time-ts.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. /*
  2. * Based on arm clockevents implementation and old bfin time tick.
  3. *
  4. * Copyright 2008-2009 Analog Devics Inc.
  5. * 2008 GeoTechnologies
  6. * Vitja Makarov
  7. *
  8. * Licensed under the GPL-2
  9. */
  10. #include <linux/module.h>
  11. #include <linux/profile.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/time.h>
  14. #include <linux/timex.h>
  15. #include <linux/irq.h>
  16. #include <linux/clocksource.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpufreq.h>
  19. #include <asm/blackfin.h>
  20. #include <asm/time.h>
  21. #include <asm/gptimers.h>
  22. /* Accelerators for sched_clock()
  23. * convert from cycles(64bits) => nanoseconds (64bits)
  24. * basic equation:
  25. * ns = cycles / (freq / ns_per_sec)
  26. * ns = cycles * (ns_per_sec / freq)
  27. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  28. * ns = cycles * (10^6 / cpu_khz)
  29. *
  30. * Then we use scaling math (suggested by george@mvista.com) to get:
  31. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  32. * ns = cycles * cyc2ns_scale / SC
  33. *
  34. * And since SC is a constant power of two, we can convert the div
  35. * into a shift.
  36. *
  37. * We can use khz divisor instead of mhz to keep a better precision, since
  38. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  39. * (mathieu.desnoyers@polymtl.ca)
  40. *
  41. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  42. */
  43. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  44. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  45. static notrace cycle_t bfin_read_cycles(struct clocksource *cs)
  46. {
  47. return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
  48. }
  49. static struct clocksource bfin_cs_cycles = {
  50. .name = "bfin_cs_cycles",
  51. .rating = 400,
  52. .read = bfin_read_cycles,
  53. .mask = CLOCKSOURCE_MASK(64),
  54. .shift = CYC2NS_SCALE_FACTOR,
  55. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  56. };
  57. static inline unsigned long long bfin_cs_cycles_sched_clock(void)
  58. {
  59. return cyc2ns(&bfin_cs_cycles, bfin_read_cycles(&bfin_cs_cycles));
  60. }
  61. static int __init bfin_cs_cycles_init(void)
  62. {
  63. bfin_cs_cycles.mult = \
  64. clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
  65. if (clocksource_register(&bfin_cs_cycles))
  66. panic("failed to register clocksource");
  67. return 0;
  68. }
  69. #else
  70. # define bfin_cs_cycles_init()
  71. #endif
  72. #ifdef CONFIG_GPTMR0_CLOCKSOURCE
  73. void __init setup_gptimer0(void)
  74. {
  75. disable_gptimers(TIMER0bit);
  76. set_gptimer_config(TIMER0_id, \
  77. TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  78. set_gptimer_period(TIMER0_id, -1);
  79. set_gptimer_pwidth(TIMER0_id, -2);
  80. SSYNC();
  81. enable_gptimers(TIMER0bit);
  82. }
  83. static cycle_t bfin_read_gptimer0(struct clocksource *cs)
  84. {
  85. return bfin_read_TIMER0_COUNTER();
  86. }
  87. static struct clocksource bfin_cs_gptimer0 = {
  88. .name = "bfin_cs_gptimer0",
  89. .rating = 350,
  90. .read = bfin_read_gptimer0,
  91. .mask = CLOCKSOURCE_MASK(32),
  92. .shift = CYC2NS_SCALE_FACTOR,
  93. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  94. };
  95. static inline unsigned long long bfin_cs_gptimer0_sched_clock(void)
  96. {
  97. return cyc2ns(&bfin_cs_gptimer0, bfin_read_TIMER0_COUNTER());
  98. }
  99. static int __init bfin_cs_gptimer0_init(void)
  100. {
  101. setup_gptimer0();
  102. bfin_cs_gptimer0.mult = \
  103. clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
