tda18271-fe.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803
  1. /*
  2. tda18271-fe.c - driver for the Philips / NXP TDA18271 silicon tuner
  3. Copyright (C) 2007 Michael Krufky (mkrufky@linuxtv.org)
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/delay.h>
  17. #include <linux/videodev2.h>
  18. #include "tuner-driver.h"
  19. #include "tda18271.h"
  20. #include "tda18271-priv.h"
  21. static int tda18271_debug;
  22. module_param_named(debug, tda18271_debug, int, 0644);
  23. MODULE_PARM_DESC(debug, "set debug level (info=1, map=2, reg=4 (or-able))");
  24. #define dprintk(level, fmt, arg...) do {\
  25. if (tda18271_debug & level) \
  26. printk(KERN_DEBUG "%s: " fmt, __FUNCTION__, ##arg); } while (0)
  27. #define DBG_INFO 1
  28. #define DBG_MAP 2
  29. #define DBG_REG 4
  30. #define dbg_info(fmt, arg...) dprintk(DBG_INFO, fmt, ##arg)
  31. #define dbg_map(fmt, arg...) dprintk(DBG_MAP, fmt, ##arg)
  32. #define dbg_reg(fmt, arg...) dprintk(DBG_REG, fmt, ##arg)
  33. /*---------------------------------------------------------------------*/
  34. #define TDA18271_ANALOG 0
  35. #define TDA18271_DIGITAL 1
  36. struct tda18271_priv {
  37. u8 i2c_addr;
  38. struct i2c_adapter *i2c_adap;
  39. unsigned char tda18271_regs[TDA18271_NUM_REGS];
  40. int mode;
  41. u32 frequency;
  42. u32 bandwidth;
  43. };
  44. static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  45. {
  46. struct tda18271_priv *priv = fe->tuner_priv;
  47. struct analog_tuner_ops *ops = fe->ops.analog_demod_ops;
  48. int ret = 0;
  49. switch (priv->mode) {
  50. case TDA18271_ANALOG:
  51. if (ops && ops->i2c_gate_ctrl)
  52. ret = ops->i2c_gate_ctrl(fe, enable);
  53. break;
  54. case TDA18271_DIGITAL:
  55. if (fe->ops.i2c_gate_ctrl)
  56. ret = fe->ops.i2c_gate_ctrl(fe, enable);
  57. break;
  58. }
  59. return ret;
  60. };
  61. /*---------------------------------------------------------------------*/
  62. static void tda18271_dump_regs(struct dvb_frontend *fe)
  63. {
  64. struct tda18271_priv *priv = fe->tuner_priv;
  65. unsigned char *regs = priv->tda18271_regs;
  66. dbg_reg("=== TDA18271 REG DUMP ===\n");
  67. dbg_reg("ID_BYTE = 0x%x\n", 0xff & regs[R_ID]);
  68. dbg_reg("THERMO_BYTE = 0x%x\n", 0xff & regs[R_TM]);
  69. dbg_reg("POWER_LEVEL_BYTE = 0x%x\n", 0xff & regs[R_PL]);
  70. dbg_reg("EASY_PROG_BYTE_1 = 0x%x\n", 0xff & regs[R_EP1]);
  71. dbg_reg("EASY_PROG_BYTE_2 = 0x%x\n", 0xff & regs[R_EP2]);
  72. dbg_reg("EASY_PROG_BYTE_3 = 0x%x\n", 0xff & regs[R_EP3]);
  73. dbg_reg("EASY_PROG_BYTE_4 = 0x%x\n", 0xff & regs[R_EP4]);
  74. dbg_reg("EASY_PROG_BYTE_5 = 0x%x\n", 0xff & regs[R_EP5]);
  75. dbg_reg("CAL_POST_DIV_BYTE = 0x%x\n", 0xff & regs[R_CPD]);
  76. dbg_reg("CAL_DIV_BYTE_1 = 0x%x\n", 0xff & regs[R_CD1]);
