intel_display.c 297 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  50. int x, int y, struct drm_framebuffer *old_fb);
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. typedef struct intel_limit intel_limit_t;
  59. struct intel_limit {
  60. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  61. intel_p2_t p2;
  62. };
  63. int
  64. intel_pch_rawclk(struct drm_device *dev)
  65. {
  66. struct drm_i915_private *dev_priv = dev->dev_private;
  67. WARN_ON(!HAS_PCH_SPLIT(dev));
  68. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  69. }
  70. static inline u32 /* units of 100MHz */
  71. intel_fdi_link_freq(struct drm_device *dev)
  72. {
  73. if (IS_GEN5(dev)) {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  76. } else
  77. return 27;
  78. }
  79. static const intel_limit_t intel_limits_i8xx_dac = {
  80. .dot = { .min = 25000, .max = 350000 },
  81. .vco = { .min = 930000, .max = 1400000 },
  82. .n = { .min = 3, .max = 16 },
  83. .m = { .min = 96, .max = 140 },
  84. .m1 = { .min = 18, .max = 26 },
  85. .m2 = { .min = 6, .max = 16 },
  86. .p = { .min = 4, .max = 128 },
  87. .p1 = { .min = 2, .max = 33 },
  88. .p2 = { .dot_limit = 165000,
  89. .p2_slow = 4, .p2_fast = 2 },
  90. };
  91. static const intel_limit_t intel_limits_i8xx_dvo = {
  92. .dot = { .min = 25000, .max = 350000 },
  93. .vco = { .min = 930000, .max = 1400000 },
  94. .n = { .min = 3, .max = 16 },
  95. .m = { .min = 96, .max = 140 },
  96. .m1 = { .min = 18, .max = 26 },
  97. .m2 = { .min = 6, .max = 16 },
  98. .p = { .min = 4, .max = 128 },
  99. .p1 = { .min = 2, .max = 33 },
  100. .p2 = { .dot_limit = 165000,
  101. .p2_slow = 4, .p2_fast = 4 },
  102. };
  103. static const intel_limit_t intel_limits_i8xx_lvds = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 1, .max = 6 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 14, .p2_fast = 7 },
  114. };
  115. static const intel_limit_t intel_limits_i9xx_sdvo = {
  116. .dot = { .min = 20000, .max = 400000 },
  117. .vco = { .min = 1400000, .max = 2800000 },
  118. .n = { .min = 1, .max = 6 },
  119. .m = { .min = 70, .max = 120 },
  120. .m1 = { .min = 8, .max = 18 },
  121. .m2 = { .min = 3, .max = 7 },
  122. .p = { .min = 5, .max = 80 },
  123. .p1 = { .min = 1, .max = 8 },
  124. .p2 = { .dot_limit = 200000,
  125. .p2_slow = 10, .p2_fast = 5 },
  126. };
  127. static const intel_limit_t intel_limits_i9xx_lvds = {
  128. .dot = { .min = 20000, .max = 400000 },
  129. .vco = { .min = 1400000, .max = 2800000 },
  130. .n = { .min = 1, .max = 6 },
  131. .m = { .min = 70, .max = 120 },
  132. .m1 = { .min = 8, .max = 18 },
  133. .m2 = { .min = 3, .max = 7 },
  134. .p = { .min = 7, .max = 98 },
  135. .p1 = { .min = 1, .max = 8 },
  136. .p2 = { .dot_limit = 112000,
  137. .p2_slow = 14, .p2_fast = 7 },
  138. };
  139. static const intel_limit_t intel_limits_g4x_sdvo = {
  140. .dot = { .min = 25000, .max = 270000 },
  141. .vco = { .min = 1750000, .max = 3500000},
  142. .n = { .min = 1, .max = 4 },
  143. .m = { .min = 104, .max = 138 },
  144. .m1 = { .min = 17, .max = 23 },
  145. .m2 = { .min = 5, .max = 11 },
  146. .p = { .min = 10, .max = 30 },
  147. .p1 = { .min = 1, .max = 3},
  148. .p2 = { .dot_limit = 270000,
  149. .p2_slow = 10,
  150. .p2_fast = 10
  151. },
  152. };
  153. static const intel_limit_t intel_limits_g4x_hdmi = {
  154. .dot = { .min = 22000, .max = 400000 },
  155. .vco = { .min = 1750000, .max = 3500000},
  156. .n = { .min = 1, .max = 4 },
  157. .m = { .min = 104, .max = 138 },
  158. .m1 = { .min = 16, .max = 23 },
  159. .m2 = { .min = 5, .max = 11 },
  160. .p = { .min = 5, .max = 80 },
  161. .p1 = { .min = 1, .max = 8},
  162. .p2 = { .dot_limit = 165000,
  163. .p2_slow = 10, .p2_fast = 5 },
  164. };
  165. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  166. .dot = { .min = 20000, .max = 115000 },
  167. .vco = { .min = 1750000, .max = 3500000 },
  168. .n = { .min = 1, .max = 3 },
  169. .m = { .min = 104, .max = 138 },
  170. .m1 = { .min = 17, .max = 23 },
  171. .m2 = { .min = 5, .max = 11 },
  172. .p = { .min = 28, .max = 112 },
  173. .p1 = { .min = 2, .max = 8 },
  174. .p2 = { .dot_limit = 0,
  175. .p2_slow = 14, .p2_fast = 14
  176. },
  177. };
  178. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  179. .dot = { .min = 80000, .max = 224000 },
  180. .vco = { .min = 1750000, .max = 3500000 },
  181. .n = { .min = 1, .max = 3 },
  182. .m = { .min = 104, .max = 138 },
  183. .m1 = { .min = 17, .max = 23 },
  184. .m2 = { .min = 5, .max = 11 },
  185. .p = { .min = 14, .max = 42 },
  186. .p1 = { .min = 2, .max = 6 },
  187. .p2 = { .dot_limit = 0,
  188. .p2_slow = 7, .p2_fast = 7
  189. },
  190. };
  191. static const intel_limit_t intel_limits_pineview_sdvo = {
  192. .dot = { .min = 20000, .max = 400000},
  193. .vco = { .min = 1700000, .max = 3500000 },
  194. /* Pineview's Ncounter is a ring counter */
  195. .n = { .min = 3, .max = 6 },
  196. .m = { .min = 2, .max = 256 },
  197. /* Pineview only has one combined m divider, which we treat as m2. */
  198. .m1 = { .min = 0, .max = 0 },
  199. .m2 = { .min = 0, .max = 254 },
  200. .p = { .min = 5, .max = 80 },
  201. .p1 = { .min = 1, .max = 8 },
  202. .p2 = { .dot_limit = 200000,
  203. .p2_slow = 10, .p2_fast = 5 },
  204. };
  205. static const intel_limit_t intel_limits_pineview_lvds = {
  206. .dot = { .min = 20000, .max = 400000 },
  207. .vco = { .min = 1700000, .max = 3500000 },
  208. .n = { .min = 3, .max = 6 },
  209. .m = { .min = 2, .max = 256 },
  210. .m1 = { .min = 0, .max = 0 },
  211. .m2 = { .min = 0, .max = 254 },
  212. .p = { .min = 7, .max = 112 },
  213. .p1 = { .min = 1, .max = 8 },
  214. .p2 = { .dot_limit = 112000,
  215. .p2_slow = 14, .p2_fast = 14 },
  216. };
  217. /* Ironlake / Sandybridge
  218. *
  219. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  220. * the range value for them is (actual_value - 2).
  221. */
  222. static const intel_limit_t intel_limits_ironlake_dac = {
  223. .dot = { .min = 25000, .max = 350000 },
  224. .vco = { .min = 1760000, .max = 3510000 },
  225. .n = { .min = 1, .max = 5 },
  226. .m = { .min = 79, .max = 127 },
  227. .m1 = { .min = 12, .max = 22 },
  228. .m2 = { .min = 5, .max = 9 },
  229. .p = { .min = 5, .max = 80 },
  230. .p1 = { .min = 1, .max = 8 },
  231. .p2 = { .dot_limit = 225000,
  232. .p2_slow = 10, .p2_fast = 5 },
  233. };
  234. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  235. .dot = { .min = 25000, .max = 350000 },
  236. .vco = { .min = 1760000, .max = 3510000 },
  237. .n = { .min = 1, .max = 3 },
  238. .m = { .min = 79, .max = 118 },
  239. .m1 = { .min = 12, .max = 22 },
  240. .m2 = { .min = 5, .max = 9 },
  241. .p = { .min = 28, .max = 112 },
  242. .p1 = { .min = 2, .max = 8 },
  243. .p2 = { .dot_limit = 225000,
  244. .p2_slow = 14, .p2_fast = 14 },
  245. };
  246. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  247. .dot = { .min = 25000, .max = 350000 },
  248. .vco = { .min = 1760000, .max = 3510000 },
  249. .n = { .min = 1, .max = 3 },
  250. .m = { .min = 79, .max = 127 },
  251. .m1 = { .min = 12, .max = 22 },
  252. .m2 = { .min = 5, .max = 9 },
  253. .p = { .min = 14, .max = 56 },
  254. .p1 = { .min = 2, .max = 8 },
  255. .p2 = { .dot_limit = 225000,
  256. .p2_slow = 7, .p2_fast = 7 },
  257. };
  258. /* LVDS 100mhz refclk limits. */
  259. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  260. .dot = { .min = 25000, .max = 350000 },
  261. .vco = { .min = 1760000, .max = 3510000 },
  262. .n = { .min = 1, .max = 2 },
  263. .m = { .min = 79, .max = 126 },
  264. .m1 = { .min = 12, .max = 22 },
  265. .m2 = { .min = 5, .max = 9 },
  266. .p = { .min = 28, .max = 112 },
  267. .p1 = { .min = 2, .max = 8 },
  268. .p2 = { .dot_limit = 225000,
  269. .p2_slow = 14, .p2_fast = 14 },
  270. };
  271. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  272. .dot = { .min = 25000, .max = 350000 },
  273. .vco = { .min = 1760000, .max = 3510000 },
  274. .n = { .min = 1, .max = 3 },
  275. .m = { .min = 79, .max = 126 },
  276. .m1 = { .min = 12, .max = 22 },
  277. .m2 = { .min = 5, .max = 9 },
  278. .p = { .min = 14, .max = 42 },
  279. .p1 = { .min = 2, .max = 6 },
  280. .p2 = { .dot_limit = 225000,
  281. .p2_slow = 7, .p2_fast = 7 },
  282. };
  283. static const intel_limit_t intel_limits_vlv_dac = {
  284. .dot = { .min = 25000, .max = 270000 },
  285. .vco = { .min = 4000000, .max = 6000000 },
  286. .n = { .min = 1, .max = 7 },
  287. .m = { .min = 22, .max = 450 }, /* guess */
  288. .m1 = { .min = 2, .max = 3 },
  289. .m2 = { .min = 11, .max = 156 },
  290. .p = { .min = 10, .max = 30 },
  291. .p1 = { .min = 1, .max = 3 },
  292. .p2 = { .dot_limit = 270000,
  293. .p2_slow = 2, .p2_fast = 20 },
  294. };
  295. static const intel_limit_t intel_limits_vlv_hdmi = {
  296. .dot = { .min = 25000, .max = 270000 },
  297. .vco = { .min = 4000000, .max = 6000000 },
  298. .n = { .min = 1, .max = 7 },
  299. .m = { .min = 60, .max = 300 }, /* guess */
  300. .m1 = { .min = 2, .max = 3 },
  301. .m2 = { .min = 11, .max = 156 },
  302. .p = { .min = 10, .max = 30 },
  303. .p1 = { .min = 2, .max = 3 },
  304. .p2 = { .dot_limit = 270000,
  305. .p2_slow = 2, .p2_fast = 20 },
  306. };
  307. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  308. int refclk)
  309. {
  310. struct drm_device *dev = crtc->dev;
  311. const intel_limit_t *limit;
  312. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  313. if (intel_is_dual_link_lvds(dev)) {
  314. if (refclk == 100000)
  315. limit = &intel_limits_ironlake_dual_lvds_100m;
  316. else
  317. limit = &intel_limits_ironlake_dual_lvds;
  318. } else {
  319. if (refclk == 100000)
  320. limit = &intel_limits_ironlake_single_lvds_100m;
  321. else
  322. limit = &intel_limits_ironlake_single_lvds;
  323. }
  324. } else
  325. limit = &intel_limits_ironlake_dac;
  326. return limit;
  327. }
  328. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  329. {
  330. struct drm_device *dev = crtc->dev;
  331. const intel_limit_t *limit;
  332. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  333. if (intel_is_dual_link_lvds(dev))
  334. limit = &intel_limits_g4x_dual_channel_lvds;
  335. else
  336. limit = &intel_limits_g4x_single_channel_lvds;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  338. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  339. limit = &intel_limits_g4x_hdmi;
  340. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  341. limit = &intel_limits_g4x_sdvo;
  342. } else /* The option is for other outputs */
  343. limit = &intel_limits_i9xx_sdvo;
  344. return limit;
  345. }
  346. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  347. {
  348. struct drm_device *dev = crtc->dev;
  349. const intel_limit_t *limit;
  350. if (HAS_PCH_SPLIT(dev))
  351. limit = intel_ironlake_limit(crtc, refclk);
  352. else if (IS_G4X(dev)) {
  353. limit = intel_g4x_limit(crtc);
  354. } else if (IS_PINEVIEW(dev)) {
  355. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  356. limit = &intel_limits_pineview_lvds;
  357. else
  358. limit = &intel_limits_pineview_sdvo;
  359. } else if (IS_VALLEYVIEW(dev)) {
  360. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  361. limit = &intel_limits_vlv_dac;
  362. else
  363. limit = &intel_limits_vlv_hdmi;
  364. } else if (!IS_GEN2(dev)) {
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  366. limit = &intel_limits_i9xx_lvds;
  367. else
  368. limit = &intel_limits_i9xx_sdvo;
  369. } else {
  370. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  371. limit = &intel_limits_i8xx_lvds;
  372. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  373. limit = &intel_limits_i8xx_dvo;
  374. else
  375. limit = &intel_limits_i8xx_dac;
  376. }
  377. return limit;
  378. }
  379. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  380. static void pineview_clock(int refclk, intel_clock_t *clock)
  381. {
  382. clock->m = clock->m2 + 2;
  383. clock->p = clock->p1 * clock->p2;
  384. clock->vco = refclk * clock->m / clock->n;
  385. clock->dot = clock->vco / clock->p;
  386. }
  387. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  388. {
  389. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  390. }
  391. static void i9xx_clock(int refclk, intel_clock_t *clock)
  392. {
  393. clock->m = i9xx_dpll_compute_m(clock);
  394. clock->p = clock->p1 * clock->p2;
  395. clock->vco = refclk * clock->m / (clock->n + 2);
  396. clock->dot = clock->vco / clock->p;
  397. }
  398. /**
  399. * Returns whether any output on the specified pipe is of the specified type
  400. */
  401. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  402. {
  403. struct drm_device *dev = crtc->dev;
  404. struct intel_encoder *encoder;
  405. for_each_encoder_on_crtc(dev, crtc, encoder)
  406. if (encoder->type == type)
  407. return true;
  408. return false;
  409. }
  410. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  411. /**
  412. * Returns whether the given set of divisors are valid for a given refclk with
  413. * the given connectors.
  414. */
  415. static bool intel_PLL_is_valid(struct drm_device *dev,
  416. const intel_limit_t *limit,
  417. const intel_clock_t *clock)
  418. {
  419. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  420. INTELPllInvalid("p1 out of range\n");
  421. if (clock->p < limit->p.min || limit->p.max < clock->p)
  422. INTELPllInvalid("p out of range\n");
  423. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  424. INTELPllInvalid("m2 out of range\n");
  425. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  426. INTELPllInvalid("m1 out of range\n");
  427. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  428. INTELPllInvalid("m1 <= m2\n");
  429. if (clock->m < limit->m.min || limit->m.max < clock->m)
  430. INTELPllInvalid("m out of range\n");
  431. if (clock->n < limit->n.min || limit->n.max < clock->n)
  432. INTELPllInvalid("n out of range\n");
  433. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  434. INTELPllInvalid("vco out of range\n");
  435. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  436. * connector, etc., rather than just a single range.
  437. */
  438. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  439. INTELPllInvalid("dot out of range\n");
  440. return true;
  441. }
  442. static bool
  443. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  444. int target, int refclk, intel_clock_t *match_clock,
  445. intel_clock_t *best_clock)
  446. {
  447. struct drm_device *dev = crtc->dev;
  448. intel_clock_t clock;
  449. int err = target;
  450. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  451. /*
  452. * For LVDS just rely on its current settings for dual-channel.
  453. * We haven't figured out how to reliably set up different
  454. * single/dual channel state, if we even can.
  455. */
  456. if (intel_is_dual_link_lvds(dev))
  457. clock.p2 = limit->p2.p2_fast;
  458. else
  459. clock.p2 = limit->p2.p2_slow;
  460. } else {
  461. if (target < limit->p2.dot_limit)
  462. clock.p2 = limit->p2.p2_slow;
  463. else
  464. clock.p2 = limit->p2.p2_fast;
  465. }
  466. memset(best_clock, 0, sizeof(*best_clock));
  467. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  468. clock.m1++) {
  469. for (clock.m2 = limit->m2.min;
  470. clock.m2 <= limit->m2.max; clock.m2++) {
  471. if (clock.m2 >= clock.m1)
  472. break;
  473. for (clock.n = limit->n.min;
  474. clock.n <= limit->n.max; clock.n++) {
  475. for (clock.p1 = limit->p1.min;
  476. clock.p1 <= limit->p1.max; clock.p1++) {
  477. int this_err;
  478. i9xx_clock(refclk, &clock);
  479. if (!intel_PLL_is_valid(dev, limit,
  480. &clock))
  481. continue;
  482. if (match_clock &&
  483. clock.p != match_clock->p)
  484. continue;
  485. this_err = abs(clock.dot - target);
  486. if (this_err < err) {
  487. *best_clock = clock;
  488. err = this_err;
  489. }
  490. }
  491. }
  492. }
  493. }
  494. return (err != target);
  495. }
  496. static bool
  497. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  498. int target, int refclk, intel_clock_t *match_clock,
  499. intel_clock_t *best_clock)
  500. {
  501. struct drm_device *dev = crtc->dev;
  502. intel_clock_t clock;
  503. int err = target;
  504. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  505. /*
  506. * For LVDS just rely on its current settings for dual-channel.
  507. * We haven't figured out how to reliably set up different
  508. * single/dual channel state, if we even can.
  509. */
  510. if (intel_is_dual_link_lvds(dev))
  511. clock.p2 = limit->p2.p2_fast;
  512. else
  513. clock.p2 = limit->p2.p2_slow;
  514. } else {
  515. if (target < limit->p2.dot_limit)
  516. clock.p2 = limit->p2.p2_slow;
  517. else
  518. clock.p2 = limit->p2.p2_fast;
  519. }
  520. memset(best_clock, 0, sizeof(*best_clock));
  521. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  522. clock.m1++) {
  523. for (clock.m2 = limit->m2.min;
  524. clock.m2 <= limit->m2.max; clock.m2++) {
  525. for (clock.n = limit->n.min;
  526. clock.n <= limit->n.max; clock.n++) {
  527. for (clock.p1 = limit->p1.min;
  528. clock.p1 <= limit->p1.max; clock.p1++) {
  529. int this_err;
  530. pineview_clock(refclk, &clock);
  531. if (!intel_PLL_is_valid(dev, limit,
  532. &clock))
  533. continue;
  534. if (match_clock &&
  535. clock.p != match_clock->p)
  536. continue;
  537. this_err = abs(clock.dot - target);
  538. if (this_err < err) {
  539. *best_clock = clock;
  540. err = this_err;
  541. }
  542. }
  543. }
  544. }
  545. }
  546. return (err != target);
  547. }
  548. static bool
  549. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  550. int target, int refclk, intel_clock_t *match_clock,
  551. intel_clock_t *best_clock)
  552. {
  553. struct drm_device *dev = crtc->dev;
  554. intel_clock_t clock;
  555. int max_n;
  556. bool found;
  557. /* approximately equals target * 0.00585 */
  558. int err_most = (target >> 8) + (target >> 9);
  559. found = false;
  560. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  561. if (intel_is_dual_link_lvds(dev))
  562. clock.p2 = limit->p2.p2_fast;
  563. else
  564. clock.p2 = limit->p2.p2_slow;
  565. } else {
  566. if (target < limit->p2.dot_limit)
  567. clock.p2 = limit->p2.p2_slow;
  568. else
  569. clock.p2 = limit->p2.p2_fast;
  570. }
  571. memset(best_clock, 0, sizeof(*best_clock));
  572. max_n = limit->n.max;
  573. /* based on hardware requirement, prefer smaller n to precision */
  574. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  575. /* based on hardware requirement, prefere larger m1,m2 */
  576. for (clock.m1 = limit->m1.max;
  577. clock.m1 >= limit->m1.min; clock.m1--) {
  578. for (clock.m2 = limit->m2.max;
  579. clock.m2 >= limit->m2.min; clock.m2--) {
  580. for (clock.p1 = limit->p1.max;
  581. clock.p1 >= limit->p1.min; clock.p1--) {
  582. int this_err;
  583. i9xx_clock(refclk, &clock);
  584. if (!intel_PLL_is_valid(dev, limit,
  585. &clock))
  586. continue;
  587. this_err = abs(clock.dot - target);
  588. if (this_err < err_most) {
  589. *best_clock = clock;
  590. err_most = this_err;
  591. max_n = clock.n;
  592. found = true;
  593. }
  594. }
  595. }
  596. }
  597. }
  598. return found;
  599. }
  600. static bool
  601. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  602. int target, int refclk, intel_clock_t *match_clock,
  603. intel_clock_t *best_clock)
  604. {
  605. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  606. u32 m, n, fastclk;
  607. u32 updrate, minupdate, p;
  608. unsigned long bestppm, ppm, absppm;
  609. int dotclk, flag;
  610. flag = 0;
  611. dotclk = target * 1000;
  612. bestppm = 1000000;
  613. ppm = absppm = 0;
  614. fastclk = dotclk / (2*100);
  615. updrate = 0;
  616. minupdate = 19200;
  617. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  618. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  619. /* based on hardware requirement, prefer smaller n to precision */
  620. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  621. updrate = refclk / n;
  622. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  623. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  624. if (p2 > 10)
  625. p2 = p2 - 1;
  626. p = p1 * p2;
  627. /* based on hardware requirement, prefer bigger m1,m2 values */
  628. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  629. m2 = (((2*(fastclk * p * n / m1 )) +
  630. refclk) / (2*refclk));
  631. m = m1 * m2;
  632. vco = updrate * m;
  633. if (vco >= limit->vco.min && vco < limit->vco.max) {
  634. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  635. absppm = (ppm > 0) ? ppm : (-ppm);
  636. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  637. bestppm = 0;
  638. flag = 1;
  639. }
  640. if (absppm < bestppm - 10) {
  641. bestppm = absppm;
  642. flag = 1;
  643. }
  644. if (flag) {
  645. bestn = n;
  646. bestm1 = m1;
  647. bestm2 = m2;
  648. bestp1 = p1;
  649. bestp2 = p2;
  650. flag = 0;
  651. }
  652. }
  653. }
  654. }
  655. }
  656. }
  657. best_clock->n = bestn;
  658. best_clock->m1 = bestm1;
  659. best_clock->m2 = bestm2;
  660. best_clock->p1 = bestp1;
  661. best_clock->p2 = bestp2;
  662. return true;
  663. }
  664. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  665. enum pipe pipe)
  666. {
  667. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  668. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  669. return intel_crtc->config.cpu_transcoder;
  670. }
  671. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  672. {
  673. struct drm_i915_private *dev_priv = dev->dev_private;
  674. u32 frame, frame_reg = PIPEFRAME(pipe);
  675. frame = I915_READ(frame_reg);
  676. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  677. DRM_DEBUG_KMS("vblank wait timed out\n");
  678. }
  679. /**
  680. * intel_wait_for_vblank - wait for vblank on a given pipe
  681. * @dev: drm device
  682. * @pipe: pipe to wait for
  683. *
  684. * Wait for vblank to occur on a given pipe. Needed for various bits of
  685. * mode setting code.
  686. */
  687. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  688. {
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. int pipestat_reg = PIPESTAT(pipe);
  691. if (INTEL_INFO(dev)->gen >= 5) {
  692. ironlake_wait_for_vblank(dev, pipe);
  693. return;
  694. }
  695. /* Clear existing vblank status. Note this will clear any other
  696. * sticky status fields as well.
  697. *
  698. * This races with i915_driver_irq_handler() with the result
  699. * that either function could miss a vblank event. Here it is not
  700. * fatal, as we will either wait upon the next vblank interrupt or
  701. * timeout. Generally speaking intel_wait_for_vblank() is only
  702. * called during modeset at which time the GPU should be idle and
  703. * should *not* be performing page flips and thus not waiting on
  704. * vblanks...
  705. * Currently, the result of us stealing a vblank from the irq
  706. * handler is that a single frame will be skipped during swapbuffers.
  707. */
  708. I915_WRITE(pipestat_reg,
  709. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  710. /* Wait for vblank interrupt bit to set */
  711. if (wait_for(I915_READ(pipestat_reg) &
  712. PIPE_VBLANK_INTERRUPT_STATUS,
  713. 50))
  714. DRM_DEBUG_KMS("vblank wait timed out\n");
  715. }
  716. /*
  717. * intel_wait_for_pipe_off - wait for pipe to turn off
  718. * @dev: drm device
  719. * @pipe: pipe to wait for
  720. *
  721. * After disabling a pipe, we can't wait for vblank in the usual way,
  722. * spinning on the vblank interrupt status bit, since we won't actually
  723. * see an interrupt when the pipe is disabled.
  724. *
  725. * On Gen4 and above:
  726. * wait for the pipe register state bit to turn off
  727. *
  728. * Otherwise:
  729. * wait for the display line value to settle (it usually
  730. * ends up stopping at the start of the next frame).
  731. *
  732. */
  733. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  734. {
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  737. pipe);
  738. if (INTEL_INFO(dev)->gen >= 4) {
  739. int reg = PIPECONF(cpu_transcoder);
  740. /* Wait for the Pipe State to go off */
  741. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  742. 100))
  743. WARN(1, "pipe_off wait timed out\n");
  744. } else {
  745. u32 last_line, line_mask;
  746. int reg = PIPEDSL(pipe);
  747. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  748. if (IS_GEN2(dev))
  749. line_mask = DSL_LINEMASK_GEN2;
  750. else
  751. line_mask = DSL_LINEMASK_GEN3;
  752. /* Wait for the display line to settle */
  753. do {
  754. last_line = I915_READ(reg) & line_mask;
  755. mdelay(5);
  756. } while (((I915_READ(reg) & line_mask) != last_line) &&
  757. time_after(timeout, jiffies));
  758. if (time_after(jiffies, timeout))
  759. WARN(1, "pipe_off wait timed out\n");
  760. }
  761. }
  762. /*
  763. * ibx_digital_port_connected - is the specified port connected?
  764. * @dev_priv: i915 private structure
  765. * @port: the port to test
  766. *
  767. * Returns true if @port is connected, false otherwise.