  104. if (clocksource_register(&bfin_cs_gptimer0))
  105. panic("failed to register clocksource");
  106. return 0;
  107. }
  108. #else
  109. # define bfin_cs_gptimer0_init()
  110. #endif
  111. #if defined(CONFIG_GPTMR0_CLOCKSOURCE) || defined(CONFIG_CYCLES_CLOCKSOURCE)
  112. /* prefer to use cycles since it has higher rating */
  113. notrace unsigned long long sched_clock(void)
  114. {
  115. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  116. return bfin_cs_cycles_sched_clock();
  117. #else
  118. return bfin_cs_gptimer0_sched_clock();
  119. #endif
  120. }
  121. #endif
  122. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  123. __attribute__((l1_text))
  124. #endif
  125. irqreturn_t timer_interrupt(int irq, void *dev_id);
  126. static int bfin_timer_set_next_event(unsigned long, \
  127. struct clock_event_device *);
  128. static void bfin_timer_set_mode(enum clock_event_mode, \
  129. struct clock_event_device *);
  130. static struct clock_event_device clockevent_bfin = {
  131. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  132. .name = "bfin_gptimer0",
  133. .rating = 300,
  134. .irq = IRQ_TIMER0,
  135. #else
  136. .name = "bfin_core_timer",
  137. .rating = 350,
  138. .irq = IRQ_CORETMR,
  139. #endif
  140. .shift = 32,
  141. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  142. .set_next_event = bfin_timer_set_next_event,
  143. .set_mode = bfin_timer_set_mode,
  144. };
  145. static struct irqaction bfin_timer_irq = {
  146. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  147. .name = "Blackfin GPTimer0",
  148. #else
  149. .name = "Blackfin CoreTimer",
  150. #endif
  151. .flags = IRQF_DISABLED | IRQF_TIMER | \
  152. IRQF_IRQPOLL | IRQF_PERCPU,
  153. .handler = timer_interrupt,
  154. .dev_id = &clockevent_bfin,
  155. };
  156. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  157. static int bfin_timer_set_next_event(unsigned long cycles,
  158. struct clock_event_device *evt)
  159. {
  160. disable_gptimers(TIMER0bit);
  161. /* it starts counting three SCLK cycles after the TIMENx bit is set */
  162. set_gptimer_pwidth(TIMER0_id, cycles - 3);
  163. enable_gptimers(TIMER0bit);
  164. return 0;
  165. }
  166. static void bfin_timer_set_mode(enum clock_event_mode mode,
  167. struct clock_event_device *evt)
  168. {
  169. switch (mode) {
  170. case CLOCK_EVT_MODE_PERIODIC: {
  171. set_gptimer_config(TIMER0_id, \
  172. TIMER_OUT_DIS | TIMER_IRQ_ENA | \
  173. TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  174. set_gptimer_period(TIMER0_id, get_sclk() / HZ);
  175. set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
  176. enable_gptimers(TIMER0bit);
  177. break;
  178. }
  179. case CLOCK_EVT_MODE_ONESHOT:
  180. disable_gptimers(TIMER0bit);
  181. set_gptimer_config(TIMER0_id, \
  182. TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
  183. set_gptimer_period(TIMER0_id, 0);
  184. break;
  185. case CLOCK_EVT_MODE_UNUSED:
  186. case CLOCK_EVT_MODE_SHUTDOWN:
  187. disable_gptimers(TIMER0bit);
  188. break;
  189. case CLOCK_EVT_MODE_RESUME:
  190. break;
  191. }
  192. }
  193. static void bfin_timer_ack(void)
  194. {
  195. set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
  196. }
  197. static void __init bfin_timer_init(void)
  198. {
  199. disable_gptimers(TIMER0bit);
  200. }
  201. static unsigned long __init bfin_clockevent_check(void)
  202. {
  203. setup_irq(IRQ_TIMER0, &bfin_timer_irq);
  204. return get_sclk();
  205. }
  206. #else /* CONFIG_TICKSOURCE_CORETMR */
  207. static int bfin_timer_set_next_event(unsigned long cycles,
