xmit.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. #include "ar9003_mac.h"
  18. #define BITS_PER_BYTE 8
  19. #define OFDM_PLCP_BITS 22
  20. #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. #define OFDM_SIFS_TIME 16
  33. static u16 bits_per_symbol[][2] = {
  34. /* 20MHz 40MHz */
  35. { 26, 54 }, /* 0: BPSK */
  36. { 52, 108 }, /* 1: QPSK 1/2 */
  37. { 78, 162 }, /* 2: QPSK 3/4 */
  38. { 104, 216 }, /* 3: 16-QAM 1/2 */
  39. { 156, 324 }, /* 4: 16-QAM 3/4 */
  40. { 208, 432 }, /* 5: 64-QAM 2/3 */
  41. { 234, 486 }, /* 6: 64-QAM 3/4 */
  42. { 260, 540 }, /* 7: 64-QAM 5/6 */
  43. };
  44. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  45. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  46. struct ath_atx_tid *tid,
  47. struct list_head *bf_head);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok, int sendbar);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head);
  53. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
  54. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  55. struct ath_tx_status *ts, int txok);
  56. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  57. int nbad, int txok, bool update_rc);
  58. enum {
  59. MCS_HT20,
  60. MCS_HT20_SGI,
  61. MCS_HT40,
  62. MCS_HT40_SGI,
  63. };
  64. static int ath_max_4ms_framelen[4][32] = {
  65. [MCS_HT20] = {
  66. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  67. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  68. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  69. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  70. },
  71. [MCS_HT20_SGI] = {
  72. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  73. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  74. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  75. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  76. },
  77. [MCS_HT40] = {
  78. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  79. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  80. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  81. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  82. },
  83. [MCS_HT40_SGI] = {
  84. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  85. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  86. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  87. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  88. }
  89. };
  90. /*********************/
  91. /* Aggregation logic */
  92. /*********************/
  93. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  94. {
  95. struct ath_atx_ac *ac = tid->ac;
  96. if (tid->paused)
  97. return;
  98. if (tid->sched)
  99. return;
  100. tid->sched = true;
  101. list_add_tail(&tid->list, &ac->tid_q);
  102. if (ac->sched)
  103. return;
  104. ac->sched = true;
  105. list_add_tail(&ac->list, &txq->axq_acq);
  106. }
  107. static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  108. {
  109. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  110. spin_lock_bh(&txq->axq_lock);
  111. tid->paused++;
  112. spin_unlock_bh(&txq->axq_lock);
  113. }
  114. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  115. {
  116. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  117. BUG_ON(tid->paused <= 0);
  118. spin_lock_bh(&txq->axq_lock);
  119. tid->paused--;
  120. if (tid->paused > 0)
  121. goto unlock;
  122. if (list_empty(&tid->buf_q))
  123. goto unlock;
  124. ath_tx_queue_tid(txq, tid);
  125. ath_txq_schedule(sc, txq);
  126. unlock:
  127. spin_unlock_bh(&txq->axq_lock);
  128. }
  129. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  130. {
  131. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  132. struct ath_buf *bf;
  133. struct list_head bf_head;
  134. INIT_LIST_HEAD(&bf_head);
  135. BUG_ON(tid->paused <= 0);
  136. spin_lock_bh(&txq->axq_lock);
  137. tid->paused--;
  138. if (tid->paused > 0) {
  139. spin_unlock_bh(&txq->axq_lock);
  140. return;
  141. }
  142. while (!list_empty(&tid->buf_q)) {
  143. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  144. BUG_ON(bf_isretried(bf));
  145. list_move_tail(&bf->list, &bf_head);
  146. ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
  147. }
  148. spin_unlock_bh(&txq->axq_lock);
  149. }
  150. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  151. int seqno)
  152. {
  153. int index, cindex;
  154. index = ATH_BA_INDEX(tid->seq_start, seqno);
  155. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  156. tid->tx_buf[cindex] = NULL;
  157. while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
  158. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  159. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  160. }
  161. }
  162. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  163. struct ath_buf *bf)
  164. {
  165. int index, cindex;
  166. if (bf_isretried(bf))
  167. return;
  168. index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
  169. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  170. BUG_ON(tid->tx_buf[cindex] != NULL);
  171. tid->tx_buf[cindex] = bf;
  172. if (index >= ((tid->baw_tail - tid->baw_head) &
  173. (ATH_TID_MAX_BUFS - 1))) {
  174. tid->baw_tail = cindex;
  175. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  176. }
  177. }
  178. /*
  179. * TODO: For frame(s) that are in the retry state, we will reuse the
  180. * sequence number(s) without setting the retry bit. The
  181. * alternative is to give up on these and BAR the receiver's window
  182. * forward.
  183. */
  184. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  185. struct ath_atx_tid *tid)
  186. {
  187. struct ath_buf *bf;
  188. struct list_head bf_head;
  189. struct ath_tx_status ts;
  190. memset(&ts, 0, sizeof(ts));
  191. INIT_LIST_HEAD(&bf_head);
  192. for (;;) {
  193. if (list_empty(&tid->buf_q))
  194. break;
  195. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  196. list_move_tail(&bf->list, &bf_head);
  197. if (bf_isretried(bf))
  198. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  199. spin_unlock(&txq->axq_lock);
  200. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  201. spin_lock(&txq->axq_lock);
  202. }
  203. tid->seq_next = tid->seq_start;
  204. tid->baw_tail = tid->baw_head;
  205. }
  206. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  207. struct ath_buf *bf)
  208. {
  209. struct sk_buff *skb;
  210. struct ieee80211_hdr *hdr;
  211. bf->bf_state.bf_type |= BUF_RETRY;
  212. bf->bf_retries++;
  213. TX_STAT_INC(txq->axq_qnum, a_retries);
  214. skb = bf->bf_mpdu;
  215. hdr = (struct ieee80211_hdr *)skb->data;
  216. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  217. }
  218. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  219. {
  220. struct ath_buf *bf = NULL;
  221. spin_lock_bh(&sc->tx.txbuflock);
  222. if (unlikely(list_empty(&sc->tx.txbuf))) {
  223. spin_unlock_bh(&sc->tx.txbuflock);
  224. return NULL;
  225. }
  226. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  227. list_del(&bf->list);
  228. spin_unlock_bh(&sc->tx.txbuflock);
  229. return bf;
  230. }
  231. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  232. {
  233. spin_lock_bh(&sc->tx.txbuflock);
  234. list_add_tail(&bf->list, &sc->tx.txbuf);
  235. spin_unlock_bh(&sc->tx.txbuflock);
  236. }
  237. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  238. {
  239. struct ath_buf *tbf;
  240. tbf = ath_tx_get_buffer(sc);
  241. if (WARN_ON(!tbf))
  242. return NULL;
  243. ATH_TXBUF_RESET(tbf);
  244. tbf->aphy = bf->aphy;
  245. tbf->bf_mpdu = bf->bf_mpdu;
  246. tbf->bf_buf_addr = bf->bf_buf_addr;
  247. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  248. tbf->bf_state = bf->bf_state;
  249. tbf->bf_dmacontext = bf->bf_dmacontext;
  250. return tbf;
  251. }
  252. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  253. struct ath_buf *bf, struct list_head *bf_q,
  254. struct ath_tx_status *ts, int txok)
  255. {
  256. struct ath_node *an = NULL;
  257. struct sk_buff *skb;
  258. struct ieee80211_sta *sta;
  259. struct ieee80211_hw *hw;
  260. struct ieee80211_hdr *hdr;
  261. struct ieee80211_tx_info *tx_info;
  262. struct ath_atx_tid *tid = NULL;
  263. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  264. struct list_head bf_head, bf_pending;
  265. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  266. u32 ba[WME_BA_BMP_SIZE >> 5];
  267. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  268. bool rc_update = true;
  269. skb = bf->bf_mpdu;
  270. hdr = (struct ieee80211_hdr *)skb->data;
  271. tx_info = IEEE80211_SKB_CB(skb);
  272. hw = bf->aphy->hw;
  273. rcu_read_lock();
  274. /* XXX: use ieee80211_find_sta! */
  275. sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
  276. if (!sta) {
  277. rcu_read_unlock();
  278. return;
  279. }
  280. an = (struct ath_node *)sta->drv_priv;
  281. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  282. isaggr = bf_isaggr(bf);
  283. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  284. if (isaggr && txok) {
  285. if (ts->ts_flags & ATH9K_TX_BA) {
  286. seq_st = ts->ts_seqnum;
  287. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  288. } else {
  289. /*
  290. * AR5416 can become deaf/mute when BA
  291. * issue happens. Chip needs to be reset.
  292. * But AP code may have sychronization issues
  293. * when perform internal reset in this routine.
  294. * Only enable reset in STA mode for now.