  77. dbg_reg("CAL_DIV_BYTE_2 = 0x%x\n", 0xff & regs[R_CD2]);
  78. dbg_reg("CAL_DIV_BYTE_3 = 0x%x\n", 0xff & regs[R_CD3]);
  79. dbg_reg("MAIN_POST_DIV_BYTE = 0x%x\n", 0xff & regs[R_MPD]);
  80. dbg_reg("MAIN_DIV_BYTE_1 = 0x%x\n", 0xff & regs[R_MD1]);
  81. dbg_reg("MAIN_DIV_BYTE_2 = 0x%x\n", 0xff & regs[R_MD2]);
  82. dbg_reg("MAIN_DIV_BYTE_3 = 0x%x\n", 0xff & regs[R_MD3]);
  83. }
  84. static void tda18271_read_regs(struct dvb_frontend *fe)
  85. {
  86. struct tda18271_priv *priv = fe->tuner_priv;
  87. unsigned char *regs = priv->tda18271_regs;
  88. unsigned char buf = 0x00;
  89. int ret;
  90. struct i2c_msg msg[] = {
  91. { .addr = priv->i2c_addr, .flags = 0,
  92. .buf = &buf, .len = 1 },
  93. { .addr = priv->i2c_addr, .flags = I2C_M_RD,
  94. .buf = regs, .len = 16 }
  95. };
  96. tda18271_i2c_gate_ctrl(fe, 1);
  97. /* read all registers */
  98. ret = i2c_transfer(priv->i2c_adap, msg, 2);
  99. tda18271_i2c_gate_ctrl(fe, 0);
  100. if (ret != 2)
  101. printk("ERROR: %s: i2c_transfer returned: %d\n",
  102. __FUNCTION__, ret);
  103. if (tda18271_debug & DBG_REG)
  104. tda18271_dump_regs(fe);
  105. }
  106. static void tda18271_write_regs(struct dvb_frontend *fe, int idx, int len)
  107. {
  108. struct tda18271_priv *priv = fe->tuner_priv;
  109. unsigned char *regs = priv->tda18271_regs;
  110. unsigned char buf[TDA18271_NUM_REGS+1];
  111. struct i2c_msg msg = { .addr = priv->i2c_addr, .flags = 0,
  112. .buf = buf, .len = len+1 };
  113. int i, ret;
  114. BUG_ON((len == 0) || (idx+len > sizeof(buf)));
  115. buf[0] = idx;
  116. for (i = 1; i <= len; i++) {
  117. buf[i] = regs[idx-1+i];
  118. }
  119. tda18271_i2c_gate_ctrl(fe, 1);
  120. /* write registers */
  121. ret = i2c_transfer(priv->i2c_adap, &msg, 1);
  122. tda18271_i2c_gate_ctrl(fe, 0);
  123. if (ret != 1)
  124. printk(KERN_WARNING "ERROR: %s: i2c_transfer returned: %d\n",
  125. __FUNCTION__, ret);
  126. }
  127. /*---------------------------------------------------------------------*/
  128. static int tda18271_init_regs(struct dvb_frontend *fe)
  129. {
  130. struct tda18271_priv *priv = fe->tuner_priv;
  131. unsigned char *regs = priv->tda18271_regs;
  132. printk(KERN_INFO "tda18271: initializing registers\n");
  133. /* initialize registers */
  134. regs[R_ID] = 0x83;
  135. regs[R_TM] = 0x08;
  136. regs[R_PL] = 0x80;
  137. regs[R_EP1] = 0xc6;
  138. regs[R_EP2] = 0xdf;
  139. regs[R_EP3] = 0x16;
  140. regs[R_EP4] = 0x60;
  141. regs[R_EP5] = 0x80;
  142. regs[R_CPD] = 0x80;
  143. regs[R_CD1] = 0x00;
  144. regs[R_CD2] = 0x00;
  145. regs[R_CD3] = 0x00;
  146. regs[R_MPD] = 0x00;
  147. regs[R_MD1] = 0x00;
  148. regs[R_MD2] = 0x00;
  149. regs[R_MD3] = 0x00;
  150. regs[R_EB1] = 0xff;
  151. regs[R_EB2] = 0x01;