  208. struct clock_event_device *evt)
  209. {
  210. bfin_write_TCNTL(TMPWR);
  211. CSYNC();
  212. bfin_write_TCOUNT(cycles);
  213. CSYNC();
  214. bfin_write_TCNTL(TMPWR | TMREN);
  215. return 0;
  216. }
  217. static void bfin_timer_set_mode(enum clock_event_mode mode,
  218. struct clock_event_device *evt)
  219. {
  220. switch (mode) {
  221. case CLOCK_EVT_MODE_PERIODIC: {
  222. unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
  223. bfin_write_TCNTL(TMPWR);
  224. CSYNC();
  225. bfin_write_TSCALE(TIME_SCALE - 1);
  226. bfin_write_TPERIOD(tcount);
  227. bfin_write_TCOUNT(tcount);
  228. CSYNC();
  229. bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
  230. break;
  231. }
  232. case CLOCK_EVT_MODE_ONESHOT:
  233. bfin_write_TCNTL(TMPWR);
  234. CSYNC();
  235. bfin_write_TSCALE(TIME_SCALE - 1);
  236. bfin_write_TPERIOD(0);
  237. bfin_write_TCOUNT(0);
  238. break;
  239. case CLOCK_EVT_MODE_UNUSED:
  240. case CLOCK_EVT_MODE_SHUTDOWN:
  241. bfin_write_TCNTL(0);
  242. CSYNC();
  243. break;
  244. case CLOCK_EVT_MODE_RESUME:
  245. break;
  246. }
  247. }
  248. static void bfin_timer_ack(void)
  249. {
  250. }
  251. static void __init bfin_timer_init(void)
  252. {
  253. /* power up the timer, but don't enable it just yet */
  254. bfin_write_TCNTL(TMPWR);
  255. CSYNC();
  256. /*
  257. * the TSCALE prescaler counter.
  258. */
  259. bfin_write_TSCALE(TIME_SCALE - 1);
  260. bfin_write_TPERIOD(0);
  261. bfin_write_TCOUNT(0);
  262. CSYNC();
  263. }
  264. static unsigned long __init bfin_clockevent_check(void)
  265. {
  266. setup_irq(IRQ_CORETMR, &bfin_timer_irq);
  267. return get_cclk() / TIME_SCALE;
  268. }
  269. void __init setup_core_timer(void)
  270. {
  271. bfin_timer_init();
  272. bfin_timer_set_mode(CLOCK_EVT_MODE_PERIODIC, NULL);
  273. }
  274. #endif /* CONFIG_TICKSOURCE_GPTMR0 */
  275. /*
  276. * timer_interrupt() needs to keep up the real-time clock,
  277. * as well as call the "do_timer()" routine every clocktick
  278. */
  279. irqreturn_t timer_interrupt(int irq, void *dev_id)
  280. {
  281. struct clock_event_device *evt = dev_id;
  282. smp_mb();
  283. evt->event_handler(evt);
  284. bfin_timer_ack();
  285. return IRQ_HANDLED;
  286. }
  287. static int __init bfin_clockevent_init(void)
  288. {
  289. unsigned long timer_clk;
  290. timer_clk = bfin_clockevent_check();
  291. bfin_timer_init();
  292. clockevent_bfin.mult = div_sc(timer_clk, NSEC_PER_SEC, clockevent_bfin.shift);
  293. clockevent_bfin.max_delta_ns = clockevent_delta2ns(-1, &clockevent_bfin);
  294. clockevent_bfin.min_delta_ns = clockevent_delta2ns(100, &clockevent_bfin);
  295. clockevent_bfin.cpumask = cpumask_of(0);
  296. clockevents_register_device(&clockevent_bfin);
  297. return 0;
  298. }
  299. void __init time_init(void)
  300. {
  301. time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
  302. #ifdef CONFIG_RTC_DRV_BFIN
  303. /* [#2663] hack to filter junk RTC values that would cause
  304. * userspace to have to deal with time values greater than
  305. * 2^31 seconds (which uClibc cannot cope with yet)
  306. */
  307. if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
  308. printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
  309. bfin_write_RTC_STAT(0);
  310. }
  311. #endif
  312. /* Initialize xtime. From now on, xtime is updated with timer interrupts */
  313. xtime.tv_sec = secs_since_1970;
  314. xtime.tv_nsec = 0;
  315. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  316. bfin_cs_cycles_init();
  317. bfin_cs_gptimer0_init();
  318. bfin_clockevent_init();
  319. }