  295. */
  296. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  297. needreset = 1;
  298. }
  299. }
  300. INIT_LIST_HEAD(&bf_pending);
  301. INIT_LIST_HEAD(&bf_head);
  302. nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
  303. while (bf) {
  304. txfail = txpending = 0;
  305. bf_next = bf->bf_next;
  306. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
  307. /* transmit completion, subframe is
  308. * acked by block ack */
  309. acked_cnt++;
  310. } else if (!isaggr && txok) {
  311. /* transmit completion */
  312. acked_cnt++;
  313. } else {
  314. if (!(tid->state & AGGR_CLEANUP) &&
  315. !bf_last->bf_tx_aborted) {
  316. if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
  317. ath_tx_set_retry(sc, txq, bf);
  318. txpending = 1;
  319. } else {
  320. bf->bf_state.bf_type |= BUF_XRETRY;
  321. txfail = 1;
  322. sendbar = 1;
  323. txfail_cnt++;
  324. }
  325. } else {
  326. /*
  327. * cleanup in progress, just fail
  328. * the un-acked sub-frames
  329. */
  330. txfail = 1;
  331. }
  332. }
  333. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  334. bf_next == NULL) {
  335. /*
  336. * Make sure the last desc is reclaimed if it
  337. * not a holding desc.
  338. */
  339. if (!bf_last->bf_stale)
  340. list_move_tail(&bf->list, &bf_head);
  341. else
  342. INIT_LIST_HEAD(&bf_head);
  343. } else {
  344. BUG_ON(list_empty(bf_q));
  345. list_move_tail(&bf->list, &bf_head);
  346. }
  347. if (!txpending) {
  348. /*
  349. * complete the acked-ones/xretried ones; update
  350. * block-ack window
  351. */
  352. spin_lock_bh(&txq->axq_lock);
  353. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  354. spin_unlock_bh(&txq->axq_lock);
  355. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  356. ath_tx_rc_status(bf, ts, nbad, txok, true);
  357. rc_update = false;
  358. } else {
  359. ath_tx_rc_status(bf, ts, nbad, txok, false);
  360. }
  361. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  362. !txfail, sendbar);
  363. } else {
  364. /* retry the un-acked ones */
  365. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  366. if (bf->bf_next == NULL && bf_last->bf_stale) {
  367. struct ath_buf *tbf;
  368. tbf = ath_clone_txbuf(sc, bf_last);
  369. /*
  370. * Update tx baw and complete the
  371. * frame with failed status if we
  372. * run out of tx buf.
  373. */
  374. if (!tbf) {
  375. spin_lock_bh(&txq->axq_lock);
  376. ath_tx_update_baw(sc, tid,
  377. bf->bf_seqno);
  378. spin_unlock_bh(&txq->axq_lock);
  379. bf->bf_state.bf_type |=
  380. BUF_XRETRY;
  381. ath_tx_rc_status(bf, ts, nbad,
  382. 0, false);
  383. ath_tx_complete_buf(sc, bf, txq,
  384. &bf_head,
  385. ts, 0, 0);
  386. break;
  387. }
  388. ath9k_hw_cleartxdesc(sc->sc_ah,
  389. tbf->bf_desc);
  390. list_add_tail(&tbf->list, &bf_head);
  391. } else {
  392. /*
  393. * Clear descriptor status words for
  394. * software retry
  395. */
  396. ath9k_hw_cleartxdesc(sc->sc_ah,
  397. bf->bf_desc);
  398. }
  399. }
  400. /*
  401. * Put this buffer to the temporary pending
  402. * queue to retain ordering
  403. */
  404. list_splice_tail_init(&bf_head, &bf_pending);
  405. }
  406. bf = bf_next;
  407. }
  408. if (tid->state & AGGR_CLEANUP) {
  409. if (tid->baw_head == tid->baw_tail) {
  410. tid->state &= ~AGGR_ADDBA_COMPLETE;
  411. tid->state &= ~AGGR_CLEANUP;
  412. /* send buffered frames as singles */
  413. ath_tx_flush_tid(sc, tid);
  414. }
  415. rcu_read_unlock();
  416. return;
  417. }
  418. /* prepend un-acked frames to the beginning of the pending frame queue */
  419. if (!list_empty(&bf_pending)) {
  420. spin_lock_bh(&txq->axq_lock);
  421. list_splice(&bf_pending, &tid->buf_q);
  422. ath_tx_queue_tid(txq, tid);
  423. spin_unlock_bh(&txq->axq_lock);
  424. }
  425. rcu_read_unlock();
  426. if (needreset)
  427. ath_reset(sc, false);
  428. }
  429. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  430. struct ath_atx_tid *tid)
  431. {
  432. struct sk_buff *skb;
  433. struct ieee80211_tx_info *tx_info;
  434. struct ieee80211_tx_rate *rates;
  435. u32 max_4ms_framelen, frmlen;
  436. u16 aggr_limit, legacy = 0;
  437. int i;
  438. skb = bf->bf_mpdu;
  439. tx_info = IEEE80211_SKB_CB(skb);
  440. rates = tx_info->control.rates;
  441. /*
  442. * Find the lowest frame length among the rate series that will have a
  443. * 4ms transmit duration.
  444. * TODO - TXOP limit needs to be considered.
  445. */
  446. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  447. for (i = 0; i < 4; i++) {
  448. if (rates[i].count) {
  449. int modeidx;
  450. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  451. legacy = 1;
  452. break;
  453. }
  454. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  455. modeidx = MCS_HT40;
  456. else
  457. modeidx = MCS_HT20;
  458. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  459. modeidx++;
  460. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  461. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  462. }
  463. }
  464. /*
  465. * limit aggregate size by the minimum rate if rate selected is
  466. * not a probe rate, if rate selected is a probe rate then
  467. * avoid aggregation of this packet.
  468. */
  469. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  470. return 0;
  471. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  472. aggr_limit = min((max_4ms_framelen * 3) / 8,
  473. (u32)ATH_AMPDU_LIMIT_MAX);
  474. else
  475. aggr_limit = min(max_4ms_framelen,
  476. (u32)ATH_AMPDU_LIMIT_MAX);
  477. /*
  478. * h/w can accept aggregates upto 16 bit lengths (65535).
  479. * The IE, however can hold upto 65536, which shows up here
  480. * as zero. Ignore 65536 since we are constrained by hw.
  481. */
  482. if (tid->an->maxampdu)
  483. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  484. return aggr_limit;
  485. }
  486. /*
  487. * Returns the number of delimiters to be added to
  488. * meet the minimum required mpdudensity.
  489. */
  490. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  491. struct ath_buf *bf, u16 frmlen)
  492. {
  493. struct sk_buff *skb = bf->bf_mpdu;
  494. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  495. u32 nsymbits, nsymbols;
  496. u16 minlen;
  497. u8 flags, rix;
  498. int width, streams, half_gi, ndelim, mindelim;
  499. /* Select standard number of delimiters based on frame length alone */
  500. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  501. /*
  502. * If encryption enabled, hardware requires some more padding between
  503. * subframes.
  504. * TODO - this could be improved to be dependent on the rate.
  505. * The hardware can keep up at lower rates, but not higher rates
  506. */
  507. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
  508. ndelim += ATH_AGGR_ENCRYPTDELIM;
  509. /*
  510. * Convert desired mpdu density from microeconds to bytes based
  511. * on highest rate in rate series (i.e. first rate) to determine
  512. * required minimum length for subframe. Take into account
  513. * whether high rate is 20 or 40Mhz and half or full GI.
  514. *
  515. * If there is no mpdu density restriction, no further calculation
  516. * is needed.
  517. */
  518. if (tid->an->mpdudensity == 0)
  519. return ndelim;
  520. rix = tx_info->control.rates[0].idx;
  521. flags = tx_info->control.rates[0].flags;
  522. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  523. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  524. if (half_gi)
  525. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  526. else
  527. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  528. if (nsymbols == 0)
  529. nsymbols = 1;
  530. streams = HT_RC_2_STREAMS(rix);
  531. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  532. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  533. if (frmlen < minlen) {
  534. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  535. ndelim = max(mindelim, ndelim);
  536. }
  537. return ndelim;
  538. }
  539. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  540. struct ath_txq *txq,
  541. struct ath_atx_tid *tid,
  542. struct list_head *bf_q)
  543. {
  544. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  545. struct ath_buf *bf, *bf_first, *bf_prev = NULL;
  546. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  547. u16 aggr_limit = 0, al = 0, bpad = 0,
  548. al_delta, h_baw = tid->baw_size / 2;
  549. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  550. bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
  551. do {
  552. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  553. /* do not step over block-ack window */
  554. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
  555. status = ATH_AGGR_BAW_CLOSED;
  556. break;
  557. }
  558. if (!rl) {
  559. aggr_limit = ath_lookup_rate(sc, bf, tid);
  560. rl = 1;
  561. }
  562. /* do not exceed aggregation limit */
  563. al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
  564. if (nframes &&
  565. (aggr_limit < (al + bpad + al_delta + prev_al))) {
  566. status = ATH_AGGR_LIMITED;
  567. break;
  568. }
  569. /* do not exceed subframe limit */
  570. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  571. status = ATH_AGGR_LIMITED;
  572. break;
  573. }
  574. nframes++;
  575. /* add padding for previous frame to aggregation length */
  576. al += bpad + al_delta;
  577. /*
  578. * Get the delimiters needed to meet the MPDU
  579. * density for this node.