  152. regs[R_EB3] = 0x84;
  153. regs[R_EB4] = 0x41;
  154. regs[R_EB5] = 0x01;
  155. regs[R_EB6] = 0x84;
  156. regs[R_EB7] = 0x40;
  157. regs[R_EB8] = 0x07;
  158. regs[R_EB9] = 0x00;
  159. regs[R_EB10] = 0x00;
  160. regs[R_EB11] = 0x96;
  161. regs[R_EB12] = 0x0f;
  162. regs[R_EB13] = 0xc1;
  163. regs[R_EB14] = 0x00;
  164. regs[R_EB15] = 0x8f;
  165. regs[R_EB16] = 0x00;
  166. regs[R_EB17] = 0x00;
  167. regs[R_EB18] = 0x00;
  168. regs[R_EB19] = 0x00;
  169. regs[R_EB20] = 0x20;
  170. regs[R_EB21] = 0x33;
  171. regs[R_EB22] = 0x48;
  172. regs[R_EB23] = 0xb0;
  173. tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS);
  174. /* setup AGC1 & AGC2 */
  175. regs[R_EB17] = 0x00;
  176. tda18271_write_regs(fe, R_EB17, 1);
  177. regs[R_EB17] = 0x03;
  178. tda18271_write_regs(fe, R_EB17, 1);
  179. regs[R_EB17] = 0x43;
  180. tda18271_write_regs(fe, R_EB17, 1);
  181. regs[R_EB17] = 0x4c;
  182. tda18271_write_regs(fe, R_EB17, 1);
  183. regs[R_EB20] = 0xa0;
  184. tda18271_write_regs(fe, R_EB20, 1);
  185. regs[R_EB20] = 0xa7;
  186. tda18271_write_regs(fe, R_EB20, 1);
  187. regs[R_EB20] = 0xe7;
  188. tda18271_write_regs(fe, R_EB20, 1);
  189. regs[R_EB20] = 0xec;
  190. tda18271_write_regs(fe, R_EB20, 1);
  191. /* image rejection calibration */
  192. /* low-band */
  193. regs[R_EP3] = 0x1f;
  194. regs[R_EP4] = 0x66;
  195. regs[R_EP5] = 0x81;
  196. regs[R_CPD] = 0xcc;
  197. regs[R_CD1] = 0x6c;
  198. regs[R_CD2] = 0x00;
  199. regs[R_CD3] = 0x00;
  200. regs[R_MPD] = 0xcd;
  201. regs[R_MD1] = 0x77;
  202. regs[R_MD2] = 0x08;
  203. regs[R_MD3] = 0x00;
  204. tda18271_write_regs(fe, R_EP3, 11);
  205. msleep(5); /* pll locking */
  206. regs[R_EP1] = 0xc6;
  207. tda18271_write_regs(fe, R_EP1, 1);
  208. msleep(5); /* wanted low measurement */
  209. regs[R_EP3] = 0x1f;
  210. regs[R_EP4] = 0x66;
  211. regs[R_EP5] = 0x85;
  212. regs[R_CPD] = 0xcb;
  213. regs[R_CD1] = 0x66;
  214. regs[R_CD2] = 0x70;
  215. regs[R_CD3] = 0x00;
  216. tda18271_write_regs(fe, R_EP3, 7);
  217. msleep(5); /* pll locking */
  218. regs[R_EP2] = 0xdf;
  219. tda18271_write_regs(fe, R_EP2, 1);
  220. msleep(30); /* image low optimization completion */
  221. /* mid-band */
  222. regs[R_EP3] = 0x1f;
  223. regs[R_EP4] = 0x66;
  224. regs[R_EP5] = 0x82;
  225. regs[R_CPD] = 0xa8;
  226. regs[R_CD1] = 0x66;
  227. regs[R_CD2] = 0x00;
  228. regs[R_CD3] = 0x00;
  229. regs[R_MPD] = 0xa9;
  230. regs[R_MD1] = 0x73;
  231. regs[R_MD2] = 0x1a;
  232. regs[R_MD3] = 0x00;
  233. tda18271_write_regs(fe, R_EP3, 11);
  234. msleep(5); /* pll locking */
  235. regs[R_EP1] = 0xc6;
  236. tda18271_write_regs(fe, R_EP1, 1);
  237. msleep(5); /* wanted mid measurement */
  238. regs[R_EP3] = 0x1f;
  239. regs[R_EP4] = 0x66;