  768. */
  769. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  770. struct intel_digital_port *port)
  771. {
  772. u32 bit;
  773. if (HAS_PCH_IBX(dev_priv->dev)) {
  774. switch(port->port) {
  775. case PORT_B:
  776. bit = SDE_PORTB_HOTPLUG;
  777. break;
  778. case PORT_C:
  779. bit = SDE_PORTC_HOTPLUG;
  780. break;
  781. case PORT_D:
  782. bit = SDE_PORTD_HOTPLUG;
  783. break;
  784. default:
  785. return true;
  786. }
  787. } else {
  788. switch(port->port) {
  789. case PORT_B:
  790. bit = SDE_PORTB_HOTPLUG_CPT;
  791. break;
  792. case PORT_C:
  793. bit = SDE_PORTC_HOTPLUG_CPT;
  794. break;
  795. case PORT_D:
  796. bit = SDE_PORTD_HOTPLUG_CPT;
  797. break;
  798. default:
  799. return true;
  800. }
  801. }
  802. return I915_READ(SDEISR) & bit;
  803. }
  804. static const char *state_string(bool enabled)
  805. {
  806. return enabled ? "on" : "off";
  807. }
  808. /* Only for pre-ILK configs */
  809. void assert_pll(struct drm_i915_private *dev_priv,
  810. enum pipe pipe, bool state)
  811. {
  812. int reg;
  813. u32 val;
  814. bool cur_state;
  815. reg = DPLL(pipe);
  816. val = I915_READ(reg);
  817. cur_state = !!(val & DPLL_VCO_ENABLE);
  818. WARN(cur_state != state,
  819. "PLL state assertion failure (expected %s, current %s)\n",
  820. state_string(state), state_string(cur_state));
  821. }
  822. /* XXX: the dsi pll is shared between MIPI DSI ports */
  823. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  824. {
  825. u32 val;
  826. bool cur_state;
  827. mutex_lock(&dev_priv->dpio_lock);
  828. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  829. mutex_unlock(&dev_priv->dpio_lock);
  830. cur_state = val & DSI_PLL_VCO_EN;
  831. WARN(cur_state != state,
  832. "DSI PLL state assertion failure (expected %s, current %s)\n",
  833. state_string(state), state_string(cur_state));
  834. }
  835. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  836. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  837. struct intel_shared_dpll *
  838. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  839. {
  840. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  841. if (crtc->config.shared_dpll < 0)
  842. return NULL;
  843. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  844. }
  845. /* For ILK+ */
  846. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  847. struct intel_shared_dpll *pll,
  848. bool state)
  849. {
  850. bool cur_state;
  851. struct intel_dpll_hw_state hw_state;
  852. if (HAS_PCH_LPT(dev_priv->dev)) {
  853. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  854. return;
  855. }
  856. if (WARN (!pll,
  857. "asserting DPLL %s with no DPLL\n", state_string(state)))
  858. return;
  859. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  860. WARN(cur_state != state,
  861. "%s assertion failure (expected %s, current %s)\n",
  862. pll->name, state_string(state), state_string(cur_state));
  863. }
  864. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  865. enum pipe pipe, bool state)
  866. {
  867. int reg;
  868. u32 val;
  869. bool cur_state;
  870. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  871. pipe);
  872. if (HAS_DDI(dev_priv->dev)) {
  873. /* DDI does not have a specific FDI_TX register */
  874. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  875. val = I915_READ(reg);
  876. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  877. } else {
  878. reg = FDI_TX_CTL(pipe);
  879. val = I915_READ(reg);
  880. cur_state = !!(val & FDI_TX_ENABLE);
  881. }
  882. WARN(cur_state != state,
  883. "FDI TX state assertion failure (expected %s, current %s)\n",
  884. state_string(state), state_string(cur_state));
  885. }
  886. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  887. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  888. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  889. enum pipe pipe, bool state)
  890. {
  891. int reg;
  892. u32 val;
  893. bool cur_state;
  894. reg = FDI_RX_CTL(pipe);
  895. val = I915_READ(reg);
  896. cur_state = !!(val & FDI_RX_ENABLE);
  897. WARN(cur_state != state,
  898. "FDI RX state assertion failure (expected %s, current %s)\n",
  899. state_string(state), state_string(cur_state));
  900. }
  901. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  902. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  903. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  904. enum pipe pipe)
  905. {
  906. int reg;
  907. u32 val;
  908. /* ILK FDI PLL is always enabled */
  909. if (dev_priv->info->gen == 5)
  910. return;
  911. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  912. if (HAS_DDI(dev_priv->dev))
  913. return;
  914. reg = FDI_TX_CTL(pipe);
  915. val = I915_READ(reg);
  916. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  917. }
  918. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  919. enum pipe pipe, bool state)
  920. {
  921. int reg;
  922. u32 val;
  923. bool cur_state;
  924. reg = FDI_RX_CTL(pipe);
  925. val = I915_READ(reg);
  926. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  927. WARN(cur_state != state,
  928. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  929. state_string(state), state_string(cur_state));
  930. }
  931. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  932. enum pipe pipe)
  933. {
  934. int pp_reg, lvds_reg;
  935. u32 val;
  936. enum pipe panel_pipe = PIPE_A;
  937. bool locked = true;
  938. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  939. pp_reg = PCH_PP_CONTROL;
  940. lvds_reg = PCH_LVDS;
  941. } else {
  942. pp_reg = PP_CONTROL;
  943. lvds_reg = LVDS;
  944. }
  945. val = I915_READ(pp_reg);
  946. if (!(val & PANEL_POWER_ON) ||
  947. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  948. locked = false;
  949. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  950. panel_pipe = PIPE_B;
  951. WARN(panel_pipe == pipe && locked,
  952. "panel assertion failure, pipe %c regs locked\n",
  953. pipe_name(pipe));
  954. }
  955. static void assert_cursor(struct drm_i915_private *dev_priv,
  956. enum pipe pipe, bool state)
  957. {
  958. struct drm_device *dev = dev_priv->dev;
  959. bool cur_state;
  960. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  961. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  962. else if (IS_845G(dev) || IS_I865G(dev))
  963. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  964. else
  965. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  966. WARN(cur_state != state,
  967. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  968. pipe_name(pipe), state_string(state), state_string(cur_state));
  969. }
  970. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  971. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  972. void assert_pipe(struct drm_i915_private *dev_priv,
  973. enum pipe pipe, bool state)
  974. {
  975. int reg;
  976. u32 val;
  977. bool cur_state;
  978. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  979. pipe);
  980. /* if we need the pipe A quirk it must be always on */
  981. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  982. state = true;
  983. if (!intel_display_power_enabled(dev_priv->dev,
  984. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  985. cur_state = false;
  986. } else {
  987. reg = PIPECONF(cpu_transcoder);
  988. val = I915_READ(reg);
  989. cur_state = !!(val & PIPECONF_ENABLE);
  990. }
  991. WARN(cur_state != state,
  992. "pipe %c assertion failure (expected %s, current %s)\n",
  993. pipe_name(pipe), state_string(state), state_string(cur_state));
  994. }
  995. static void assert_plane(struct drm_i915_private *dev_priv,
  996. enum plane plane, bool state)
  997. {
  998. int reg;
  999. u32 val;
  1000. bool cur_state;
  1001. reg = DSPCNTR(plane);
  1002. val = I915_READ(reg);
  1003. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1004. WARN(cur_state != state,
  1005. "plane %c assertion failure (expected %s, current %s)\n",
  1006. plane_name(plane), state_string(state), state_string(cur_state));
  1007. }
  1008. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1009. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1010. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1011. enum pipe pipe)
  1012. {
  1013. struct drm_device *dev = dev_priv->dev;
  1014. int reg, i;
  1015. u32 val;
  1016. int cur_pipe;
  1017. /* Primary planes are fixed to pipes on gen4+ */
  1018. if (INTEL_INFO(dev)->gen >= 4) {
  1019. reg = DSPCNTR(pipe);
  1020. val = I915_READ(reg);
  1021. WARN((val & DISPLAY_PLANE_ENABLE),
  1022. "plane %c assertion failure, should be disabled but not\n",
  1023. plane_name(pipe));
  1024. return;
  1025. }
  1026. /* Need to check both planes against the pipe */
  1027. for_each_pipe(i) {
  1028. reg = DSPCNTR(i);
  1029. val = I915_READ(reg);
  1030. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1031. DISPPLANE_SEL_PIPE_SHIFT;
  1032. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1033. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1034. plane_name(i), pipe_name(pipe));
  1035. }
  1036. }
  1037. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1038. enum pipe pipe)
  1039. {
  1040. struct drm_device *dev = dev_priv->dev;
  1041. int reg, i;
  1042. u32 val;
  1043. if (IS_VALLEYVIEW(dev)) {
  1044. for (i = 0; i < dev_priv->num_plane; i++) {
  1045. reg = SPCNTR(pipe, i);
  1046. val = I915_READ(reg);
  1047. WARN((val & SP_ENABLE),
  1048. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1049. sprite_name(pipe, i), pipe_name(pipe));
  1050. }
  1051. } else if (INTEL_INFO(dev)->gen >= 7) {
  1052. reg = SPRCTL(pipe);
  1053. val = I915_READ(reg);
  1054. WARN((val & SPRITE_ENABLE),
  1055. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1056. plane_name(pipe), pipe_name(pipe));
  1057. } else if (INTEL_INFO(dev)->gen >= 5) {
  1058. reg = DVSCNTR(pipe);
  1059. val = I915_READ(reg);
  1060. WARN((val & DVS_ENABLE),
  1061. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1062. plane_name(pipe), pipe_name(pipe));
  1063. }
  1064. }
  1065. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1066. {
  1067. u32 val;
  1068. bool enabled;
  1069. if (HAS_PCH_LPT(dev_priv->dev)) {
  1070. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1071. return;
  1072. }
  1073. val = I915_READ(PCH_DREF_CONTROL);
  1074. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1075. DREF_SUPERSPREAD_SOURCE_MASK));
  1076. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1077. }
  1078. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1079. enum pipe pipe)
  1080. {
  1081. int reg;
  1082. u32 val;
  1083. bool enabled;
  1084. reg = PCH_TRANSCONF(pipe);
  1085. val = I915_READ(reg);
  1086. enabled = !!(val & TRANS_ENABLE);
  1087. WARN(enabled,
  1088. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1089. pipe_name(pipe));
  1090. }
  1091. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 port_sel, u32 val)
  1093. {
  1094. if ((val & DP_PORT_EN) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1098. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1099. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1100. return false;
  1101. } else {
  1102. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1103. return false;
  1104. }
  1105. return true;
  1106. }
  1107. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1108. enum pipe pipe, u32 val)
  1109. {
  1110. if ((val & SDVO_ENABLE) == 0)
  1111. return false;
  1112. if (HAS_PCH_CPT(dev_priv->dev)) {
  1113. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1114. return false;
  1115. } else {
  1116. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1117. return false;
  1118. }
  1119. return true;
  1120. }
  1121. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1122. enum pipe pipe, u32 val)
  1123. {
  1124. if ((val & LVDS_PORT_EN) == 0)
  1125. return false;
  1126. if (HAS_PCH_CPT(dev_priv->dev)) {
  1127. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1128. return false;
  1129. } else {
  1130. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1131. return false;
  1132. }
  1133. return true;
  1134. }
  1135. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1136. enum pipe pipe, u32 val)
  1137. {
  1138. if ((val & ADPA_DAC_ENABLE) == 0)
  1139. return false;
  1140. if (HAS_PCH_CPT(dev_priv->dev)) {
  1141. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1142. return false;
  1143. } else {
  1144. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, int reg, u32 port_sel)
  1151. {
  1152. u32 val = I915_READ(reg);
  1153. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1154. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1155. reg, pipe_name(pipe));
  1156. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1157. && (val & DP_PIPEB_SELECT),
  1158. "IBX PCH dp port still using transcoder B\n");
  1159. }
  1160. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1161. enum pipe pipe, int reg)
  1162. {
  1163. u32 val = I915_READ(reg);
  1164. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1165. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1166. reg, pipe_name(pipe));
  1167. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1168. && (val & SDVO_PIPE_B_SELECT),
  1169. "IBX PCH hdmi port still using transcoder B\n");
  1170. }
  1171. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1172. enum pipe pipe)
  1173. {
  1174. int reg;
  1175. u32 val;
  1176. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1177. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1178. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1179. reg = PCH_ADPA;
  1180. val = I915_READ(reg);
  1181. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1182. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1183. pipe_name(pipe));
  1184. reg = PCH_LVDS;
  1185. val = I915_READ(reg);
  1186. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1187. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1188. pipe_name(pipe));
  1189. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1190. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1191. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1192. }
  1193. static void vlv_enable_pll(struct intel_crtc *crtc)
  1194. {
  1195. struct drm_device *dev = crtc->base.dev;
  1196. struct drm_i915_private *dev_priv = dev->dev_private;
  1197. int reg = DPLL(crtc->pipe);
  1198. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1199. assert_pipe_disabled(dev_priv, crtc->pipe);
  1200. /* No really, not for ILK+ */
  1201. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1202. /* PLL is protected by panel, make sure we can write it */
  1203. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1204. assert_panel_unlocked(dev_priv, crtc->pipe);
  1205. I915_WRITE(reg, dpll);
  1206. POSTING_READ(reg);
  1207. udelay(150);
  1208. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1209. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1210. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1211. POSTING_READ(DPLL_MD(crtc->pipe));
  1212. /* We do this three times for luck */
  1213. I915_WRITE(reg, dpll);
  1214. POSTING_READ(reg);
  1215. udelay(150); /* wait for warmup */
  1216. I915_WRITE(reg, dpll);
  1217. POSTING_READ(reg);
  1218. udelay(150); /* wait for warmup */
  1219. I915_WRITE(reg, dpll);
  1220. POSTING_READ(reg);
  1221. udelay(150); /* wait for warmup */
  1222. }
  1223. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1224. {
  1225. struct drm_device *dev = crtc->base.dev;
  1226. struct drm_i915_private *dev_priv = dev->dev_private;
  1227. int reg = DPLL(crtc->pipe);
  1228. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1229. assert_pipe_disabled(dev_priv, crtc->pipe);
  1230. /* No really, not for ILK+ */
  1231. BUG_ON(dev_priv->info->gen >= 5);
  1232. /* PLL is protected by panel, make sure we can write it */
  1233. if (IS_MOBILE(dev) && !IS_I830(dev))
  1234. assert_panel_unlocked(dev_priv, crtc->pipe);
  1235. I915_WRITE(reg, dpll);
  1236. /* Wait for the clocks to stabilize. */
  1237. POSTING_READ(reg);
  1238. udelay(150);
  1239. if (INTEL_INFO(dev)->gen >= 4) {
  1240. I915_WRITE(DPLL_MD(crtc->pipe),
  1241. crtc->config.dpll_hw_state.dpll_md);
  1242. } else {
  1243. /* The pixel multiplier can only be updated once the
  1244. * DPLL is enabled and the clocks are stable.
  1245. *
  1246. * So write it again.
  1247. */
  1248. I915_WRITE(reg, dpll);
  1249. }
  1250. /* We do this three times for luck */
  1251. I915_WRITE(reg, dpll);
  1252. POSTING_READ(reg);
  1253. udelay(150); /* wait for warmup */
  1254. I915_WRITE(reg, dpll);
  1255. POSTING_READ(reg);
  1256. udelay(150); /* wait for warmup */
  1257. I915_WRITE(reg, dpll);
  1258. POSTING_READ(reg);
  1259. udelay(150); /* wait for warmup */
  1260. }
  1261. /**
  1262. * i9xx_disable_pll - disable a PLL
  1263. * @dev_priv: i915 private structure
  1264. * @pipe: pipe PLL to disable
  1265. *
  1266. * Disable the PLL for @pipe, making sure the pipe is off first.
  1267. *
  1268. * Note! This is for pre-ILK only.
  1269. */
  1270. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1271. {
  1272. /* Don't disable pipe A or pipe A PLLs if needed */
  1273. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1274. return;
  1275. /* Make sure the pipe isn't still relying on us */
  1276. assert_pipe_disabled(dev_priv, pipe);
  1277. I915_WRITE(DPLL(pipe), 0);
  1278. POSTING_READ(DPLL(pipe));
  1279. }
  1280. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1281. {
  1282. u32 port_mask;
  1283. if (!port)
  1284. port_mask = DPLL_PORTB_READY_MASK;
  1285. else
  1286. port_mask = DPLL_PORTC_READY_MASK;
  1287. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1288. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1289. 'B' + port, I915_READ(DPLL(0)));
  1290. }
  1291. /**
  1292. * ironlake_enable_shared_dpll - enable PCH PLL
  1293. * @dev_priv: i915 private structure
  1294. * @pipe: pipe PLL to enable
  1295. *
  1296. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1297. * drives the transcoder clock.
  1298. */
  1299. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1300. {
  1301. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1302. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1303. /* PCH PLLs only available on ILK, SNB and IVB */
  1304. BUG_ON(dev_priv->info->gen < 5);
  1305. if (WARN_ON(pll == NULL))
  1306. return;
  1307. if (WARN_ON(pll->refcount == 0))
  1308. return;
  1309. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1310. pll->name, pll->active, pll->on,
  1311. crtc->base.base.id);
  1312. if (pll->active++) {
  1313. WARN_ON(!pll->on);
  1314. assert_shared_dpll_enabled(dev_priv, pll);
  1315. return;
  1316. }
  1317. WARN_ON(pll->on);
  1318. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1319. pll->enable(dev_priv, pll);
  1320. pll->on = true;
  1321. }
  1322. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1323. {
  1324. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1325. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1326. /* PCH only available on ILK+ */
  1327. BUG_ON(dev_priv->info->gen < 5);
  1328. if (WARN_ON(pll == NULL))
  1329. return;
  1330. if (WARN_ON(pll->refcount == 0))
  1331. return;
  1332. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1333. pll->name, pll->active, pll->on,
  1334. crtc->base.base.id);
  1335. if (WARN_ON(pll->active == 0)) {
  1336. assert_shared_dpll_disabled(dev_priv, pll);
  1337. return;
  1338. }
  1339. assert_shared_dpll_enabled(dev_priv, pll);
  1340. WARN_ON(!pll->on);
  1341. if (--pll->active)
  1342. return;
  1343. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1344. pll->disable(dev_priv, pll);
  1345. pll->on = false;
  1346. }
  1347. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1348. enum pipe pipe)
  1349. {
  1350. struct drm_device *dev = dev_priv->dev;
  1351. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1352. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1353. uint32_t reg, val, pipeconf_val;
  1354. /* PCH only available on ILK+ */
  1355. BUG_ON(dev_priv->info->gen < 5);
  1356. /* Make sure PCH DPLL is enabled */
  1357. assert_shared_dpll_enabled(dev_priv,
  1358. intel_crtc_to_shared_dpll(intel_crtc));
  1359. /* FDI must be feeding us bits for PCH ports */
  1360. assert_fdi_tx_enabled(dev_priv, pipe);
  1361. assert_fdi_rx_enabled(dev_priv, pipe);
  1362. if (HAS_PCH_CPT(dev)) {
  1363. /* Workaround: Set the timing override bit before enabling the
  1364. * pch transcoder. */
  1365. reg = TRANS_CHICKEN2(pipe);
  1366. val = I915_READ(reg);
  1367. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1368. I915_WRITE(reg, val);
  1369. }
  1370. reg = PCH_TRANSCONF(pipe);
  1371. val = I915_READ(reg);
  1372. pipeconf_val = I915_READ(PIPECONF(pipe));
  1373. if (HAS_PCH_IBX(dev_priv->dev)) {
  1374. /*
  1375. * make the BPC in transcoder be consistent with
  1376. * that in pipeconf reg.
  1377. */
  1378. val &= ~PIPECONF_BPC_MASK;
  1379. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1380. }
  1381. val &= ~TRANS_INTERLACE_MASK;
  1382. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1383. if (HAS_PCH_IBX(dev_priv->dev) &&
  1384. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1385. val |= TRANS_LEGACY_INTERLACED_ILK;
  1386. else
  1387. val |= TRANS_INTERLACED;
  1388. else
  1389. val |= TRANS_PROGRESSIVE;
  1390. I915_WRITE(reg, val | TRANS_ENABLE);
  1391. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1392. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1393. }
  1394. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1395. enum transcoder cpu_transcoder)
  1396. {
  1397. u32 val, pipeconf_val;
  1398. /* PCH only available on ILK+ */
  1399. BUG_ON(dev_priv->info->gen < 5);
  1400. /* FDI must be feeding us bits for PCH ports */
  1401. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1402. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1403. /* Workaround: set timing override bit. */
  1404. val = I915_READ(_TRANSA_CHICKEN2);
  1405. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1406. I915_WRITE(_TRANSA_CHICKEN2, val);
  1407. val = TRANS_ENABLE;
  1408. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1409. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1410. PIPECONF_INTERLACED_ILK)
  1411. val |= TRANS_INTERLACED;
  1412. else
  1413. val |= TRANS_PROGRESSIVE;
  1414. I915_WRITE(LPT_TRANSCONF, val);
  1415. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1416. DRM_ERROR("Failed to enable PCH transcoder\n");
  1417. }
  1418. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1419. enum pipe pipe)
  1420. {
  1421. struct drm_device *dev = dev_priv->dev;
  1422. uint32_t reg, val;
  1423. /* FDI relies on the transcoder */
  1424. assert_fdi_tx_disabled(dev_priv, pipe);
  1425. assert_fdi_rx_disabled(dev_priv, pipe);
  1426. /* Ports must be off as well */
  1427. assert_pch_ports_disabled(dev_priv, pipe);
  1428. reg = PCH_TRANSCONF(pipe);
  1429. val = I915_READ(reg);
  1430. val &= ~TRANS_ENABLE;
  1431. I915_WRITE(reg, val);
  1432. /* wait for PCH transcoder off, transcoder state */
  1433. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1434. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1435. if (!HAS_PCH_IBX(dev)) {
  1436. /* Workaround: Clear the timing override chicken bit again. */
  1437. reg = TRANS_CHICKEN2(pipe);
  1438. val = I915_READ(reg);
  1439. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1440. I915_WRITE(reg, val);
  1441. }
  1442. }
  1443. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1444. {
  1445. u32 val;
  1446. val = I915_READ(LPT_TRANSCONF);
  1447. val &= ~TRANS_ENABLE;
  1448. I915_WRITE(LPT_TRANSCONF, val);
  1449. /* wait for PCH transcoder off, transcoder state */
  1450. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1451. DRM_ERROR("Failed to disable PCH transcoder\n");
  1452. /* Workaround: clear timing override bit. */
  1453. val = I915_READ(_TRANSA_CHICKEN2);
  1454. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1455. I915_WRITE(_TRANSA_CHICKEN2, val);
  1456. }
  1457. /**
  1458. * intel_enable_pipe - enable a pipe, asserting requirements
  1459. * @dev_priv: i915 private structure
  1460. * @pipe: pipe to enable
  1461. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1462. *
  1463. * Enable @pipe, making sure that various hardware specific requirements
  1464. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1465. *
  1466. * @pipe should be %PIPE_A or %PIPE_B.
  1467. *
  1468. * Will wait until the pipe is actually running (i.e. first vblank) before
  1469. * returning.
  1470. */
  1471. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1472. bool pch_port, bool dsi)
  1473. {
  1474. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1475. pipe);
  1476. enum pipe pch_transcoder;
  1477. int reg;
  1478. u32 val;
  1479. assert_planes_disabled(dev_priv, pipe);
  1480. assert_cursor_disabled(dev_priv, pipe);
  1481. assert_sprites_disabled(dev_priv, pipe);
  1482. if (HAS_PCH_LPT(dev_priv->dev))
  1483. pch_transcoder = TRANSCODER_A;
  1484. else
  1485. pch_transcoder = pipe;
  1486. /*
  1487. * A pipe without a PLL won't actually be able to drive bits from
  1488. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1489. * need the check.
  1490. */
  1491. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1492. if (dsi)
  1493. assert_dsi_pll_enabled(dev_priv);
  1494. else
  1495. assert_pll_enabled(dev_priv, pipe);
  1496. else {
  1497. if (pch_port) {
  1498. /* if driving the PCH, we need FDI enabled */
  1499. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1500. assert_fdi_tx_pll_enabled(dev_priv,
  1501. (enum pipe) cpu_transcoder);
  1502. }
  1503. /* FIXME: assert CPU port conditions for SNB+ */
  1504. }
  1505. reg = PIPECONF(cpu_transcoder);
  1506. val = I915_READ(reg);
  1507. if (val & PIPECONF_ENABLE)
  1508. return;
  1509. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1510. intel_wait_for_vblank(dev_priv->dev, pipe);
  1511. }
  1512. /**
  1513. * intel_disable_pipe - disable a pipe, asserting requirements
  1514. * @dev_priv: i915 private structure
  1515. * @pipe: pipe to disable
  1516. *
  1517. * Disable @pipe, making sure that various hardware specific requirements
  1518. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1519. *
  1520. * @pipe should be %PIPE_A or %PIPE_B.
  1521. *
  1522. * Will wait until the pipe has shut down before returning.
  1523. */
  1524. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1525. enum pipe pipe)
  1526. {
  1527. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1528. pipe);
  1529. int reg;
  1530. u32 val;
  1531. /*
  1532. * Make sure planes won't keep trying to pump pixels to us,
  1533. * or we might hang the display.
  1534. */
  1535. assert_planes_disabled(dev_priv, pipe);
  1536. assert_cursor_disabled(dev_priv, pipe);
  1537. assert_sprites_disabled(dev_priv, pipe);
  1538. /* Don't disable pipe A or pipe A PLLs if needed */
  1539. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1540. return;
  1541. reg = PIPECONF(cpu_transcoder);
  1542. val = I915_READ(reg);
  1543. if ((val & PIPECONF_ENABLE) == 0)
  1544. return;
  1545. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1546. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1547. }
  1548. /*
  1549. * Plane regs are double buffered, going from enabled->disabled needs a
  1550. * trigger in order to latch. The display address reg provides this.
  1551. */
  1552. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1553. enum plane plane)
  1554. {
  1555. if (dev_priv->info->gen >= 4)
  1556. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1557. else
  1558. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1559. }
  1560. /**
  1561. * intel_enable_plane - enable a display plane on a given pipe
  1562. * @dev_priv: i915 private structure
  1563. * @plane: plane to enable
  1564. * @pipe: pipe being fed
  1565. *
  1566. * Enable @plane on @pipe, making sure that @pipe is running first.
  1567. */
  1568. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1569. enum plane plane, enum pipe pipe)
  1570. {
  1571. int reg;
  1572. u32 val;
  1573. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1574. assert_pipe_enabled(dev_priv, pipe);
  1575. reg = DSPCNTR(plane);
  1576. val = I915_READ(reg);
  1577. if (val & DISPLAY_PLANE_ENABLE)
  1578. return;
  1579. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1580. intel_flush_display_plane(dev_priv, plane);
  1581. intel_wait_for_vblank(dev_priv->dev, pipe);
  1582. }
  1583. /**
  1584. * intel_disable_plane - disable a display plane
  1585. * @dev_priv: i915 private structure
  1586. * @plane: plane to disable
  1587. * @pipe: pipe consuming the data
  1588. *
  1589. * Disable @plane; should be an independent operation.
  1590. */
  1591. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1592. enum plane plane, enum pipe pipe)
  1593. {
  1594. int reg;
  1595. u32 val;
  1596. reg = DSPCNTR(plane);
  1597. val = I915_READ(reg);
  1598. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1599. return;
  1600. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1601. intel_flush_display_plane(dev_priv, plane);
  1602. intel_wait_for_vblank(dev_priv->dev, pipe);
  1603. }
  1604. static bool need_vtd_wa(struct drm_device *dev)
  1605. {
  1606. #ifdef CONFIG_INTEL_IOMMU
  1607. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1608. return true;
  1609. #endif
  1610. return false;
  1611. }
  1612. int
  1613. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1614. struct drm_i915_gem_object *obj,
  1615. struct intel_ring_buffer *pipelined)
  1616. {
  1617. struct drm_i915_private *dev_priv = dev->dev_private;
  1618. u32 alignment;
  1619. int ret;
  1620. switch (obj->tiling_mode) {
  1621. case I915_TILING_NONE:
  1622. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1623. alignment = 128 * 1024;
  1624. else if (INTEL_INFO(dev)->gen >= 4)
  1625. alignment = 4 * 1024;
  1626. else
  1627. alignment = 64 * 1024;
  1628. break;
  1629. case I915_TILING_X:
  1630. /* pin() will align the object as required by fence */
  1631. alignment = 0;
  1632. break;
  1633. case I915_TILING_Y:
  1634. /* Despite that we check this in framebuffer_init userspace can
  1635. * screw us over and change the tiling after the fact. Only
  1636. * pinned buffers can't change their tiling. */
  1637. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1638. return -EINVAL;
  1639. default:
  1640. BUG();
  1641. }
  1642. /* Note that the w/a also requires 64 PTE of padding following the
  1643. * bo. We currently fill all unused PTE with the shadow page and so
  1644. * we should always have valid PTE following the scanout preventing
  1645. * the VT-d warning.
  1646. */
  1647. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1648. alignment = 256 * 1024;
  1649. dev_priv->mm.interruptible = false;
  1650. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1651. if (ret)
  1652. goto err_interruptible;
  1653. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1654. * fence, whereas 965+ only requires a fence if using
  1655. * framebuffer compression. For simplicity, we always install
  1656. * a fence as the cost is not that onerous.
  1657. */
  1658. ret = i915_gem_object_get_fence(obj);
  1659. if (ret)
  1660. goto err_unpin;
  1661. i915_gem_object_pin_fence(obj);
  1662. dev_priv->mm.interruptible = true;
  1663. return 0;
  1664. err_unpin:
  1665. i915_gem_object_unpin_from_display_plane(obj);
  1666. err_interruptible:
  1667. dev_priv->mm.interruptible = true;
  1668. return ret;
  1669. }
  1670. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1671. {
  1672. i915_gem_object_unpin_fence(obj);
  1673. i915_gem_object_unpin_from_display_plane(obj);
  1674. }
  1675. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1676. * is assumed to be a power-of-two. */
  1677. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1678. unsigned int tiling_mode,
  1679. unsigned int cpp,
  1680. unsigned int pitch)
  1681. {
  1682. if (tiling_mode != I915_TILING_NONE) {
  1683. unsigned int tile_rows, tiles;
  1684. tile_rows = *y / 8;
  1685. *y %= 8;
  1686. tiles = *x / (512/cpp);
  1687. *x %= 512/cpp;
  1688. return tile_rows * pitch * 8 + tiles * 4096;
  1689. } else {
  1690. unsigned int offset;
  1691. offset = *y * pitch + *x * cpp;
  1692. *y = 0;
  1693. *x = (offset & 4095) / cpp;
  1694. return offset & -4096;
  1695. }
  1696. }
  1697. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1698. int x, int y)
  1699. {
  1700. struct drm_device *dev = crtc->dev;
  1701. struct drm_i915_private *dev_priv = dev->dev_private;
  1702. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1703. struct intel_framebuffer *intel_fb;
  1704. struct drm_i915_gem_object *obj;
  1705. int plane = intel_crtc->plane;
  1706. unsigned long linear_offset;
  1707. u32 dspcntr;
  1708. u32 reg;
  1709. switch (plane) {
  1710. case 0:
  1711. case 1:
  1712. break;
  1713. default:
  1714. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1715. return -EINVAL;
  1716. }
  1717. intel_fb = to_intel_framebuffer(fb);
  1718. obj = intel_fb->obj;
  1719. reg = DSPCNTR(plane);
  1720. dspcntr = I915_READ(reg);
  1721. /* Mask out pixel format bits in case we change it */
  1722. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1723. switch (fb->pixel_format) {
  1724. case DRM_FORMAT_C8:
  1725. dspcntr |= DISPPLANE_8BPP;
  1726. break;
  1727. case DRM_FORMAT_XRGB1555:
  1728. case DRM_FORMAT_ARGB1555:
  1729. dspcntr |= DISPPLANE_BGRX555;
  1730. break;
  1731. case DRM_FORMAT_RGB565:
  1732. dspcntr |= DISPPLANE_BGRX565;
  1733. break;
  1734. case DRM_FORMAT_XRGB8888:
  1735. case DRM_FORMAT_ARGB8888:
  1736. dspcntr |= DISPPLANE_BGRX888;
  1737. break;
  1738. case DRM_FORMAT_XBGR8888:
  1739. case DRM_FORMAT_ABGR8888:
  1740. dspcntr |= DISPPLANE_RGBX888;
  1741. break;
  1742. case DRM_FORMAT_XRGB2101010:
  1743. case DRM_FORMAT_ARGB2101010:
  1744. dspcntr |= DISPPLANE_BGRX101010;
  1745. break;
  1746. case DRM_FORMAT_XBGR2101010:
  1747. case DRM_FORMAT_ABGR2101010:
  1748. dspcntr |= DISPPLANE_RGBX101010;
  1749. break;
  1750. default:
  1751. BUG();
  1752. }
  1753. if (INTEL_INFO(dev)->gen >= 4) {
  1754. if (obj->tiling_mode != I915_TILING_NONE)
  1755. dspcntr |= DISPPLANE_TILED;
  1756. else
  1757. dspcntr &= ~DISPPLANE_TILED;
  1758. }
  1759. if (IS_G4X(dev))
  1760. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1761. I915_WRITE(reg, dspcntr);
  1762. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1763. if (INTEL_INFO(dev)->gen >= 4) {
  1764. intel_crtc->dspaddr_offset =
  1765. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1766. fb->bits_per_pixel / 8,
  1767. fb->pitches[0]);
  1768. linear_offset -= intel_crtc->dspaddr_offset;
  1769. } else {
  1770. intel_crtc->dspaddr_offset = linear_offset;
  1771. }
  1772. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1773. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1774. fb->pitches[0]);
  1775. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1776. if (INTEL_INFO(dev)->gen >= 4) {
  1777. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1778. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1779. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1780. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1781. } else
  1782. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1783. POSTING_READ(reg);
  1784. return 0;
  1785. }
  1786. static int ironlake_update_plane(struct drm_crtc *crtc,
  1787. struct drm_framebuffer *fb, int x, int y)
  1788. {
  1789. struct drm_device *dev = crtc->dev;
  1790. struct drm_i915_private *dev_priv = dev->dev_private;
  1791. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1792. struct intel_framebuffer *intel_fb;
  1793. struct drm_i915_gem_object *obj;
  1794. int plane = intel_crtc->plane;
  1795. unsigned long linear_offset;
  1796. u32 dspcntr;
  1797. u32 reg;
  1798. switch (plane) {
  1799. case 0:
  1800. case 1:
  1801. case 2:
  1802. break;
  1803. default:
  1804. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1805. return -EINVAL;
  1806. }
  1807. intel_fb = to_intel_framebuffer(fb);
  1808. obj = intel_fb->obj;
  1809. reg = DSPCNTR(plane);
  1810. dspcntr = I915_READ(reg);
  1811. /* Mask out pixel format bits in case we change it */
  1812. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1813. switch (fb->pixel_format) {
  1814. case DRM_FORMAT_C8:
  1815. dspcntr |= DISPPLANE_8BPP;
  1816. break;
  1817. case DRM_FORMAT_RGB565:
  1818. dspcntr |= DISPPLANE_BGRX565;
  1819. break;
  1820. case DRM_FORMAT_XRGB8888:
  1821. case DRM_FORMAT_ARGB8888:
  1822. dspcntr |= DISPPLANE_BGRX888;
  1823. break;
  1824. case DRM_FORMAT_XBGR8888:
  1825. case DRM_FORMAT_ABGR8888:
  1826. dspcntr |= DISPPLANE_RGBX888;
  1827. break;
  1828. case DRM_FORMAT_XRGB2101010:
  1829. case DRM_FORMAT_ARGB2101010:
  1830. dspcntr |= DISPPLANE_BGRX101010;
  1831. break;
  1832. case DRM_FORMAT_XBGR2101010:
  1833. case DRM_FORMAT_ABGR2101010:
  1834. dspcntr |= DISPPLANE_RGBX101010;
  1835. break;
  1836. default:
  1837. BUG();
  1838. }
  1839. if (obj->tiling_mode != I915_TILING_NONE)
  1840. dspcntr |= DISPPLANE_TILED;
  1841. else
  1842. dspcntr &= ~DISPPLANE_TILED;
  1843. if (IS_HASWELL(dev))
  1844. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1845. else
  1846. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1847. I915_WRITE(reg, dspcntr);
  1848. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1849. intel_crtc->dspaddr_offset =
  1850. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1851. fb->bits_per_pixel / 8,
  1852. fb->pitches[0]);
  1853. linear_offset -= intel_crtc->dspaddr_offset;
  1854. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1855. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1856. fb->pitches[0]);
  1857. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1858. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1859. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1860. if (IS_HASWELL(dev)) {
  1861. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1862. } else {
  1863. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1864. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1865. }
  1866. POSTING_READ(reg);
  1867. return 0;
  1868. }
  1869. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1870. static int
  1871. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1872. int x, int y, enum mode_set_atomic state)
  1873. {
  1874. struct drm_device *dev = crtc->dev;
  1875. struct drm_i915_private *dev_priv = dev->dev_private;
  1876. if (dev_priv->display.disable_fbc)
  1877. dev_priv->display.disable_fbc(dev);
  1878. intel_increase_pllclock(crtc);
  1879. return dev_priv->display.update_plane(crtc, fb, x, y);
  1880. }
  1881. void intel_display_handle_reset(struct drm_device *dev)
  1882. {
  1883. struct drm_i915_private *dev_priv = dev->dev_private;
  1884. struct drm_crtc *crtc;
  1885. /*
  1886. * Flips in the rings have been nuked by the reset,
  1887. * so complete all pending flips so that user space
  1888. * will get its events and not get stuck.