  580. */
  581. ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
  582. bpad = PADBYTES(al_delta) + (ndelim << 2);
  583. bf->bf_next = NULL;
  584. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
  585. /* link buffers of this frame to the aggregate */
  586. ath_tx_addto_baw(sc, tid, bf);
  587. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
  588. list_move_tail(&bf->list, bf_q);
  589. if (bf_prev) {
  590. bf_prev->bf_next = bf;
  591. ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
  592. bf->bf_daddr);
  593. }
  594. bf_prev = bf;
  595. } while (!list_empty(&tid->buf_q));
  596. bf_first->bf_al = al;
  597. bf_first->bf_nframes = nframes;
  598. return status;
  599. #undef PADBYTES
  600. }
  601. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  602. struct ath_atx_tid *tid)
  603. {
  604. struct ath_buf *bf;
  605. enum ATH_AGGR_STATUS status;
  606. struct list_head bf_q;
  607. do {
  608. if (list_empty(&tid->buf_q))
  609. return;
  610. INIT_LIST_HEAD(&bf_q);
  611. status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
  612. /*
  613. * no frames picked up to be aggregated;
  614. * block-ack window is not open.
  615. */
  616. if (list_empty(&bf_q))
  617. break;
  618. bf = list_first_entry(&bf_q, struct ath_buf, list);
  619. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  620. /* if only one frame, send as non-aggregate */
  621. if (bf->bf_nframes == 1) {
  622. bf->bf_state.bf_type &= ~BUF_AGGR;
  623. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  624. ath_buf_set_rate(sc, bf);
  625. ath_tx_txqaddbuf(sc, txq, &bf_q);
  626. continue;
  627. }
  628. /* setup first desc of aggregate */
  629. bf->bf_state.bf_type |= BUF_AGGR;
  630. ath_buf_set_rate(sc, bf);
  631. ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
  632. /* anchor last desc of aggregate */
  633. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
  634. ath_tx_txqaddbuf(sc, txq, &bf_q);
  635. TX_STAT_INC(txq->axq_qnum, a_aggr);
  636. } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
  637. status != ATH_AGGR_BAW_CLOSED);
  638. }
  639. void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  640. u16 tid, u16 *ssn)
  641. {
  642. struct ath_atx_tid *txtid;
  643. struct ath_node *an;
  644. an = (struct ath_node *)sta->drv_priv;
  645. txtid = ATH_AN_2_TID(an, tid);
  646. txtid->state |= AGGR_ADDBA_PROGRESS;
  647. ath_tx_pause_tid(sc, txtid);
  648. *ssn = txtid->seq_start;
  649. }
  650. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  651. {
  652. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  653. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  654. struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
  655. struct ath_tx_status ts;
  656. struct ath_buf *bf;
  657. struct list_head bf_head;
  658. memset(&ts, 0, sizeof(ts));
  659. INIT_LIST_HEAD(&bf_head);
  660. if (txtid->state & AGGR_CLEANUP)
  661. return;
  662. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  663. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  664. return;
  665. }
  666. ath_tx_pause_tid(sc, txtid);
  667. /* drop all software retried frames and mark this TID */
  668. spin_lock_bh(&txq->axq_lock);
  669. while (!list_empty(&txtid->buf_q)) {
  670. bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
  671. if (!bf_isretried(bf)) {
  672. /*
  673. * NB: it's based on the assumption that
  674. * software retried frame will always stay
  675. * at the head of software queue.
  676. */
  677. break;
  678. }
  679. list_move_tail(&bf->list, &bf_head);
  680. ath_tx_update_baw(sc, txtid, bf->bf_seqno);
  681. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  682. }
  683. spin_unlock_bh(&txq->axq_lock);
  684. if (txtid->baw_head != txtid->baw_tail) {
  685. txtid->state |= AGGR_CLEANUP;
  686. } else {
  687. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  688. ath_tx_flush_tid(sc, txtid);
  689. }
  690. }
  691. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  692. {
  693. struct ath_atx_tid *txtid;
  694. struct ath_node *an;
  695. an = (struct ath_node *)sta->drv_priv;
  696. if (sc->sc_flags & SC_OP_TXAGGR) {
  697. txtid = ATH_AN_2_TID(an, tid);
  698. txtid->baw_size =
  699. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  700. txtid->state |= AGGR_ADDBA_COMPLETE;
  701. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  702. ath_tx_resume_tid(sc, txtid);
  703. }
  704. }
  705. bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
  706. {
  707. struct ath_atx_tid *txtid;
  708. if (!(sc->sc_flags & SC_OP_TXAGGR))
  709. return false;
  710. txtid = ATH_AN_2_TID(an, tidno);
  711. if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
  712. return true;
  713. return false;
  714. }
  715. /********************/
  716. /* Queue Management */
  717. /********************/
  718. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  719. struct ath_txq *txq)
  720. {
  721. struct ath_atx_ac *ac, *ac_tmp;
  722. struct ath_atx_tid *tid, *tid_tmp;
  723. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  724. list_del(&ac->list);
  725. ac->sched = false;
  726. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  727. list_del(&tid->list);
  728. tid->sched = false;
  729. ath_tid_drain(sc, txq, tid);
  730. }
  731. }
  732. }
  733. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  734. {
  735. struct ath_hw *ah = sc->sc_ah;
  736. struct ath_common *common = ath9k_hw_common(ah);
  737. struct ath9k_tx_queue_info qi;
  738. int qnum, i;
  739. memset(&qi, 0, sizeof(qi));
  740. qi.tqi_subtype = subtype;
  741. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  742. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  743. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  744. qi.tqi_physCompBuf = 0;
  745. /*
  746. * Enable interrupts only for EOL and DESC conditions.
  747. * We mark tx descriptors to receive a DESC interrupt
  748. * when a tx queue gets deep; otherwise waiting for the
  749. * EOL to reap descriptors. Note that this is done to
  750. * reduce interrupt load and this only defers reaping
  751. * descriptors, never transmitting frames. Aside from
  752. * reducing interrupts this also permits more concurrency.
  753. * The only potential downside is if the tx queue backs
  754. * up in which case the top half of the kernel may backup
  755. * due to a lack of tx descriptors.
  756. *
  757. * The UAPSD queue is an exception, since we take a desc-
  758. * based intr on the EOSP frames.
  759. */
  760. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  761. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  762. TXQ_FLAG_TXERRINT_ENABLE;
  763. } else {
  764. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  765. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  766. else
  767. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  768. TXQ_FLAG_TXDESCINT_ENABLE;
  769. }
  770. qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  771. if (qnum == -1) {
  772. /*
  773. * NB: don't print a message, this happens
  774. * normally on parts with too few tx queues
  775. */
  776. return NULL;
  777. }
  778. if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
  779. ath_print(common, ATH_DBG_FATAL,
  780. "qnum %u out of range, max %u!\n",
  781. qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
  782. ath9k_hw_releasetxqueue(ah, qnum);
  783. return NULL;
  784. }
  785. if (!ATH_TXQ_SETUP(sc, qnum)) {
  786. struct ath_txq *txq = &sc->tx.txq[qnum];
  787. txq->axq_class = subtype;
  788. txq->axq_qnum = qnum;
  789. txq->axq_link = NULL;
  790. INIT_LIST_HEAD(&txq->axq_q);
  791. INIT_LIST_HEAD(&txq->axq_acq);
  792. spin_lock_init(&txq->axq_lock);
  793. txq->axq_depth = 0;
  794. txq->axq_tx_inprogress = false;
  795. sc->tx.txqsetup |= 1<<qnum;
  796. txq->txq_headidx = txq->txq_tailidx = 0;
  797. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  798. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  799. INIT_LIST_HEAD(&txq->txq_fifo_pending);
  800. }
  801. return &sc->tx.txq[qnum];
  802. }
  803. int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
  804. {
  805. int qnum;
  806. switch (qtype) {
  807. case ATH9K_TX_QUEUE_DATA:
  808. if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
  809. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  810. "HAL AC %u out of range, max %zu!\n",
  811. haltype, ARRAY_SIZE(sc->tx.hwq_map));
  812. return -1;
  813. }
  814. qnum = sc->tx.hwq_map[haltype];
  815. break;
  816. case ATH9K_TX_QUEUE_BEACON:
  817. qnum = sc->beacon.beaconq;
  818. break;
  819. case ATH9K_TX_QUEUE_CAB:
  820. qnum = sc->beacon.cabq->axq_qnum;
  821. break;
  822. default:
  823. qnum = -1;
  824. }
  825. return qnum;
  826. }
  827. int ath_txq_update(struct ath_softc *sc, int qnum,
  828. struct ath9k_tx_queue_info *qinfo)
  829. {
  830. struct ath_hw *ah = sc->sc_ah;
  831. int error = 0;
  832. struct ath9k_tx_queue_info qi;
  833. if (qnum == sc->beacon.beaconq) {
  834. /*
  835. * XXX: for beacon queue, we just save the parameter.