  240. regs[R_EP5] = 0x86;
  241. regs[R_CPD] = 0xa8;
  242. regs[R_CD1] = 0x66;
  243. regs[R_CD2] = 0xa0;
  244. regs[R_CD3] = 0x00;
  245. tda18271_write_regs(fe, R_EP3, 7);
  246. msleep(5); /* pll locking */
  247. regs[R_EP2] = 0xdf;
  248. tda18271_write_regs(fe, R_EP2, 1);
  249. msleep(30); /* image mid optimization completion */
  250. /* high-band */
  251. regs[R_EP3] = 0x1f;
  252. regs[R_EP4] = 0x66;
  253. regs[R_EP5] = 0x83;
  254. regs[R_CPD] = 0x98;
  255. regs[R_CD1] = 0x65;
  256. regs[R_CD2] = 0x00;
  257. regs[R_CD3] = 0x00;
  258. regs[R_MPD] = 0x99;
  259. regs[R_MD1] = 0x71;
  260. regs[R_MD2] = 0xcd;
  261. regs[R_MD3] = 0x00;
  262. tda18271_write_regs(fe, R_EP3, 11);
  263. msleep(5); /* pll locking */
  264. regs[R_EP1] = 0xc6;
  265. tda18271_write_regs(fe, R_EP1, 1);
  266. msleep(5); /* wanted high measurement */
  267. regs[R_EP3] = 0x1f;
  268. regs[R_EP4] = 0x66;
  269. regs[R_EP5] = 0x87;
  270. regs[R_CPD] = 0x98;
  271. regs[R_CD1] = 0x65;
  272. regs[R_CD2] = 0x50;
  273. regs[R_CD3] = 0x00;
  274. tda18271_write_regs(fe, R_EP3, 7);
  275. msleep(5); /* pll locking */
  276. regs[R_EP2] = 0xdf;
  277. tda18271_write_regs(fe, R_EP2, 1);
  278. msleep(30); /* image high optimization completion */
  279. regs[R_EP4] = 0x64;
  280. tda18271_write_regs(fe, R_EP4, 1);
  281. regs[R_EP1] = 0xc6;
  282. tda18271_write_regs(fe, R_EP1, 1);
  283. return 0;
  284. }
  285. static int tda18271_init(struct dvb_frontend *fe)
  286. {
  287. struct tda18271_priv *priv = fe->tuner_priv;
  288. unsigned char *regs = priv->tda18271_regs;
  289. tda18271_read_regs(fe);
  290. /* test IR_CAL_OK to see if we need init */
  291. if ((regs[R_EP1] & 0x08) == 0)
  292. tda18271_init_regs(fe);
  293. return 0;
  294. }
  295. static int tda18271_tune(struct dvb_frontend *fe,
  296. u32 ifc, u32 freq, u32 bw, u8 std)
  297. {
  298. struct tda18271_priv *priv = fe->tuner_priv;
  299. unsigned char *regs = priv->tda18271_regs;
  300. u32 div, N = 0;
  301. int i;
  302. tda18271_init(fe);
  303. dbg_info("freq = %d, ifc = %d\n", freq, ifc);
  304. /* RF tracking filter calibration */
  305. /* calculate BP_Filter */
  306. i = 0;
  307. while ((tda18271_bp_filter[i].rfmax * 1000) < freq) {
  308. if (tda18271_bp_filter[i + 1].rfmax == 0)
  309. break;
  310. i++;
  311. }
  312. dbg_map("bp filter = 0x%x, i = %d\n", tda18271_bp_filter[i].val, i);
  313. regs[R_EP1] &= ~0x07; /* clear bp filter bits */
  314. regs[R_EP1] |= tda18271_bp_filter[i].val;
  315. tda18271_write_regs(fe, R_EP1, 1);
  316. regs[R_EB4] &= 0x07;
  317. regs[R_EB4] |= 0x60;
  318. tda18271_write_regs(fe, R_EB4, 1);
  319. regs[R_EB7] = 0x60;
  320. tda18271_write_regs(fe, R_EB7, 1);
  321. regs[R_EB14] = 0x00;
  322. tda18271_write_regs(fe, R_EB14, 1);