  1889. *
  1890. * Also update the base address of all primary
  1891. * planes to the the last fb to make sure we're
  1892. * showing the correct fb after a reset.
  1893. *
  1894. * Need to make two loops over the crtcs so that we
  1895. * don't try to grab a crtc mutex before the
  1896. * pending_flip_queue really got woken up.
  1897. */
  1898. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1899. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1900. enum plane plane = intel_crtc->plane;
  1901. intel_prepare_page_flip(dev, plane);
  1902. intel_finish_page_flip_plane(dev, plane);
  1903. }
  1904. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1906. mutex_lock(&crtc->mutex);
  1907. if (intel_crtc->active)
  1908. dev_priv->display.update_plane(crtc, crtc->fb,
  1909. crtc->x, crtc->y);
  1910. mutex_unlock(&crtc->mutex);
  1911. }
  1912. }
  1913. static int
  1914. intel_finish_fb(struct drm_framebuffer *old_fb)
  1915. {
  1916. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1917. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1918. bool was_interruptible = dev_priv->mm.interruptible;
  1919. int ret;
  1920. /* Big Hammer, we also need to ensure that any pending
  1921. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1922. * current scanout is retired before unpinning the old
  1923. * framebuffer.
  1924. *
  1925. * This should only fail upon a hung GPU, in which case we
  1926. * can safely continue.
  1927. */
  1928. dev_priv->mm.interruptible = false;
  1929. ret = i915_gem_object_finish_gpu(obj);
  1930. dev_priv->mm.interruptible = was_interruptible;
  1931. return ret;
  1932. }
  1933. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1934. {
  1935. struct drm_device *dev = crtc->dev;
  1936. struct drm_i915_master_private *master_priv;
  1937. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1938. if (!dev->primary->master)
  1939. return;
  1940. master_priv = dev->primary->master->driver_priv;
  1941. if (!master_priv->sarea_priv)
  1942. return;
  1943. switch (intel_crtc->pipe) {
  1944. case 0:
  1945. master_priv->sarea_priv->pipeA_x = x;
  1946. master_priv->sarea_priv->pipeA_y = y;
  1947. break;
  1948. case 1:
  1949. master_priv->sarea_priv->pipeB_x = x;
  1950. master_priv->sarea_priv->pipeB_y = y;
  1951. break;
  1952. default:
  1953. break;
  1954. }
  1955. }
  1956. static int
  1957. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1958. struct drm_framebuffer *fb)
  1959. {
  1960. struct drm_device *dev = crtc->dev;
  1961. struct drm_i915_private *dev_priv = dev->dev_private;
  1962. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1963. struct drm_framebuffer *old_fb;
  1964. int ret;
  1965. /* no fb bound */
  1966. if (!fb) {
  1967. DRM_ERROR("No FB bound\n");
  1968. return 0;
  1969. }
  1970. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1971. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1972. plane_name(intel_crtc->plane),
  1973. INTEL_INFO(dev)->num_pipes);
  1974. return -EINVAL;
  1975. }
  1976. mutex_lock(&dev->struct_mutex);
  1977. ret = intel_pin_and_fence_fb_obj(dev,
  1978. to_intel_framebuffer(fb)->obj,
  1979. NULL);
  1980. if (ret != 0) {
  1981. mutex_unlock(&dev->struct_mutex);
  1982. DRM_ERROR("pin & fence failed\n");
  1983. return ret;
  1984. }
  1985. /* Update pipe size and adjust fitter if needed */
  1986. if (i915_fastboot) {
  1987. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1988. ((crtc->mode.hdisplay - 1) << 16) |
  1989. (crtc->mode.vdisplay - 1));
  1990. if (!intel_crtc->config.pch_pfit.size &&
  1991. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1992. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1993. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1994. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1995. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1996. }
  1997. }
  1998. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1999. if (ret) {
  2000. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2001. mutex_unlock(&dev->struct_mutex);
  2002. DRM_ERROR("failed to update base address\n");
  2003. return ret;
  2004. }
  2005. old_fb = crtc->fb;
  2006. crtc->fb = fb;
  2007. crtc->x = x;
  2008. crtc->y = y;
  2009. if (old_fb) {
  2010. if (intel_crtc->active && old_fb != fb)
  2011. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2012. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2013. }
  2014. intel_update_fbc(dev);
  2015. intel_edp_psr_update(dev);
  2016. mutex_unlock(&dev->struct_mutex);
  2017. intel_crtc_update_sarea_pos(crtc, x, y);
  2018. return 0;
  2019. }
  2020. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2021. {
  2022. struct drm_device *dev = crtc->dev;
  2023. struct drm_i915_private *dev_priv = dev->dev_private;
  2024. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2025. int pipe = intel_crtc->pipe;
  2026. u32 reg, temp;
  2027. /* enable normal train */
  2028. reg = FDI_TX_CTL(pipe);
  2029. temp = I915_READ(reg);
  2030. if (IS_IVYBRIDGE(dev)) {
  2031. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2032. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2033. } else {
  2034. temp &= ~FDI_LINK_TRAIN_NONE;
  2035. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2036. }
  2037. I915_WRITE(reg, temp);
  2038. reg = FDI_RX_CTL(pipe);
  2039. temp = I915_READ(reg);
  2040. if (HAS_PCH_CPT(dev)) {
  2041. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2042. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2043. } else {
  2044. temp &= ~FDI_LINK_TRAIN_NONE;
  2045. temp |= FDI_LINK_TRAIN_NONE;
  2046. }
  2047. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2048. /* wait one idle pattern time */
  2049. POSTING_READ(reg);
  2050. udelay(1000);
  2051. /* IVB wants error correction enabled */
  2052. if (IS_IVYBRIDGE(dev))
  2053. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2054. FDI_FE_ERRC_ENABLE);
  2055. }
  2056. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2057. {
  2058. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2059. }
  2060. static void ivb_modeset_global_resources(struct drm_device *dev)
  2061. {
  2062. struct drm_i915_private *dev_priv = dev->dev_private;
  2063. struct intel_crtc *pipe_B_crtc =
  2064. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2065. struct intel_crtc *pipe_C_crtc =
  2066. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2067. uint32_t temp;
  2068. /*
  2069. * When everything is off disable fdi C so that we could enable fdi B
  2070. * with all lanes. Note that we don't care about enabled pipes without
  2071. * an enabled pch encoder.
  2072. */
  2073. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2074. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2075. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2076. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2077. temp = I915_READ(SOUTH_CHICKEN1);
  2078. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2079. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2080. I915_WRITE(SOUTH_CHICKEN1, temp);
  2081. }
  2082. }
  2083. /* The FDI link training functions for ILK/Ibexpeak. */
  2084. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2085. {
  2086. struct drm_device *dev = crtc->dev;
  2087. struct drm_i915_private *dev_priv = dev->dev_private;
  2088. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2089. int pipe = intel_crtc->pipe;
  2090. int plane = intel_crtc->plane;
  2091. u32 reg, temp, tries;
  2092. /* FDI needs bits from pipe & plane first */
  2093. assert_pipe_enabled(dev_priv, pipe);
  2094. assert_plane_enabled(dev_priv, plane);
  2095. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2096. for train result */
  2097. reg = FDI_RX_IMR(pipe);
  2098. temp = I915_READ(reg);
  2099. temp &= ~FDI_RX_SYMBOL_LOCK;
  2100. temp &= ~FDI_RX_BIT_LOCK;
  2101. I915_WRITE(reg, temp);
  2102. I915_READ(reg);
  2103. udelay(150);
  2104. /* enable CPU FDI TX and PCH FDI RX */
  2105. reg = FDI_TX_CTL(pipe);
  2106. temp = I915_READ(reg);
  2107. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2108. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2109. temp &= ~FDI_LINK_TRAIN_NONE;
  2110. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2111. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2112. reg = FDI_RX_CTL(pipe);
  2113. temp = I915_READ(reg);
  2114. temp &= ~FDI_LINK_TRAIN_NONE;
  2115. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2116. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2117. POSTING_READ(reg);
  2118. udelay(150);
  2119. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2120. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2121. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2122. FDI_RX_PHASE_SYNC_POINTER_EN);
  2123. reg = FDI_RX_IIR(pipe);
  2124. for (tries = 0; tries < 5; tries++) {
  2125. temp = I915_READ(reg);
  2126. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2127. if ((temp & FDI_RX_BIT_LOCK)) {
  2128. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2129. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2130. break;
  2131. }
  2132. }
  2133. if (tries == 5)
  2134. DRM_ERROR("FDI train 1 fail!\n");
  2135. /* Train 2 */
  2136. reg = FDI_TX_CTL(pipe);
  2137. temp = I915_READ(reg);
  2138. temp &= ~FDI_LINK_TRAIN_NONE;
  2139. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2140. I915_WRITE(reg, temp);
  2141. reg = FDI_RX_CTL(pipe);
  2142. temp = I915_READ(reg);
  2143. temp &= ~FDI_LINK_TRAIN_NONE;
  2144. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2145. I915_WRITE(reg, temp);
  2146. POSTING_READ(reg);
  2147. udelay(150);
  2148. reg = FDI_RX_IIR(pipe);
  2149. for (tries = 0; tries < 5; tries++) {
  2150. temp = I915_READ(reg);
  2151. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2152. if (temp & FDI_RX_SYMBOL_LOCK) {
  2153. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2154. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2155. break;
  2156. }
  2157. }
  2158. if (tries == 5)
  2159. DRM_ERROR("FDI train 2 fail!\n");
  2160. DRM_DEBUG_KMS("FDI train done\n");
  2161. }
  2162. static const int snb_b_fdi_train_param[] = {
  2163. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2164. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2165. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2166. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2167. };
  2168. /* The FDI link training functions for SNB/Cougarpoint. */
  2169. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2170. {
  2171. struct drm_device *dev = crtc->dev;
  2172. struct drm_i915_private *dev_priv = dev->dev_private;
  2173. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2174. int pipe = intel_crtc->pipe;
  2175. u32 reg, temp, i, retry;
  2176. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2177. for train result */
  2178. reg = FDI_RX_IMR(pipe);
  2179. temp = I915_READ(reg);
  2180. temp &= ~FDI_RX_SYMBOL_LOCK;
  2181. temp &= ~FDI_RX_BIT_LOCK;
  2182. I915_WRITE(reg, temp);
  2183. POSTING_READ(reg);
  2184. udelay(150);
  2185. /* enable CPU FDI TX and PCH FDI RX */
  2186. reg = FDI_TX_CTL(pipe);
  2187. temp = I915_READ(reg);
  2188. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2189. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2190. temp &= ~FDI_LINK_TRAIN_NONE;
  2191. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2192. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2193. /* SNB-B */
  2194. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2195. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2196. I915_WRITE(FDI_RX_MISC(pipe),
  2197. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2198. reg = FDI_RX_CTL(pipe);
  2199. temp = I915_READ(reg);
  2200. if (HAS_PCH_CPT(dev)) {
  2201. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2202. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2203. } else {
  2204. temp &= ~FDI_LINK_TRAIN_NONE;
  2205. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2206. }
  2207. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2208. POSTING_READ(reg);
  2209. udelay(150);
  2210. for (i = 0; i < 4; i++) {
  2211. reg = FDI_TX_CTL(pipe);
  2212. temp = I915_READ(reg);
  2213. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2214. temp |= snb_b_fdi_train_param[i];
  2215. I915_WRITE(reg, temp);
  2216. POSTING_READ(reg);
  2217. udelay(500);
  2218. for (retry = 0; retry < 5; retry++) {
  2219. reg = FDI_RX_IIR(pipe);
  2220. temp = I915_READ(reg);
  2221. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2222. if (temp & FDI_RX_BIT_LOCK) {
  2223. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2224. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2225. break;
  2226. }
  2227. udelay(50);
  2228. }
  2229. if (retry < 5)
  2230. break;
  2231. }
  2232. if (i == 4)
  2233. DRM_ERROR("FDI train 1 fail!\n");
  2234. /* Train 2 */
  2235. reg = FDI_TX_CTL(pipe);
  2236. temp = I915_READ(reg);
  2237. temp &= ~FDI_LINK_TRAIN_NONE;
  2238. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2239. if (IS_GEN6(dev)) {
  2240. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2241. /* SNB-B */
  2242. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2243. }
  2244. I915_WRITE(reg, temp);
  2245. reg = FDI_RX_CTL(pipe);
  2246. temp = I915_READ(reg);
  2247. if (HAS_PCH_CPT(dev)) {
  2248. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2249. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2250. } else {
  2251. temp &= ~FDI_LINK_TRAIN_NONE;
  2252. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2253. }
  2254. I915_WRITE(reg, temp);
  2255. POSTING_READ(reg);
  2256. udelay(150);
  2257. for (i = 0; i < 4; i++) {
  2258. reg = FDI_TX_CTL(pipe);
  2259. temp = I915_READ(reg);
  2260. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2261. temp |= snb_b_fdi_train_param[i];
  2262. I915_WRITE(reg, temp);
  2263. POSTING_READ(reg);
  2264. udelay(500);
  2265. for (retry = 0; retry < 5; retry++) {
  2266. reg = FDI_RX_IIR(pipe);
  2267. temp = I915_READ(reg);
  2268. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2269. if (temp & FDI_RX_SYMBOL_LOCK) {
  2270. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2271. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2272. break;
  2273. }
  2274. udelay(50);
  2275. }
  2276. if (retry < 5)
  2277. break;
  2278. }
  2279. if (i == 4)
  2280. DRM_ERROR("FDI train 2 fail!\n");
  2281. DRM_DEBUG_KMS("FDI train done.\n");
  2282. }
  2283. /* Manual link training for Ivy Bridge A0 parts */
  2284. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2285. {
  2286. struct drm_device *dev = crtc->dev;
  2287. struct drm_i915_private *dev_priv = dev->dev_private;
  2288. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2289. int pipe = intel_crtc->pipe;
  2290. u32 reg, temp, i, j;
  2291. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2292. for train result */
  2293. reg = FDI_RX_IMR(pipe);
  2294. temp = I915_READ(reg);
  2295. temp &= ~FDI_RX_SYMBOL_LOCK;
  2296. temp &= ~FDI_RX_BIT_LOCK;
  2297. I915_WRITE(reg, temp);
  2298. POSTING_READ(reg);
  2299. udelay(150);
  2300. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2301. I915_READ(FDI_RX_IIR(pipe)));
  2302. /* Try each vswing and preemphasis setting twice before moving on */
  2303. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2304. /* disable first in case we need to retry */
  2305. reg = FDI_TX_CTL(pipe);
  2306. temp = I915_READ(reg);
  2307. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2308. temp &= ~FDI_TX_ENABLE;
  2309. I915_WRITE(reg, temp);
  2310. reg = FDI_RX_CTL(pipe);
  2311. temp = I915_READ(reg);
  2312. temp &= ~FDI_LINK_TRAIN_AUTO;
  2313. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2314. temp &= ~FDI_RX_ENABLE;
  2315. I915_WRITE(reg, temp);
  2316. /* enable CPU FDI TX and PCH FDI RX */
  2317. reg = FDI_TX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2320. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2321. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2322. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2323. temp |= snb_b_fdi_train_param[j/2];
  2324. temp |= FDI_COMPOSITE_SYNC;
  2325. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2326. I915_WRITE(FDI_RX_MISC(pipe),
  2327. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2328. reg = FDI_RX_CTL(pipe);
  2329. temp = I915_READ(reg);
  2330. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2331. temp |= FDI_COMPOSITE_SYNC;
  2332. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2333. POSTING_READ(reg);
  2334. udelay(1); /* should be 0.5us */
  2335. for (i = 0; i < 4; i++) {
  2336. reg = FDI_RX_IIR(pipe);
  2337. temp = I915_READ(reg);
  2338. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2339. if (temp & FDI_RX_BIT_LOCK ||
  2340. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2341. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2342. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2343. i);
  2344. break;
  2345. }
  2346. udelay(1); /* should be 0.5us */
  2347. }
  2348. if (i == 4) {
  2349. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2350. continue;
  2351. }
  2352. /* Train 2 */
  2353. reg = FDI_TX_CTL(pipe);
  2354. temp = I915_READ(reg);
  2355. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2356. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2357. I915_WRITE(reg, temp);
  2358. reg = FDI_RX_CTL(pipe);
  2359. temp = I915_READ(reg);
  2360. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2361. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2362. I915_WRITE(reg, temp);
  2363. POSTING_READ(reg);
  2364. udelay(2); /* should be 1.5us */
  2365. for (i = 0; i < 4; i++) {
  2366. reg = FDI_RX_IIR(pipe);
  2367. temp = I915_READ(reg);
  2368. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2369. if (temp & FDI_RX_SYMBOL_LOCK ||
  2370. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2371. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2372. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2373. i);
  2374. goto train_done;
  2375. }
  2376. udelay(2); /* should be 1.5us */
  2377. }
  2378. if (i == 4)
  2379. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2380. }
  2381. train_done:
  2382. DRM_DEBUG_KMS("FDI train done.\n");
  2383. }
  2384. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2385. {
  2386. struct drm_device *dev = intel_crtc->base.dev;
  2387. struct drm_i915_private *dev_priv = dev->dev_private;
  2388. int pipe = intel_crtc->pipe;
  2389. u32 reg, temp;
  2390. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2391. reg = FDI_RX_CTL(pipe);
  2392. temp = I915_READ(reg);
  2393. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2394. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2395. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2396. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2397. POSTING_READ(reg);
  2398. udelay(200);
  2399. /* Switch from Rawclk to PCDclk */
  2400. temp = I915_READ(reg);
  2401. I915_WRITE(reg, temp | FDI_PCDCLK);
  2402. POSTING_READ(reg);
  2403. udelay(200);
  2404. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2405. reg = FDI_TX_CTL(pipe);
  2406. temp = I915_READ(reg);
  2407. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2408. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2409. POSTING_READ(reg);
  2410. udelay(100);
  2411. }
  2412. }
  2413. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2414. {
  2415. struct drm_device *dev = intel_crtc->base.dev;
  2416. struct drm_i915_private *dev_priv = dev->dev_private;
  2417. int pipe = intel_crtc->pipe;
  2418. u32 reg, temp;
  2419. /* Switch from PCDclk to Rawclk */
  2420. reg = FDI_RX_CTL(pipe);
  2421. temp = I915_READ(reg);
  2422. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2423. /* Disable CPU FDI TX PLL */
  2424. reg = FDI_TX_CTL(pipe);
  2425. temp = I915_READ(reg);
  2426. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2427. POSTING_READ(reg);
  2428. udelay(100);
  2429. reg = FDI_RX_CTL(pipe);
  2430. temp = I915_READ(reg);
  2431. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2432. /* Wait for the clocks to turn off. */
  2433. POSTING_READ(reg);
  2434. udelay(100);
  2435. }
  2436. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2437. {
  2438. struct drm_device *dev = crtc->dev;
  2439. struct drm_i915_private *dev_priv = dev->dev_private;
  2440. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2441. int pipe = intel_crtc->pipe;
  2442. u32 reg, temp;
  2443. /* disable CPU FDI tx and PCH FDI rx */
  2444. reg = FDI_TX_CTL(pipe);
  2445. temp = I915_READ(reg);
  2446. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2447. POSTING_READ(reg);
  2448. reg = FDI_RX_CTL(pipe);
  2449. temp = I915_READ(reg);
  2450. temp &= ~(0x7 << 16);
  2451. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2452. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2453. POSTING_READ(reg);
  2454. udelay(100);
  2455. /* Ironlake workaround, disable clock pointer after downing FDI */
  2456. if (HAS_PCH_IBX(dev)) {
  2457. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2458. }
  2459. /* still set train pattern 1 */
  2460. reg = FDI_TX_CTL(pipe);
  2461. temp = I915_READ(reg);
  2462. temp &= ~FDI_LINK_TRAIN_NONE;
  2463. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2464. I915_WRITE(reg, temp);
  2465. reg = FDI_RX_CTL(pipe);
  2466. temp = I915_READ(reg);
  2467. if (HAS_PCH_CPT(dev)) {
  2468. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2469. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2470. } else {
  2471. temp &= ~FDI_LINK_TRAIN_NONE;
  2472. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2473. }
  2474. /* BPC in FDI rx is consistent with that in PIPECONF */
  2475. temp &= ~(0x07 << 16);
  2476. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2477. I915_WRITE(reg, temp);
  2478. POSTING_READ(reg);
  2479. udelay(100);
  2480. }
  2481. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2482. {
  2483. struct drm_device *dev = crtc->dev;
  2484. struct drm_i915_private *dev_priv = dev->dev_private;
  2485. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2486. unsigned long flags;
  2487. bool pending;
  2488. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2489. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2490. return false;
  2491. spin_lock_irqsave(&dev->event_lock, flags);
  2492. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2493. spin_unlock_irqrestore(&dev->event_lock, flags);
  2494. return pending;
  2495. }
  2496. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2497. {
  2498. struct drm_device *dev = crtc->dev;
  2499. struct drm_i915_private *dev_priv = dev->dev_private;
  2500. if (crtc->fb == NULL)
  2501. return;
  2502. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2503. wait_event(dev_priv->pending_flip_queue,
  2504. !intel_crtc_has_pending_flip(crtc));
  2505. mutex_lock(&dev->struct_mutex);
  2506. intel_finish_fb(crtc->fb);
  2507. mutex_unlock(&dev->struct_mutex);
  2508. }
  2509. /* Program iCLKIP clock to the desired frequency */
  2510. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2511. {
  2512. struct drm_device *dev = crtc->dev;
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2515. u32 temp;
  2516. mutex_lock(&dev_priv->dpio_lock);
  2517. /* It is necessary to ungate the pixclk gate prior to programming
  2518. * the divisors, and gate it back when it is done.
  2519. */
  2520. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2521. /* Disable SSCCTL */
  2522. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2523. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2524. SBI_SSCCTL_DISABLE,
  2525. SBI_ICLK);
  2526. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2527. if (crtc->mode.clock == 20000) {
  2528. auxdiv = 1;
  2529. divsel = 0x41;
  2530. phaseinc = 0x20;
  2531. } else {
  2532. /* The iCLK virtual clock root frequency is in MHz,
  2533. * but the crtc->mode.clock in in KHz. To get the divisors,
  2534. * it is necessary to divide one by another, so we
  2535. * convert the virtual clock precision to KHz here for higher
  2536. * precision.
  2537. */
  2538. u32 iclk_virtual_root_freq = 172800 * 1000;
  2539. u32 iclk_pi_range = 64;
  2540. u32 desired_divisor, msb_divisor_value, pi_value;
  2541. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2542. msb_divisor_value = desired_divisor / iclk_pi_range;
  2543. pi_value = desired_divisor % iclk_pi_range;
  2544. auxdiv = 0;
  2545. divsel = msb_divisor_value - 2;
  2546. phaseinc = pi_value;
  2547. }
  2548. /* This should not happen with any sane values */
  2549. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2550. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2551. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2552. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2553. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2554. crtc->mode.clock,
  2555. auxdiv,
  2556. divsel,
  2557. phasedir,
  2558. phaseinc);
  2559. /* Program SSCDIVINTPHASE6 */
  2560. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2561. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2562. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2563. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2564. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2565. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2566. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2567. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2568. /* Program SSCAUXDIV */
  2569. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2570. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2571. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2572. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2573. /* Enable modulator and associated divider */
  2574. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2575. temp &= ~SBI_SSCCTL_DISABLE;
  2576. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2577. /* Wait for initialization time */
  2578. udelay(24);
  2579. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2580. mutex_unlock(&dev_priv->dpio_lock);
  2581. }
  2582. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2583. enum pipe pch_transcoder)
  2584. {
  2585. struct drm_device *dev = crtc->base.dev;
  2586. struct drm_i915_private *dev_priv = dev->dev_private;
  2587. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2588. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2589. I915_READ(HTOTAL(cpu_transcoder)));
  2590. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2591. I915_READ(HBLANK(cpu_transcoder)));
  2592. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2593. I915_READ(HSYNC(cpu_transcoder)));
  2594. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2595. I915_READ(VTOTAL(cpu_transcoder)));
  2596. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2597. I915_READ(VBLANK(cpu_transcoder)));
  2598. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2599. I915_READ(VSYNC(cpu_transcoder)));
  2600. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2601. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2602. }
  2603. /*
  2604. * Enable PCH resources required for PCH ports:
  2605. * - PCH PLLs
  2606. * - FDI training & RX/TX
  2607. * - update transcoder timings
  2608. * - DP transcoding bits
  2609. * - transcoder
  2610. */
  2611. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2612. {
  2613. struct drm_device *dev = crtc->dev;
  2614. struct drm_i915_private *dev_priv = dev->dev_private;
  2615. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2616. int pipe = intel_crtc->pipe;
  2617. u32 reg, temp;
  2618. assert_pch_transcoder_disabled(dev_priv, pipe);
  2619. /* Write the TU size bits before fdi link training, so that error
  2620. * detection works. */
  2621. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2622. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2623. /* For PCH output, training FDI link */
  2624. dev_priv->display.fdi_link_train(crtc);
  2625. /* We need to program the right clock selection before writing the pixel
  2626. * mutliplier into the DPLL. */
  2627. if (HAS_PCH_CPT(dev)) {
  2628. u32 sel;
  2629. temp = I915_READ(PCH_DPLL_SEL);
  2630. temp |= TRANS_DPLL_ENABLE(pipe);
  2631. sel = TRANS_DPLLB_SEL(pipe);
  2632. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2633. temp |= sel;
  2634. else
  2635. temp &= ~sel;
  2636. I915_WRITE(PCH_DPLL_SEL, temp);
  2637. }
  2638. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2639. * transcoder, and we actually should do this to not upset any PCH
  2640. * transcoder that already use the clock when we share it.
  2641. *
  2642. * Note that enable_shared_dpll tries to do the right thing, but
  2643. * get_shared_dpll unconditionally resets the pll - we need that to have
  2644. * the right LVDS enable sequence. */
  2645. ironlake_enable_shared_dpll(intel_crtc);
  2646. /* set transcoder timing, panel must allow it */
  2647. assert_panel_unlocked(dev_priv, pipe);
  2648. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2649. intel_fdi_normal_train(crtc);
  2650. /* For PCH DP, enable TRANS_DP_CTL */
  2651. if (HAS_PCH_CPT(dev) &&
  2652. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2653. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2654. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2655. reg = TRANS_DP_CTL(pipe);
  2656. temp = I915_READ(reg);
  2657. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2658. TRANS_DP_SYNC_MASK |
  2659. TRANS_DP_BPC_MASK);
  2660. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2661. TRANS_DP_ENH_FRAMING);
  2662. temp |= bpc << 9; /* same format but at 11:9 */
  2663. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2664. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2665. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2666. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2667. switch (intel_trans_dp_port_sel(crtc)) {
  2668. case PCH_DP_B:
  2669. temp |= TRANS_DP_PORT_SEL_B;
  2670. break;
  2671. case PCH_DP_C:
  2672. temp |= TRANS_DP_PORT_SEL_C;
  2673. break;
  2674. case PCH_DP_D:
  2675. temp |= TRANS_DP_PORT_SEL_D;
  2676. break;
  2677. default:
  2678. BUG();
  2679. }
  2680. I915_WRITE(reg, temp);
  2681. }
  2682. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2683. }
  2684. static void lpt_pch_enable(struct drm_crtc *crtc)
  2685. {
  2686. struct drm_device *dev = crtc->dev;
  2687. struct drm_i915_private *dev_priv = dev->dev_private;
  2688. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2689. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2690. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2691. lpt_program_iclkip(crtc);
  2692. /* Set transcoder timing. */
  2693. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2694. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2695. }
  2696. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2697. {
  2698. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2699. if (pll == NULL)
  2700. return;
  2701. if (pll->refcount == 0) {
  2702. WARN(1, "bad %s refcount\n", pll->name);
  2703. return;
  2704. }
  2705. if (--pll->refcount == 0) {
  2706. WARN_ON(pll->on);
  2707. WARN_ON(pll->active);
  2708. }
  2709. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2710. }
  2711. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2712. {
  2713. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2714. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2715. enum intel_dpll_id i;
  2716. if (pll) {
  2717. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2718. crtc->base.base.id, pll->name);
  2719. intel_put_shared_dpll(crtc);
  2720. }
  2721. if (HAS_PCH_IBX(dev_priv->dev)) {
  2722. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2723. i = (enum intel_dpll_id) crtc->pipe;
  2724. pll = &dev_priv->shared_dplls[i];
  2725. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2726. crtc->base.base.id, pll->name);
  2727. goto found;
  2728. }
  2729. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2730. pll = &dev_priv->shared_dplls[i];
  2731. /* Only want to check enabled timings first */
  2732. if (pll->refcount == 0)
  2733. continue;
  2734. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2735. sizeof(pll->hw_state)) == 0) {
  2736. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2737. crtc->base.base.id,
  2738. pll->name, pll->refcount, pll->active);
  2739. goto found;
  2740. }
  2741. }
  2742. /* Ok no matching timings, maybe there's a free one? */
  2743. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2744. pll = &dev_priv->shared_dplls[i];
  2745. if (pll->refcount == 0) {
  2746. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2747. crtc->base.base.id, pll->name);
  2748. goto found;
  2749. }
  2750. }
  2751. return NULL;
  2752. found:
  2753. crtc->config.shared_dpll = i;
  2754. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2755. pipe_name(crtc->pipe));
  2756. if (pll->active == 0) {
  2757. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2758. sizeof(pll->hw_state));
  2759. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2760. WARN_ON(pll->on);
  2761. assert_shared_dpll_disabled(dev_priv, pll);
  2762. pll->mode_set(dev_priv, pll);
  2763. }
  2764. pll->refcount++;
  2765. return pll;
  2766. }
  2767. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2768. {
  2769. struct drm_i915_private *dev_priv = dev->dev_private;
  2770. int dslreg = PIPEDSL(pipe);
  2771. u32 temp;
  2772. temp = I915_READ(dslreg);
  2773. udelay(500);
  2774. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2775. if (wait_for(I915_READ(dslreg) != temp, 5))
  2776. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2777. }
  2778. }
  2779. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2780. {
  2781. struct drm_device *dev = crtc->base.dev;
  2782. struct drm_i915_private *dev_priv = dev->dev_private;
  2783. int pipe = crtc->pipe;
  2784. if (crtc->config.pch_pfit.size) {
  2785. /* Force use of hard-coded filter coefficients
  2786. * as some pre-programmed values are broken,
  2787. * e.g. x201.
  2788. */
  2789. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2790. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2791. PF_PIPE_SEL_IVB(pipe));
  2792. else
  2793. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2794. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2795. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2796. }
  2797. }
  2798. static void intel_enable_planes(struct drm_crtc *crtc)
  2799. {
  2800. struct drm_device *dev = crtc->dev;
  2801. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2802. struct intel_plane *intel_plane;
  2803. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2804. if (intel_plane->pipe == pipe)
  2805. intel_plane_restore(&intel_plane->base);
  2806. }
  2807. static void intel_disable_planes(struct drm_crtc *crtc)
  2808. {
  2809. struct drm_device *dev = crtc->dev;
  2810. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2811. struct intel_plane *intel_plane;
  2812. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2813. if (intel_plane->pipe == pipe)
  2814. intel_plane_disable(&intel_plane->base);
  2815. }
  2816. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2817. {
  2818. struct drm_device *dev = crtc->dev;
  2819. struct drm_i915_private *dev_priv = dev->dev_private;
  2820. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2821. struct intel_encoder *encoder;
  2822. int pipe = intel_crtc->pipe;
  2823. int plane = intel_crtc->plane;
  2824. WARN_ON(!crtc->enabled);
  2825. if (intel_crtc->active)
  2826. return;
  2827. intel_crtc->active = true;
  2828. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2829. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2830. for_each_encoder_on_crtc(dev, crtc, encoder)
  2831. if (encoder->pre_enable)
  2832. encoder->pre_enable(encoder);
  2833. if (intel_crtc->config.has_pch_encoder) {
  2834. /* Note: FDI PLL enabling _must_ be done before we enable the
  2835. * cpu pipes, hence this is separate from all the other fdi/pch
  2836. * enabling. */
  2837. ironlake_fdi_pll_enable(intel_crtc);
  2838. } else {
  2839. assert_fdi_tx_disabled(dev_priv, pipe);
  2840. assert_fdi_rx_disabled(dev_priv, pipe);
  2841. }
  2842. ironlake_pfit_enable(intel_crtc);
  2843. /*
  2844. * On ILK+ LUT must be loaded before the pipe is running but with
  2845. * clocks enabled
  2846. */
  2847. intel_crtc_load_lut(crtc);
  2848. intel_update_watermarks(crtc);
  2849. intel_enable_pipe(dev_priv, pipe,
  2850. intel_crtc->config.has_pch_encoder, false);
  2851. intel_enable_plane(dev_priv, plane, pipe);
  2852. intel_enable_planes(crtc);
  2853. intel_crtc_update_cursor(crtc, true);
  2854. if (intel_crtc->config.has_pch_encoder)
  2855. ironlake_pch_enable(crtc);
  2856. mutex_lock(&dev->struct_mutex);
  2857. intel_update_fbc(dev);
  2858. mutex_unlock(&dev->struct_mutex);
  2859. for_each_encoder_on_crtc(dev, crtc, encoder)
  2860. encoder->enable(encoder);
  2861. if (HAS_PCH_CPT(dev))
  2862. cpt_verify_modeset(dev, intel_crtc->pipe);
  2863. /*
  2864. * There seems to be a race in PCH platform hw (at least on some
  2865. * outputs) where an enabled pipe still completes any pageflip right
  2866. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2867. * as the first vblank happend, everything works as expected. Hence just
  2868. * wait for one vblank before returning to avoid strange things
  2869. * happening.
