  1505. HDMIB_HOTPLUG_INT_STATUS;
  1506. name = "DPDDC-B";
  1507. break;
  1508. case DP_C:
  1509. case PCH_DP_C:
  1510. dev_priv->hotplug_supported_mask |=
  1511. HDMIC_HOTPLUG_INT_STATUS;
  1512. name = "DPDDC-C";
  1513. break;
  1514. case DP_D:
  1515. case PCH_DP_D:
  1516. dev_priv->hotplug_supported_mask |=
  1517. HDMID_HOTPLUG_INT_STATUS;
  1518. name = "DPDDC-D";
  1519. break;
  1520. }
  1521. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1522. /* Cache some DPCD data in the eDP case */
  1523. if (is_edp(intel_dp)) {
  1524. int ret;
  1525. bool was_on;
  1526. was_on = ironlake_edp_panel_on(intel_dp);
  1527. ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
  1528. intel_dp->dpcd,
  1529. sizeof(intel_dp->dpcd));
  1530. if (ret == sizeof(intel_dp->dpcd)) {
  1531. if (intel_dp->dpcd[0] >= 0x11)
  1532. dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
  1533. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1534. } else {
  1535. DRM_ERROR("failed to retrieve link info\n");
  1536. }
  1537. if (!was_on)
  1538. ironlake_edp_panel_off(dev);
  1539. }
  1540. intel_encoder->hot_plug = intel_dp_hot_plug;
  1541. if (is_edp(intel_dp)) {
  1542. /* initialize panel mode from VBT if available for eDP */
  1543. if (dev_priv->lfp_lvds_vbt_mode) {
  1544. dev_priv->panel_fixed_mode =
  1545. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1546. if (dev_priv->panel_fixed_mode) {
  1547. dev_priv->panel_fixed_mode->type |=
  1548. DRM_MODE_TYPE_PREFERRED;
  1549. }
  1550. }
  1551. }
  1552. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1553. * 0xd. Failure to do so will result in spurious interrupts being
  1554. * generated on the port when a cable is not attached.
  1555. */
  1556. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1557. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1558. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1559. }
  1560. }