  323. regs[R_EB20] = 0xcc;
  324. tda18271_write_regs(fe, R_EB20, 1);
  325. /* set CAL mode to RF tracking filter calibration */
  326. regs[R_EB4] |= 0x03;
  327. /* calculate CAL PLL */
  328. switch (priv->mode) {
  329. case TDA18271_ANALOG:
  330. N = freq - 1250000;
  331. break;
  332. case TDA18271_DIGITAL:
  333. N = freq + bw / 2;
  334. break;
  335. }
  336. i = 0;
  337. while ((tda18271_cal_pll[i].lomax * 1000) < N) {
  338. if (tda18271_cal_pll[i + 1].lomax == 0)
  339. break;
  340. i++;
  341. }
  342. dbg_map("cal pll, pd = 0x%x, d = 0x%x, i = %d\n",
  343. tda18271_cal_pll[i].pd, tda18271_cal_pll[i].d, i);
  344. regs[R_CPD] = tda18271_cal_pll[i].pd;
  345. div = ((tda18271_cal_pll[i].d * (N / 1000)) << 7) / 125;
  346. regs[R_CD1] = 0xff & (div >> 16);
  347. regs[R_CD2] = 0xff & (div >> 8);
  348. regs[R_CD3] = 0xff & div;
  349. /* calculate MAIN PLL */
  350. switch (priv->mode) {
  351. case TDA18271_ANALOG:
  352. N = freq - 250000;
  353. break;
  354. case TDA18271_DIGITAL:
  355. N = freq + bw / 2 + 1000000;
  356. break;
  357. }
  358. i = 0;
  359. while ((tda18271_main_pll[i].lomax * 1000) < N) {
  360. if (tda18271_main_pll[i + 1].lomax == 0)
  361. break;
  362. i++;
  363. }
  364. dbg_map("main pll, pd = 0x%x, d = 0x%x, i = %d\n",
  365. tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i);
  366. regs[R_MPD] = (0x7f & tda18271_main_pll[i].pd);
  367. switch (priv->mode) {
  368. case TDA18271_ANALOG:
  369. regs[R_MPD] &= ~0x08;
  370. break;
  371. case TDA18271_DIGITAL:
  372. regs[R_MPD] |= 0x08;
  373. break;
  374. }
  375. div = ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125;
  376. regs[R_MD1] = 0xff & (div >> 16);
  377. regs[R_MD2] = 0xff & (div >> 8);
  378. regs[R_MD3] = 0xff & div;
  379. tda18271_write_regs(fe, R_EP3, 11);
  380. msleep(5); /* RF tracking filter calibration initialization */
  381. /* search for K,M,CO for RF Calibration */
  382. i = 0;
  383. while ((tda18271_km[i].rfmax * 1000) < freq) {
  384. if (tda18271_km[i + 1].rfmax == 0)
  385. break;
  386. i++;
  387. }
  388. dbg_map("km = 0x%x, i = %d\n", tda18271_km[i].val, i);
  389. regs[R_EB13] &= 0x83;
  390. regs[R_EB13] |= tda18271_km[i].val;
  391. tda18271_write_regs(fe, R_EB13, 1);
  392. /* search for RF_BAND */
  393. i = 0;
  394. while ((tda18271_rf_band[i].rfmax * 1000) < freq) {
  395. if (tda18271_rf_band[i + 1].rfmax == 0)
  396. break;
  397. i++;
  398. }
  399. dbg_map("rf band = 0x%x, i = %d\n", tda18271_rf_band[i].val, i);
  400. regs[R_EP2] &= ~0xe0; /* clear rf band bits */
  401. regs[R_EP2] |= (tda18271_rf_band[i].val << 5);
  402. /* search for Gain_Taper */
  403. i = 0;
  404. while ((tda18271_gain_taper[i].rfmax * 1000) < freq) {
  405. if (tda18271_gain_taper[i + 1].rfmax == 0)