  2870. */
  2871. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2872. }
  2873. /* IPS only exists on ULT machines and is tied to pipe A. */
  2874. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2875. {
  2876. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2877. }
  2878. static void hsw_enable_ips(struct intel_crtc *crtc)
  2879. {
  2880. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2881. if (!crtc->config.ips_enabled)
  2882. return;
  2883. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2884. * We guarantee that the plane is enabled by calling intel_enable_ips
  2885. * only after intel_enable_plane. And intel_enable_plane already waits
  2886. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2887. assert_plane_enabled(dev_priv, crtc->plane);
  2888. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2889. }
  2890. static void hsw_disable_ips(struct intel_crtc *crtc)
  2891. {
  2892. struct drm_device *dev = crtc->base.dev;
  2893. struct drm_i915_private *dev_priv = dev->dev_private;
  2894. if (!crtc->config.ips_enabled)
  2895. return;
  2896. assert_plane_enabled(dev_priv, crtc->plane);
  2897. I915_WRITE(IPS_CTL, 0);
  2898. /* We need to wait for a vblank before we can disable the plane. */
  2899. intel_wait_for_vblank(dev, crtc->pipe);
  2900. }
  2901. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2902. {
  2903. struct drm_device *dev = crtc->dev;
  2904. struct drm_i915_private *dev_priv = dev->dev_private;
  2905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2906. struct intel_encoder *encoder;
  2907. int pipe = intel_crtc->pipe;
  2908. int plane = intel_crtc->plane;
  2909. WARN_ON(!crtc->enabled);
  2910. if (intel_crtc->active)
  2911. return;
  2912. intel_crtc->active = true;
  2913. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2914. if (intel_crtc->config.has_pch_encoder)
  2915. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2916. if (intel_crtc->config.has_pch_encoder)
  2917. dev_priv->display.fdi_link_train(crtc);
  2918. for_each_encoder_on_crtc(dev, crtc, encoder)
  2919. if (encoder->pre_enable)
  2920. encoder->pre_enable(encoder);
  2921. intel_ddi_enable_pipe_clock(intel_crtc);
  2922. ironlake_pfit_enable(intel_crtc);
  2923. /*
  2924. * On ILK+ LUT must be loaded before the pipe is running but with
  2925. * clocks enabled
  2926. */
  2927. intel_crtc_load_lut(crtc);
  2928. intel_ddi_set_pipe_settings(crtc);
  2929. intel_ddi_enable_transcoder_func(crtc);
  2930. intel_update_watermarks(crtc);
  2931. intel_enable_pipe(dev_priv, pipe,
  2932. intel_crtc->config.has_pch_encoder, false);
  2933. intel_enable_plane(dev_priv, plane, pipe);
  2934. intel_enable_planes(crtc);
  2935. intel_crtc_update_cursor(crtc, true);
  2936. hsw_enable_ips(intel_crtc);
  2937. if (intel_crtc->config.has_pch_encoder)
  2938. lpt_pch_enable(crtc);
  2939. mutex_lock(&dev->struct_mutex);
  2940. intel_update_fbc(dev);
  2941. mutex_unlock(&dev->struct_mutex);
  2942. for_each_encoder_on_crtc(dev, crtc, encoder) {
  2943. encoder->enable(encoder);
  2944. intel_opregion_notify_encoder(encoder, true);
  2945. }
  2946. /*
  2947. * There seems to be a race in PCH platform hw (at least on some
  2948. * outputs) where an enabled pipe still completes any pageflip right
  2949. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2950. * as the first vblank happend, everything works as expected. Hence just
  2951. * wait for one vblank before returning to avoid strange things
  2952. * happening.
  2953. */
  2954. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2955. }
  2956. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2957. {
  2958. struct drm_device *dev = crtc->base.dev;
  2959. struct drm_i915_private *dev_priv = dev->dev_private;
  2960. int pipe = crtc->pipe;
  2961. /* To avoid upsetting the power well on haswell only disable the pfit if
  2962. * it's in use. The hw state code will make sure we get this right. */
  2963. if (crtc->config.pch_pfit.size) {
  2964. I915_WRITE(PF_CTL(pipe), 0);
  2965. I915_WRITE(PF_WIN_POS(pipe), 0);
  2966. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2967. }
  2968. }
  2969. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2970. {
  2971. struct drm_device *dev = crtc->dev;
  2972. struct drm_i915_private *dev_priv = dev->dev_private;
  2973. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2974. struct intel_encoder *encoder;
  2975. int pipe = intel_crtc->pipe;
  2976. int plane = intel_crtc->plane;
  2977. u32 reg, temp;
  2978. if (!intel_crtc->active)
  2979. return;
  2980. for_each_encoder_on_crtc(dev, crtc, encoder)
  2981. encoder->disable(encoder);
  2982. intel_crtc_wait_for_pending_flips(crtc);
  2983. drm_vblank_off(dev, pipe);
  2984. if (dev_priv->fbc.plane == plane)
  2985. intel_disable_fbc(dev);
  2986. intel_crtc_update_cursor(crtc, false);
  2987. intel_disable_planes(crtc);
  2988. intel_disable_plane(dev_priv, plane, pipe);
  2989. if (intel_crtc->config.has_pch_encoder)
  2990. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2991. intel_disable_pipe(dev_priv, pipe);
  2992. ironlake_pfit_disable(intel_crtc);
  2993. for_each_encoder_on_crtc(dev, crtc, encoder)
  2994. if (encoder->post_disable)
  2995. encoder->post_disable(encoder);
  2996. if (intel_crtc->config.has_pch_encoder) {
  2997. ironlake_fdi_disable(crtc);
  2998. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2999. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3000. if (HAS_PCH_CPT(dev)) {
  3001. /* disable TRANS_DP_CTL */
  3002. reg = TRANS_DP_CTL(pipe);
  3003. temp = I915_READ(reg);
  3004. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3005. TRANS_DP_PORT_SEL_MASK);
  3006. temp |= TRANS_DP_PORT_SEL_NONE;
  3007. I915_WRITE(reg, temp);
  3008. /* disable DPLL_SEL */
  3009. temp = I915_READ(PCH_DPLL_SEL);
  3010. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3011. I915_WRITE(PCH_DPLL_SEL, temp);
  3012. }
  3013. /* disable PCH DPLL */
  3014. intel_disable_shared_dpll(intel_crtc);
  3015. ironlake_fdi_pll_disable(intel_crtc);
  3016. }
  3017. intel_crtc->active = false;
  3018. intel_update_watermarks(crtc);
  3019. mutex_lock(&dev->struct_mutex);
  3020. intel_update_fbc(dev);
  3021. mutex_unlock(&dev->struct_mutex);
  3022. }
  3023. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3024. {
  3025. struct drm_device *dev = crtc->dev;
  3026. struct drm_i915_private *dev_priv = dev->dev_private;
  3027. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3028. struct intel_encoder *encoder;
  3029. int pipe = intel_crtc->pipe;
  3030. int plane = intel_crtc->plane;
  3031. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3032. if (!intel_crtc->active)
  3033. return;
  3034. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3035. intel_opregion_notify_encoder(encoder, false);
  3036. encoder->disable(encoder);
  3037. }
  3038. intel_crtc_wait_for_pending_flips(crtc);
  3039. drm_vblank_off(dev, pipe);
  3040. /* FBC must be disabled before disabling the plane on HSW. */
  3041. if (dev_priv->fbc.plane == plane)
  3042. intel_disable_fbc(dev);
  3043. hsw_disable_ips(intel_crtc);
  3044. intel_crtc_update_cursor(crtc, false);
  3045. intel_disable_planes(crtc);
  3046. intel_disable_plane(dev_priv, plane, pipe);
  3047. if (intel_crtc->config.has_pch_encoder)
  3048. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3049. intel_disable_pipe(dev_priv, pipe);
  3050. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3051. ironlake_pfit_disable(intel_crtc);
  3052. intel_ddi_disable_pipe_clock(intel_crtc);
  3053. for_each_encoder_on_crtc(dev, crtc, encoder)
  3054. if (encoder->post_disable)
  3055. encoder->post_disable(encoder);
  3056. if (intel_crtc->config.has_pch_encoder) {
  3057. lpt_disable_pch_transcoder(dev_priv);
  3058. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3059. intel_ddi_fdi_disable(crtc);
  3060. }
  3061. intel_crtc->active = false;
  3062. intel_update_watermarks(crtc);
  3063. mutex_lock(&dev->struct_mutex);
  3064. intel_update_fbc(dev);
  3065. mutex_unlock(&dev->struct_mutex);
  3066. }
  3067. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3068. {
  3069. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3070. intel_put_shared_dpll(intel_crtc);
  3071. }
  3072. static void haswell_crtc_off(struct drm_crtc *crtc)
  3073. {
  3074. intel_ddi_put_crtc_pll(crtc);
  3075. }
  3076. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3077. {
  3078. if (!enable && intel_crtc->overlay) {
  3079. struct drm_device *dev = intel_crtc->base.dev;
  3080. struct drm_i915_private *dev_priv = dev->dev_private;
  3081. mutex_lock(&dev->struct_mutex);
  3082. dev_priv->mm.interruptible = false;
  3083. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3084. dev_priv->mm.interruptible = true;
  3085. mutex_unlock(&dev->struct_mutex);
  3086. }
  3087. /* Let userspace switch the overlay on again. In most cases userspace
  3088. * has to recompute where to put it anyway.
  3089. */
  3090. }
  3091. /**
  3092. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3093. * cursor plane briefly if not already running after enabling the display
  3094. * plane.
  3095. * This workaround avoids occasional blank screens when self refresh is
  3096. * enabled.
  3097. */
  3098. static void
  3099. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3100. {
  3101. u32 cntl = I915_READ(CURCNTR(pipe));
  3102. if ((cntl & CURSOR_MODE) == 0) {
  3103. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3104. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3105. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3106. intel_wait_for_vblank(dev_priv->dev, pipe);
  3107. I915_WRITE(CURCNTR(pipe), cntl);
  3108. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3109. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3110. }
  3111. }
  3112. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3113. {
  3114. struct drm_device *dev = crtc->base.dev;
  3115. struct drm_i915_private *dev_priv = dev->dev_private;
  3116. struct intel_crtc_config *pipe_config = &crtc->config;
  3117. if (!crtc->config.gmch_pfit.control)
  3118. return;
  3119. /*
  3120. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3121. * according to register description and PRM.
  3122. */
  3123. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3124. assert_pipe_disabled(dev_priv, crtc->pipe);
  3125. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3126. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3127. /* Border color in case we don't scale up to the full screen. Black by
  3128. * default, change to something else for debugging. */
  3129. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3130. }
  3131. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3132. {
  3133. struct drm_device *dev = crtc->dev;
  3134. struct drm_i915_private *dev_priv = dev->dev_private;
  3135. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3136. struct intel_encoder *encoder;
  3137. int pipe = intel_crtc->pipe;
  3138. int plane = intel_crtc->plane;
  3139. bool is_dsi;
  3140. WARN_ON(!crtc->enabled);
  3141. if (intel_crtc->active)
  3142. return;
  3143. intel_crtc->active = true;
  3144. for_each_encoder_on_crtc(dev, crtc, encoder)
  3145. if (encoder->pre_pll_enable)
  3146. encoder->pre_pll_enable(encoder);
  3147. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3148. if (!is_dsi)
  3149. vlv_enable_pll(intel_crtc);
  3150. for_each_encoder_on_crtc(dev, crtc, encoder)
  3151. if (encoder->pre_enable)
  3152. encoder->pre_enable(encoder);
  3153. i9xx_pfit_enable(intel_crtc);
  3154. intel_crtc_load_lut(crtc);
  3155. intel_update_watermarks(crtc);
  3156. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3157. intel_enable_plane(dev_priv, plane, pipe);
  3158. intel_enable_planes(crtc);
  3159. intel_crtc_update_cursor(crtc, true);
  3160. intel_update_fbc(dev);
  3161. for_each_encoder_on_crtc(dev, crtc, encoder)
  3162. encoder->enable(encoder);
  3163. }
  3164. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3165. {
  3166. struct drm_device *dev = crtc->dev;
  3167. struct drm_i915_private *dev_priv = dev->dev_private;
  3168. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3169. struct intel_encoder *encoder;
  3170. int pipe = intel_crtc->pipe;
  3171. int plane = intel_crtc->plane;
  3172. WARN_ON(!crtc->enabled);
  3173. if (intel_crtc->active)
  3174. return;
  3175. intel_crtc->active = true;
  3176. for_each_encoder_on_crtc(dev, crtc, encoder)
  3177. if (encoder->pre_enable)
  3178. encoder->pre_enable(encoder);
  3179. i9xx_enable_pll(intel_crtc);
  3180. i9xx_pfit_enable(intel_crtc);
  3181. intel_crtc_load_lut(crtc);
  3182. intel_update_watermarks(crtc);
  3183. intel_enable_pipe(dev_priv, pipe, false, false);
  3184. intel_enable_plane(dev_priv, plane, pipe);
  3185. intel_enable_planes(crtc);
  3186. /* The fixup needs to happen before cursor is enabled */
  3187. if (IS_G4X(dev))
  3188. g4x_fixup_plane(dev_priv, pipe);
  3189. intel_crtc_update_cursor(crtc, true);
  3190. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3191. intel_crtc_dpms_overlay(intel_crtc, true);
  3192. intel_update_fbc(dev);
  3193. for_each_encoder_on_crtc(dev, crtc, encoder)
  3194. encoder->enable(encoder);
  3195. }
  3196. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3197. {
  3198. struct drm_device *dev = crtc->base.dev;
  3199. struct drm_i915_private *dev_priv = dev->dev_private;
  3200. if (!crtc->config.gmch_pfit.control)
  3201. return;
  3202. assert_pipe_disabled(dev_priv, crtc->pipe);
  3203. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3204. I915_READ(PFIT_CONTROL));
  3205. I915_WRITE(PFIT_CONTROL, 0);
  3206. }
  3207. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3208. {
  3209. struct drm_device *dev = crtc->dev;
  3210. struct drm_i915_private *dev_priv = dev->dev_private;
  3211. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3212. struct intel_encoder *encoder;
  3213. int pipe = intel_crtc->pipe;
  3214. int plane = intel_crtc->plane;
  3215. if (!intel_crtc->active)
  3216. return;
  3217. for_each_encoder_on_crtc(dev, crtc, encoder)
  3218. encoder->disable(encoder);
  3219. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3220. intel_crtc_wait_for_pending_flips(crtc);
  3221. drm_vblank_off(dev, pipe);
  3222. if (dev_priv->fbc.plane == plane)
  3223. intel_disable_fbc(dev);
  3224. intel_crtc_dpms_overlay(intel_crtc, false);
  3225. intel_crtc_update_cursor(crtc, false);
  3226. intel_disable_planes(crtc);
  3227. intel_disable_plane(dev_priv, plane, pipe);
  3228. intel_disable_pipe(dev_priv, pipe);
  3229. i9xx_pfit_disable(intel_crtc);
  3230. for_each_encoder_on_crtc(dev, crtc, encoder)
  3231. if (encoder->post_disable)
  3232. encoder->post_disable(encoder);
  3233. if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3234. i9xx_disable_pll(dev_priv, pipe);
  3235. intel_crtc->active = false;
  3236. intel_update_watermarks(crtc);
  3237. intel_update_fbc(dev);
  3238. }
  3239. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3240. {
  3241. }
  3242. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3243. bool enabled)
  3244. {
  3245. struct drm_device *dev = crtc->dev;
  3246. struct drm_i915_master_private *master_priv;
  3247. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3248. int pipe = intel_crtc->pipe;
  3249. if (!dev->primary->master)
  3250. return;
  3251. master_priv = dev->primary->master->driver_priv;
  3252. if (!master_priv->sarea_priv)
  3253. return;
  3254. switch (pipe) {
  3255. case 0:
  3256. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3257. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3258. break;
  3259. case 1:
  3260. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3261. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3262. break;
  3263. default:
  3264. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3265. break;
  3266. }
  3267. }
  3268. /**
  3269. * Sets the power management mode of the pipe and plane.
  3270. */
  3271. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3272. {
  3273. struct drm_device *dev = crtc->dev;
  3274. struct drm_i915_private *dev_priv = dev->dev_private;
  3275. struct intel_encoder *intel_encoder;
  3276. bool enable = false;
  3277. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3278. enable |= intel_encoder->connectors_active;
  3279. if (enable)
  3280. dev_priv->display.crtc_enable(crtc);
  3281. else
  3282. dev_priv->display.crtc_disable(crtc);
  3283. intel_crtc_update_sarea(crtc, enable);
  3284. }
  3285. static void intel_crtc_disable(struct drm_crtc *crtc)
  3286. {
  3287. struct drm_device *dev = crtc->dev;
  3288. struct drm_connector *connector;
  3289. struct drm_i915_private *dev_priv = dev->dev_private;
  3290. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3291. /* crtc should still be enabled when we disable it. */
  3292. WARN_ON(!crtc->enabled);
  3293. dev_priv->display.crtc_disable(crtc);
  3294. intel_crtc->eld_vld = false;
  3295. intel_crtc_update_sarea(crtc, false);
  3296. dev_priv->display.off(crtc);
  3297. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3298. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3299. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3300. if (crtc->fb) {
  3301. mutex_lock(&dev->struct_mutex);
  3302. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3303. mutex_unlock(&dev->struct_mutex);
  3304. crtc->fb = NULL;
  3305. }
  3306. /* Update computed state. */
  3307. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3308. if (!connector->encoder || !connector->encoder->crtc)
  3309. continue;
  3310. if (connector->encoder->crtc != crtc)
  3311. continue;
  3312. connector->dpms = DRM_MODE_DPMS_OFF;
  3313. to_intel_encoder(connector->encoder)->connectors_active = false;
  3314. }
  3315. }
  3316. void intel_encoder_destroy(struct drm_encoder *encoder)
  3317. {
  3318. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3319. drm_encoder_cleanup(encoder);
  3320. kfree(intel_encoder);
  3321. }
  3322. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3323. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3324. * state of the entire output pipe. */
  3325. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3326. {
  3327. if (mode == DRM_MODE_DPMS_ON) {
  3328. encoder->connectors_active = true;
  3329. intel_crtc_update_dpms(encoder->base.crtc);
  3330. } else {
  3331. encoder->connectors_active = false;
  3332. intel_crtc_update_dpms(encoder->base.crtc);
  3333. }
  3334. }
  3335. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3336. * internal consistency). */
  3337. static void intel_connector_check_state(struct intel_connector *connector)
  3338. {
  3339. if (connector->get_hw_state(connector)) {
  3340. struct intel_encoder *encoder = connector->encoder;
  3341. struct drm_crtc *crtc;
  3342. bool encoder_enabled;
  3343. enum pipe pipe;
  3344. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3345. connector->base.base.id,
  3346. drm_get_connector_name(&connector->base));
  3347. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3348. "wrong connector dpms state\n");
  3349. WARN(connector->base.encoder != &encoder->base,
  3350. "active connector not linked to encoder\n");
  3351. WARN(!encoder->connectors_active,
  3352. "encoder->connectors_active not set\n");
  3353. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3354. WARN(!encoder_enabled, "encoder not enabled\n");
  3355. if (WARN_ON(!encoder->base.crtc))
  3356. return;
  3357. crtc = encoder->base.crtc;
  3358. WARN(!crtc->enabled, "crtc not enabled\n");
  3359. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3360. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3361. "encoder active on the wrong pipe\n");
  3362. }
  3363. }
  3364. /* Even simpler default implementation, if there's really no special case to
  3365. * consider. */
  3366. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3367. {
  3368. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3369. /* All the simple cases only support two dpms states. */
  3370. if (mode != DRM_MODE_DPMS_ON)
  3371. mode = DRM_MODE_DPMS_OFF;
  3372. if (mode == connector->dpms)
  3373. return;
  3374. connector->dpms = mode;
  3375. /* Only need to change hw state when actually enabled */
  3376. if (encoder->base.crtc)
  3377. intel_encoder_dpms(encoder, mode);
  3378. else
  3379. WARN_ON(encoder->connectors_active != false);
  3380. intel_modeset_check_state(connector->dev);
  3381. }
  3382. /* Simple connector->get_hw_state implementation for encoders that support only
  3383. * one connector and no cloning and hence the encoder state determines the state
  3384. * of the connector. */
  3385. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3386. {
  3387. enum pipe pipe = 0;
  3388. struct intel_encoder *encoder = connector->encoder;
  3389. return encoder->get_hw_state(encoder, &pipe);
  3390. }
  3391. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3392. struct intel_crtc_config *pipe_config)
  3393. {
  3394. struct drm_i915_private *dev_priv = dev->dev_private;
  3395. struct intel_crtc *pipe_B_crtc =
  3396. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3397. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3398. pipe_name(pipe), pipe_config->fdi_lanes);
  3399. if (pipe_config->fdi_lanes > 4) {
  3400. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3401. pipe_name(pipe), pipe_config->fdi_lanes);
  3402. return false;
  3403. }
  3404. if (IS_HASWELL(dev)) {
  3405. if (pipe_config->fdi_lanes > 2) {
  3406. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3407. pipe_config->fdi_lanes);
  3408. return false;
  3409. } else {
  3410. return true;
  3411. }
  3412. }
  3413. if (INTEL_INFO(dev)->num_pipes == 2)
  3414. return true;
  3415. /* Ivybridge 3 pipe is really complicated */
  3416. switch (pipe) {
  3417. case PIPE_A:
  3418. return true;
  3419. case PIPE_B:
  3420. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3421. pipe_config->fdi_lanes > 2) {
  3422. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3423. pipe_name(pipe), pipe_config->fdi_lanes);
  3424. return false;
  3425. }
  3426. return true;
  3427. case PIPE_C:
  3428. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3429. pipe_B_crtc->config.fdi_lanes <= 2) {
  3430. if (pipe_config->fdi_lanes > 2) {
  3431. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3432. pipe_name(pipe), pipe_config->fdi_lanes);
  3433. return false;
  3434. }
  3435. } else {
  3436. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3437. return false;
  3438. }
  3439. return true;
  3440. default:
  3441. BUG();
  3442. }
  3443. }
  3444. #define RETRY 1
  3445. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3446. struct intel_crtc_config *pipe_config)
  3447. {
  3448. struct drm_device *dev = intel_crtc->base.dev;
  3449. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3450. int lane, link_bw, fdi_dotclock;
  3451. bool setup_ok, needs_recompute = false;
  3452. retry:
  3453. /* FDI is a binary signal running at ~2.7GHz, encoding
  3454. * each output octet as 10 bits. The actual frequency
  3455. * is stored as a divider into a 100MHz clock, and the
  3456. * mode pixel clock is stored in units of 1KHz.
  3457. * Hence the bw of each lane in terms of the mode signal
  3458. * is:
  3459. */
  3460. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3461. fdi_dotclock = adjusted_mode->clock;
  3462. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3463. pipe_config->pipe_bpp);
  3464. pipe_config->fdi_lanes = lane;
  3465. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3466. link_bw, &pipe_config->fdi_m_n);
  3467. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3468. intel_crtc->pipe, pipe_config);
  3469. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3470. pipe_config->pipe_bpp -= 2*3;
  3471. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3472. pipe_config->pipe_bpp);
  3473. needs_recompute = true;
  3474. pipe_config->bw_constrained = true;
  3475. goto retry;
  3476. }
  3477. if (needs_recompute)
  3478. return RETRY;
  3479. return setup_ok ? 0 : -EINVAL;
  3480. }
  3481. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3482. struct intel_crtc_config *pipe_config)
  3483. {
  3484. pipe_config->ips_enabled = i915_enable_ips &&
  3485. hsw_crtc_supports_ips(crtc) &&
  3486. pipe_config->pipe_bpp <= 24;
  3487. }
  3488. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3489. struct intel_crtc_config *pipe_config)
  3490. {
  3491. struct drm_device *dev = crtc->base.dev;
  3492. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3493. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3494. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3495. */
  3496. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3497. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3498. return -EINVAL;
  3499. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3500. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3501. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3502. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3503. * for lvds. */
  3504. pipe_config->pipe_bpp = 8*3;
  3505. }
  3506. if (HAS_IPS(dev))
  3507. hsw_compute_ips_config(crtc, pipe_config);
  3508. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3509. * clock survives for now. */
  3510. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3511. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3512. if (pipe_config->has_pch_encoder)
  3513. return ironlake_fdi_compute_config(crtc, pipe_config);
  3514. return 0;
  3515. }
  3516. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3517. {
  3518. return 400000; /* FIXME */
  3519. }
  3520. static int i945_get_display_clock_speed(struct drm_device *dev)
  3521. {
  3522. return 400000;
  3523. }
  3524. static int i915_get_display_clock_speed(struct drm_device *dev)
  3525. {
  3526. return 333000;
  3527. }
  3528. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3529. {
  3530. return 200000;
  3531. }
  3532. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3533. {
  3534. u16 gcfgc = 0;
  3535. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3536. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3537. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3538. return 267000;
  3539. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3540. return 333000;
  3541. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3542. return 444000;
  3543. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3544. return 200000;
  3545. default:
  3546. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3547. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3548. return 133000;
  3549. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3550. return 167000;
  3551. }
  3552. }
  3553. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3554. {
  3555. u16 gcfgc = 0;
  3556. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3557. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3558. return 133000;
  3559. else {
  3560. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3561. case GC_DISPLAY_CLOCK_333_MHZ:
  3562. return 333000;
  3563. default:
  3564. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3565. return 190000;
  3566. }
  3567. }
  3568. }
  3569. static int i865_get_display_clock_speed(struct drm_device *dev)
  3570. {
  3571. return 266000;
  3572. }
  3573. static int i855_get_display_clock_speed(struct drm_device *dev)
  3574. {
  3575. u16 hpllcc = 0;
  3576. /* Assume that the hardware is in the high speed state. This
  3577. * should be the default.
  3578. */
  3579. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3580. case GC_CLOCK_133_200:
  3581. case GC_CLOCK_100_200:
  3582. return 200000;
  3583. case GC_CLOCK_166_250:
  3584. return 250000;
  3585. case GC_CLOCK_100_133:
  3586. return 133000;
  3587. }
  3588. /* Shouldn't happen */
  3589. return 0;
  3590. }
  3591. static int i830_get_display_clock_speed(struct drm_device *dev)
  3592. {
  3593. return 133000;
  3594. }
  3595. static void
  3596. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3597. {
  3598. while (*num > DATA_LINK_M_N_MASK ||
  3599. *den > DATA_LINK_M_N_MASK) {
  3600. *num >>= 1;
  3601. *den >>= 1;
  3602. }
  3603. }
  3604. static void compute_m_n(unsigned int m, unsigned int n,
  3605. uint32_t *ret_m, uint32_t *ret_n)
  3606. {
  3607. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3608. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3609. intel_reduce_m_n_ratio(ret_m, ret_n);
  3610. }
  3611. void
  3612. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3613. int pixel_clock, int link_clock,
  3614. struct intel_link_m_n *m_n)
  3615. {
  3616. m_n->tu = 64;
  3617. compute_m_n(bits_per_pixel * pixel_clock,
  3618. link_clock * nlanes * 8,
  3619. &m_n->gmch_m, &m_n->gmch_n);
  3620. compute_m_n(pixel_clock, link_clock,
  3621. &m_n->link_m, &m_n->link_n);
  3622. }
  3623. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3624. {
  3625. if (i915_panel_use_ssc >= 0)
  3626. return i915_panel_use_ssc != 0;
  3627. return dev_priv->vbt.lvds_use_ssc
  3628. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3629. }
  3630. static int vlv_get_refclk(struct drm_crtc *crtc)
  3631. {
  3632. struct drm_device *dev = crtc->dev;
  3633. struct drm_i915_private *dev_priv = dev->dev_private;
  3634. int refclk = 27000; /* for DP & HDMI */
  3635. return 100000; /* only one validated so far */
  3636. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3637. refclk = 96000;
  3638. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3639. if (intel_panel_use_ssc(dev_priv))
  3640. refclk = 100000;
  3641. else
  3642. refclk = 96000;
  3643. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3644. refclk = 100000;
  3645. }
  3646. return refclk;
  3647. }
  3648. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3649. {
  3650. struct drm_device *dev = crtc->dev;
  3651. struct drm_i915_private *dev_priv = dev->dev_private;
  3652. int refclk;
  3653. if (IS_VALLEYVIEW(dev)) {
  3654. refclk = vlv_get_refclk(crtc);
  3655. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3656. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3657. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3658. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3659. refclk / 1000);
  3660. } else if (!IS_GEN2(dev)) {
  3661. refclk = 96000;
  3662. } else {
  3663. refclk = 48000;
  3664. }
  3665. return refclk;
  3666. }
  3667. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3668. {
  3669. return (1 << dpll->n) << 16 | dpll->m2;
  3670. }
  3671. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3672. {
  3673. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3674. }
  3675. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3676. intel_clock_t *reduced_clock)
  3677. {
  3678. struct drm_device *dev = crtc->base.dev;
  3679. struct drm_i915_private *dev_priv = dev->dev_private;
  3680. int pipe = crtc->pipe;
  3681. u32 fp, fp2 = 0;
  3682. if (IS_PINEVIEW(dev)) {
  3683. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3684. if (reduced_clock)
  3685. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3686. } else {
  3687. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3688. if (reduced_clock)
  3689. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3690. }
  3691. I915_WRITE(FP0(pipe), fp);
  3692. crtc->config.dpll_hw_state.fp0 = fp;
  3693. crtc->lowfreq_avail = false;
  3694. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3695. reduced_clock && i915_powersave) {
  3696. I915_WRITE(FP1(pipe), fp2);
  3697. crtc->config.dpll_hw_state.fp1 = fp2;
  3698. crtc->lowfreq_avail = true;
  3699. } else {
  3700. I915_WRITE(FP1(pipe), fp);
  3701. crtc->config.dpll_hw_state.fp1 = fp;
  3702. }
  3703. }
  3704. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3705. pipe)
  3706. {
  3707. u32 reg_val;
  3708. /*
  3709. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3710. * and set it to a reasonable value instead.