  836. * It will be picked up by ath_beaconq_config when
  837. * it's necessary.
  838. */
  839. sc->beacon.beacon_qi = *qinfo;
  840. return 0;
  841. }
  842. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  843. ath9k_hw_get_txq_props(ah, qnum, &qi);
  844. qi.tqi_aifs = qinfo->tqi_aifs;
  845. qi.tqi_cwmin = qinfo->tqi_cwmin;
  846. qi.tqi_cwmax = qinfo->tqi_cwmax;
  847. qi.tqi_burstTime = qinfo->tqi_burstTime;
  848. qi.tqi_readyTime = qinfo->tqi_readyTime;
  849. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  850. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  851. "Unable to update hardware queue %u!\n", qnum);
  852. error = -EIO;
  853. } else {
  854. ath9k_hw_resettxqueue(ah, qnum);
  855. }
  856. return error;
  857. }
  858. int ath_cabq_update(struct ath_softc *sc)
  859. {
  860. struct ath9k_tx_queue_info qi;
  861. int qnum = sc->beacon.cabq->axq_qnum;
  862. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  863. /*
  864. * Ensure the readytime % is within the bounds.
  865. */
  866. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  867. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  868. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  869. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  870. qi.tqi_readyTime = (sc->beacon_interval *
  871. sc->config.cabqReadytime) / 100;
  872. ath_txq_update(sc, qnum, &qi);
  873. return 0;
  874. }
  875. /*
  876. * Drain a given TX queue (could be Beacon or Data)
  877. *
  878. * This assumes output has been stopped and
  879. * we do not need to block ath_tx_tasklet.
  880. */
  881. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  882. {
  883. struct ath_buf *bf, *lastbf;
  884. struct list_head bf_head;
  885. struct ath_tx_status ts;
  886. memset(&ts, 0, sizeof(ts));
  887. INIT_LIST_HEAD(&bf_head);
  888. for (;;) {
  889. spin_lock_bh(&txq->axq_lock);
  890. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  891. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  892. txq->txq_headidx = txq->txq_tailidx = 0;
  893. spin_unlock_bh(&txq->axq_lock);
  894. break;
  895. } else {
  896. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  897. struct ath_buf, list);
  898. }
  899. } else {
  900. if (list_empty(&txq->axq_q)) {
  901. txq->axq_link = NULL;
  902. spin_unlock_bh(&txq->axq_lock);
  903. break;
  904. }
  905. bf = list_first_entry(&txq->axq_q, struct ath_buf,
  906. list);
  907. if (bf->bf_stale) {
  908. list_del(&bf->list);
  909. spin_unlock_bh(&txq->axq_lock);
  910. ath_tx_return_buffer(sc, bf);
  911. continue;
  912. }
  913. }
  914. lastbf = bf->bf_lastbf;
  915. if (!retry_tx)
  916. lastbf->bf_tx_aborted = true;
  917. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  918. list_cut_position(&bf_head,
  919. &txq->txq_fifo[txq->txq_tailidx],
  920. &lastbf->list);
  921. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  922. } else {
  923. /* remove ath_buf's of the same mpdu from txq */
  924. list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
  925. }
  926. txq->axq_depth--;
  927. spin_unlock_bh(&txq->axq_lock);
  928. if (bf_isampdu(bf))
  929. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
  930. else
  931. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  932. }
  933. spin_lock_bh(&txq->axq_lock);
  934. txq->axq_tx_inprogress = false;
  935. spin_unlock_bh(&txq->axq_lock);
  936. /* flush any pending frames if aggregation is enabled */
  937. if (sc->sc_flags & SC_OP_TXAGGR) {
  938. if (!retry_tx) {
  939. spin_lock_bh(&txq->axq_lock);
  940. ath_txq_drain_pending_buffers(sc, txq);
  941. spin_unlock_bh(&txq->axq_lock);
  942. }
  943. }
  944. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  945. spin_lock_bh(&txq->axq_lock);
  946. while (!list_empty(&txq->txq_fifo_pending)) {
  947. bf = list_first_entry(&txq->txq_fifo_pending,
  948. struct ath_buf, list);
  949. list_cut_position(&bf_head,
  950. &txq->txq_fifo_pending,
  951. &bf->bf_lastbf->list);
  952. spin_unlock_bh(&txq->axq_lock);
  953. if (bf_isampdu(bf))
  954. ath_tx_complete_aggr(sc, txq, bf, &bf_head,
  955. &ts, 0);
  956. else
  957. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  958. &ts, 0, 0);
  959. spin_lock_bh(&txq->axq_lock);
  960. }
  961. spin_unlock_bh(&txq->axq_lock);
  962. }
  963. }
  964. void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  965. {
  966. struct ath_hw *ah = sc->sc_ah;
  967. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  968. struct ath_txq *txq;
  969. int i, npend = 0;
  970. if (sc->sc_flags & SC_OP_INVALID)
  971. return;
  972. /* Stop beacon queue */
  973. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  974. /* Stop data queues */
  975. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  976. if (ATH_TXQ_SETUP(sc, i)) {
  977. txq = &sc->tx.txq[i];
  978. ath9k_hw_stoptxdma(ah, txq->axq_qnum);
  979. npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
  980. }
  981. }
  982. if (npend) {
  983. int r;
  984. ath_print(common, ATH_DBG_FATAL,
  985. "Failed to stop TX DMA. Resetting hardware!\n");
  986. spin_lock_bh(&sc->sc_resetlock);
  987. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
  988. if (r)
  989. ath_print(common, ATH_DBG_FATAL,
  990. "Unable to reset hardware; reset status %d\n",
  991. r);
  992. spin_unlock_bh(&sc->sc_resetlock);
  993. }
  994. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  995. if (ATH_TXQ_SETUP(sc, i))
  996. ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
  997. }
  998. }
  999. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1000. {
  1001. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1002. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1003. }
  1004. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1005. {
  1006. struct ath_atx_ac *ac;
  1007. struct ath_atx_tid *tid;
  1008. if (list_empty(&txq->axq_acq))
  1009. return;
  1010. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1011. list_del(&ac->list);
  1012. ac->sched = false;
  1013. do {
  1014. if (list_empty(&ac->tid_q))
  1015. return;
  1016. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
  1017. list_del(&tid->list);
  1018. tid->sched = false;
  1019. if (tid->paused)
  1020. continue;
  1021. ath_tx_sched_aggr(sc, txq, tid);
  1022. /*
  1023. * add tid to round-robin queue if more frames
  1024. * are pending for the tid
  1025. */
  1026. if (!list_empty(&tid->buf_q))
  1027. ath_tx_queue_tid(txq, tid);
  1028. break;
  1029. } while (!list_empty(&ac->tid_q));
  1030. if (!list_empty(&ac->tid_q)) {
  1031. if (!ac->sched) {
  1032. ac->sched = true;
  1033. list_add_tail(&ac->list, &txq->axq_acq);
  1034. }
  1035. }
  1036. }
  1037. int ath_tx_setup(struct ath_softc *sc, int haltype)
  1038. {
  1039. struct ath_txq *txq;
  1040. if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
  1041. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1042. "HAL AC %u out of range, max %zu!\n",
  1043. haltype, ARRAY_SIZE(sc->tx.hwq_map));
  1044. return 0;
  1045. }
  1046. txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
  1047. if (txq != NULL) {
  1048. sc->tx.hwq_map[haltype] = txq->axq_qnum;
  1049. return 1;
  1050. } else
  1051. return 0;
  1052. }
  1053. /***********/
  1054. /* TX, DMA */
  1055. /***********/
  1056. /*
  1057. * Insert a chain of ath_buf (descriptors) on a txq and
  1058. * assume the descriptors are already chained together by caller.
  1059. */
  1060. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1061. struct list_head *head)
  1062. {
  1063. struct ath_hw *ah = sc->sc_ah;
  1064. struct ath_common *common = ath9k_hw_common(ah);
  1065. struct ath_buf *bf;
  1066. /*
  1067. * Insert the frame on the outbound list and
  1068. * pass it on to the hardware.