  406. break;
  407. i++;
  408. }
  409. dbg_map("gain taper = 0x%x, i = %d\n",
  410. tda18271_gain_taper[i].val, i);
  411. regs[R_EP2] &= ~0x1f; /* clear gain taper bits */
  412. regs[R_EP2] |= tda18271_gain_taper[i].val;
  413. tda18271_write_regs(fe, R_EP2, 1);
  414. tda18271_write_regs(fe, R_EP1, 1);
  415. tda18271_write_regs(fe, R_EP2, 1);
  416. tda18271_write_regs(fe, R_EP1, 1);
  417. regs[R_EB4] &= 0x07;
  418. regs[R_EB4] |= 0x40;
  419. tda18271_write_regs(fe, R_EB4, 1);
  420. regs[R_EB7] = 0x40;
  421. tda18271_write_regs(fe, R_EB7, 1);
  422. msleep(10);
  423. regs[R_EB20] = 0xec;
  424. tda18271_write_regs(fe, R_EB20, 1);
  425. msleep(60); /* RF tracking filter calibration completion */
  426. regs[R_EP4] &= ~0x03; /* set cal mode to normal */
  427. tda18271_write_regs(fe, R_EP4, 1);
  428. tda18271_write_regs(fe, R_EP1, 1);
  429. /* RF tracking filer correction for VHF_Low band */
  430. i = 0;
  431. while ((tda18271_rf_cal[i].rfmax * 1000) < freq) {
  432. if (tda18271_rf_cal[i].rfmax == 0)
  433. break;
  434. i++;
  435. }
  436. dbg_map("rf cal = 0x%x, i = %d\n", tda18271_rf_cal[i].val, i);
  437. /* VHF_Low band only */
  438. if (tda18271_rf_cal[i].rfmax != 0) {
  439. regs[R_EB14] = tda18271_rf_cal[i].val;
  440. tda18271_write_regs(fe, R_EB14, 1);
  441. }
  442. /* Channel Configuration */
  443. switch (priv->mode) {
  444. case TDA18271_ANALOG:
  445. regs[R_EB22] = 0x2c;
  446. break;
  447. case TDA18271_DIGITAL:
  448. regs[R_EB22] = 0x37;
  449. break;
  450. }
  451. tda18271_write_regs(fe, R_EB22, 1);
  452. regs[R_EP1] |= 0x40; /* set dis power level on */
  453. /* set standard */
  454. regs[R_EP3] &= ~0x1f; /* clear std bits */
  455. /* see table 22 */
  456. regs[R_EP3] |= std;
  457. regs[R_EP4] &= ~0x03; /* set cal mode to normal */
  458. regs[R_EP4] &= ~0x1c; /* clear if level bits */
  459. switch (priv->mode) {
  460. case TDA18271_ANALOG:
  461. regs[R_MPD] &= ~0x80; /* IF notch = 0 */
  462. break;
  463. case TDA18271_DIGITAL:
  464. regs[R_EP4] |= 0x04;
  465. regs[R_MPD] |= 0x80;
  466. break;
  467. }
  468. regs[R_EP4] &= ~0x80; /* turn this bit on only for fm */
  469. /* FIXME: image rejection validity EP5[2:0] */
  470. /* calculate MAIN PLL */
  471. N = freq + ifc;
  472. i = 0;
  473. while ((tda18271_main_pll[i].lomax * 1000) < N) {
  474. if (tda18271_main_pll[i + 1].lomax == 0)
  475. break;
  476. i++;
  477. }
  478. dbg_map("main pll, pd = 0x%x, d = 0x%x, i = %d\n",
  479. tda18271_main_pll[i].pd, tda18271_main_pll[i].d, i);
  480. regs[R_MPD] = (0x7f & tda18271_main_pll[i].pd);
  481. switch (priv->mode) {
  482. case TDA18271_ANALOG:
  483. regs[R_MPD] &= ~0x08;
  484. break;
  485. case TDA18271_DIGITAL:
  486. regs[R_MPD] |= 0x08;