  3711. */
  3712. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3713. reg_val &= 0xffffff00;
  3714. reg_val |= 0x00000030;
  3715. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3716. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3717. reg_val &= 0x8cffffff;
  3718. reg_val = 0x8c000000;
  3719. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3720. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3721. reg_val &= 0xffffff00;
  3722. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3723. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3724. reg_val &= 0x00ffffff;
  3725. reg_val |= 0xb0000000;
  3726. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3727. }
  3728. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3729. struct intel_link_m_n *m_n)
  3730. {
  3731. struct drm_device *dev = crtc->base.dev;
  3732. struct drm_i915_private *dev_priv = dev->dev_private;
  3733. int pipe = crtc->pipe;
  3734. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3735. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3736. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3737. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3738. }
  3739. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3740. struct intel_link_m_n *m_n)
  3741. {
  3742. struct drm_device *dev = crtc->base.dev;
  3743. struct drm_i915_private *dev_priv = dev->dev_private;
  3744. int pipe = crtc->pipe;
  3745. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3746. if (INTEL_INFO(dev)->gen >= 5) {
  3747. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3748. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3749. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3750. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3751. } else {
  3752. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3753. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3754. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3755. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3756. }
  3757. }
  3758. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3759. {
  3760. if (crtc->config.has_pch_encoder)
  3761. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3762. else
  3763. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3764. }
  3765. static void vlv_update_pll(struct intel_crtc *crtc)
  3766. {
  3767. struct drm_device *dev = crtc->base.dev;
  3768. struct drm_i915_private *dev_priv = dev->dev_private;
  3769. int pipe = crtc->pipe;
  3770. u32 dpll, mdiv;
  3771. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3772. u32 coreclk, reg_val, dpll_md;
  3773. mutex_lock(&dev_priv->dpio_lock);
  3774. bestn = crtc->config.dpll.n;
  3775. bestm1 = crtc->config.dpll.m1;
  3776. bestm2 = crtc->config.dpll.m2;
  3777. bestp1 = crtc->config.dpll.p1;
  3778. bestp2 = crtc->config.dpll.p2;
  3779. /* See eDP HDMI DPIO driver vbios notes doc */
  3780. /* PLL B needs special handling */
  3781. if (pipe)
  3782. vlv_pllb_recal_opamp(dev_priv, pipe);
  3783. /* Set up Tx target for periodic Rcomp update */
  3784. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3785. /* Disable target IRef on PLL */
  3786. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3787. reg_val &= 0x00ffffff;
  3788. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3789. /* Disable fast lock */
  3790. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3791. /* Set idtafcrecal before PLL is enabled */
  3792. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3793. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3794. mdiv |= ((bestn << DPIO_N_SHIFT));
  3795. mdiv |= (1 << DPIO_K_SHIFT);
  3796. /*
  3797. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3798. * but we don't support that).
  3799. * Note: don't use the DAC post divider as it seems unstable.
  3800. */
  3801. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3802. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3803. mdiv |= DPIO_ENABLE_CALIBRATION;
  3804. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3805. /* Set HBR and RBR LPF coefficients */
  3806. if (crtc->config.port_clock == 162000 ||
  3807. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3808. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3809. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3810. 0x009f0003);
  3811. else
  3812. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3813. 0x00d0000f);
  3814. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3815. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3816. /* Use SSC source */
  3817. if (!pipe)
  3818. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3819. 0x0df40000);
  3820. else
  3821. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3822. 0x0df70000);
  3823. } else { /* HDMI or VGA */
  3824. /* Use bend source */
  3825. if (!pipe)
  3826. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3827. 0x0df70000);
  3828. else
  3829. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3830. 0x0df40000);
  3831. }
  3832. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3833. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3834. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3835. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3836. coreclk |= 0x01000000;
  3837. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3838. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3839. /* Enable DPIO clock input */
  3840. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3841. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3842. if (pipe)
  3843. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3844. dpll |= DPLL_VCO_ENABLE;
  3845. crtc->config.dpll_hw_state.dpll = dpll;
  3846. dpll_md = (crtc->config.pixel_multiplier - 1)
  3847. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3848. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3849. if (crtc->config.has_dp_encoder)
  3850. intel_dp_set_m_n(crtc);
  3851. mutex_unlock(&dev_priv->dpio_lock);
  3852. }
  3853. static void i9xx_update_pll(struct intel_crtc *crtc,
  3854. intel_clock_t *reduced_clock,
  3855. int num_connectors)
  3856. {
  3857. struct drm_device *dev = crtc->base.dev;
  3858. struct drm_i915_private *dev_priv = dev->dev_private;
  3859. u32 dpll;
  3860. bool is_sdvo;
  3861. struct dpll *clock = &crtc->config.dpll;
  3862. i9xx_update_pll_dividers(crtc, reduced_clock);
  3863. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3864. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3865. dpll = DPLL_VGA_MODE_DIS;
  3866. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3867. dpll |= DPLLB_MODE_LVDS;
  3868. else
  3869. dpll |= DPLLB_MODE_DAC_SERIAL;
  3870. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3871. dpll |= (crtc->config.pixel_multiplier - 1)
  3872. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3873. }
  3874. if (is_sdvo)
  3875. dpll |= DPLL_SDVO_HIGH_SPEED;
  3876. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3877. dpll |= DPLL_SDVO_HIGH_SPEED;
  3878. /* compute bitmask from p1 value */
  3879. if (IS_PINEVIEW(dev))
  3880. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3881. else {
  3882. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3883. if (IS_G4X(dev) && reduced_clock)
  3884. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3885. }
  3886. switch (clock->p2) {
  3887. case 5:
  3888. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3889. break;
  3890. case 7:
  3891. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3892. break;
  3893. case 10:
  3894. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3895. break;
  3896. case 14:
  3897. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3898. break;
  3899. }
  3900. if (INTEL_INFO(dev)->gen >= 4)
  3901. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3902. if (crtc->config.sdvo_tv_clock)
  3903. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3904. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3905. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3906. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3907. else
  3908. dpll |= PLL_REF_INPUT_DREFCLK;
  3909. dpll |= DPLL_VCO_ENABLE;
  3910. crtc->config.dpll_hw_state.dpll = dpll;
  3911. if (INTEL_INFO(dev)->gen >= 4) {
  3912. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3913. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3914. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3915. }
  3916. if (crtc->config.has_dp_encoder)
  3917. intel_dp_set_m_n(crtc);
  3918. }
  3919. static void i8xx_update_pll(struct intel_crtc *crtc,
  3920. intel_clock_t *reduced_clock,
  3921. int num_connectors)
  3922. {
  3923. struct drm_device *dev = crtc->base.dev;
  3924. struct drm_i915_private *dev_priv = dev->dev_private;
  3925. u32 dpll;
  3926. struct dpll *clock = &crtc->config.dpll;
  3927. i9xx_update_pll_dividers(crtc, reduced_clock);
  3928. dpll = DPLL_VGA_MODE_DIS;
  3929. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3930. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3931. } else {
  3932. if (clock->p1 == 2)
  3933. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3934. else
  3935. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3936. if (clock->p2 == 4)
  3937. dpll |= PLL_P2_DIVIDE_BY_4;
  3938. }
  3939. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3940. dpll |= DPLL_DVO_2X_MODE;
  3941. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3942. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3943. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3944. else
  3945. dpll |= PLL_REF_INPUT_DREFCLK;
  3946. dpll |= DPLL_VCO_ENABLE;
  3947. crtc->config.dpll_hw_state.dpll = dpll;
  3948. }
  3949. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3950. {
  3951. struct drm_device *dev = intel_crtc->base.dev;
  3952. struct drm_i915_private *dev_priv = dev->dev_private;
  3953. enum pipe pipe = intel_crtc->pipe;
  3954. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3955. struct drm_display_mode *adjusted_mode =
  3956. &intel_crtc->config.adjusted_mode;
  3957. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3958. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3959. /* We need to be careful not to changed the adjusted mode, for otherwise
  3960. * the hw state checker will get angry at the mismatch. */
  3961. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3962. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3963. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3964. /* the chip adds 2 halflines automatically */
  3965. crtc_vtotal -= 1;
  3966. crtc_vblank_end -= 1;
  3967. vsyncshift = adjusted_mode->crtc_hsync_start
  3968. - adjusted_mode->crtc_htotal / 2;
  3969. } else {
  3970. vsyncshift = 0;
  3971. }
  3972. if (INTEL_INFO(dev)->gen > 3)
  3973. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3974. I915_WRITE(HTOTAL(cpu_transcoder),
  3975. (adjusted_mode->crtc_hdisplay - 1) |
  3976. ((adjusted_mode->crtc_htotal - 1) << 16));
  3977. I915_WRITE(HBLANK(cpu_transcoder),
  3978. (adjusted_mode->crtc_hblank_start - 1) |
  3979. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3980. I915_WRITE(HSYNC(cpu_transcoder),
  3981. (adjusted_mode->crtc_hsync_start - 1) |
  3982. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3983. I915_WRITE(VTOTAL(cpu_transcoder),
  3984. (adjusted_mode->crtc_vdisplay - 1) |
  3985. ((crtc_vtotal - 1) << 16));
  3986. I915_WRITE(VBLANK(cpu_transcoder),
  3987. (adjusted_mode->crtc_vblank_start - 1) |
  3988. ((crtc_vblank_end - 1) << 16));
  3989. I915_WRITE(VSYNC(cpu_transcoder),
  3990. (adjusted_mode->crtc_vsync_start - 1) |
  3991. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3992. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3993. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3994. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3995. * bits. */
  3996. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3997. (pipe == PIPE_B || pipe == PIPE_C))
  3998. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3999. /* pipesrc controls the size that is scaled from, which should
  4000. * always be the user's requested size.
  4001. */
  4002. I915_WRITE(PIPESRC(pipe),
  4003. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4004. }
  4005. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4006. struct intel_crtc_config *pipe_config)
  4007. {
  4008. struct drm_device *dev = crtc->base.dev;
  4009. struct drm_i915_private *dev_priv = dev->dev_private;
  4010. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4011. uint32_t tmp;
  4012. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4013. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4014. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4015. tmp = I915_READ(HBLANK(cpu_transcoder));
  4016. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4017. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4018. tmp = I915_READ(HSYNC(cpu_transcoder));
  4019. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4020. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4021. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4022. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4023. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4024. tmp = I915_READ(VBLANK(cpu_transcoder));
  4025. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4026. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4027. tmp = I915_READ(VSYNC(cpu_transcoder));
  4028. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4029. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4030. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4031. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4032. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4033. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4034. }
  4035. tmp = I915_READ(PIPESRC(crtc->pipe));
  4036. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4037. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4038. }
  4039. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4040. struct intel_crtc_config *pipe_config)
  4041. {
  4042. struct drm_crtc *crtc = &intel_crtc->base;
  4043. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4044. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4045. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4046. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4047. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4048. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4049. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4050. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4051. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4052. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4053. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4054. }
  4055. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4056. {
  4057. struct drm_device *dev = intel_crtc->base.dev;
  4058. struct drm_i915_private *dev_priv = dev->dev_private;
  4059. uint32_t pipeconf;
  4060. pipeconf = 0;
  4061. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4062. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4063. * core speed.
  4064. *
  4065. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4066. * pipe == 0 check?
  4067. */
  4068. if (intel_crtc->config.requested_mode.clock >
  4069. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4070. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4071. }
  4072. /* only g4x and later have fancy bpc/dither controls */
  4073. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4074. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4075. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4076. pipeconf |= PIPECONF_DITHER_EN |
  4077. PIPECONF_DITHER_TYPE_SP;
  4078. switch (intel_crtc->config.pipe_bpp) {
  4079. case 18:
  4080. pipeconf |= PIPECONF_6BPC;
  4081. break;
  4082. case 24:
  4083. pipeconf |= PIPECONF_8BPC;
  4084. break;
  4085. case 30:
  4086. pipeconf |= PIPECONF_10BPC;
  4087. break;
  4088. default:
  4089. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4090. BUG();
  4091. }
  4092. }
  4093. if (HAS_PIPE_CXSR(dev)) {
  4094. if (intel_crtc->lowfreq_avail) {
  4095. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4096. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4097. } else {
  4098. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4099. }
  4100. }
  4101. if (!IS_GEN2(dev) &&
  4102. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4103. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4104. else
  4105. pipeconf |= PIPECONF_PROGRESSIVE;
  4106. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4107. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4108. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4109. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4110. }
  4111. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4112. int x, int y,
  4113. struct drm_framebuffer *fb)
  4114. {
  4115. struct drm_device *dev = crtc->dev;
  4116. struct drm_i915_private *dev_priv = dev->dev_private;
  4117. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4118. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4119. int pipe = intel_crtc->pipe;
  4120. int plane = intel_crtc->plane;
  4121. int refclk, num_connectors = 0;
  4122. intel_clock_t clock, reduced_clock;
  4123. u32 dspcntr;
  4124. bool ok, has_reduced_clock = false;
  4125. bool is_lvds = false, is_dsi = false;
  4126. struct intel_encoder *encoder;
  4127. const intel_limit_t *limit;
  4128. int ret;
  4129. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4130. switch (encoder->type) {
  4131. case INTEL_OUTPUT_LVDS:
  4132. is_lvds = true;
  4133. break;
  4134. case INTEL_OUTPUT_DSI:
  4135. is_dsi = true;
  4136. break;
  4137. }
  4138. num_connectors++;
  4139. }
  4140. refclk = i9xx_get_refclk(crtc, num_connectors);
  4141. if (!is_dsi && !intel_crtc->config.clock_set) {
  4142. /*
  4143. * Returns a set of divisors for the desired target clock with
  4144. * the given refclk, or FALSE. The returned values represent
  4145. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4146. * 2) / p1 / p2.
  4147. */
  4148. limit = intel_limit(crtc, refclk);
  4149. ok = dev_priv->display.find_dpll(limit, crtc,
  4150. intel_crtc->config.port_clock,
  4151. refclk, NULL, &clock);
  4152. if (!ok && !intel_crtc->config.clock_set) {
  4153. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4154. return -EINVAL;
  4155. }
  4156. }
  4157. /* Ensure that the cursor is valid for the new mode before changing... */
  4158. intel_crtc_update_cursor(crtc, true);
  4159. if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
  4160. /*
  4161. * Ensure we match the reduced clock's P to the target clock.
  4162. * If the clocks don't match, we can't switch the display clock
  4163. * by using the FP0/FP1. In such case we will disable the LVDS
  4164. * downclock feature.
  4165. */
  4166. limit = intel_limit(crtc, refclk);
  4167. has_reduced_clock =
  4168. dev_priv->display.find_dpll(limit, crtc,
  4169. dev_priv->lvds_downclock,
  4170. refclk, &clock,
  4171. &reduced_clock);
  4172. }
  4173. /* Compat-code for transition, will disappear. */
  4174. if (!intel_crtc->config.clock_set) {
  4175. intel_crtc->config.dpll.n = clock.n;
  4176. intel_crtc->config.dpll.m1 = clock.m1;
  4177. intel_crtc->config.dpll.m2 = clock.m2;
  4178. intel_crtc->config.dpll.p1 = clock.p1;
  4179. intel_crtc->config.dpll.p2 = clock.p2;
  4180. }
  4181. if (IS_GEN2(dev)) {
  4182. i8xx_update_pll(intel_crtc,
  4183. has_reduced_clock ? &reduced_clock : NULL,
  4184. num_connectors);
  4185. } else if (IS_VALLEYVIEW(dev)) {
  4186. if (!is_dsi)
  4187. vlv_update_pll(intel_crtc);
  4188. } else {
  4189. i9xx_update_pll(intel_crtc,
  4190. has_reduced_clock ? &reduced_clock : NULL,
  4191. num_connectors);
  4192. }
  4193. /* Set up the display plane register */
  4194. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4195. if (!IS_VALLEYVIEW(dev)) {
  4196. if (pipe == 0)
  4197. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4198. else
  4199. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4200. }
  4201. intel_set_pipe_timings(intel_crtc);
  4202. /* pipesrc and dspsize control the size that is scaled from,
  4203. * which should always be the user's requested size.
  4204. */
  4205. I915_WRITE(DSPSIZE(plane),
  4206. ((mode->vdisplay - 1) << 16) |
  4207. (mode->hdisplay - 1));
  4208. I915_WRITE(DSPPOS(plane), 0);
  4209. i9xx_set_pipeconf(intel_crtc);
  4210. I915_WRITE(DSPCNTR(plane), dspcntr);
  4211. POSTING_READ(DSPCNTR(plane));
  4212. ret = intel_pipe_set_base(crtc, x, y, fb);
  4213. return ret;
  4214. }
  4215. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4216. struct intel_crtc_config *pipe_config)
  4217. {
  4218. struct drm_device *dev = crtc->base.dev;
  4219. struct drm_i915_private *dev_priv = dev->dev_private;
  4220. uint32_t tmp;
  4221. tmp = I915_READ(PFIT_CONTROL);
  4222. if (!(tmp & PFIT_ENABLE))
  4223. return;
  4224. /* Check whether the pfit is attached to our pipe. */
  4225. if (INTEL_INFO(dev)->gen < 4) {
  4226. if (crtc->pipe != PIPE_B)
  4227. return;
  4228. } else {
  4229. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4230. return;
  4231. }
  4232. pipe_config->gmch_pfit.control = tmp;
  4233. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4234. if (INTEL_INFO(dev)->gen < 5)
  4235. pipe_config->gmch_pfit.lvds_border_bits =
  4236. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4237. }
  4238. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4239. struct intel_crtc_config *pipe_config)
  4240. {
  4241. struct drm_device *dev = crtc->base.dev;
  4242. struct drm_i915_private *dev_priv = dev->dev_private;
  4243. uint32_t tmp;
  4244. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4245. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4246. tmp = I915_READ(PIPECONF(crtc->pipe));
  4247. if (!(tmp & PIPECONF_ENABLE))
  4248. return false;
  4249. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4250. switch (tmp & PIPECONF_BPC_MASK) {
  4251. case PIPECONF_6BPC:
  4252. pipe_config->pipe_bpp = 18;
  4253. break;
  4254. case PIPECONF_8BPC:
  4255. pipe_config->pipe_bpp = 24;
  4256. break;
  4257. case PIPECONF_10BPC:
  4258. pipe_config->pipe_bpp = 30;
  4259. break;
  4260. default:
  4261. break;
  4262. }
  4263. }
  4264. intel_get_pipe_timings(crtc, pipe_config);
  4265. i9xx_get_pfit_config(crtc, pipe_config);
  4266. if (INTEL_INFO(dev)->gen >= 4) {
  4267. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4268. pipe_config->pixel_multiplier =
  4269. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4270. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4271. pipe_config->dpll_hw_state.dpll_md = tmp;
  4272. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4273. tmp = I915_READ(DPLL(crtc->pipe));
  4274. pipe_config->pixel_multiplier =
  4275. ((tmp & SDVO_MULTIPLIER_MASK)
  4276. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4277. } else {
  4278. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4279. * port and will be fixed up in the encoder->get_config
  4280. * function. */
  4281. pipe_config->pixel_multiplier = 1;
  4282. }
  4283. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4284. if (!IS_VALLEYVIEW(dev)) {
  4285. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4286. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4287. } else {
  4288. /* Mask out read-only status bits. */
  4289. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4290. DPLL_PORTC_READY_MASK |
  4291. DPLL_PORTB_READY_MASK);
  4292. }
  4293. return true;
  4294. }
  4295. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4296. {
  4297. struct drm_i915_private *dev_priv = dev->dev_private;
  4298. struct drm_mode_config *mode_config = &dev->mode_config;
  4299. struct intel_encoder *encoder;
  4300. u32 val, final;
  4301. bool has_lvds = false;
  4302. bool has_cpu_edp = false;
  4303. bool has_panel = false;
  4304. bool has_ck505 = false;
  4305. bool can_ssc = false;
  4306. /* We need to take the global config into account */
  4307. list_for_each_entry(encoder, &mode_config->encoder_list,
  4308. base.head) {
  4309. switch (encoder->type) {
  4310. case INTEL_OUTPUT_LVDS:
  4311. has_panel = true;
  4312. has_lvds = true;
  4313. break;
  4314. case INTEL_OUTPUT_EDP:
  4315. has_panel = true;
  4316. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4317. has_cpu_edp = true;
  4318. break;
  4319. }
  4320. }
  4321. if (HAS_PCH_IBX(dev)) {
  4322. has_ck505 = dev_priv->vbt.display_clock_mode;
  4323. can_ssc = has_ck505;
  4324. } else {
  4325. has_ck505 = false;
  4326. can_ssc = true;
  4327. }
  4328. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4329. has_panel, has_lvds, has_ck505);
  4330. /* Ironlake: try to setup display ref clock before DPLL
  4331. * enabling. This is only under driver's control after
  4332. * PCH B stepping, previous chipset stepping should be
  4333. * ignoring this setting.
  4334. */
  4335. val = I915_READ(PCH_DREF_CONTROL);
  4336. /* As we must carefully and slowly disable/enable each source in turn,
  4337. * compute the final state we want first and check if we need to
  4338. * make any changes at all.
  4339. */
  4340. final = val;
  4341. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4342. if (has_ck505)
  4343. final |= DREF_NONSPREAD_CK505_ENABLE;
  4344. else
  4345. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4346. final &= ~DREF_SSC_SOURCE_MASK;
  4347. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4348. final &= ~DREF_SSC1_ENABLE;
  4349. if (has_panel) {
  4350. final |= DREF_SSC_SOURCE_ENABLE;
  4351. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4352. final |= DREF_SSC1_ENABLE;
  4353. if (has_cpu_edp) {
  4354. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4355. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4356. else
  4357. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4358. } else
  4359. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4360. } else {
  4361. final |= DREF_SSC_SOURCE_DISABLE;
  4362. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4363. }
  4364. if (final == val)
  4365. return;
  4366. /* Always enable nonspread source */
  4367. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4368. if (has_ck505)
  4369. val |= DREF_NONSPREAD_CK505_ENABLE;
  4370. else
  4371. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4372. if (has_panel) {
  4373. val &= ~DREF_SSC_SOURCE_MASK;
  4374. val |= DREF_SSC_SOURCE_ENABLE;
  4375. /* SSC must be turned on before enabling the CPU output */
  4376. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4377. DRM_DEBUG_KMS("Using SSC on panel\n");
  4378. val |= DREF_SSC1_ENABLE;
  4379. } else
  4380. val &= ~DREF_SSC1_ENABLE;
  4381. /* Get SSC going before enabling the outputs */
  4382. I915_WRITE(PCH_DREF_CONTROL, val);
  4383. POSTING_READ(PCH_DREF_CONTROL);
  4384. udelay(200);
  4385. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4386. /* Enable CPU source on CPU attached eDP */
  4387. if (has_cpu_edp) {
  4388. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4389. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4390. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4391. }
  4392. else
  4393. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4394. } else
  4395. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4396. I915_WRITE(PCH_DREF_CONTROL, val);
  4397. POSTING_READ(PCH_DREF_CONTROL);
  4398. udelay(200);
  4399. } else {
  4400. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4401. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4402. /* Turn off CPU output */
  4403. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4404. I915_WRITE(PCH_DREF_CONTROL, val);
  4405. POSTING_READ(PCH_DREF_CONTROL);
  4406. udelay(200);
  4407. /* Turn off the SSC source */
  4408. val &= ~DREF_SSC_SOURCE_MASK;
  4409. val |= DREF_SSC_SOURCE_DISABLE;
  4410. /* Turn off SSC1 */
  4411. val &= ~DREF_SSC1_ENABLE;
  4412. I915_WRITE(PCH_DREF_CONTROL, val);
  4413. POSTING_READ(PCH_DREF_CONTROL);
  4414. udelay(200);
  4415. }
  4416. BUG_ON(val != final);
  4417. }
  4418. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4419. {
  4420. uint32_t tmp;
  4421. tmp = I915_READ(SOUTH_CHICKEN2);
  4422. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4423. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4424. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4425. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4426. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4427. tmp = I915_READ(SOUTH_CHICKEN2);
  4428. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4429. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4430. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4431. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4432. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4433. }
  4434. /* WaMPhyProgramming:hsw */
  4435. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4436. {
  4437. uint32_t tmp;
  4438. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4439. tmp &= ~(0xFF << 24);
  4440. tmp |= (0x12 << 24);
  4441. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4442. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4443. tmp |= (1 << 11);
  4444. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4445. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4446. tmp |= (1 << 11);
  4447. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4448. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4449. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4450. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4451. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4452. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4453. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4454. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4455. tmp &= ~(7 << 13);
  4456. tmp |= (5 << 13);
  4457. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4458. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4459. tmp &= ~(7 << 13);
  4460. tmp |= (5 << 13);
  4461. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4462. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4463. tmp &= ~0xFF;
  4464. tmp |= 0x1C;
  4465. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4466. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4467. tmp &= ~0xFF;
  4468. tmp |= 0x1C;
  4469. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4470. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4471. tmp &= ~(0xFF << 16);
  4472. tmp |= (0x1C << 16);
  4473. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4474. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4475. tmp &= ~(0xFF << 16);
  4476. tmp |= (0x1C << 16);
  4477. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4478. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4479. tmp |= (1 << 27);
  4480. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4481. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4482. tmp |= (1 << 27);
  4483. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4484. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4485. tmp &= ~(0xF << 28);
  4486. tmp |= (4 << 28);
  4487. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4488. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4489. tmp &= ~(0xF << 28);
  4490. tmp |= (4 << 28);
  4491. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4492. }
  4493. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4494. * Programming" based on the parameters passed:
  4495. * - Sequence to enable CLKOUT_DP
  4496. * - Sequence to enable CLKOUT_DP without spread
  4497. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4498. */
  4499. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4500. bool with_fdi)
  4501. {
  4502. struct drm_i915_private *dev_priv = dev->dev_private;
  4503. uint32_t reg, tmp;
  4504. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4505. with_spread = true;
  4506. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4507. with_fdi, "LP PCH doesn't have FDI\n"))
  4508. with_fdi = false;
  4509. mutex_lock(&dev_priv->dpio_lock);
  4510. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4511. tmp &= ~SBI_SSCCTL_DISABLE;
  4512. tmp |= SBI_SSCCTL_PATHALT;
  4513. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4514. udelay(24);
  4515. if (with_spread) {
  4516. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4517. tmp &= ~SBI_SSCCTL_PATHALT;
  4518. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4519. if (with_fdi) {
  4520. lpt_reset_fdi_mphy(dev_priv);
  4521. lpt_program_fdi_mphy(dev_priv);
  4522. }
  4523. }
  4524. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4525. SBI_GEN0 : SBI_DBUFF0;
  4526. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4527. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4528. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4529. mutex_unlock(&dev_priv->dpio_lock);
  4530. }
  4531. /* Sequence to disable CLKOUT_DP */
  4532. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4533. {
  4534. struct drm_i915_private *dev_priv = dev->dev_private;
  4535. uint32_t reg, tmp;
  4536. mutex_lock(&dev_priv->dpio_lock);
  4537. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4538. SBI_GEN0 : SBI_DBUFF0;
  4539. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4540. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4541. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4542. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4543. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4544. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4545. tmp |= SBI_SSCCTL_PATHALT;
  4546. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4547. udelay(32);
  4548. }
  4549. tmp |= SBI_SSCCTL_DISABLE;
  4550. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4551. }
  4552. mutex_unlock(&dev_priv->dpio_lock);
  4553. }
  4554. static void lpt_init_pch_refclk(struct drm_device *dev)
  4555. {
  4556. struct drm_mode_config *mode_config = &dev->mode_config;
  4557. struct intel_encoder *encoder;
  4558. bool has_vga = false;
  4559. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4560. switch (encoder->type) {
  4561. case INTEL_OUTPUT_ANALOG:
  4562. has_vga = true;
  4563. break;
  4564. }
  4565. }
  4566. if (has_vga)
  4567. lpt_enable_clkout_dp(dev, true, true);
  4568. else
  4569. lpt_disable_clkout_dp(dev);
  4570. }
  4571. /*
  4572. * Initialize reference clocks when the driver loads
  4573. */
  4574. void intel_init_pch_refclk(struct drm_device *dev)
  4575. {
  4576. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4577. ironlake_init_pch_refclk(dev);
  4578. else if (HAS_PCH_LPT(dev))
  4579. lpt_init_pch_refclk(dev);
  4580. }
  4581. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4582. {
  4583. struct drm_device *dev = crtc->dev;
  4584. struct drm_i915_private *dev_priv = dev->dev_private;
  4585. struct intel_encoder *encoder;
  4586. int num_connectors = 0;
  4587. bool is_lvds = false;
  4588. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4589. switch (encoder->type) {
  4590. case INTEL_OUTPUT_LVDS:
  4591. is_lvds = true;
  4592. break;
  4593. }
  4594. num_connectors++;
  4595. }
  4596. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4597. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4598. dev_priv->vbt.lvds_ssc_freq);
  4599. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4600. }
  4601. return 120000;
  4602. }
  4603. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4604. {
  4605. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4606. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4607. int pipe = intel_crtc->pipe;
  4608. uint32_t val;
  4609. val = 0;
  4610. switch (intel_crtc->config.pipe_bpp) {
  4611. case 18:
  4612. val |= PIPECONF_6BPC;
  4613. break;
  4614. case 24:
  4615. val |= PIPECONF_8BPC;
  4616. break;
  4617. case 30:
  4618. val |= PIPECONF_10BPC;
  4619. break;
  4620. case 36:
  4621. val |= PIPECONF_12BPC;
  4622. break;
  4623. default:
  4624. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4625. BUG();
  4626. }
  4627. if (intel_crtc->config.dither)
  4628. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4629. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4630. val |= PIPECONF_INTERLACED_ILK;
  4631. else
  4632. val |= PIPECONF_PROGRESSIVE;
  4633. if (intel_crtc->config.limited_color_range)
  4634. val |= PIPECONF_COLOR_RANGE_SELECT;
  4635. I915_WRITE(PIPECONF(pipe), val);
  4636. POSTING_READ(PIPECONF(pipe));
  4637. }
  4638. /*
  4639. * Set up the pipe CSC unit.
  4640. *
  4641. * Currently only full range RGB to limited range RGB conversion
  4642. * is supported, but eventually this should handle various
  4643. * RGB<->YCbCr scenarios as well.
  4644. */
  4645. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4646. {
  4647. struct drm_device *dev = crtc->dev;
  4648. struct drm_i915_private *dev_priv = dev->dev_private;
  4649. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4650. int pipe = intel_crtc->pipe;
  4651. uint16_t coeff = 0x7800; /* 1.0 */
  4652. /*
  4653. * TODO: Check what kind of values actually come out of the pipe
  4654. * with these coeff/postoff values and adjust to get the best
  4655. * accuracy. Perhaps we even need to take the bpc value into
  4656. * consideration.
  4657. */
  4658. if (intel_crtc->config.limited_color_range)
  4659. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4660. /*
  4661. * GY/GU and RY/RU should be the other way around according
  4662. * to BSpec, but reality doesn't agree. Just set them up in
  4663. * a way that results in the correct picture.
  4664. */
  4665. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4666. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4667. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4668. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4669. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4670. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4671. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4672. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4673. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4674. if (INTEL_INFO(dev)->gen > 6) {
  4675. uint16_t postoff = 0;
  4676. if (intel_crtc->config.limited_color_range)
  4677. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4678. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4679. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4680. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4681. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4682. } else {
  4683. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4684. if (intel_crtc->config.limited_color_range)
  4685. mode |= CSC_BLACK_SCREEN_OFFSET;
  4686. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4687. }
  4688. }
  4689. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4690. {
  4691. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4692. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4693. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4694. uint32_t val;
  4695. val = 0;
  4696. if (intel_crtc->config.dither)
  4697. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4698. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4699. val |= PIPECONF_INTERLACED_ILK;
  4700. else
  4701. val |= PIPECONF_PROGRESSIVE;
  4702. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4703. POSTING_READ(PIPECONF(cpu_transcoder));
  4704. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4705. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4706. }
  4707. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4708. intel_clock_t *clock,
  4709. bool *has_reduced_clock,
  4710. intel_clock_t *reduced_clock)
  4711. {
  4712. struct drm_device *dev = crtc->dev;
  4713. struct drm_i915_private *dev_priv = dev->dev_private;
  4714. struct intel_encoder *intel_encoder;
  4715. int refclk;
  4716. const intel_limit_t *limit;
  4717. bool ret, is_lvds = false;
  4718. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4719. switch (intel_encoder->type) {
  4720. case INTEL_OUTPUT_LVDS:
  4721. is_lvds = true;
  4722. break;
  4723. }
  4724. }
  4725. refclk = ironlake_get_refclk(crtc);
  4726. /*
  4727. * Returns a set of divisors for the desired target clock with the given
  4728. * refclk, or FALSE. The returned values represent the clock equation:
  4729. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4730. */
  4731. limit = intel_limit(crtc, refclk);
  4732. ret = dev_priv->display.find_dpll(limit, crtc,
  4733. to_intel_crtc(crtc)->config.port_clock,
  4734. refclk, NULL, clock);
  4735. if (!ret)
  4736. return false;
  4737. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4738. /*
  4739. * Ensure we match the reduced clock's P to the target clock.
  4740. * If the clocks don't match, we can't switch the display clock
  4741. * by using the FP0/FP1. In such case we will disable the LVDS
  4742. * downclock feature.