  1069. */
  1070. if (list_empty(head))
  1071. return;
  1072. bf = list_first_entry(head, struct ath_buf, list);
  1073. ath_print(common, ATH_DBG_QUEUE,
  1074. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1075. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1076. if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
  1077. list_splice_tail_init(head, &txq->txq_fifo_pending);
  1078. return;
  1079. }
  1080. if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
  1081. ath_print(common, ATH_DBG_XMIT,
  1082. "Initializing tx fifo %d which "
  1083. "is non-empty\n",
  1084. txq->txq_headidx);
  1085. INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
  1086. list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1087. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1088. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1089. ath_print(common, ATH_DBG_XMIT,
  1090. "TXDP[%u] = %llx (%p)\n",
  1091. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1092. } else {
  1093. list_splice_tail_init(head, &txq->axq_q);
  1094. if (txq->axq_link == NULL) {
  1095. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1096. ath_print(common, ATH_DBG_XMIT,
  1097. "TXDP[%u] = %llx (%p)\n",
  1098. txq->axq_qnum, ito64(bf->bf_daddr),
  1099. bf->bf_desc);
  1100. } else {
  1101. *txq->axq_link = bf->bf_daddr;
  1102. ath_print(common, ATH_DBG_XMIT,
  1103. "link[%u] (%p)=%llx (%p)\n",
  1104. txq->axq_qnum, txq->axq_link,
  1105. ito64(bf->bf_daddr), bf->bf_desc);
  1106. }
  1107. ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
  1108. &txq->axq_link);
  1109. ath9k_hw_txstart(ah, txq->axq_qnum);
  1110. }
  1111. txq->axq_depth++;
  1112. }
  1113. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1114. struct list_head *bf_head,
  1115. struct ath_tx_control *txctl)
  1116. {
  1117. struct ath_buf *bf;
  1118. bf = list_first_entry(bf_head, struct ath_buf, list);
  1119. bf->bf_state.bf_type |= BUF_AMPDU;
  1120. TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
  1121. /*
  1122. * Do not queue to h/w when any of the following conditions is true:
  1123. * - there are pending frames in software queue
  1124. * - the TID is currently paused for ADDBA/BAR request
  1125. * - seqno is not within block-ack window
  1126. * - h/w queue depth exceeds low water mark
  1127. */
  1128. if (!list_empty(&tid->buf_q) || tid->paused ||
  1129. !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
  1130. txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
  1131. /*
  1132. * Add this frame to software queue for scheduling later
  1133. * for aggregation.
  1134. */
  1135. list_move_tail(&bf->list, &tid->buf_q);
  1136. ath_tx_queue_tid(txctl->txq, tid);
  1137. return;
  1138. }
  1139. /* Add sub-frame to BAW */
  1140. ath_tx_addto_baw(sc, tid, bf);
  1141. /* Queue to h/w without aggregation */
  1142. bf->bf_nframes = 1;
  1143. bf->bf_lastbf = bf;
  1144. ath_buf_set_rate(sc, bf);
  1145. ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
  1146. }
  1147. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  1148. struct ath_atx_tid *tid,
  1149. struct list_head *bf_head)
  1150. {
  1151. struct ath_buf *bf;
  1152. bf = list_first_entry(bf_head, struct ath_buf, list);
  1153. bf->bf_state.bf_type &= ~BUF_AMPDU;
  1154. /* update starting sequence number for subsequent ADDBA request */
  1155. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1156. bf->bf_nframes = 1;
  1157. bf->bf_lastbf = bf;
  1158. ath_buf_set_rate(sc, bf);
  1159. ath_tx_txqaddbuf(sc, txq, bf_head);
  1160. TX_STAT_INC(txq->axq_qnum, queued);
  1161. }
  1162. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1163. struct list_head *bf_head)
  1164. {
  1165. struct ath_buf *bf;
  1166. bf = list_first_entry(bf_head, struct ath_buf, list);
  1167. bf->bf_lastbf = bf;
  1168. bf->bf_nframes = 1;
  1169. ath_buf_set_rate(sc, bf);
  1170. ath_tx_txqaddbuf(sc, txq, bf_head);
  1171. TX_STAT_INC(txq->axq_qnum, queued);
  1172. }
  1173. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1174. {
  1175. struct ieee80211_hdr *hdr;
  1176. enum ath9k_pkt_type htype;
  1177. __le16 fc;
  1178. hdr = (struct ieee80211_hdr *)skb->data;
  1179. fc = hdr->frame_control;
  1180. if (ieee80211_is_beacon(fc))
  1181. htype = ATH9K_PKT_TYPE_BEACON;
  1182. else if (ieee80211_is_probe_resp(fc))
  1183. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1184. else if (ieee80211_is_atim(fc))
  1185. htype = ATH9K_PKT_TYPE_ATIM;
  1186. else if (ieee80211_is_pspoll(fc))
  1187. htype = ATH9K_PKT_TYPE_PSPOLL;
  1188. else
  1189. htype = ATH9K_PKT_TYPE_NORMAL;
  1190. return htype;
  1191. }
  1192. static int get_hw_crypto_keytype(struct sk_buff *skb)
  1193. {
  1194. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1195. if (tx_info->control.hw_key) {
  1196. if (tx_info->control.hw_key->alg == ALG_WEP)
  1197. return ATH9K_KEY_TYPE_WEP;
  1198. else if (tx_info->control.hw_key->alg == ALG_TKIP)
  1199. return ATH9K_KEY_TYPE_TKIP;
  1200. else if (tx_info->control.hw_key->alg == ALG_CCMP)
  1201. return ATH9K_KEY_TYPE_AES;
  1202. }
  1203. return ATH9K_KEY_TYPE_CLEAR;
  1204. }
  1205. static void assign_aggr_tid_seqno(struct sk_buff *skb,
  1206. struct ath_buf *bf)
  1207. {
  1208. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1209. struct ieee80211_hdr *hdr;
  1210. struct ath_node *an;
  1211. struct ath_atx_tid *tid;
  1212. __le16 fc;
  1213. u8 *qc;
  1214. if (!tx_info->control.sta)
  1215. return;
  1216. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1217. hdr = (struct ieee80211_hdr *)skb->data;
  1218. fc = hdr->frame_control;
  1219. if (ieee80211_is_data_qos(fc)) {
  1220. qc = ieee80211_get_qos_ctl(hdr);
  1221. bf->bf_tidno = qc[0] & 0xf;
  1222. }
  1223. /*
  1224. * For HT capable stations, we save tidno for later use.
  1225. * We also override seqno set by upper layer with the one
  1226. * in tx aggregation state.
  1227. */
  1228. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1229. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1230. bf->bf_seqno = tid->seq_next;
  1231. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1232. }
  1233. static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
  1234. {
  1235. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1236. int flags = 0;
  1237. flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
  1238. flags |= ATH9K_TXDESC_INTREQ;
  1239. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1240. flags |= ATH9K_TXDESC_NOACK;
  1241. if (use_ldpc)
  1242. flags |= ATH9K_TXDESC_LDPC;
  1243. return flags;
  1244. }
  1245. /*
  1246. * rix - rate index
  1247. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1248. * width - 0 for 20 MHz, 1 for 40 MHz
  1249. * half_gi - to use 4us v/s 3.6 us for symbol time
  1250. */
  1251. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
  1252. int width, int half_gi, bool shortPreamble)
  1253. {
  1254. u32 nbits, nsymbits, duration, nsymbols;
  1255. int streams, pktlen;
  1256. pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
  1257. /* find number of symbols: PLCP + data */
  1258. streams = HT_RC_2_STREAMS(rix);
  1259. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1260. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  1261. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1262. if (!half_gi)
  1263. duration = SYMBOL_TIME(nsymbols);
  1264. else
  1265. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1266. /* addup duration for legacy/ht training and signal fields */
  1267. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1268. return duration;
  1269. }
  1270. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
  1271. {
  1272. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1273. struct ath9k_11n_rate_series series[4];
  1274. struct sk_buff *skb;
  1275. struct ieee80211_tx_info *tx_info;
  1276. struct ieee80211_tx_rate *rates;
  1277. const struct ieee80211_rate *rate;
  1278. struct ieee80211_hdr *hdr;
  1279. int i, flags = 0;
  1280. u8 rix = 0, ctsrate = 0;
  1281. bool is_pspoll;
  1282. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1283. skb = bf->bf_mpdu;
  1284. tx_info = IEEE80211_SKB_CB(skb);
  1285. rates = tx_info->control.rates;
  1286. hdr = (struct ieee80211_hdr *)skb->data;
  1287. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1288. /*
  1289. * We check if Short Preamble is needed for the CTS rate by
  1290. * checking the BSS's global flag.