  487. break;
  488. }
  489. div = ((tda18271_main_pll[i].d * (N / 1000)) << 7) / 125;
  490. regs[R_MD1] = 0xff & (div >> 16);
  491. regs[R_MD2] = 0xff & (div >> 8);
  492. regs[R_MD3] = 0xff & div;
  493. tda18271_write_regs(fe, R_TM, 15);
  494. msleep(5);
  495. return 0;
  496. }
  497. /* ------------------------------------------------------------------ */
  498. static int tda18271_set_params(struct dvb_frontend *fe,
  499. struct dvb_frontend_parameters *params)
  500. {
  501. struct tda18271_priv *priv = fe->tuner_priv;
  502. u8 std;
  503. u32 bw, sgIF = 0;
  504. u32 freq = params->frequency;
  505. priv->mode = TDA18271_DIGITAL;
  506. /* see table 22 */
  507. if (fe->ops.info.type == FE_ATSC) {
  508. switch (params->u.vsb.modulation) {
  509. case VSB_8:
  510. case VSB_16:
  511. std = 0x1b; /* device-specific (spec says 0x1c) */
  512. sgIF = 5380000;
  513. break;
  514. case QAM_64:
  515. case QAM_256:
  516. std = 0x18; /* device-specific (spec says 0x1d) */
  517. sgIF = 4000000;
  518. break;
  519. default:
  520. printk(KERN_WARNING "%s: modulation not set!\n",
  521. __FUNCTION__);
  522. return -EINVAL;
  523. }
  524. freq += 1750000; /* Adjust to center (+1.75MHZ) */
  525. bw = 6000000;
  526. } else if (fe->ops.info.type == FE_OFDM) {
  527. switch (params->u.ofdm.bandwidth) {
  528. case BANDWIDTH_6_MHZ:
  529. std = 0x1b; /* device-specific (spec says 0x1c) */
  530. bw = 6000000;
  531. sgIF = 3300000;
  532. break;
  533. case BANDWIDTH_7_MHZ:
  534. std = 0x19; /* device-specific (spec says 0x1d) */
  535. bw = 7000000;
  536. sgIF = 3800000;
  537. break;
  538. case BANDWIDTH_8_MHZ:
  539. std = 0x1a; /* device-specific (spec says 0x1e) */
  540. bw = 8000000;
  541. sgIF = 4300000;
  542. break;
  543. default:
  544. printk(KERN_WARNING "%s: bandwidth not set!\n",
  545. __FUNCTION__);
  546. return -EINVAL;
  547. }
  548. } else {
  549. printk(KERN_WARNING "%s: modulation type not supported!\n",
  550. __FUNCTION__);
  551. return -EINVAL;
  552. }
  553. return tda18271_tune(fe, sgIF, freq, bw, std);
  554. }
  555. static int tda18271_set_analog_params(struct dvb_frontend *fe,
  556. struct analog_parameters *params)
  557. {
  558. struct tda18271_priv *priv = fe->tuner_priv;
  559. u8 std;
  560. unsigned int sgIF;
  561. char *mode;
  562. priv->mode = TDA18271_ANALOG;
  563. /* see table 22 */
  564. if (params->std & V4L2_STD_MN) {
  565. std = 0x0d;
  566. sgIF = 92;
  567. mode = "MN";
  568. } else if (params->std & V4L2_STD_B) {
  569. std = 0x0e;
  570. sgIF = 108;
  571. mode = "B";
  572. } else if (params->std & V4L2_STD_GH) {
  573. std = 0x0f;
  574. sgIF = 124;
  575. mode = "GH";
  576. } else if (params->std & V4L2_STD_PAL_I) {
  577. std = 0x0f;