  4743. */
  4744. *has_reduced_clock =
  4745. dev_priv->display.find_dpll(limit, crtc,
  4746. dev_priv->lvds_downclock,
  4747. refclk, clock,
  4748. reduced_clock);
  4749. }
  4750. return true;
  4751. }
  4752. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4753. {
  4754. struct drm_i915_private *dev_priv = dev->dev_private;
  4755. uint32_t temp;
  4756. temp = I915_READ(SOUTH_CHICKEN1);
  4757. if (temp & FDI_BC_BIFURCATION_SELECT)
  4758. return;
  4759. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4760. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4761. temp |= FDI_BC_BIFURCATION_SELECT;
  4762. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4763. I915_WRITE(SOUTH_CHICKEN1, temp);
  4764. POSTING_READ(SOUTH_CHICKEN1);
  4765. }
  4766. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4767. {
  4768. struct drm_device *dev = intel_crtc->base.dev;
  4769. struct drm_i915_private *dev_priv = dev->dev_private;
  4770. switch (intel_crtc->pipe) {
  4771. case PIPE_A:
  4772. break;
  4773. case PIPE_B:
  4774. if (intel_crtc->config.fdi_lanes > 2)
  4775. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4776. else
  4777. cpt_enable_fdi_bc_bifurcation(dev);
  4778. break;
  4779. case PIPE_C:
  4780. cpt_enable_fdi_bc_bifurcation(dev);
  4781. break;
  4782. default:
  4783. BUG();
  4784. }
  4785. }
  4786. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4787. {
  4788. /*
  4789. * Account for spread spectrum to avoid
  4790. * oversubscribing the link. Max center spread
  4791. * is 2.5%; use 5% for safety's sake.
  4792. */
  4793. u32 bps = target_clock * bpp * 21 / 20;
  4794. return bps / (link_bw * 8) + 1;
  4795. }
  4796. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4797. {
  4798. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4799. }
  4800. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4801. u32 *fp,
  4802. intel_clock_t *reduced_clock, u32 *fp2)
  4803. {
  4804. struct drm_crtc *crtc = &intel_crtc->base;
  4805. struct drm_device *dev = crtc->dev;
  4806. struct drm_i915_private *dev_priv = dev->dev_private;
  4807. struct intel_encoder *intel_encoder;
  4808. uint32_t dpll;
  4809. int factor, num_connectors = 0;
  4810. bool is_lvds = false, is_sdvo = false;
  4811. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4812. switch (intel_encoder->type) {
  4813. case INTEL_OUTPUT_LVDS:
  4814. is_lvds = true;
  4815. break;
  4816. case INTEL_OUTPUT_SDVO:
  4817. case INTEL_OUTPUT_HDMI:
  4818. is_sdvo = true;
  4819. break;
  4820. }
  4821. num_connectors++;
  4822. }
  4823. /* Enable autotuning of the PLL clock (if permissible) */
  4824. factor = 21;
  4825. if (is_lvds) {
  4826. if ((intel_panel_use_ssc(dev_priv) &&
  4827. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4828. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4829. factor = 25;
  4830. } else if (intel_crtc->config.sdvo_tv_clock)
  4831. factor = 20;
  4832. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4833. *fp |= FP_CB_TUNE;
  4834. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4835. *fp2 |= FP_CB_TUNE;
  4836. dpll = 0;
  4837. if (is_lvds)
  4838. dpll |= DPLLB_MODE_LVDS;
  4839. else
  4840. dpll |= DPLLB_MODE_DAC_SERIAL;
  4841. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4842. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4843. if (is_sdvo)
  4844. dpll |= DPLL_SDVO_HIGH_SPEED;
  4845. if (intel_crtc->config.has_dp_encoder)
  4846. dpll |= DPLL_SDVO_HIGH_SPEED;
  4847. /* compute bitmask from p1 value */
  4848. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4849. /* also FPA1 */
  4850. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4851. switch (intel_crtc->config.dpll.p2) {
  4852. case 5:
  4853. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4854. break;
  4855. case 7:
  4856. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4857. break;
  4858. case 10:
  4859. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4860. break;
  4861. case 14:
  4862. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4863. break;
  4864. }
  4865. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4866. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4867. else
  4868. dpll |= PLL_REF_INPUT_DREFCLK;
  4869. return dpll | DPLL_VCO_ENABLE;
  4870. }
  4871. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4872. int x, int y,
  4873. struct drm_framebuffer *fb)
  4874. {
  4875. struct drm_device *dev = crtc->dev;
  4876. struct drm_i915_private *dev_priv = dev->dev_private;
  4877. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4878. int pipe = intel_crtc->pipe;
  4879. int plane = intel_crtc->plane;
  4880. int num_connectors = 0;
  4881. intel_clock_t clock, reduced_clock;
  4882. u32 dpll = 0, fp = 0, fp2 = 0;
  4883. bool ok, has_reduced_clock = false;
  4884. bool is_lvds = false;
  4885. struct intel_encoder *encoder;
  4886. struct intel_shared_dpll *pll;
  4887. int ret;
  4888. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4889. switch (encoder->type) {
  4890. case INTEL_OUTPUT_LVDS:
  4891. is_lvds = true;
  4892. break;
  4893. }
  4894. num_connectors++;
  4895. }
  4896. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4897. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4898. ok = ironlake_compute_clocks(crtc, &clock,
  4899. &has_reduced_clock, &reduced_clock);
  4900. if (!ok && !intel_crtc->config.clock_set) {
  4901. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4902. return -EINVAL;
  4903. }
  4904. /* Compat-code for transition, will disappear. */
  4905. if (!intel_crtc->config.clock_set) {
  4906. intel_crtc->config.dpll.n = clock.n;
  4907. intel_crtc->config.dpll.m1 = clock.m1;
  4908. intel_crtc->config.dpll.m2 = clock.m2;
  4909. intel_crtc->config.dpll.p1 = clock.p1;
  4910. intel_crtc->config.dpll.p2 = clock.p2;
  4911. }
  4912. /* Ensure that the cursor is valid for the new mode before changing... */
  4913. intel_crtc_update_cursor(crtc, true);
  4914. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4915. if (intel_crtc->config.has_pch_encoder) {
  4916. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4917. if (has_reduced_clock)
  4918. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4919. dpll = ironlake_compute_dpll(intel_crtc,
  4920. &fp, &reduced_clock,
  4921. has_reduced_clock ? &fp2 : NULL);
  4922. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4923. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4924. if (has_reduced_clock)
  4925. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4926. else
  4927. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4928. pll = intel_get_shared_dpll(intel_crtc);
  4929. if (pll == NULL) {
  4930. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4931. pipe_name(pipe));
  4932. return -EINVAL;
  4933. }
  4934. } else
  4935. intel_put_shared_dpll(intel_crtc);
  4936. if (intel_crtc->config.has_dp_encoder)
  4937. intel_dp_set_m_n(intel_crtc);
  4938. if (is_lvds && has_reduced_clock && i915_powersave)
  4939. intel_crtc->lowfreq_avail = true;
  4940. else
  4941. intel_crtc->lowfreq_avail = false;
  4942. if (intel_crtc->config.has_pch_encoder) {
  4943. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4944. }
  4945. intel_set_pipe_timings(intel_crtc);
  4946. if (intel_crtc->config.has_pch_encoder) {
  4947. intel_cpu_transcoder_set_m_n(intel_crtc,
  4948. &intel_crtc->config.fdi_m_n);
  4949. }
  4950. if (IS_IVYBRIDGE(dev))
  4951. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4952. ironlake_set_pipeconf(crtc);
  4953. /* Set up the display plane register */
  4954. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4955. POSTING_READ(DSPCNTR(plane));
  4956. ret = intel_pipe_set_base(crtc, x, y, fb);
  4957. return ret;
  4958. }
  4959. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  4960. struct intel_link_m_n *m_n)
  4961. {
  4962. struct drm_device *dev = crtc->base.dev;
  4963. struct drm_i915_private *dev_priv = dev->dev_private;
  4964. enum pipe pipe = crtc->pipe;
  4965. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  4966. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  4967. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  4968. & ~TU_SIZE_MASK;
  4969. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  4970. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  4971. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4972. }
  4973. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  4974. enum transcoder transcoder,
  4975. struct intel_link_m_n *m_n)
  4976. {
  4977. struct drm_device *dev = crtc->base.dev;
  4978. struct drm_i915_private *dev_priv = dev->dev_private;
  4979. enum pipe pipe = crtc->pipe;
  4980. if (INTEL_INFO(dev)->gen >= 5) {
  4981. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4982. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4983. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4984. & ~TU_SIZE_MASK;
  4985. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4986. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4987. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4988. } else {
  4989. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  4990. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  4991. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  4992. & ~TU_SIZE_MASK;
  4993. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  4994. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  4995. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4996. }
  4997. }
  4998. void intel_dp_get_m_n(struct intel_crtc *crtc,
  4999. struct intel_crtc_config *pipe_config)
  5000. {
  5001. if (crtc->config.has_pch_encoder)
  5002. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5003. else
  5004. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5005. &pipe_config->dp_m_n);
  5006. }
  5007. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5008. struct intel_crtc_config *pipe_config)
  5009. {
  5010. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5011. &pipe_config->fdi_m_n);
  5012. }
  5013. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5014. struct intel_crtc_config *pipe_config)
  5015. {
  5016. struct drm_device *dev = crtc->base.dev;
  5017. struct drm_i915_private *dev_priv = dev->dev_private;
  5018. uint32_t tmp;
  5019. tmp = I915_READ(PF_CTL(crtc->pipe));
  5020. if (tmp & PF_ENABLE) {
  5021. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5022. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5023. /* We currently do not free assignements of panel fitters on
  5024. * ivb/hsw (since we don't use the higher upscaling modes which
  5025. * differentiates them) so just WARN about this case for now. */
  5026. if (IS_GEN7(dev)) {
  5027. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5028. PF_PIPE_SEL_IVB(crtc->pipe));
  5029. }
  5030. }
  5031. }
  5032. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5033. struct intel_crtc_config *pipe_config)
  5034. {
  5035. struct drm_device *dev = crtc->base.dev;
  5036. struct drm_i915_private *dev_priv = dev->dev_private;
  5037. uint32_t tmp;
  5038. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5039. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5040. tmp = I915_READ(PIPECONF(crtc->pipe));
  5041. if (!(tmp & PIPECONF_ENABLE))
  5042. return false;
  5043. switch (tmp & PIPECONF_BPC_MASK) {
  5044. case PIPECONF_6BPC:
  5045. pipe_config->pipe_bpp = 18;
  5046. break;
  5047. case PIPECONF_8BPC:
  5048. pipe_config->pipe_bpp = 24;
  5049. break;
  5050. case PIPECONF_10BPC:
  5051. pipe_config->pipe_bpp = 30;
  5052. break;
  5053. case PIPECONF_12BPC:
  5054. pipe_config->pipe_bpp = 36;
  5055. break;
  5056. default:
  5057. break;
  5058. }
  5059. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5060. struct intel_shared_dpll *pll;
  5061. pipe_config->has_pch_encoder = true;
  5062. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5063. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5064. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5065. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5066. if (HAS_PCH_IBX(dev_priv->dev)) {
  5067. pipe_config->shared_dpll =
  5068. (enum intel_dpll_id) crtc->pipe;
  5069. } else {
  5070. tmp = I915_READ(PCH_DPLL_SEL);
  5071. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5072. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5073. else
  5074. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5075. }
  5076. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5077. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5078. &pipe_config->dpll_hw_state));
  5079. tmp = pipe_config->dpll_hw_state.dpll;
  5080. pipe_config->pixel_multiplier =
  5081. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5082. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5083. } else {
  5084. pipe_config->pixel_multiplier = 1;
  5085. }
  5086. intel_get_pipe_timings(crtc, pipe_config);
  5087. ironlake_get_pfit_config(crtc, pipe_config);
  5088. return true;
  5089. }
  5090. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5091. {
  5092. struct drm_device *dev = dev_priv->dev;
  5093. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5094. struct intel_crtc *crtc;
  5095. unsigned long irqflags;
  5096. uint32_t val;
  5097. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5098. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5099. pipe_name(crtc->pipe));
  5100. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5101. WARN(plls->spll_refcount, "SPLL enabled\n");
  5102. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5103. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5104. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5105. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5106. "CPU PWM1 enabled\n");
  5107. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5108. "CPU PWM2 enabled\n");
  5109. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5110. "PCH PWM1 enabled\n");
  5111. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5112. "Utility pin enabled\n");
  5113. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5114. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5115. val = I915_READ(DEIMR);
  5116. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5117. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5118. val = I915_READ(SDEIMR);
  5119. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5120. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5121. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5122. }
  5123. /*
  5124. * This function implements pieces of two sequences from BSpec:
  5125. * - Sequence for display software to disable LCPLL
  5126. * - Sequence for display software to allow package C8+
  5127. * The steps implemented here are just the steps that actually touch the LCPLL
  5128. * register. Callers should take care of disabling all the display engine
  5129. * functions, doing the mode unset, fixing interrupts, etc.
  5130. */
  5131. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5132. bool switch_to_fclk, bool allow_power_down)
  5133. {
  5134. uint32_t val;
  5135. assert_can_disable_lcpll(dev_priv);
  5136. val = I915_READ(LCPLL_CTL);
  5137. if (switch_to_fclk) {
  5138. val |= LCPLL_CD_SOURCE_FCLK;
  5139. I915_WRITE(LCPLL_CTL, val);
  5140. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5141. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5142. DRM_ERROR("Switching to FCLK failed\n");
  5143. val = I915_READ(LCPLL_CTL);
  5144. }
  5145. val |= LCPLL_PLL_DISABLE;
  5146. I915_WRITE(LCPLL_CTL, val);
  5147. POSTING_READ(LCPLL_CTL);
  5148. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5149. DRM_ERROR("LCPLL still locked\n");
  5150. val = I915_READ(D_COMP);
  5151. val |= D_COMP_COMP_DISABLE;
  5152. I915_WRITE(D_COMP, val);
  5153. POSTING_READ(D_COMP);
  5154. ndelay(100);
  5155. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5156. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5157. if (allow_power_down) {
  5158. val = I915_READ(LCPLL_CTL);
  5159. val |= LCPLL_POWER_DOWN_ALLOW;
  5160. I915_WRITE(LCPLL_CTL, val);
  5161. POSTING_READ(LCPLL_CTL);
  5162. }
  5163. }
  5164. /*
  5165. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5166. * source.
  5167. */
  5168. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5169. {
  5170. uint32_t val;
  5171. val = I915_READ(LCPLL_CTL);
  5172. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5173. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5174. return;
  5175. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5176. * we'll hang the machine! */
  5177. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5178. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5179. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5180. I915_WRITE(LCPLL_CTL, val);
  5181. POSTING_READ(LCPLL_CTL);
  5182. }
  5183. val = I915_READ(D_COMP);
  5184. val |= D_COMP_COMP_FORCE;
  5185. val &= ~D_COMP_COMP_DISABLE;
  5186. I915_WRITE(D_COMP, val);
  5187. POSTING_READ(D_COMP);
  5188. val = I915_READ(LCPLL_CTL);
  5189. val &= ~LCPLL_PLL_DISABLE;
  5190. I915_WRITE(LCPLL_CTL, val);
  5191. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5192. DRM_ERROR("LCPLL not locked yet\n");
  5193. if (val & LCPLL_CD_SOURCE_FCLK) {
  5194. val = I915_READ(LCPLL_CTL);
  5195. val &= ~LCPLL_CD_SOURCE_FCLK;
  5196. I915_WRITE(LCPLL_CTL, val);
  5197. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5198. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5199. DRM_ERROR("Switching back to LCPLL failed\n");
  5200. }
  5201. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5202. }
  5203. void hsw_enable_pc8_work(struct work_struct *__work)
  5204. {
  5205. struct drm_i915_private *dev_priv =
  5206. container_of(to_delayed_work(__work), struct drm_i915_private,
  5207. pc8.enable_work);
  5208. struct drm_device *dev = dev_priv->dev;
  5209. uint32_t val;
  5210. if (dev_priv->pc8.enabled)
  5211. return;
  5212. DRM_DEBUG_KMS("Enabling package C8+\n");
  5213. dev_priv->pc8.enabled = true;
  5214. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5215. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5216. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5217. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5218. }
  5219. lpt_disable_clkout_dp(dev);
  5220. hsw_pc8_disable_interrupts(dev);
  5221. hsw_disable_lcpll(dev_priv, true, true);
  5222. }
  5223. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5224. {
  5225. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5226. WARN(dev_priv->pc8.disable_count < 1,
  5227. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5228. dev_priv->pc8.disable_count--;
  5229. if (dev_priv->pc8.disable_count != 0)
  5230. return;
  5231. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5232. msecs_to_jiffies(i915_pc8_timeout));
  5233. }
  5234. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5235. {
  5236. struct drm_device *dev = dev_priv->dev;
  5237. uint32_t val;
  5238. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5239. WARN(dev_priv->pc8.disable_count < 0,
  5240. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5241. dev_priv->pc8.disable_count++;
  5242. if (dev_priv->pc8.disable_count != 1)
  5243. return;
  5244. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5245. if (!dev_priv->pc8.enabled)
  5246. return;
  5247. DRM_DEBUG_KMS("Disabling package C8+\n");
  5248. hsw_restore_lcpll(dev_priv);
  5249. hsw_pc8_restore_interrupts(dev);
  5250. lpt_init_pch_refclk(dev);
  5251. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5252. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5253. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5254. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5255. }
  5256. intel_prepare_ddi(dev);
  5257. i915_gem_init_swizzling(dev);
  5258. mutex_lock(&dev_priv->rps.hw_lock);
  5259. gen6_update_ring_freq(dev);
  5260. mutex_unlock(&dev_priv->rps.hw_lock);
  5261. dev_priv->pc8.enabled = false;
  5262. }
  5263. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5264. {
  5265. mutex_lock(&dev_priv->pc8.lock);
  5266. __hsw_enable_package_c8(dev_priv);
  5267. mutex_unlock(&dev_priv->pc8.lock);
  5268. }
  5269. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5270. {
  5271. mutex_lock(&dev_priv->pc8.lock);
  5272. __hsw_disable_package_c8(dev_priv);
  5273. mutex_unlock(&dev_priv->pc8.lock);
  5274. }
  5275. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5276. {
  5277. struct drm_device *dev = dev_priv->dev;
  5278. struct intel_crtc *crtc;
  5279. uint32_t val;
  5280. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5281. if (crtc->base.enabled)
  5282. return false;
  5283. /* This case is still possible since we have the i915.disable_power_well
  5284. * parameter and also the KVMr or something else might be requesting the
  5285. * power well. */
  5286. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5287. if (val != 0) {
  5288. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5289. return false;
  5290. }
  5291. return true;
  5292. }
  5293. /* Since we're called from modeset_global_resources there's no way to
  5294. * symmetrically increase and decrease the refcount, so we use
  5295. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5296. * or not.
  5297. */
  5298. static void hsw_update_package_c8(struct drm_device *dev)
  5299. {
  5300. struct drm_i915_private *dev_priv = dev->dev_private;
  5301. bool allow;
  5302. if (!i915_enable_pc8)
  5303. return;
  5304. mutex_lock(&dev_priv->pc8.lock);
  5305. allow = hsw_can_enable_package_c8(dev_priv);
  5306. if (allow == dev_priv->pc8.requirements_met)
  5307. goto done;
  5308. dev_priv->pc8.requirements_met = allow;
  5309. if (allow)
  5310. __hsw_enable_package_c8(dev_priv);
  5311. else
  5312. __hsw_disable_package_c8(dev_priv);
  5313. done:
  5314. mutex_unlock(&dev_priv->pc8.lock);
  5315. }
  5316. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5317. {
  5318. if (!dev_priv->pc8.gpu_idle) {
  5319. dev_priv->pc8.gpu_idle = true;
  5320. hsw_enable_package_c8(dev_priv);
  5321. }
  5322. }
  5323. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5324. {
  5325. if (dev_priv->pc8.gpu_idle) {
  5326. dev_priv->pc8.gpu_idle = false;
  5327. hsw_disable_package_c8(dev_priv);
  5328. }
  5329. }
  5330. static void haswell_modeset_global_resources(struct drm_device *dev)
  5331. {
  5332. bool enable = false;
  5333. struct intel_crtc *crtc;
  5334. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5335. if (!crtc->base.enabled)
  5336. continue;
  5337. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  5338. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5339. enable = true;
  5340. }
  5341. intel_set_power_well(dev, enable);
  5342. hsw_update_package_c8(dev);
  5343. }
  5344. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5345. int x, int y,
  5346. struct drm_framebuffer *fb)
  5347. {
  5348. struct drm_device *dev = crtc->dev;
  5349. struct drm_i915_private *dev_priv = dev->dev_private;
  5350. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5351. int plane = intel_crtc->plane;
  5352. int ret;
  5353. if (!intel_ddi_pll_mode_set(crtc))
  5354. return -EINVAL;
  5355. /* Ensure that the cursor is valid for the new mode before changing... */
  5356. intel_crtc_update_cursor(crtc, true);
  5357. if (intel_crtc->config.has_dp_encoder)
  5358. intel_dp_set_m_n(intel_crtc);
  5359. intel_crtc->lowfreq_avail = false;
  5360. intel_set_pipe_timings(intel_crtc);
  5361. if (intel_crtc->config.has_pch_encoder) {
  5362. intel_cpu_transcoder_set_m_n(intel_crtc,
  5363. &intel_crtc->config.fdi_m_n);
  5364. }
  5365. haswell_set_pipeconf(crtc);
  5366. intel_set_pipe_csc(crtc);
  5367. /* Set up the display plane register */
  5368. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5369. POSTING_READ(DSPCNTR(plane));
  5370. ret = intel_pipe_set_base(crtc, x, y, fb);
  5371. return ret;
  5372. }
  5373. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5374. struct intel_crtc_config *pipe_config)
  5375. {
  5376. struct drm_device *dev = crtc->base.dev;
  5377. struct drm_i915_private *dev_priv = dev->dev_private;
  5378. enum intel_display_power_domain pfit_domain;
  5379. uint32_t tmp;
  5380. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5381. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5382. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5383. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5384. enum pipe trans_edp_pipe;
  5385. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5386. default:
  5387. WARN(1, "unknown pipe linked to edp transcoder\n");
  5388. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5389. case TRANS_DDI_EDP_INPUT_A_ON:
  5390. trans_edp_pipe = PIPE_A;
  5391. break;
  5392. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5393. trans_edp_pipe = PIPE_B;
  5394. break;
  5395. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5396. trans_edp_pipe = PIPE_C;
  5397. break;
  5398. }
  5399. if (trans_edp_pipe == crtc->pipe)
  5400. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5401. }
  5402. if (!intel_display_power_enabled(dev,
  5403. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5404. return false;
  5405. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5406. if (!(tmp & PIPECONF_ENABLE))
  5407. return false;
  5408. /*
  5409. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5410. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5411. * the PCH transcoder is on.
  5412. */
  5413. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5414. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5415. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5416. pipe_config->has_pch_encoder = true;
  5417. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5418. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5419. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5420. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5421. }
  5422. intel_get_pipe_timings(crtc, pipe_config);
  5423. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5424. if (intel_display_power_enabled(dev, pfit_domain))
  5425. ironlake_get_pfit_config(crtc, pipe_config);
  5426. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5427. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5428. pipe_config->pixel_multiplier = 1;
  5429. return true;
  5430. }
  5431. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5432. int x, int y,
  5433. struct drm_framebuffer *fb)
  5434. {
  5435. struct drm_device *dev = crtc->dev;
  5436. struct drm_i915_private *dev_priv = dev->dev_private;
  5437. struct intel_encoder *encoder;
  5438. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5439. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5440. int pipe = intel_crtc->pipe;
  5441. int ret;
  5442. drm_vblank_pre_modeset(dev, pipe);
  5443. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5444. drm_vblank_post_modeset(dev, pipe);
  5445. if (ret != 0)
  5446. return ret;
  5447. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5448. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5449. encoder->base.base.id,
  5450. drm_get_encoder_name(&encoder->base),
  5451. mode->base.id, mode->name);
  5452. encoder->mode_set(encoder);
  5453. }
  5454. return 0;
  5455. }
  5456. static bool intel_eld_uptodate(struct drm_connector *connector,
  5457. int reg_eldv, uint32_t bits_eldv,
  5458. int reg_elda, uint32_t bits_elda,
  5459. int reg_edid)
  5460. {
  5461. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5462. uint8_t *eld = connector->eld;
  5463. uint32_t i;
  5464. i = I915_READ(reg_eldv);
  5465. i &= bits_eldv;
  5466. if (!eld[0])
  5467. return !i;
  5468. if (!i)
  5469. return false;
  5470. i = I915_READ(reg_elda);
  5471. i &= ~bits_elda;
  5472. I915_WRITE(reg_elda, i);
  5473. for (i = 0; i < eld[2]; i++)
  5474. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5475. return false;
  5476. return true;
  5477. }
  5478. static void g4x_write_eld(struct drm_connector *connector,
  5479. struct drm_crtc *crtc)
  5480. {
  5481. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5482. uint8_t *eld = connector->eld;
  5483. uint32_t eldv;
  5484. uint32_t len;
  5485. uint32_t i;
  5486. i = I915_READ(G4X_AUD_VID_DID);
  5487. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5488. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5489. else
  5490. eldv = G4X_ELDV_DEVCTG;
  5491. if (intel_eld_uptodate(connector,
  5492. G4X_AUD_CNTL_ST, eldv,
  5493. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5494. G4X_HDMIW_HDMIEDID))
  5495. return;
  5496. i = I915_READ(G4X_AUD_CNTL_ST);
  5497. i &= ~(eldv | G4X_ELD_ADDR);
  5498. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5499. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5500. if (!eld[0])
  5501. return;
  5502. len = min_t(uint8_t, eld[2], len);
  5503. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5504. for (i = 0; i < len; i++)
  5505. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5506. i = I915_READ(G4X_AUD_CNTL_ST);
  5507. i |= eldv;
  5508. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5509. }
  5510. static void haswell_write_eld(struct drm_connector *connector,
  5511. struct drm_crtc *crtc)
  5512. {
  5513. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5514. uint8_t *eld = connector->eld;
  5515. struct drm_device *dev = crtc->dev;
  5516. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5517. uint32_t eldv;
  5518. uint32_t i;
  5519. int len;
  5520. int pipe = to_intel_crtc(crtc)->pipe;
  5521. int tmp;
  5522. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5523. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5524. int aud_config = HSW_AUD_CFG(pipe);
  5525. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5526. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5527. /* Audio output enable */
  5528. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5529. tmp = I915_READ(aud_cntrl_st2);
  5530. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5531. I915_WRITE(aud_cntrl_st2, tmp);
  5532. /* Wait for 1 vertical blank */
  5533. intel_wait_for_vblank(dev, pipe);
  5534. /* Set ELD valid state */
  5535. tmp = I915_READ(aud_cntrl_st2);
  5536. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5537. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5538. I915_WRITE(aud_cntrl_st2, tmp);
  5539. tmp = I915_READ(aud_cntrl_st2);
  5540. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5541. /* Enable HDMI mode */
  5542. tmp = I915_READ(aud_config);
  5543. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5544. /* clear N_programing_enable and N_value_index */
  5545. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5546. I915_WRITE(aud_config, tmp);
  5547. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5548. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5549. intel_crtc->eld_vld = true;
  5550. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5551. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5552. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5553. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5554. } else
  5555. I915_WRITE(aud_config, 0);
  5556. if (intel_eld_uptodate(connector,
  5557. aud_cntrl_st2, eldv,
  5558. aud_cntl_st, IBX_ELD_ADDRESS,
  5559. hdmiw_hdmiedid))
  5560. return;
  5561. i = I915_READ(aud_cntrl_st2);
  5562. i &= ~eldv;
  5563. I915_WRITE(aud_cntrl_st2, i);
  5564. if (!eld[0])
  5565. return;
  5566. i = I915_READ(aud_cntl_st);
  5567. i &= ~IBX_ELD_ADDRESS;
  5568. I915_WRITE(aud_cntl_st, i);
  5569. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5570. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5571. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5572. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5573. for (i = 0; i < len; i++)
  5574. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5575. i = I915_READ(aud_cntrl_st2);
  5576. i |= eldv;
  5577. I915_WRITE(aud_cntrl_st2, i);
  5578. }
  5579. static void ironlake_write_eld(struct drm_connector *connector,
  5580. struct drm_crtc *crtc)
  5581. {
  5582. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5583. uint8_t *eld = connector->eld;
  5584. uint32_t eldv;
  5585. uint32_t i;
  5586. int len;
  5587. int hdmiw_hdmiedid;
  5588. int aud_config;
  5589. int aud_cntl_st;
  5590. int aud_cntrl_st2;
  5591. int pipe = to_intel_crtc(crtc)->pipe;
  5592. if (HAS_PCH_IBX(connector->dev)) {
  5593. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5594. aud_config = IBX_AUD_CFG(pipe);
  5595. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5596. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5597. } else {
  5598. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5599. aud_config = CPT_AUD_CFG(pipe);
  5600. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5601. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5602. }
  5603. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5604. i = I915_READ(aud_cntl_st);
  5605. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5606. if (!i) {
  5607. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5608. /* operate blindly on all ports */
  5609. eldv = IBX_ELD_VALIDB;
  5610. eldv |= IBX_ELD_VALIDB << 4;
  5611. eldv |= IBX_ELD_VALIDB << 8;
  5612. } else {
  5613. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5614. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5615. }
  5616. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5617. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5618. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5619. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5620. } else
  5621. I915_WRITE(aud_config, 0);
  5622. if (intel_eld_uptodate(connector,
  5623. aud_cntrl_st2, eldv,
  5624. aud_cntl_st, IBX_ELD_ADDRESS,
  5625. hdmiw_hdmiedid))
  5626. return;
  5627. i = I915_READ(aud_cntrl_st2);
  5628. i &= ~eldv;
  5629. I915_WRITE(aud_cntrl_st2, i);
  5630. if (!eld[0])
  5631. return;
  5632. i = I915_READ(aud_cntl_st);
  5633. i &= ~IBX_ELD_ADDRESS;
  5634. I915_WRITE(aud_cntl_st, i);
  5635. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5636. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5637. for (i = 0; i < len; i++)
  5638. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5639. i = I915_READ(aud_cntrl_st2);
  5640. i |= eldv;
  5641. I915_WRITE(aud_cntrl_st2, i);
  5642. }
  5643. void intel_write_eld(struct drm_encoder *encoder,
  5644. struct drm_display_mode *mode)
  5645. {
  5646. struct drm_crtc *crtc = encoder->crtc;
  5647. struct drm_connector *connector;
  5648. struct drm_device *dev = encoder->dev;
  5649. struct drm_i915_private *dev_priv = dev->dev_private;
  5650. connector = drm_select_eld(encoder, mode);
  5651. if (!connector)
  5652. return;
  5653. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5654. connector->base.id,
  5655. drm_get_connector_name(connector),
  5656. connector->encoder->base.id,
  5657. drm_get_encoder_name(connector->encoder));
  5658. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5659. if (dev_priv->display.write_eld)
  5660. dev_priv->display.write_eld(connector, crtc);
  5661. }
  5662. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5663. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5664. {
  5665. struct drm_device *dev = crtc->dev;
  5666. struct drm_i915_private *dev_priv = dev->dev_private;
  5667. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5668. enum pipe pipe = intel_crtc->pipe;
  5669. int palreg = PALETTE(pipe);
  5670. int i;
  5671. bool reenable_ips = false;
  5672. /* The clocks have to be on to load the palette. */
  5673. if (!crtc->enabled || !intel_crtc->active)
  5674. return;
  5675. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  5676. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  5677. assert_dsi_pll_enabled(dev_priv);
  5678. else
  5679. assert_pll_enabled(dev_priv, pipe);
  5680. }
  5681. /* use legacy palette for Ironlake */
  5682. if (HAS_PCH_SPLIT(dev))
  5683. palreg = LGC_PALETTE(pipe);
  5684. /* Workaround : Do not read or write the pipe palette/gamma data while
  5685. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5686. */
  5687. if (intel_crtc->config.ips_enabled &&
  5688. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5689. GAMMA_MODE_MODE_SPLIT)) {
  5690. hsw_disable_ips(intel_crtc);
  5691. reenable_ips = true;
  5692. }
  5693. for (i = 0; i < 256; i++) {
  5694. I915_WRITE(palreg + 4 * i,
  5695. (intel_crtc->lut_r[i] << 16) |
  5696. (intel_crtc->lut_g[i] << 8) |
  5697. intel_crtc->lut_b[i]);
  5698. }
  5699. if (reenable_ips)
  5700. hsw_enable_ips(intel_crtc);
  5701. }
  5702. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5703. {
  5704. struct drm_device *dev = crtc->dev;
  5705. struct drm_i915_private *dev_priv = dev->dev_private;
  5706. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5707. bool visible = base != 0;
  5708. u32 cntl;
  5709. if (intel_crtc->cursor_visible == visible)
  5710. return;
  5711. cntl = I915_READ(_CURACNTR);
  5712. if (visible) {
  5713. /* On these chipsets we can only modify the base whilst
  5714. * the cursor is disabled.