  1291. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1292. */
  1293. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1294. ctsrate = rate->hw_value;
  1295. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1296. ctsrate |= rate->hw_value_short;
  1297. for (i = 0; i < 4; i++) {
  1298. bool is_40, is_sgi, is_sp;
  1299. int phy;
  1300. if (!rates[i].count || (rates[i].idx < 0))
  1301. continue;
  1302. rix = rates[i].idx;
  1303. series[i].Tries = rates[i].count;
  1304. series[i].ChSel = common->tx_chainmask;
  1305. if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
  1306. (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
  1307. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1308. flags |= ATH9K_TXDESC_RTSENA;
  1309. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1310. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1311. flags |= ATH9K_TXDESC_CTSENA;
  1312. }
  1313. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1314. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1315. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1316. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1317. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1318. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1319. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1320. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1321. /* MCS rates */
  1322. series[i].Rate = rix | 0x80;
  1323. series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
  1324. is_40, is_sgi, is_sp);
  1325. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1326. series[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1327. continue;
  1328. }
  1329. /* legcay rates */
  1330. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1331. !(rate->flags & IEEE80211_RATE_ERP_G))
  1332. phy = WLAN_RC_PHY_CCK;
  1333. else
  1334. phy = WLAN_RC_PHY_OFDM;
  1335. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1336. series[i].Rate = rate->hw_value;
  1337. if (rate->hw_value_short) {
  1338. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1339. series[i].Rate |= rate->hw_value_short;
  1340. } else {
  1341. is_sp = false;
  1342. }
  1343. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1344. phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
  1345. }
  1346. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1347. if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
  1348. flags &= ~ATH9K_TXDESC_RTSENA;
  1349. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1350. if (flags & ATH9K_TXDESC_RTSENA)
  1351. flags &= ~ATH9K_TXDESC_CTSENA;
  1352. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1353. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1354. bf->bf_lastbf->bf_desc,
  1355. !is_pspoll, ctsrate,
  1356. 0, series, 4, flags);
  1357. if (sc->config.ath_aggr_prot && flags)
  1358. ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
  1359. }
  1360. static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
  1361. struct sk_buff *skb,
  1362. struct ath_tx_control *txctl)
  1363. {
  1364. struct ath_wiphy *aphy = hw->priv;
  1365. struct ath_softc *sc = aphy->sc;
  1366. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1367. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1368. int hdrlen;
  1369. __le16 fc;
  1370. int padpos, padsize;
  1371. bool use_ldpc = false;
  1372. tx_info->pad[0] = 0;
  1373. switch (txctl->frame_type) {
  1374. case ATH9K_IFT_NOT_INTERNAL:
  1375. break;
  1376. case ATH9K_IFT_PAUSE:
  1377. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
  1378. /* fall through */
  1379. case ATH9K_IFT_UNPAUSE:
  1380. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
  1381. break;
  1382. }
  1383. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1384. fc = hdr->frame_control;
  1385. ATH_TXBUF_RESET(bf);
  1386. bf->aphy = aphy;
  1387. bf->bf_frmlen = skb->len + FCS_LEN;
  1388. /* Remove the padding size from bf_frmlen, if any */
  1389. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1390. padsize = padpos & 3;
  1391. if (padsize && skb->len>padpos+padsize) {
  1392. bf->bf_frmlen -= padsize;
  1393. }
  1394. if (conf_is_ht(&hw->conf)) {
  1395. bf->bf_state.bf_type |= BUF_HT;
  1396. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1397. use_ldpc = true;
  1398. }
  1399. bf->bf_flags = setup_tx_flags(skb, use_ldpc);
  1400. bf->bf_keytype = get_hw_crypto_keytype(skb);
  1401. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
  1402. bf->bf_frmlen += tx_info->control.hw_key->icv_len;
  1403. bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
  1404. } else {
  1405. bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
  1406. }
  1407. if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
  1408. (sc->sc_flags & SC_OP_TXAGGR))
  1409. assign_aggr_tid_seqno(skb, bf);
  1410. bf->bf_mpdu = skb;
  1411. bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
  1412. skb->len, DMA_TO_DEVICE);
  1413. if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
  1414. bf->bf_mpdu = NULL;
  1415. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1416. "dma_mapping_error() on TX\n");
  1417. return -ENOMEM;
  1418. }
  1419. bf->bf_buf_addr = bf->bf_dmacontext;
  1420. /* tag if this is a nullfunc frame to enable PS when AP acks it */
  1421. if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
  1422. bf->bf_isnullfunc = true;
  1423. sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
  1424. } else
  1425. bf->bf_isnullfunc = false;
  1426. bf->bf_tx_aborted = false;
  1427. return 0;
  1428. }
  1429. /* FIXME: tx power */
  1430. static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
  1431. struct ath_tx_control *txctl)
  1432. {
  1433. struct sk_buff *skb = bf->bf_mpdu;
  1434. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1435. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1436. struct ath_node *an = NULL;
  1437. struct list_head bf_head;
  1438. struct ath_desc *ds;
  1439. struct ath_atx_tid *tid;
  1440. struct ath_hw *ah = sc->sc_ah;
  1441. int frm_type;
  1442. __le16 fc;
  1443. frm_type = get_hw_packet_type(skb);
  1444. fc = hdr->frame_control;
  1445. INIT_LIST_HEAD(&bf_head);
  1446. list_add_tail(&bf->list, &bf_head);
  1447. ds = bf->bf_desc;
  1448. ath9k_hw_set_desc_link(ah, ds, 0);
  1449. ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
  1450. bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
  1451. ath9k_hw_filltxdesc(ah, ds,
  1452. skb->len, /* segment length */
  1453. true, /* first segment */
  1454. true, /* last segment */
  1455. ds, /* first descriptor */
  1456. bf->bf_buf_addr,
  1457. txctl->txq->axq_qnum);
  1458. spin_lock_bh(&txctl->txq->axq_lock);
  1459. if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
  1460. tx_info->control.sta) {
  1461. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1462. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1463. if (!ieee80211_is_data_qos(fc)) {
  1464. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1465. goto tx_done;
  1466. }
  1467. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1468. /*
  1469. * Try aggregation if it's a unicast data frame
  1470. * and the destination is HT capable.
  1471. */
  1472. ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
  1473. } else {
  1474. /*
  1475. * Send this frame as regular when ADDBA
  1476. * exchange is neither complete nor pending.
  1477. */
  1478. ath_tx_send_ht_normal(sc, txctl->txq,
  1479. tid, &bf_head);
  1480. }
  1481. } else {
  1482. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1483. }
  1484. tx_done:
  1485. spin_unlock_bh(&txctl->txq->axq_lock);
  1486. }
  1487. /* Upon failure caller should free skb */
  1488. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1489. struct ath_tx_control *txctl)
  1490. {
  1491. struct ath_wiphy *aphy = hw->priv;
  1492. struct ath_softc *sc = aphy->sc;
  1493. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1494. struct ath_txq *txq = txctl->txq;
  1495. struct ath_buf *bf;
  1496. int r;
  1497. bf = ath_tx_get_buffer(sc);
  1498. if (!bf) {
  1499. ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1500. return -1;
  1501. }
  1502. bf->txq = txctl->txq;
  1503. spin_lock_bh(&bf->txq->axq_lock);
  1504. if (++bf->txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1505. ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
  1506. txq->stopped = 1;
  1507. }
  1508. spin_unlock_bh(&bf->txq->axq_lock);
  1509. r = ath_tx_setup_buffer(hw, bf, skb, txctl);
  1510. if (unlikely(r)) {
  1511. ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
  1512. /* upon ath_tx_processq() this TX queue will be resumed, we
  1513. * guarantee this will happen by knowing beforehand that
  1514. * we will at least have to run TX completionon one buffer
  1515. * on the queue */
  1516. spin_lock_bh(&txq->axq_lock);
  1517. if (!txq->stopped && txq->axq_depth > 1) {
  1518. ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
  1519. txq->stopped = 1;
  1520. }
  1521. spin_unlock_bh(&txq->axq_lock);
  1522. ath_tx_return_buffer(sc, bf);
  1523. return r;
  1524. }
  1525. ath_tx_start_dma(sc, bf, txctl);
  1526. return 0;
  1527. }
  1528. void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
  1529. {
  1530. struct ath_wiphy *aphy = hw->priv;
  1531. struct ath_softc *sc = aphy->sc;
  1532. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1533. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1534. int padpos, padsize;
  1535. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1536. struct ath_tx_control txctl;
  1537. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1538. /*
  1539. * As a temporary workaround, assign seq# here; this will likely need
  1540. * to be cleaned up to work better with Beacon transmission and virtual
  1541. * BSSes.
  1542. */
  1543. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1544. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1545. sc->tx.seq_no += 0x10;
  1546. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1547. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1548. }
  1549. /* Add the padding after the header if this is not already done */
  1550. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1551. padsize = padpos & 3;
  1552. if (padsize && skb->len>padpos) {
  1553. if (skb_headroom(skb) < padsize) {
  1554. ath_print(common, ATH_DBG_XMIT,
  1555. "TX CABQ padding failed\n");
  1556. dev_kfree_skb_any(skb);
  1557. return;
  1558. }
  1559. skb_push(skb, padsize);
  1560. memmove(skb->data, skb->data + padsize, padpos);
  1561. }
  1562. txctl.txq = sc->beacon.cabq;
  1563. ath_print(common, ATH_DBG_XMIT,
  1564. "transmitting CABQ packet, skb: %p\n", skb);
  1565. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1566. ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
  1567. goto exit;
  1568. }
  1569. return;
  1570. exit:
  1571. dev_kfree_skb_any(skb);
  1572. }
  1573. /*****************/
  1574. /* TX Completion */
  1575. /*****************/
  1576. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1577. struct ath_wiphy *aphy, int tx_flags)
  1578. {
  1579. struct ieee80211_hw *hw = sc->hw;
  1580. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1581. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1582. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1583. int padpos, padsize;
  1584. ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1585. if (aphy)
  1586. hw = aphy->hw;
  1587. if (tx_flags & ATH_TX_BAR)
  1588. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1589. if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
  1590. /* Frame was ACKed */
  1591. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1592. }
  1593. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1594. padsize = padpos & 3;
  1595. if (padsize && skb->len>padpos+padsize) {
  1596. /*
  1597. * Remove MAC header padding before giving the frame back to
  1598. * mac80211.