  578. sgIF = 124;
  579. mode = "I";
  580. } else if (params->std & V4L2_STD_DK) {
  581. std = 0x0f;
  582. sgIF = 124;
  583. mode = "DK";
  584. } else if (params->std & V4L2_STD_SECAM_L) {
  585. std = 0x0f;
  586. sgIF = 124;
  587. mode = "L";
  588. } else if (params->std & V4L2_STD_SECAM_LC) {
  589. std = 0x0f;
  590. sgIF = 20;
  591. mode = "LC";
  592. } else {
  593. std = 0x0f;
  594. sgIF = 124;
  595. mode = "xx";
  596. }
  597. if (params->mode == V4L2_TUNER_RADIO)
  598. sgIF = 88; /* if frequency is 5.5 MHz */
  599. dbg_info("setting tda18271 to system %s\n", mode);
  600. return tda18271_tune(fe, sgIF * 62500, params->frequency * 62500,
  601. 0, std);
  602. }
  603. static int tda18271_release(struct dvb_frontend *fe)
  604. {
  605. kfree(fe->tuner_priv);
  606. fe->tuner_priv = NULL;
  607. return 0;
  608. }
  609. static int tda18271_get_frequency(struct dvb_frontend *fe, u32 *frequency)
  610. {
  611. struct tda18271_priv *priv = fe->tuner_priv;
  612. *frequency = priv->frequency;
  613. return 0;
  614. }
  615. static int tda18271_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
  616. {
  617. struct tda18271_priv *priv = fe->tuner_priv;
  618. *bandwidth = priv->bandwidth;
  619. return 0;
  620. }
  621. static struct dvb_tuner_ops tda18271_tuner_ops = {
  622. .info = {
  623. .name = "NXP TDA18271HD",
  624. .frequency_min = 45000000,
  625. .frequency_max = 864000000,
  626. .frequency_step = 62500
  627. },
  628. .init = tda18271_init,
  629. .set_params = tda18271_set_params,
  630. .set_analog_params = tda18271_set_analog_params,
  631. .release = tda18271_release,
  632. .get_frequency = tda18271_get_frequency,
  633. .get_bandwidth = tda18271_get_bandwidth,
  634. };
  635. struct dvb_frontend *tda18271_attach(struct dvb_frontend *fe, u8 addr,
  636. struct i2c_adapter *i2c)
  637. {
  638. struct tda18271_priv *priv = NULL;
  639. dbg_info("@ %d-%04x\n", i2c_adapter_id(i2c), addr);
  640. priv = kzalloc(sizeof(struct tda18271_priv), GFP_KERNEL);
  641. if (priv == NULL)
  642. return NULL;
  643. priv->i2c_addr = addr;
  644. priv->i2c_adap = i2c;
  645. memcpy(&fe->ops.tuner_ops, &tda18271_tuner_ops,
  646. sizeof(struct dvb_tuner_ops));
  647. fe->tuner_priv = priv;
  648. tda18271_init_regs(fe);
  649. return fe;
  650. }
  651. EXPORT_SYMBOL_GPL(tda18271_attach);
  652. MODULE_DESCRIPTION("NXP TDA18271HD analog / digital tuner driver");
  653. MODULE_AUTHOR("Michael Krufky <mkrufky@linuxtv.org>");
  654. MODULE_LICENSE("GPL");
  655. /*
  656. * Overrides for Emacs so that we follow Linus's tabbing style.
  657. * ---------------------------------------------------------------------------
  658. * Local variables:
  659. * c-basic-offset: 8
  660. * End:
  661. */