  5715. */
  5716. I915_WRITE(_CURABASE, base);
  5717. cntl &= ~(CURSOR_FORMAT_MASK);
  5718. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5719. cntl |= CURSOR_ENABLE |
  5720. CURSOR_GAMMA_ENABLE |
  5721. CURSOR_FORMAT_ARGB;
  5722. } else
  5723. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5724. I915_WRITE(_CURACNTR, cntl);
  5725. intel_crtc->cursor_visible = visible;
  5726. }
  5727. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5728. {
  5729. struct drm_device *dev = crtc->dev;
  5730. struct drm_i915_private *dev_priv = dev->dev_private;
  5731. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5732. int pipe = intel_crtc->pipe;
  5733. bool visible = base != 0;
  5734. if (intel_crtc->cursor_visible != visible) {
  5735. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5736. if (base) {
  5737. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5738. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5739. cntl |= pipe << 28; /* Connect to correct pipe */
  5740. } else {
  5741. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5742. cntl |= CURSOR_MODE_DISABLE;
  5743. }
  5744. I915_WRITE(CURCNTR(pipe), cntl);
  5745. intel_crtc->cursor_visible = visible;
  5746. }
  5747. /* and commit changes on next vblank */
  5748. I915_WRITE(CURBASE(pipe), base);
  5749. }
  5750. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5751. {
  5752. struct drm_device *dev = crtc->dev;
  5753. struct drm_i915_private *dev_priv = dev->dev_private;
  5754. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5755. int pipe = intel_crtc->pipe;
  5756. bool visible = base != 0;
  5757. if (intel_crtc->cursor_visible != visible) {
  5758. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5759. if (base) {
  5760. cntl &= ~CURSOR_MODE;
  5761. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5762. } else {
  5763. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5764. cntl |= CURSOR_MODE_DISABLE;
  5765. }
  5766. if (IS_HASWELL(dev)) {
  5767. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5768. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5769. }
  5770. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5771. intel_crtc->cursor_visible = visible;
  5772. }
  5773. /* and commit changes on next vblank */
  5774. I915_WRITE(CURBASE_IVB(pipe), base);
  5775. }
  5776. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5777. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5778. bool on)
  5779. {
  5780. struct drm_device *dev = crtc->dev;
  5781. struct drm_i915_private *dev_priv = dev->dev_private;
  5782. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5783. int pipe = intel_crtc->pipe;
  5784. int x = intel_crtc->cursor_x;
  5785. int y = intel_crtc->cursor_y;
  5786. u32 base, pos;
  5787. bool visible;
  5788. pos = 0;
  5789. if (on && crtc->enabled && crtc->fb) {
  5790. base = intel_crtc->cursor_addr;
  5791. if (x > (int) crtc->fb->width)
  5792. base = 0;
  5793. if (y > (int) crtc->fb->height)
  5794. base = 0;
  5795. } else
  5796. base = 0;
  5797. if (x < 0) {
  5798. if (x + intel_crtc->cursor_width < 0)
  5799. base = 0;
  5800. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5801. x = -x;
  5802. }
  5803. pos |= x << CURSOR_X_SHIFT;
  5804. if (y < 0) {
  5805. if (y + intel_crtc->cursor_height < 0)
  5806. base = 0;
  5807. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5808. y = -y;
  5809. }
  5810. pos |= y << CURSOR_Y_SHIFT;
  5811. visible = base != 0;
  5812. if (!visible && !intel_crtc->cursor_visible)
  5813. return;
  5814. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5815. I915_WRITE(CURPOS_IVB(pipe), pos);
  5816. ivb_update_cursor(crtc, base);
  5817. } else {
  5818. I915_WRITE(CURPOS(pipe), pos);
  5819. if (IS_845G(dev) || IS_I865G(dev))
  5820. i845_update_cursor(crtc, base);
  5821. else
  5822. i9xx_update_cursor(crtc, base);
  5823. }
  5824. }
  5825. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5826. struct drm_file *file,
  5827. uint32_t handle,
  5828. uint32_t width, uint32_t height)
  5829. {
  5830. struct drm_device *dev = crtc->dev;
  5831. struct drm_i915_private *dev_priv = dev->dev_private;
  5832. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5833. struct drm_i915_gem_object *obj;
  5834. uint32_t addr;
  5835. int ret;
  5836. /* if we want to turn off the cursor ignore width and height */
  5837. if (!handle) {
  5838. DRM_DEBUG_KMS("cursor off\n");
  5839. addr = 0;
  5840. obj = NULL;
  5841. mutex_lock(&dev->struct_mutex);
  5842. goto finish;
  5843. }
  5844. /* Currently we only support 64x64 cursors */
  5845. if (width != 64 || height != 64) {
  5846. DRM_ERROR("we currently only support 64x64 cursors\n");
  5847. return -EINVAL;
  5848. }
  5849. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5850. if (&obj->base == NULL)
  5851. return -ENOENT;
  5852. if (obj->base.size < width * height * 4) {
  5853. DRM_ERROR("buffer is to small\n");
  5854. ret = -ENOMEM;
  5855. goto fail;
  5856. }
  5857. /* we only need to pin inside GTT if cursor is non-phy */
  5858. mutex_lock(&dev->struct_mutex);
  5859. if (!dev_priv->info->cursor_needs_physical) {
  5860. unsigned alignment;
  5861. if (obj->tiling_mode) {
  5862. DRM_ERROR("cursor cannot be tiled\n");
  5863. ret = -EINVAL;
  5864. goto fail_locked;
  5865. }
  5866. /* Note that the w/a also requires 2 PTE of padding following
  5867. * the bo. We currently fill all unused PTE with the shadow
  5868. * page and so we should always have valid PTE following the
  5869. * cursor preventing the VT-d warning.
  5870. */
  5871. alignment = 0;
  5872. if (need_vtd_wa(dev))
  5873. alignment = 64*1024;
  5874. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5875. if (ret) {
  5876. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5877. goto fail_locked;
  5878. }
  5879. ret = i915_gem_object_put_fence(obj);
  5880. if (ret) {
  5881. DRM_ERROR("failed to release fence for cursor");
  5882. goto fail_unpin;
  5883. }
  5884. addr = i915_gem_obj_ggtt_offset(obj);
  5885. } else {
  5886. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5887. ret = i915_gem_attach_phys_object(dev, obj,
  5888. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5889. align);
  5890. if (ret) {
  5891. DRM_ERROR("failed to attach phys object\n");
  5892. goto fail_locked;
  5893. }
  5894. addr = obj->phys_obj->handle->busaddr;
  5895. }
  5896. if (IS_GEN2(dev))
  5897. I915_WRITE(CURSIZE, (height << 12) | width);
  5898. finish:
  5899. if (intel_crtc->cursor_bo) {
  5900. if (dev_priv->info->cursor_needs_physical) {
  5901. if (intel_crtc->cursor_bo != obj)
  5902. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5903. } else
  5904. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5905. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5906. }
  5907. mutex_unlock(&dev->struct_mutex);
  5908. intel_crtc->cursor_addr = addr;
  5909. intel_crtc->cursor_bo = obj;
  5910. intel_crtc->cursor_width = width;
  5911. intel_crtc->cursor_height = height;
  5912. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5913. return 0;
  5914. fail_unpin:
  5915. i915_gem_object_unpin_from_display_plane(obj);
  5916. fail_locked:
  5917. mutex_unlock(&dev->struct_mutex);
  5918. fail:
  5919. drm_gem_object_unreference_unlocked(&obj->base);
  5920. return ret;
  5921. }
  5922. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5923. {
  5924. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5925. intel_crtc->cursor_x = x;
  5926. intel_crtc->cursor_y = y;
  5927. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5928. return 0;
  5929. }
  5930. /** Sets the color ramps on behalf of RandR */
  5931. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5932. u16 blue, int regno)
  5933. {
  5934. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5935. intel_crtc->lut_r[regno] = red >> 8;
  5936. intel_crtc->lut_g[regno] = green >> 8;
  5937. intel_crtc->lut_b[regno] = blue >> 8;
  5938. }
  5939. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5940. u16 *blue, int regno)
  5941. {
  5942. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5943. *red = intel_crtc->lut_r[regno] << 8;
  5944. *green = intel_crtc->lut_g[regno] << 8;
  5945. *blue = intel_crtc->lut_b[regno] << 8;
  5946. }
  5947. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5948. u16 *blue, uint32_t start, uint32_t size)
  5949. {
  5950. int end = (start + size > 256) ? 256 : start + size, i;
  5951. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5952. for (i = start; i < end; i++) {
  5953. intel_crtc->lut_r[i] = red[i] >> 8;
  5954. intel_crtc->lut_g[i] = green[i] >> 8;
  5955. intel_crtc->lut_b[i] = blue[i] >> 8;
  5956. }
  5957. intel_crtc_load_lut(crtc);
  5958. }
  5959. /* VESA 640x480x72Hz mode to set on the pipe */
  5960. static struct drm_display_mode load_detect_mode = {
  5961. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5962. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5963. };
  5964. static struct drm_framebuffer *
  5965. intel_framebuffer_create(struct drm_device *dev,
  5966. struct drm_mode_fb_cmd2 *mode_cmd,
  5967. struct drm_i915_gem_object *obj)
  5968. {
  5969. struct intel_framebuffer *intel_fb;
  5970. int ret;
  5971. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5972. if (!intel_fb) {
  5973. drm_gem_object_unreference_unlocked(&obj->base);
  5974. return ERR_PTR(-ENOMEM);
  5975. }
  5976. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5977. if (ret) {
  5978. drm_gem_object_unreference_unlocked(&obj->base);
  5979. kfree(intel_fb);
  5980. return ERR_PTR(ret);
  5981. }
  5982. return &intel_fb->base;
  5983. }
  5984. static u32
  5985. intel_framebuffer_pitch_for_width(int width, int bpp)
  5986. {
  5987. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5988. return ALIGN(pitch, 64);
  5989. }
  5990. static u32
  5991. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5992. {
  5993. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5994. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5995. }
  5996. static struct drm_framebuffer *
  5997. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5998. struct drm_display_mode *mode,
  5999. int depth, int bpp)
  6000. {
  6001. struct drm_i915_gem_object *obj;
  6002. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6003. obj = i915_gem_alloc_object(dev,
  6004. intel_framebuffer_size_for_mode(mode, bpp));
  6005. if (obj == NULL)
  6006. return ERR_PTR(-ENOMEM);
  6007. mode_cmd.width = mode->hdisplay;
  6008. mode_cmd.height = mode->vdisplay;
  6009. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6010. bpp);
  6011. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6012. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6013. }
  6014. static struct drm_framebuffer *
  6015. mode_fits_in_fbdev(struct drm_device *dev,
  6016. struct drm_display_mode *mode)
  6017. {
  6018. struct drm_i915_private *dev_priv = dev->dev_private;
  6019. struct drm_i915_gem_object *obj;
  6020. struct drm_framebuffer *fb;
  6021. if (dev_priv->fbdev == NULL)
  6022. return NULL;
  6023. obj = dev_priv->fbdev->ifb.obj;
  6024. if (obj == NULL)
  6025. return NULL;
  6026. fb = &dev_priv->fbdev->ifb.base;
  6027. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6028. fb->bits_per_pixel))
  6029. return NULL;
  6030. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6031. return NULL;
  6032. return fb;
  6033. }
  6034. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6035. struct drm_display_mode *mode,
  6036. struct intel_load_detect_pipe *old)
  6037. {
  6038. struct intel_crtc *intel_crtc;
  6039. struct intel_encoder *intel_encoder =
  6040. intel_attached_encoder(connector);
  6041. struct drm_crtc *possible_crtc;
  6042. struct drm_encoder *encoder = &intel_encoder->base;
  6043. struct drm_crtc *crtc = NULL;
  6044. struct drm_device *dev = encoder->dev;
  6045. struct drm_framebuffer *fb;
  6046. int i = -1;
  6047. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6048. connector->base.id, drm_get_connector_name(connector),
  6049. encoder->base.id, drm_get_encoder_name(encoder));
  6050. /*
  6051. * Algorithm gets a little messy:
  6052. *
  6053. * - if the connector already has an assigned crtc, use it (but make
  6054. * sure it's on first)
  6055. *
  6056. * - try to find the first unused crtc that can drive this connector,
  6057. * and use that if we find one
  6058. */
  6059. /* See if we already have a CRTC for this connector */
  6060. if (encoder->crtc) {
  6061. crtc = encoder->crtc;
  6062. mutex_lock(&crtc->mutex);
  6063. old->dpms_mode = connector->dpms;
  6064. old->load_detect_temp = false;
  6065. /* Make sure the crtc and connector are running */
  6066. if (connector->dpms != DRM_MODE_DPMS_ON)
  6067. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6068. return true;
  6069. }
  6070. /* Find an unused one (if possible) */
  6071. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6072. i++;
  6073. if (!(encoder->possible_crtcs & (1 << i)))
  6074. continue;
  6075. if (!possible_crtc->enabled) {
  6076. crtc = possible_crtc;
  6077. break;
  6078. }
  6079. }
  6080. /*
  6081. * If we didn't find an unused CRTC, don't use any.
  6082. */
  6083. if (!crtc) {
  6084. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6085. return false;
  6086. }
  6087. mutex_lock(&crtc->mutex);
  6088. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6089. to_intel_connector(connector)->new_encoder = intel_encoder;
  6090. intel_crtc = to_intel_crtc(crtc);
  6091. old->dpms_mode = connector->dpms;
  6092. old->load_detect_temp = true;
  6093. old->release_fb = NULL;
  6094. if (!mode)
  6095. mode = &load_detect_mode;
  6096. /* We need a framebuffer large enough to accommodate all accesses
  6097. * that the plane may generate whilst we perform load detection.
  6098. * We can not rely on the fbcon either being present (we get called
  6099. * during its initialisation to detect all boot displays, or it may
  6100. * not even exist) or that it is large enough to satisfy the
  6101. * requested mode.
  6102. */
  6103. fb = mode_fits_in_fbdev(dev, mode);
  6104. if (fb == NULL) {
  6105. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6106. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6107. old->release_fb = fb;
  6108. } else
  6109. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6110. if (IS_ERR(fb)) {
  6111. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6112. mutex_unlock(&crtc->mutex);
  6113. return false;
  6114. }
  6115. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6116. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6117. if (old->release_fb)
  6118. old->release_fb->funcs->destroy(old->release_fb);
  6119. mutex_unlock(&crtc->mutex);
  6120. return false;
  6121. }
  6122. /* let the connector get through one full cycle before testing */
  6123. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6124. return true;
  6125. }
  6126. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6127. struct intel_load_detect_pipe *old)
  6128. {
  6129. struct intel_encoder *intel_encoder =
  6130. intel_attached_encoder(connector);
  6131. struct drm_encoder *encoder = &intel_encoder->base;
  6132. struct drm_crtc *crtc = encoder->crtc;
  6133. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6134. connector->base.id, drm_get_connector_name(connector),
  6135. encoder->base.id, drm_get_encoder_name(encoder));
  6136. if (old->load_detect_temp) {
  6137. to_intel_connector(connector)->new_encoder = NULL;
  6138. intel_encoder->new_crtc = NULL;
  6139. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6140. if (old->release_fb) {
  6141. drm_framebuffer_unregister_private(old->release_fb);
  6142. drm_framebuffer_unreference(old->release_fb);
  6143. }
  6144. mutex_unlock(&crtc->mutex);
  6145. return;
  6146. }
  6147. /* Switch crtc and encoder back off if necessary */
  6148. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6149. connector->funcs->dpms(connector, old->dpms_mode);
  6150. mutex_unlock(&crtc->mutex);
  6151. }
  6152. /* Returns the clock of the currently programmed mode of the given pipe. */
  6153. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6154. struct intel_crtc_config *pipe_config)
  6155. {
  6156. struct drm_device *dev = crtc->base.dev;
  6157. struct drm_i915_private *dev_priv = dev->dev_private;
  6158. int pipe = pipe_config->cpu_transcoder;
  6159. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6160. u32 fp;
  6161. intel_clock_t clock;
  6162. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6163. fp = pipe_config->dpll_hw_state.fp0;
  6164. else
  6165. fp = pipe_config->dpll_hw_state.fp1;
  6166. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6167. if (IS_PINEVIEW(dev)) {
  6168. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6169. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6170. } else {
  6171. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6172. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6173. }
  6174. if (!IS_GEN2(dev)) {
  6175. if (IS_PINEVIEW(dev))
  6176. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6177. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6178. else
  6179. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6180. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6181. switch (dpll & DPLL_MODE_MASK) {
  6182. case DPLLB_MODE_DAC_SERIAL:
  6183. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6184. 5 : 10;
  6185. break;
  6186. case DPLLB_MODE_LVDS:
  6187. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6188. 7 : 14;
  6189. break;
  6190. default:
  6191. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6192. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6193. return;
  6194. }
  6195. if (IS_PINEVIEW(dev))
  6196. pineview_clock(96000, &clock);
  6197. else
  6198. i9xx_clock(96000, &clock);
  6199. } else {
  6200. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6201. if (is_lvds) {
  6202. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6203. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6204. clock.p2 = 14;
  6205. if ((dpll & PLL_REF_INPUT_MASK) ==
  6206. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  6207. /* XXX: might not be 66MHz */
  6208. i9xx_clock(66000, &clock);
  6209. } else
  6210. i9xx_clock(48000, &clock);
  6211. } else {
  6212. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6213. clock.p1 = 2;
  6214. else {
  6215. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6216. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6217. }
  6218. if (dpll & PLL_P2_DIVIDE_BY_4)
  6219. clock.p2 = 4;
  6220. else
  6221. clock.p2 = 2;
  6222. i9xx_clock(48000, &clock);
  6223. }
  6224. }
  6225. pipe_config->adjusted_mode.clock = clock.dot;
  6226. }
  6227. int intel_dotclock_calculate(int link_freq,
  6228. const struct intel_link_m_n *m_n)
  6229. {
  6230. /*
  6231. * The calculation for the data clock is:
  6232. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6233. * But we want to avoid losing precison if possible, so:
  6234. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6235. *
  6236. * and the link clock is simpler:
  6237. * link_clock = (m * link_clock) / n
  6238. */
  6239. if (!m_n->link_n)
  6240. return 0;
  6241. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6242. }
  6243. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  6244. struct intel_crtc_config *pipe_config)
  6245. {
  6246. struct drm_device *dev = crtc->base.dev;
  6247. int link_freq;
  6248. /*
  6249. * We need to get the FDI or DP link clock here to derive
  6250. * the M/N dividers.
  6251. *
  6252. * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  6253. * For DP, it's either 1.62GHz or 2.7GHz.
  6254. * We do our calculations in 10*MHz since we don't need much precison.
  6255. */
  6256. if (pipe_config->has_pch_encoder) {
  6257. link_freq = intel_fdi_link_freq(dev) * 10000;
  6258. pipe_config->adjusted_mode.clock =
  6259. intel_dotclock_calculate(link_freq, &pipe_config->fdi_m_n);
  6260. } else {
  6261. link_freq = pipe_config->port_clock;
  6262. pipe_config->adjusted_mode.clock =
  6263. intel_dotclock_calculate(link_freq, &pipe_config->dp_m_n);
  6264. }
  6265. }
  6266. /** Returns the currently programmed mode of the given pipe. */
  6267. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6268. struct drm_crtc *crtc)
  6269. {
  6270. struct drm_i915_private *dev_priv = dev->dev_private;
  6271. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6272. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6273. struct drm_display_mode *mode;
  6274. struct intel_crtc_config pipe_config;
  6275. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6276. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6277. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6278. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6279. enum pipe pipe = intel_crtc->pipe;
  6280. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6281. if (!mode)
  6282. return NULL;
  6283. /*
  6284. * Construct a pipe_config sufficient for getting the clock info
  6285. * back out of crtc_clock_get.
  6286. *
  6287. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6288. * to use a real value here instead.
  6289. */
  6290. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6291. pipe_config.pixel_multiplier = 1;
  6292. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6293. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6294. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6295. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6296. mode->clock = pipe_config.adjusted_mode.clock;
  6297. mode->hdisplay = (htot & 0xffff) + 1;
  6298. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6299. mode->hsync_start = (hsync & 0xffff) + 1;
  6300. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6301. mode->vdisplay = (vtot & 0xffff) + 1;
  6302. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6303. mode->vsync_start = (vsync & 0xffff) + 1;
  6304. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6305. drm_mode_set_name(mode);
  6306. return mode;
  6307. }
  6308. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6309. {
  6310. struct drm_device *dev = crtc->dev;
  6311. drm_i915_private_t *dev_priv = dev->dev_private;
  6312. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6313. int pipe = intel_crtc->pipe;
  6314. int dpll_reg = DPLL(pipe);
  6315. int dpll;
  6316. if (HAS_PCH_SPLIT(dev))
  6317. return;
  6318. if (!dev_priv->lvds_downclock_avail)
  6319. return;
  6320. dpll = I915_READ(dpll_reg);
  6321. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6322. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6323. assert_panel_unlocked(dev_priv, pipe);
  6324. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6325. I915_WRITE(dpll_reg, dpll);
  6326. intel_wait_for_vblank(dev, pipe);
  6327. dpll = I915_READ(dpll_reg);
  6328. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6329. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6330. }
  6331. }
  6332. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6333. {
  6334. struct drm_device *dev = crtc->dev;
  6335. drm_i915_private_t *dev_priv = dev->dev_private;
  6336. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6337. if (HAS_PCH_SPLIT(dev))
  6338. return;
  6339. if (!dev_priv->lvds_downclock_avail)
  6340. return;
  6341. /*
  6342. * Since this is called by a timer, we should never get here in
  6343. * the manual case.
  6344. */
  6345. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6346. int pipe = intel_crtc->pipe;
  6347. int dpll_reg = DPLL(pipe);
  6348. int dpll;
  6349. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6350. assert_panel_unlocked(dev_priv, pipe);
  6351. dpll = I915_READ(dpll_reg);
  6352. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6353. I915_WRITE(dpll_reg, dpll);
  6354. intel_wait_for_vblank(dev, pipe);
  6355. dpll = I915_READ(dpll_reg);
  6356. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6357. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6358. }
  6359. }
  6360. void intel_mark_busy(struct drm_device *dev)
  6361. {
  6362. struct drm_i915_private *dev_priv = dev->dev_private;
  6363. hsw_package_c8_gpu_busy(dev_priv);
  6364. i915_update_gfx_val(dev_priv);
  6365. }
  6366. void intel_mark_idle(struct drm_device *dev)
  6367. {
  6368. struct drm_i915_private *dev_priv = dev->dev_private;
  6369. struct drm_crtc *crtc;
  6370. hsw_package_c8_gpu_idle(dev_priv);
  6371. if (!i915_powersave)
  6372. return;
  6373. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6374. if (!crtc->fb)
  6375. continue;
  6376. intel_decrease_pllclock(crtc);
  6377. }
  6378. }
  6379. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6380. struct intel_ring_buffer *ring)
  6381. {
  6382. struct drm_device *dev = obj->base.dev;
  6383. struct drm_crtc *crtc;
  6384. if (!i915_powersave)
  6385. return;
  6386. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6387. if (!crtc->fb)
  6388. continue;
  6389. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6390. continue;
  6391. intel_increase_pllclock(crtc);
  6392. if (ring && intel_fbc_enabled(dev))
  6393. ring->fbc_dirty = true;
  6394. }
  6395. }
  6396. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6397. {
  6398. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6399. struct drm_device *dev = crtc->dev;
  6400. struct intel_unpin_work *work;
  6401. unsigned long flags;
  6402. spin_lock_irqsave(&dev->event_lock, flags);
  6403. work = intel_crtc->unpin_work;
  6404. intel_crtc->unpin_work = NULL;
  6405. spin_unlock_irqrestore(&dev->event_lock, flags);
  6406. if (work) {
  6407. cancel_work_sync(&work->work);
  6408. kfree(work);
  6409. }
  6410. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6411. drm_crtc_cleanup(crtc);
  6412. kfree(intel_crtc);
  6413. }
  6414. static void intel_unpin_work_fn(struct work_struct *__work)
  6415. {
  6416. struct intel_unpin_work *work =
  6417. container_of(__work, struct intel_unpin_work, work);
  6418. struct drm_device *dev = work->crtc->dev;
  6419. mutex_lock(&dev->struct_mutex);
  6420. intel_unpin_fb_obj(work->old_fb_obj);
  6421. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6422. drm_gem_object_unreference(&work->old_fb_obj->base);
  6423. intel_update_fbc(dev);
  6424. mutex_unlock(&dev->struct_mutex);
  6425. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6426. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6427. kfree(work);
  6428. }
  6429. static void do_intel_finish_page_flip(struct drm_device *dev,
  6430. struct drm_crtc *crtc)
  6431. {
  6432. drm_i915_private_t *dev_priv = dev->dev_private;
  6433. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6434. struct intel_unpin_work *work;
  6435. unsigned long flags;
  6436. /* Ignore early vblank irqs */
  6437. if (intel_crtc == NULL)
  6438. return;
  6439. spin_lock_irqsave(&dev->event_lock, flags);
  6440. work = intel_crtc->unpin_work;
  6441. /* Ensure we don't miss a work->pending update ... */
  6442. smp_rmb();
  6443. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6444. spin_unlock_irqrestore(&dev->event_lock, flags);
  6445. return;
  6446. }
  6447. /* and that the unpin work is consistent wrt ->pending. */
  6448. smp_rmb();
  6449. intel_crtc->unpin_work = NULL;
  6450. if (work->event)
  6451. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6452. drm_vblank_put(dev, intel_crtc->pipe);
  6453. spin_unlock_irqrestore(&dev->event_lock, flags);
  6454. wake_up_all(&dev_priv->pending_flip_queue);
  6455. queue_work(dev_priv->wq, &work->work);
  6456. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6457. }
  6458. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6459. {
  6460. drm_i915_private_t *dev_priv = dev->dev_private;
  6461. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6462. do_intel_finish_page_flip(dev, crtc);
  6463. }
  6464. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6465. {
  6466. drm_i915_private_t *dev_priv = dev->dev_private;
  6467. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6468. do_intel_finish_page_flip(dev, crtc);
  6469. }
  6470. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6471. {
  6472. drm_i915_private_t *dev_priv = dev->dev_private;
  6473. struct intel_crtc *intel_crtc =
  6474. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6475. unsigned long flags;
  6476. /* NB: An MMIO update of the plane base pointer will also
  6477. * generate a page-flip completion irq, i.e. every modeset
  6478. * is also accompanied by a spurious intel_prepare_page_flip().
  6479. */
  6480. spin_lock_irqsave(&dev->event_lock, flags);
  6481. if (intel_crtc->unpin_work)
  6482. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6483. spin_unlock_irqrestore(&dev->event_lock, flags);
  6484. }
  6485. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6486. {
  6487. /* Ensure that the work item is consistent when activating it ... */
  6488. smp_wmb();
  6489. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6490. /* and that it is marked active as soon as the irq could fire. */
  6491. smp_wmb();
  6492. }
  6493. static int intel_gen2_queue_flip(struct drm_device *dev,
  6494. struct drm_crtc *crtc,
  6495. struct drm_framebuffer *fb,
  6496. struct drm_i915_gem_object *obj,
  6497. uint32_t flags)
  6498. {
  6499. struct drm_i915_private *dev_priv = dev->dev_private;
  6500. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6501. u32 flip_mask;
  6502. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6503. int ret;
  6504. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6505. if (ret)
  6506. goto err;
  6507. ret = intel_ring_begin(ring, 6);
  6508. if (ret)
  6509. goto err_unpin;
  6510. /* Can't queue multiple flips, so wait for the previous
  6511. * one to finish before executing the next.
  6512. */
  6513. if (intel_crtc->plane)
  6514. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6515. else
  6516. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6517. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6518. intel_ring_emit(ring, MI_NOOP);
  6519. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6520. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6521. intel_ring_emit(ring, fb->pitches[0]);
  6522. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6523. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6524. intel_mark_page_flip_active(intel_crtc);
  6525. __intel_ring_advance(ring);
  6526. return 0;
  6527. err_unpin:
  6528. intel_unpin_fb_obj(obj);
  6529. err:
  6530. return ret;
  6531. }
  6532. static int intel_gen3_queue_flip(struct drm_device *dev,
  6533. struct drm_crtc *crtc,
  6534. struct drm_framebuffer *fb,
  6535. struct drm_i915_gem_object *obj,
  6536. uint32_t flags)
  6537. {
  6538. struct drm_i915_private *dev_priv = dev->dev_private;
  6539. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6540. u32 flip_mask;
  6541. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6542. int ret;
  6543. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6544. if (ret)
  6545. goto err;
  6546. ret = intel_ring_begin(ring, 6);
  6547. if (ret)
  6548. goto err_unpin;
  6549. if (intel_crtc->plane)
  6550. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6551. else
  6552. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6553. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6554. intel_ring_emit(ring, MI_NOOP);
  6555. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6556. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6557. intel_ring_emit(ring, fb->pitches[0]);
  6558. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6559. intel_ring_emit(ring, MI_NOOP);
  6560. intel_mark_page_flip_active(intel_crtc);
  6561. __intel_ring_advance(ring);
  6562. return 0;
  6563. err_unpin:
  6564. intel_unpin_fb_obj(obj);
  6565. err:
  6566. return ret;
  6567. }
  6568. static int intel_gen4_queue_flip(struct drm_device *dev,
  6569. struct drm_crtc *crtc,
  6570. struct drm_framebuffer *fb,
  6571. struct drm_i915_gem_object *obj,
  6572. uint32_t flags)
  6573. {
  6574. struct drm_i915_private *dev_priv = dev->dev_private;
  6575. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6576. uint32_t pf, pipesrc;
  6577. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6578. int ret;
  6579. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6580. if (ret)
  6581. goto err;
  6582. ret = intel_ring_begin(ring, 4);
  6583. if (ret)
  6584. goto err_unpin;
  6585. /* i965+ uses the linear or tiled offsets from the
  6586. * Display Registers (which do not change across a page-flip)
  6587. * so we need only reprogram the base address.
  6588. */
  6589. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6590. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6591. intel_ring_emit(ring, fb->pitches[0]);
  6592. intel_ring_emit(ring,
  6593. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6594. obj->tiling_mode);
  6595. /* XXX Enabling the panel-fitter across page-flip is so far
  6596. * untested on non-native modes, so ignore it for now.
  6597. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6598. */
  6599. pf = 0;
  6600. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6601. intel_ring_emit(ring, pf | pipesrc);
  6602. intel_mark_page_flip_active(intel_crtc);
  6603. __intel_ring_advance(ring);
  6604. return 0;
  6605. err_unpin:
  6606. intel_unpin_fb_obj(obj);
  6607. err:
  6608. return ret;
  6609. }
  6610. static int intel_gen6_queue_flip(struct drm_device *dev,
  6611. struct drm_crtc *crtc,
  6612. struct drm_framebuffer *fb,
  6613. struct drm_i915_gem_object *obj,
  6614. uint32_t flags)
  6615. {
  6616. struct drm_i915_private *dev_priv = dev->dev_private;
  6617. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6618. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6619. uint32_t pf, pipesrc;
  6620. int ret;
  6621. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6622. if (ret)
  6623. goto err;
  6624. ret = intel_ring_begin(ring, 4);
  6625. if (ret)
  6626. goto err_unpin;
  6627. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6628. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6629. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6630. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6631. /* Contrary to the suggestions in the documentation,
  6632. * "Enable Panel Fitter" does not seem to be required when page
  6633. * flipping with a non-native mode, and worse causes a normal
  6634. * modeset to fail.