  1599. */
  1600. memmove(skb->data + padsize, skb->data, padpos);
  1601. skb_pull(skb, padsize);
  1602. }
  1603. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1604. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1605. ath_print(common, ATH_DBG_PS,
  1606. "Going back to sleep after having "
  1607. "received TX status (0x%lx)\n",
  1608. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1609. PS_WAIT_FOR_CAB |
  1610. PS_WAIT_FOR_PSPOLL_DATA |
  1611. PS_WAIT_FOR_TX_ACK));
  1612. }
  1613. if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
  1614. ath9k_tx_status(hw, skb);
  1615. else
  1616. ieee80211_tx_status(hw, skb);
  1617. }
  1618. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1619. struct ath_txq *txq, struct list_head *bf_q,
  1620. struct ath_tx_status *ts, int txok, int sendbar)
  1621. {
  1622. struct sk_buff *skb = bf->bf_mpdu;
  1623. unsigned long flags;
  1624. int tx_flags = 0;
  1625. if (sendbar)
  1626. tx_flags = ATH_TX_BAR;
  1627. if (!txok) {
  1628. tx_flags |= ATH_TX_ERROR;
  1629. if (bf_isxretried(bf))
  1630. tx_flags |= ATH_TX_XRETRY;
  1631. }
  1632. if (bf->txq) {
  1633. spin_lock_bh(&bf->txq->axq_lock);
  1634. bf->txq->pending_frames--;
  1635. spin_unlock_bh(&bf->txq->axq_lock);
  1636. bf->txq = NULL;
  1637. }
  1638. dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
  1639. ath_tx_complete(sc, skb, bf->aphy, tx_flags);
  1640. ath_debug_stat_tx(sc, txq, bf, ts);
  1641. /*
  1642. * Return the list of ath_buf of this mpdu to free queue
  1643. */
  1644. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1645. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1646. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1647. }
  1648. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  1649. struct ath_tx_status *ts, int txok)
  1650. {
  1651. u16 seq_st = 0;
  1652. u32 ba[WME_BA_BMP_SIZE >> 5];
  1653. int ba_index;
  1654. int nbad = 0;
  1655. int isaggr = 0;
  1656. if (bf->bf_lastbf->bf_tx_aborted)
  1657. return 0;
  1658. isaggr = bf_isaggr(bf);
  1659. if (isaggr) {
  1660. seq_st = ts->ts_seqnum;
  1661. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  1662. }
  1663. while (bf) {
  1664. ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
  1665. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  1666. nbad++;
  1667. bf = bf->bf_next;
  1668. }
  1669. return nbad;
  1670. }
  1671. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  1672. int nbad, int txok, bool update_rc)
  1673. {
  1674. struct sk_buff *skb = bf->bf_mpdu;
  1675. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1676. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1677. struct ieee80211_hw *hw = bf->aphy->hw;
  1678. u8 i, tx_rateindex;
  1679. if (txok)
  1680. tx_info->status.ack_signal = ts->ts_rssi;
  1681. tx_rateindex = ts->ts_rateindex;
  1682. WARN_ON(tx_rateindex >= hw->max_rates);
  1683. if (ts->ts_status & ATH9K_TXERR_FILT)
  1684. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1685. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc)
  1686. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1687. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1688. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1689. if (ieee80211_is_data(hdr->frame_control)) {
  1690. if (ts->ts_flags &
  1691. (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
  1692. tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
  1693. if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
  1694. (ts->ts_status & ATH9K_TXERR_FIFO))
  1695. tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
  1696. tx_info->status.ampdu_len = bf->bf_nframes;
  1697. tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
  1698. }
  1699. }
  1700. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1701. tx_info->status.rates[i].count = 0;
  1702. tx_info->status.rates[i].idx = -1;
  1703. }
  1704. tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
  1705. }
  1706. static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
  1707. {
  1708. int qnum;
  1709. spin_lock_bh(&txq->axq_lock);
  1710. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1711. qnum = ath_get_mac80211_qnum(txq->axq_class, sc);
  1712. if (qnum != -1) {
  1713. ath_mac80211_start_queue(sc, qnum);
  1714. txq->stopped = 0;
  1715. }
  1716. }
  1717. spin_unlock_bh(&txq->axq_lock);
  1718. }
  1719. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1720. {
  1721. struct ath_hw *ah = sc->sc_ah;
  1722. struct ath_common *common = ath9k_hw_common(ah);
  1723. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1724. struct list_head bf_head;
  1725. struct ath_desc *ds;
  1726. struct ath_tx_status ts;
  1727. int txok;
  1728. int status;
  1729. ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1730. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1731. txq->axq_link);
  1732. for (;;) {
  1733. spin_lock_bh(&txq->axq_lock);
  1734. if (list_empty(&txq->axq_q)) {
  1735. txq->axq_link = NULL;
  1736. spin_unlock_bh(&txq->axq_lock);
  1737. break;
  1738. }
  1739. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1740. /*
  1741. * There is a race condition that a BH gets scheduled
  1742. * after sw writes TxE and before hw re-load the last
  1743. * descriptor to get the newly chained one.
  1744. * Software must keep the last DONE descriptor as a
  1745. * holding descriptor - software does so by marking
  1746. * it with the STALE flag.
  1747. */
  1748. bf_held = NULL;
  1749. if (bf->bf_stale) {
  1750. bf_held = bf;
  1751. if (list_is_last(&bf_held->list, &txq->axq_q)) {
  1752. spin_unlock_bh(&txq->axq_lock);
  1753. break;
  1754. } else {
  1755. bf = list_entry(bf_held->list.next,
  1756. struct ath_buf, list);
  1757. }
  1758. }
  1759. lastbf = bf->bf_lastbf;
  1760. ds = lastbf->bf_desc;
  1761. memset(&ts, 0, sizeof(ts));
  1762. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1763. if (status == -EINPROGRESS) {
  1764. spin_unlock_bh(&txq->axq_lock);
  1765. break;
  1766. }
  1767. /*
  1768. * We now know the nullfunc frame has been ACKed so we
  1769. * can disable RX.
  1770. */
  1771. if (bf->bf_isnullfunc &&
  1772. (ts.ts_status & ATH9K_TX_ACKED)) {
  1773. if ((sc->ps_flags & PS_ENABLED))
  1774. ath9k_enable_ps(sc);
  1775. else
  1776. sc->ps_flags |= PS_NULLFUNC_COMPLETED;
  1777. }
  1778. /*
  1779. * Remove ath_buf's of the same transmit unit from txq,
  1780. * however leave the last descriptor back as the holding
  1781. * descriptor for hw.
  1782. */
  1783. lastbf->bf_stale = true;
  1784. INIT_LIST_HEAD(&bf_head);
  1785. if (!list_is_singular(&lastbf->list))
  1786. list_cut_position(&bf_head,
  1787. &txq->axq_q, lastbf->list.prev);
  1788. txq->axq_depth--;
  1789. txok = !(ts.ts_status & ATH9K_TXERR_MASK);
  1790. txq->axq_tx_inprogress = false;
  1791. if (bf_held)
  1792. list_del(&bf_held->list);
  1793. spin_unlock_bh(&txq->axq_lock);
  1794. if (bf_held)
  1795. ath_tx_return_buffer(sc, bf_held);
  1796. if (!bf_isampdu(bf)) {
  1797. /*
  1798. * This frame is sent out as a single frame.
  1799. * Use hardware retry status for this frame.
  1800. */
  1801. bf->bf_retries = ts.ts_longretry;
  1802. if (ts.ts_status & ATH9K_TXERR_XRETRY)
  1803. bf->bf_state.bf_type |= BUF_XRETRY;
  1804. ath_tx_rc_status(bf, &ts, 0, txok, true);
  1805. }
  1806. if (bf_isampdu(bf))
  1807. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
  1808. else
  1809. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
  1810. ath_wake_mac80211_queue(sc, txq);
  1811. spin_lock_bh(&txq->axq_lock);
  1812. if (sc->sc_flags & SC_OP_TXAGGR)
  1813. ath_txq_schedule(sc, txq);
  1814. spin_unlock_bh(&txq->axq_lock);
  1815. }
  1816. }
  1817. static void ath_tx_complete_poll_work(struct work_struct *work)
  1818. {
  1819. struct ath_softc *sc = container_of(work, struct ath_softc,
  1820. tx_complete_work.work);
  1821. struct ath_txq *txq;
  1822. int i;
  1823. bool needreset = false;
  1824. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1825. if (ATH_TXQ_SETUP(sc, i)) {
  1826. txq = &sc->tx.txq[i];
  1827. spin_lock_bh(&txq->axq_lock);
  1828. if (txq->axq_depth) {
  1829. if (txq->axq_tx_inprogress) {
  1830. needreset = true;
  1831. spin_unlock_bh(&txq->axq_lock);
  1832. break;
  1833. } else {
  1834. txq->axq_tx_inprogress = true;
  1835. }
  1836. }
  1837. spin_unlock_bh(&txq->axq_lock);
  1838. }
  1839. if (needreset) {
  1840. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1841. "tx hung, resetting the chip\n");
  1842. ath9k_ps_wakeup(sc);
  1843. ath_reset(sc, false);
  1844. ath9k_ps_restore(sc);
  1845. }
  1846. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1847. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1848. }
  1849. void ath_tx_tasklet(struct ath_softc *sc)
  1850. {
  1851. int i;
  1852. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1853. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1854. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1855. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1856. ath_tx_processq(sc, &sc->tx.txq[i]);
  1857. }
  1858. }
  1859. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1860. {
  1861. struct ath_tx_status txs;
  1862. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1863. struct ath_hw *ah = sc->sc_ah;
  1864. struct ath_txq *txq;
  1865. struct ath_buf *bf, *lastbf;
  1866. struct list_head bf_head;
  1867. int status;
  1868. int txok;
  1869. for (;;) {
  1870. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
  1871. if (status == -EINPROGRESS)
  1872. break;
  1873. if (status == -EIO) {
  1874. ath_print(common, ATH_DBG_XMIT,
  1875. "Error processing tx status\n");
  1876. break;
  1877. }
  1878. /* Skip beacon completions */
  1879. if (txs.qid == sc->beacon.beaconq)
  1880. continue;
  1881. txq = &sc->tx.txq[txs.qid];
  1882. spin_lock_bh(&txq->axq_lock);
  1883. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1884. spin_unlock_bh(&txq->axq_lock);
  1885. return;
  1886. }
  1887. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1888. struct ath_buf, list);
  1889. lastbf = bf->bf_lastbf;
  1890. INIT_LIST_HEAD(&bf_head);
  1891. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1892. &lastbf->list);
  1893. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1894. txq->axq_depth--;
  1895. txq->axq_tx_inprogress = false;
  1896. spin_unlock_bh(&txq->axq_lock);
  1897. txok = !(txs.ts_status & ATH9K_TXERR_MASK);
  1898. /*
  1899. * Make sure null func frame is acked before configuring
  1900. * hw into ps mode.
  1901. */
  1902. if (bf->bf_isnullfunc && txok) {
  1903. if ((sc->ps_flags & PS_ENABLED))
  1904. ath9k_enable_ps(sc);
  1905. else
  1906. sc->ps_flags |= PS_NULLFUNC_COMPLETED;
  1907. }
  1908. if (!bf_isampdu(bf)) {
  1909. bf->bf_retries = txs.ts_longretry;
  1910. if (txs.ts_status & ATH9K_TXERR_XRETRY)
  1911. bf->bf_state.bf_type |= BUF_XRETRY;
  1912. ath_tx_rc_status(bf, &txs, 0, txok, true);
  1913. }
  1914. if (bf_isampdu(bf))
  1915. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
  1916. else
  1917. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1918. &txs, txok, 0);
  1919. ath_wake_mac80211_queue(sc, txq);
  1920. spin_lock_bh(&txq->axq_lock);
  1921. if (!list_empty(&txq->txq_fifo_pending)) {
  1922. INIT_LIST_HEAD(&bf_head);
  1923. bf = list_first_entry(&txq->txq_fifo_pending,
  1924. struct ath_buf, list);
  1925. list_cut_position(&bf_head, &txq->txq_fifo_pending,
  1926. &bf->bf_lastbf->list);
  1927. ath_tx_txqaddbuf(sc, txq, &bf_head);
  1928. } else if (sc->sc_flags & SC_OP_TXAGGR)
  1929. ath_txq_schedule(sc, txq);
  1930. spin_unlock_bh(&txq->axq_lock);
  1931. }
  1932. }
  1933. /*****************/
  1934. /* Init, Cleanup */
  1935. /*****************/
  1936. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1937. {
  1938. struct ath_descdma *dd = &sc->txsdma;
  1939. u8 txs_len = sc->sc_ah->caps.txs_len;
  1940. dd->dd_desc_len = size * txs_len;
  1941. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1942. &dd->dd_desc_paddr, GFP_KERNEL);
  1943. if (!dd->dd_desc)
  1944. return -ENOMEM;
  1945. return 0;
  1946. }
  1947. static int ath_tx_edma_init(struct ath_softc *sc)
  1948. {
  1949. int err;
  1950. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1951. if (!err)
  1952. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1953. sc->txsdma.dd_desc_paddr,
  1954. ATH_TXSTATUS_RING_SIZE);
  1955. return err;
  1956. }
  1957. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1958. {
  1959. struct ath_descdma *dd = &sc->txsdma;
  1960. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1961. dd->dd_desc_paddr);
  1962. }
  1963. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1964. {
  1965. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1966. int error = 0;
  1967. spin_lock_init(&sc->tx.txbuflock);
  1968. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1969. "tx", nbufs, 1, 1);
  1970. if (error != 0) {
  1971. ath_print(common, ATH_DBG_FATAL,
  1972. "Failed to allocate tx descriptors: %d\n", error);
  1973. goto err;
  1974. }
  1975. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1976. "beacon", ATH_BCBUF, 1, 1);
  1977. if (error != 0) {
  1978. ath_print(common, ATH_DBG_FATAL,
  1979. "Failed to allocate beacon descriptors: %d\n", error);
  1980. goto err;
  1981. }
  1982. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1983. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1984. error = ath_tx_edma_init(sc);
  1985. if (error)
  1986. goto err;
  1987. }
  1988. err:
  1989. if (error != 0)
  1990. ath_tx_cleanup(sc);
  1991. return error;
  1992. }
  1993. void ath_tx_cleanup(struct ath_softc *sc)
  1994. {
  1995. if (sc->beacon.bdma.dd_desc_len != 0)
  1996. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1997. if (sc->tx.txdma.dd_desc_len != 0)
  1998. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1999. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2000. ath_tx_edma_cleanup(sc);
  2001. }
  2002. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2003. {
  2004. struct ath_atx_tid *tid;
  2005. struct ath_atx_ac *ac;
  2006. int tidno, acno;
  2007. for (tidno = 0, tid = &an->tid[tidno];
  2008. tidno < WME_NUM_TID;
  2009. tidno++, tid++) {
  2010. tid->an = an;
  2011. tid->tidno = tidno;
  2012. tid->seq_start = tid->seq_next = 0;
  2013. tid->baw_size = WME_MAX_BA;
  2014. tid->baw_head = tid->baw_tail = 0;
  2015. tid->sched = false;
  2016. tid->paused = false;
  2017. tid->state &= ~AGGR_CLEANUP;
  2018. INIT_LIST_HEAD(&tid->buf_q);
  2019. acno = TID_TO_WME_AC(tidno);
  2020. tid->ac = &an->ac[acno];
  2021. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2022. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2023. }
  2024. for (acno = 0, ac = &an->ac[acno];
  2025. acno < WME_NUM_AC; acno++, ac++) {
  2026. ac->sched = false;
  2027. INIT_LIST_HEAD(&ac->tid_q);
  2028. switch (acno) {
  2029. case WME_AC_BE:
  2030. ac->qnum = ath_tx_get_qnum(sc,
  2031. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
  2032. break;
  2033. case WME_AC_BK:
  2034. ac->qnum = ath_tx_get_qnum(sc,
  2035. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
  2036. break;
  2037. case WME_AC_VI:
  2038. ac->qnum = ath_tx_get_qnum(sc,
  2039. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
  2040. break;
  2041. case WME_AC_VO:
  2042. ac->qnum = ath_tx_get_qnum(sc,
  2043. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
  2044. break;
  2045. }
  2046. }
  2047. }
  2048. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2049. {
  2050. int i;
  2051. struct ath_atx_ac *ac, *ac_tmp;
  2052. struct ath_atx_tid *tid, *tid_tmp;
  2053. struct ath_txq *txq;
  2054. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2055. if (ATH_TXQ_SETUP(sc, i)) {
  2056. txq = &sc->tx.txq[i];
  2057. spin_lock_bh(&txq->axq_lock);
  2058. list_for_each_entry_safe(ac,
  2059. ac_tmp, &txq->axq_acq, list) {
  2060. tid = list_first_entry(&ac->tid_q,
  2061. struct ath_atx_tid, list);
  2062. if (tid && tid->an != an)
  2063. continue;
  2064. list_del(&ac->list);
  2065. ac->sched = false;
  2066. list_for_each_entry_safe(tid,
  2067. tid_tmp, &ac->tid_q, list) {
  2068. list_del(&tid->list);
  2069. tid->sched = false;
  2070. ath_tid_drain(sc, txq, tid);
  2071. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2072. tid->state &= ~AGGR_CLEANUP;
  2073. }
  2074. }
  2075. spin_unlock_bh(&txq->axq_lock);
  2076. }
  2077. }
  2078. }