  6635. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6636. */
  6637. pf = 0;
  6638. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6639. intel_ring_emit(ring, pf | pipesrc);
  6640. intel_mark_page_flip_active(intel_crtc);
  6641. __intel_ring_advance(ring);
  6642. return 0;
  6643. err_unpin:
  6644. intel_unpin_fb_obj(obj);
  6645. err:
  6646. return ret;
  6647. }
  6648. static int intel_gen7_queue_flip(struct drm_device *dev,
  6649. struct drm_crtc *crtc,
  6650. struct drm_framebuffer *fb,
  6651. struct drm_i915_gem_object *obj,
  6652. uint32_t flags)
  6653. {
  6654. struct drm_i915_private *dev_priv = dev->dev_private;
  6655. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6656. struct intel_ring_buffer *ring;
  6657. uint32_t plane_bit = 0;
  6658. int len, ret;
  6659. ring = obj->ring;
  6660. if (ring == NULL || ring->id != RCS)
  6661. ring = &dev_priv->ring[BCS];
  6662. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6663. if (ret)
  6664. goto err;
  6665. switch(intel_crtc->plane) {
  6666. case PLANE_A:
  6667. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6668. break;
  6669. case PLANE_B:
  6670. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6671. break;
  6672. case PLANE_C:
  6673. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6674. break;
  6675. default:
  6676. WARN_ONCE(1, "unknown plane in flip command\n");
  6677. ret = -ENODEV;
  6678. goto err_unpin;
  6679. }
  6680. len = 4;
  6681. if (ring->id == RCS)
  6682. len += 6;
  6683. ret = intel_ring_begin(ring, len);
  6684. if (ret)
  6685. goto err_unpin;
  6686. /* Unmask the flip-done completion message. Note that the bspec says that
  6687. * we should do this for both the BCS and RCS, and that we must not unmask
  6688. * more than one flip event at any time (or ensure that one flip message
  6689. * can be sent by waiting for flip-done prior to queueing new flips).
  6690. * Experimentation says that BCS works despite DERRMR masking all
  6691. * flip-done completion events and that unmasking all planes at once
  6692. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6693. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6694. */
  6695. if (ring->id == RCS) {
  6696. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6697. intel_ring_emit(ring, DERRMR);
  6698. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6699. DERRMR_PIPEB_PRI_FLIP_DONE |
  6700. DERRMR_PIPEC_PRI_FLIP_DONE));
  6701. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6702. intel_ring_emit(ring, DERRMR);
  6703. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6704. }
  6705. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6706. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6707. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6708. intel_ring_emit(ring, (MI_NOOP));
  6709. intel_mark_page_flip_active(intel_crtc);
  6710. __intel_ring_advance(ring);
  6711. return 0;
  6712. err_unpin:
  6713. intel_unpin_fb_obj(obj);
  6714. err:
  6715. return ret;
  6716. }
  6717. static int intel_default_queue_flip(struct drm_device *dev,
  6718. struct drm_crtc *crtc,
  6719. struct drm_framebuffer *fb,
  6720. struct drm_i915_gem_object *obj,
  6721. uint32_t flags)
  6722. {
  6723. return -ENODEV;
  6724. }
  6725. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6726. struct drm_framebuffer *fb,
  6727. struct drm_pending_vblank_event *event,
  6728. uint32_t page_flip_flags)
  6729. {
  6730. struct drm_device *dev = crtc->dev;
  6731. struct drm_i915_private *dev_priv = dev->dev_private;
  6732. struct drm_framebuffer *old_fb = crtc->fb;
  6733. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6734. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6735. struct intel_unpin_work *work;
  6736. unsigned long flags;
  6737. int ret;
  6738. /* Can't change pixel format via MI display flips. */
  6739. if (fb->pixel_format != crtc->fb->pixel_format)
  6740. return -EINVAL;
  6741. /*
  6742. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6743. * Note that pitch changes could also affect these register.
  6744. */
  6745. if (INTEL_INFO(dev)->gen > 3 &&
  6746. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6747. fb->pitches[0] != crtc->fb->pitches[0]))
  6748. return -EINVAL;
  6749. work = kzalloc(sizeof *work, GFP_KERNEL);
  6750. if (work == NULL)
  6751. return -ENOMEM;
  6752. work->event = event;
  6753. work->crtc = crtc;
  6754. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6755. INIT_WORK(&work->work, intel_unpin_work_fn);
  6756. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6757. if (ret)
  6758. goto free_work;
  6759. /* We borrow the event spin lock for protecting unpin_work */
  6760. spin_lock_irqsave(&dev->event_lock, flags);
  6761. if (intel_crtc->unpin_work) {
  6762. spin_unlock_irqrestore(&dev->event_lock, flags);
  6763. kfree(work);
  6764. drm_vblank_put(dev, intel_crtc->pipe);
  6765. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6766. return -EBUSY;
  6767. }
  6768. intel_crtc->unpin_work = work;
  6769. spin_unlock_irqrestore(&dev->event_lock, flags);
  6770. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6771. flush_workqueue(dev_priv->wq);
  6772. ret = i915_mutex_lock_interruptible(dev);
  6773. if (ret)
  6774. goto cleanup;
  6775. /* Reference the objects for the scheduled work. */
  6776. drm_gem_object_reference(&work->old_fb_obj->base);
  6777. drm_gem_object_reference(&obj->base);
  6778. crtc->fb = fb;
  6779. work->pending_flip_obj = obj;
  6780. work->enable_stall_check = true;
  6781. atomic_inc(&intel_crtc->unpin_work_count);
  6782. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6783. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6784. if (ret)
  6785. goto cleanup_pending;
  6786. intel_disable_fbc(dev);
  6787. intel_mark_fb_busy(obj, NULL);
  6788. mutex_unlock(&dev->struct_mutex);
  6789. trace_i915_flip_request(intel_crtc->plane, obj);
  6790. return 0;
  6791. cleanup_pending:
  6792. atomic_dec(&intel_crtc->unpin_work_count);
  6793. crtc->fb = old_fb;
  6794. drm_gem_object_unreference(&work->old_fb_obj->base);
  6795. drm_gem_object_unreference(&obj->base);
  6796. mutex_unlock(&dev->struct_mutex);
  6797. cleanup:
  6798. spin_lock_irqsave(&dev->event_lock, flags);
  6799. intel_crtc->unpin_work = NULL;
  6800. spin_unlock_irqrestore(&dev->event_lock, flags);
  6801. drm_vblank_put(dev, intel_crtc->pipe);
  6802. free_work:
  6803. kfree(work);
  6804. return ret;
  6805. }
  6806. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6807. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6808. .load_lut = intel_crtc_load_lut,
  6809. };
  6810. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6811. struct drm_crtc *crtc)
  6812. {
  6813. struct drm_device *dev;
  6814. struct drm_crtc *tmp;
  6815. int crtc_mask = 1;
  6816. WARN(!crtc, "checking null crtc?\n");
  6817. dev = crtc->dev;
  6818. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6819. if (tmp == crtc)
  6820. break;
  6821. crtc_mask <<= 1;
  6822. }
  6823. if (encoder->possible_crtcs & crtc_mask)
  6824. return true;
  6825. return false;
  6826. }
  6827. /**
  6828. * intel_modeset_update_staged_output_state
  6829. *
  6830. * Updates the staged output configuration state, e.g. after we've read out the
  6831. * current hw state.
  6832. */
  6833. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6834. {
  6835. struct intel_encoder *encoder;
  6836. struct intel_connector *connector;
  6837. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6838. base.head) {
  6839. connector->new_encoder =
  6840. to_intel_encoder(connector->base.encoder);
  6841. }
  6842. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6843. base.head) {
  6844. encoder->new_crtc =
  6845. to_intel_crtc(encoder->base.crtc);
  6846. }
  6847. }
  6848. /**
  6849. * intel_modeset_commit_output_state
  6850. *
  6851. * This function copies the stage display pipe configuration to the real one.
  6852. */
  6853. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6854. {
  6855. struct intel_encoder *encoder;
  6856. struct intel_connector *connector;
  6857. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6858. base.head) {
  6859. connector->base.encoder = &connector->new_encoder->base;
  6860. }
  6861. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6862. base.head) {
  6863. encoder->base.crtc = &encoder->new_crtc->base;
  6864. }
  6865. }
  6866. static void
  6867. connected_sink_compute_bpp(struct intel_connector * connector,
  6868. struct intel_crtc_config *pipe_config)
  6869. {
  6870. int bpp = pipe_config->pipe_bpp;
  6871. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6872. connector->base.base.id,
  6873. drm_get_connector_name(&connector->base));
  6874. /* Don't use an invalid EDID bpc value */
  6875. if (connector->base.display_info.bpc &&
  6876. connector->base.display_info.bpc * 3 < bpp) {
  6877. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6878. bpp, connector->base.display_info.bpc*3);
  6879. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6880. }
  6881. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6882. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6883. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6884. bpp);
  6885. pipe_config->pipe_bpp = 24;
  6886. }
  6887. }
  6888. static int
  6889. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6890. struct drm_framebuffer *fb,
  6891. struct intel_crtc_config *pipe_config)
  6892. {
  6893. struct drm_device *dev = crtc->base.dev;
  6894. struct intel_connector *connector;
  6895. int bpp;
  6896. switch (fb->pixel_format) {
  6897. case DRM_FORMAT_C8:
  6898. bpp = 8*3; /* since we go through a colormap */
  6899. break;
  6900. case DRM_FORMAT_XRGB1555:
  6901. case DRM_FORMAT_ARGB1555:
  6902. /* checked in intel_framebuffer_init already */
  6903. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6904. return -EINVAL;
  6905. case DRM_FORMAT_RGB565:
  6906. bpp = 6*3; /* min is 18bpp */
  6907. break;
  6908. case DRM_FORMAT_XBGR8888:
  6909. case DRM_FORMAT_ABGR8888:
  6910. /* checked in intel_framebuffer_init already */
  6911. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6912. return -EINVAL;
  6913. case DRM_FORMAT_XRGB8888:
  6914. case DRM_FORMAT_ARGB8888:
  6915. bpp = 8*3;
  6916. break;
  6917. case DRM_FORMAT_XRGB2101010:
  6918. case DRM_FORMAT_ARGB2101010:
  6919. case DRM_FORMAT_XBGR2101010:
  6920. case DRM_FORMAT_ABGR2101010:
  6921. /* checked in intel_framebuffer_init already */
  6922. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6923. return -EINVAL;
  6924. bpp = 10*3;
  6925. break;
  6926. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6927. default:
  6928. DRM_DEBUG_KMS("unsupported depth\n");
  6929. return -EINVAL;
  6930. }
  6931. pipe_config->pipe_bpp = bpp;
  6932. /* Clamp display bpp to EDID value */
  6933. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6934. base.head) {
  6935. if (!connector->new_encoder ||
  6936. connector->new_encoder->new_crtc != crtc)
  6937. continue;
  6938. connected_sink_compute_bpp(connector, pipe_config);
  6939. }
  6940. return bpp;
  6941. }
  6942. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6943. struct intel_crtc_config *pipe_config,
  6944. const char *context)
  6945. {
  6946. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6947. context, pipe_name(crtc->pipe));
  6948. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6949. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6950. pipe_config->pipe_bpp, pipe_config->dither);
  6951. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6952. pipe_config->has_pch_encoder,
  6953. pipe_config->fdi_lanes,
  6954. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6955. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6956. pipe_config->fdi_m_n.tu);
  6957. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6958. pipe_config->has_dp_encoder,
  6959. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  6960. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  6961. pipe_config->dp_m_n.tu);
  6962. DRM_DEBUG_KMS("requested mode:\n");
  6963. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6964. DRM_DEBUG_KMS("adjusted mode:\n");
  6965. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6966. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6967. pipe_config->gmch_pfit.control,
  6968. pipe_config->gmch_pfit.pgm_ratios,
  6969. pipe_config->gmch_pfit.lvds_border_bits);
  6970. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6971. pipe_config->pch_pfit.pos,
  6972. pipe_config->pch_pfit.size);
  6973. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6974. }
  6975. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6976. {
  6977. int num_encoders = 0;
  6978. bool uncloneable_encoders = false;
  6979. struct intel_encoder *encoder;
  6980. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6981. base.head) {
  6982. if (&encoder->new_crtc->base != crtc)
  6983. continue;
  6984. num_encoders++;
  6985. if (!encoder->cloneable)
  6986. uncloneable_encoders = true;
  6987. }
  6988. return !(num_encoders > 1 && uncloneable_encoders);
  6989. }
  6990. static struct intel_crtc_config *
  6991. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6992. struct drm_framebuffer *fb,
  6993. struct drm_display_mode *mode)
  6994. {
  6995. struct drm_device *dev = crtc->dev;
  6996. struct intel_encoder *encoder;
  6997. struct intel_crtc_config *pipe_config;
  6998. int plane_bpp, ret = -EINVAL;
  6999. bool retry = true;
  7000. if (!check_encoder_cloning(crtc)) {
  7001. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7002. return ERR_PTR(-EINVAL);
  7003. }
  7004. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7005. if (!pipe_config)
  7006. return ERR_PTR(-ENOMEM);
  7007. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7008. drm_mode_copy(&pipe_config->requested_mode, mode);
  7009. pipe_config->cpu_transcoder =
  7010. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7011. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7012. /*
  7013. * Sanitize sync polarity flags based on requested ones. If neither
  7014. * positive or negative polarity is requested, treat this as meaning
  7015. * negative polarity.
  7016. */
  7017. if (!(pipe_config->adjusted_mode.flags &
  7018. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7019. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7020. if (!(pipe_config->adjusted_mode.flags &
  7021. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7022. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7023. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7024. * plane pixel format and any sink constraints into account. Returns the
  7025. * source plane bpp so that dithering can be selected on mismatches
  7026. * after encoders and crtc also have had their say. */
  7027. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7028. fb, pipe_config);
  7029. if (plane_bpp < 0)
  7030. goto fail;
  7031. encoder_retry:
  7032. /* Ensure the port clock defaults are reset when retrying. */
  7033. pipe_config->port_clock = 0;
  7034. pipe_config->pixel_multiplier = 1;
  7035. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7036. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  7037. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7038. * adjust it according to limitations or connector properties, and also
  7039. * a chance to reject the mode entirely.
  7040. */
  7041. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7042. base.head) {
  7043. if (&encoder->new_crtc->base != crtc)
  7044. continue;
  7045. if (!(encoder->compute_config(encoder, pipe_config))) {
  7046. DRM_DEBUG_KMS("Encoder config failure\n");
  7047. goto fail;
  7048. }
  7049. }
  7050. /* Set default port clock if not overwritten by the encoder. Needs to be
  7051. * done afterwards in case the encoder adjusts the mode. */
  7052. if (!pipe_config->port_clock)
  7053. pipe_config->port_clock = pipe_config->adjusted_mode.clock *
  7054. pipe_config->pixel_multiplier;
  7055. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7056. if (ret < 0) {
  7057. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7058. goto fail;
  7059. }
  7060. if (ret == RETRY) {
  7061. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7062. ret = -EINVAL;
  7063. goto fail;
  7064. }
  7065. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7066. retry = false;
  7067. goto encoder_retry;
  7068. }
  7069. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7070. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7071. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7072. return pipe_config;
  7073. fail:
  7074. kfree(pipe_config);
  7075. return ERR_PTR(ret);
  7076. }
  7077. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7078. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7079. static void
  7080. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7081. unsigned *prepare_pipes, unsigned *disable_pipes)
  7082. {
  7083. struct intel_crtc *intel_crtc;
  7084. struct drm_device *dev = crtc->dev;
  7085. struct intel_encoder *encoder;
  7086. struct intel_connector *connector;
  7087. struct drm_crtc *tmp_crtc;
  7088. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7089. /* Check which crtcs have changed outputs connected to them, these need
  7090. * to be part of the prepare_pipes mask. We don't (yet) support global
  7091. * modeset across multiple crtcs, so modeset_pipes will only have one
  7092. * bit set at most. */
  7093. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7094. base.head) {
  7095. if (connector->base.encoder == &connector->new_encoder->base)
  7096. continue;
  7097. if (connector->base.encoder) {
  7098. tmp_crtc = connector->base.encoder->crtc;
  7099. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7100. }
  7101. if (connector->new_encoder)
  7102. *prepare_pipes |=
  7103. 1 << connector->new_encoder->new_crtc->pipe;
  7104. }
  7105. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7106. base.head) {
  7107. if (encoder->base.crtc == &encoder->new_crtc->base)
  7108. continue;
  7109. if (encoder->base.crtc) {
  7110. tmp_crtc = encoder->base.crtc;
  7111. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7112. }
  7113. if (encoder->new_crtc)
  7114. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7115. }
  7116. /* Check for any pipes that will be fully disabled ... */
  7117. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7118. base.head) {
  7119. bool used = false;
  7120. /* Don't try to disable disabled crtcs. */
  7121. if (!intel_crtc->base.enabled)
  7122. continue;
  7123. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7124. base.head) {
  7125. if (encoder->new_crtc == intel_crtc)
  7126. used = true;
  7127. }
  7128. if (!used)
  7129. *disable_pipes |= 1 << intel_crtc->pipe;
  7130. }
  7131. /* set_mode is also used to update properties on life display pipes. */
  7132. intel_crtc = to_intel_crtc(crtc);
  7133. if (crtc->enabled)
  7134. *prepare_pipes |= 1 << intel_crtc->pipe;
  7135. /*
  7136. * For simplicity do a full modeset on any pipe where the output routing
  7137. * changed. We could be more clever, but that would require us to be
  7138. * more careful with calling the relevant encoder->mode_set functions.
  7139. */
  7140. if (*prepare_pipes)
  7141. *modeset_pipes = *prepare_pipes;
  7142. /* ... and mask these out. */
  7143. *modeset_pipes &= ~(*disable_pipes);
  7144. *prepare_pipes &= ~(*disable_pipes);
  7145. /*
  7146. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7147. * obies this rule, but the modeset restore mode of
  7148. * intel_modeset_setup_hw_state does not.
  7149. */
  7150. *modeset_pipes &= 1 << intel_crtc->pipe;
  7151. *prepare_pipes &= 1 << intel_crtc->pipe;
  7152. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7153. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7154. }
  7155. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7156. {
  7157. struct drm_encoder *encoder;
  7158. struct drm_device *dev = crtc->dev;
  7159. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7160. if (encoder->crtc == crtc)
  7161. return true;
  7162. return false;
  7163. }
  7164. static void
  7165. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7166. {
  7167. struct intel_encoder *intel_encoder;
  7168. struct intel_crtc *intel_crtc;
  7169. struct drm_connector *connector;
  7170. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7171. base.head) {
  7172. if (!intel_encoder->base.crtc)
  7173. continue;
  7174. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7175. if (prepare_pipes & (1 << intel_crtc->pipe))
  7176. intel_encoder->connectors_active = false;
  7177. }
  7178. intel_modeset_commit_output_state(dev);
  7179. /* Update computed state. */
  7180. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7181. base.head) {
  7182. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7183. }
  7184. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7185. if (!connector->encoder || !connector->encoder->crtc)
  7186. continue;
  7187. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7188. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7189. struct drm_property *dpms_property =
  7190. dev->mode_config.dpms_property;
  7191. connector->dpms = DRM_MODE_DPMS_ON;
  7192. drm_object_property_set_value(&connector->base,
  7193. dpms_property,
  7194. DRM_MODE_DPMS_ON);
  7195. intel_encoder = to_intel_encoder(connector->encoder);
  7196. intel_encoder->connectors_active = true;
  7197. }
  7198. }
  7199. }
  7200. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7201. {
  7202. int diff;
  7203. if (clock1 == clock2)
  7204. return true;
  7205. if (!clock1 || !clock2)
  7206. return false;
  7207. diff = abs(clock1 - clock2);
  7208. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7209. return true;
  7210. return false;
  7211. }
  7212. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7213. list_for_each_entry((intel_crtc), \
  7214. &(dev)->mode_config.crtc_list, \
  7215. base.head) \
  7216. if (mask & (1 <<(intel_crtc)->pipe))
  7217. static bool
  7218. intel_pipe_config_compare(struct drm_device *dev,
  7219. struct intel_crtc_config *current_config,
  7220. struct intel_crtc_config *pipe_config)
  7221. {
  7222. #define PIPE_CONF_CHECK_X(name) \
  7223. if (current_config->name != pipe_config->name) { \
  7224. DRM_ERROR("mismatch in " #name " " \
  7225. "(expected 0x%08x, found 0x%08x)\n", \
  7226. current_config->name, \
  7227. pipe_config->name); \
  7228. return false; \
  7229. }
  7230. #define PIPE_CONF_CHECK_I(name) \
  7231. if (current_config->name != pipe_config->name) { \
  7232. DRM_ERROR("mismatch in " #name " " \
  7233. "(expected %i, found %i)\n", \
  7234. current_config->name, \
  7235. pipe_config->name); \
  7236. return false; \
  7237. }
  7238. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7239. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7240. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7241. "(expected %i, found %i)\n", \
  7242. current_config->name & (mask), \
  7243. pipe_config->name & (mask)); \
  7244. return false; \
  7245. }
  7246. #define PIPE_CONF_QUIRK(quirk) \
  7247. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7248. PIPE_CONF_CHECK_I(cpu_transcoder);
  7249. PIPE_CONF_CHECK_I(has_pch_encoder);
  7250. PIPE_CONF_CHECK_I(fdi_lanes);
  7251. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7252. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7253. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7254. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7255. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7256. PIPE_CONF_CHECK_I(has_dp_encoder);
  7257. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7258. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7259. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7260. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7261. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7262. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7263. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7264. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7265. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7266. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7267. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7268. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7269. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7270. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7271. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7272. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7273. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7274. PIPE_CONF_CHECK_I(pixel_multiplier);
  7275. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7276. DRM_MODE_FLAG_INTERLACE);
  7277. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7278. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7279. DRM_MODE_FLAG_PHSYNC);
  7280. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7281. DRM_MODE_FLAG_NHSYNC);
  7282. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7283. DRM_MODE_FLAG_PVSYNC);
  7284. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7285. DRM_MODE_FLAG_NVSYNC);
  7286. }
  7287. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  7288. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  7289. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7290. /* pfit ratios are autocomputed by the hw on gen4+ */
  7291. if (INTEL_INFO(dev)->gen < 4)
  7292. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7293. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7294. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7295. PIPE_CONF_CHECK_I(pch_pfit.size);
  7296. PIPE_CONF_CHECK_I(ips_enabled);
  7297. PIPE_CONF_CHECK_I(shared_dpll);
  7298. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7299. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7300. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7301. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7302. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7303. PIPE_CONF_CHECK_I(pipe_bpp);
  7304. #undef PIPE_CONF_CHECK_X
  7305. #undef PIPE_CONF_CHECK_I
  7306. #undef PIPE_CONF_CHECK_FLAGS
  7307. #undef PIPE_CONF_QUIRK
  7308. if (!IS_HASWELL(dev)) {
  7309. if (!intel_fuzzy_clock_check(current_config->adjusted_mode.clock,
  7310. pipe_config->adjusted_mode.clock)) {
  7311. DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  7312. current_config->adjusted_mode.clock,
  7313. pipe_config->adjusted_mode.clock);
  7314. return false;
  7315. }
  7316. }
  7317. return true;
  7318. }
  7319. static void
  7320. check_connector_state(struct drm_device *dev)
  7321. {
  7322. struct intel_connector *connector;
  7323. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7324. base.head) {
  7325. /* This also checks the encoder/connector hw state with the
  7326. * ->get_hw_state callbacks. */
  7327. intel_connector_check_state(connector);
  7328. WARN(&connector->new_encoder->base != connector->base.encoder,
  7329. "connector's staged encoder doesn't match current encoder\n");
  7330. }
  7331. }
  7332. static void
  7333. check_encoder_state(struct drm_device *dev)
  7334. {
  7335. struct intel_encoder *encoder;
  7336. struct intel_connector *connector;
  7337. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7338. base.head) {
  7339. bool enabled = false;
  7340. bool active = false;
  7341. enum pipe pipe, tracked_pipe;
  7342. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7343. encoder->base.base.id,
  7344. drm_get_encoder_name(&encoder->base));
  7345. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7346. "encoder's stage crtc doesn't match current crtc\n");
  7347. WARN(encoder->connectors_active && !encoder->base.crtc,
  7348. "encoder's active_connectors set, but no crtc\n");
  7349. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7350. base.head) {
  7351. if (connector->base.encoder != &encoder->base)
  7352. continue;
  7353. enabled = true;
  7354. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7355. active = true;
  7356. }
  7357. WARN(!!encoder->base.crtc != enabled,
  7358. "encoder's enabled state mismatch "
  7359. "(expected %i, found %i)\n",
  7360. !!encoder->base.crtc, enabled);
  7361. WARN(active && !encoder->base.crtc,
  7362. "active encoder with no crtc\n");
  7363. WARN(encoder->connectors_active != active,
  7364. "encoder's computed active state doesn't match tracked active state "
  7365. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7366. active = encoder->get_hw_state(encoder, &pipe);
  7367. WARN(active != encoder->connectors_active,
  7368. "encoder's hw state doesn't match sw tracking "
  7369. "(expected %i, found %i)\n",
  7370. encoder->connectors_active, active);
  7371. if (!encoder->base.crtc)
  7372. continue;
  7373. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7374. WARN(active && pipe != tracked_pipe,
  7375. "active encoder's pipe doesn't match"
  7376. "(expected %i, found %i)\n",
  7377. tracked_pipe, pipe);
  7378. }
  7379. }
  7380. static void
  7381. check_crtc_state(struct drm_device *dev)
  7382. {
  7383. drm_i915_private_t *dev_priv = dev->dev_private;
  7384. struct intel_crtc *crtc;
  7385. struct intel_encoder *encoder;
  7386. struct intel_crtc_config pipe_config;
  7387. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7388. base.head) {
  7389. bool enabled = false;
  7390. bool active = false;
  7391. memset(&pipe_config, 0, sizeof(pipe_config));
  7392. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7393. crtc->base.base.id);
  7394. WARN(crtc->active && !crtc->base.enabled,
  7395. "active crtc, but not enabled in sw tracking\n");
  7396. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7397. base.head) {
  7398. if (encoder->base.crtc != &crtc->base)
  7399. continue;
  7400. enabled = true;
  7401. if (encoder->connectors_active)
  7402. active = true;
  7403. }
  7404. WARN(active != crtc->active,
  7405. "crtc's computed active state doesn't match tracked active state "
  7406. "(expected %i, found %i)\n", active, crtc->active);
  7407. WARN(enabled != crtc->base.enabled,
  7408. "crtc's computed enabled state doesn't match tracked enabled state "
  7409. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7410. active = dev_priv->display.get_pipe_config(crtc,
  7411. &pipe_config);
  7412. /* hw state is inconsistent with the pipe A quirk */
  7413. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7414. active = crtc->active;
  7415. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7416. base.head) {
  7417. enum pipe pipe;
  7418. if (encoder->base.crtc != &crtc->base)
  7419. continue;
  7420. if (encoder->get_config &&
  7421. encoder->get_hw_state(encoder, &pipe))
  7422. encoder->get_config(encoder, &pipe_config);
  7423. }
  7424. if (dev_priv->display.get_clock)
  7425. dev_priv->display.get_clock(crtc, &pipe_config);
  7426. WARN(crtc->active != active,
  7427. "crtc active state doesn't match with hw state "
  7428. "(expected %i, found %i)\n", crtc->active, active);
  7429. if (active &&
  7430. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7431. WARN(1, "pipe state doesn't match!\n");
  7432. intel_dump_pipe_config(crtc, &pipe_config,
  7433. "[hw state]");
  7434. intel_dump_pipe_config(crtc, &crtc->config,
  7435. "[sw state]");
  7436. }
  7437. }
  7438. }
  7439. static void
  7440. check_shared_dpll_state(struct drm_device *dev)
  7441. {
  7442. drm_i915_private_t *dev_priv = dev->dev_private;
  7443. struct intel_crtc *crtc;
  7444. struct intel_dpll_hw_state dpll_hw_state;
  7445. int i;
  7446. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7447. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7448. int enabled_crtcs = 0, active_crtcs = 0;
  7449. bool active;
  7450. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7451. DRM_DEBUG_KMS("%s\n", pll->name);
  7452. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7453. WARN(pll->active > pll->refcount,
  7454. "more active pll users than references: %i vs %i\n",
  7455. pll->active, pll->refcount);
  7456. WARN(pll->active && !pll->on,
  7457. "pll in active use but not on in sw tracking\n");
  7458. WARN(pll->on && !pll->active,
  7459. "pll in on but not on in use in sw tracking\n");
  7460. WARN(pll->on != active,
  7461. "pll on state mismatch (expected %i, found %i)\n",
  7462. pll->on, active);
  7463. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7464. base.head) {
  7465. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7466. enabled_crtcs++;
  7467. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7468. active_crtcs++;
  7469. }
  7470. WARN(pll->active != active_crtcs,
  7471. "pll active crtcs mismatch (expected %i, found %i)\n",
  7472. pll->active, active_crtcs);
  7473. WARN(pll->refcount != enabled_crtcs,
  7474. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7475. pll->refcount, enabled_crtcs);
  7476. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7477. sizeof(dpll_hw_state)),
  7478. "pll hw state mismatch\n");
  7479. }
  7480. }
  7481. void
  7482. intel_modeset_check_state(struct drm_device *dev)
  7483. {
  7484. check_connector_state(dev);
  7485. check_encoder_state(dev);
  7486. check_crtc_state(dev);
  7487. check_shared_dpll_state(dev);
  7488. }
  7489. static int __intel_set_mode(struct drm_crtc *crtc,
  7490. struct drm_display_mode *mode,
  7491. int x, int y, struct drm_framebuffer *fb)
  7492. {
  7493. struct drm_device *dev = crtc->dev;
  7494. drm_i915_private_t *dev_priv = dev->dev_private;
  7495. struct drm_display_mode *saved_mode, *saved_hwmode;
  7496. struct intel_crtc_config *pipe_config = NULL;
  7497. struct intel_crtc *intel_crtc;
  7498. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7499. int ret = 0;
  7500. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7501. if (!saved_mode)
  7502. return -ENOMEM;
  7503. saved_hwmode = saved_mode + 1;
  7504. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7505. &prepare_pipes, &disable_pipes);
  7506. *saved_hwmode = crtc->hwmode;
  7507. *saved_mode = crtc->mode;
  7508. /* Hack: Because we don't (yet) support global modeset on multiple
  7509. * crtcs, we don't keep track of the new mode for more than one crtc.
  7510. * Hence simply check whether any bit is set in modeset_pipes in all the
  7511. * pieces of code that are not yet converted to deal with mutliple crtcs
  7512. * changing their mode at the same time. */
  7513. if (modeset_pipes) {
  7514. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7515. if (IS_ERR(pipe_config)) {
  7516. ret = PTR_ERR(pipe_config);
  7517. pipe_config = NULL;
  7518. goto out;
  7519. }
  7520. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7521. "[modeset]");
  7522. }
  7523. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7524. intel_crtc_disable(&intel_crtc->base);
  7525. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7526. if (intel_crtc->base.enabled)
  7527. dev_priv->display.crtc_disable(&intel_crtc->base);
  7528. }
  7529. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7530. * to set it here already despite that we pass it down the callchain.
  7531. */
  7532. if (modeset_pipes) {
  7533. crtc->mode = *mode;
  7534. /* mode_set/enable/disable functions rely on a correct pipe
  7535. * config. */
  7536. to_intel_crtc(crtc)->config = *pipe_config;
  7537. }
  7538. /* Only after disabling all output pipelines that will be changed can we
  7539. * update the the output configuration. */
  7540. intel_modeset_update_state(dev, prepare_pipes);
  7541. if (dev_priv->display.modeset_global_resources)
  7542. dev_priv->display.modeset_global_resources(dev);
  7543. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7544. * on the DPLL.
  7545. */
  7546. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7547. ret = intel_crtc_mode_set(&intel_crtc->base,
  7548. x, y, fb);
  7549. if (ret)
  7550. goto done;
  7551. }
  7552. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7553. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7554. dev_priv->display.crtc_enable(&intel_crtc->base);
  7555. if (modeset_pipes) {
  7556. /* Store real post-adjustment hardware mode. */
  7557. crtc->hwmode = pipe_config->adjusted_mode;
  7558. /* Calculate and store various constants which
  7559. * are later needed by vblank and swap-completion
  7560. * timestamping. They are derived from true hwmode.
  7561. */
  7562. drm_calc_timestamping_constants(crtc);
  7563. }
  7564. /* FIXME: add subpixel order */
  7565. done:
  7566. if (ret && crtc->enabled) {
  7567. crtc->hwmode = *saved_hwmode;
  7568. crtc->mode = *saved_mode;
  7569. }
  7570. out:
  7571. kfree(pipe_config);
  7572. kfree(saved_mode);
  7573. return ret;
  7574. }
  7575. static int intel_set_mode(struct drm_crtc *crtc,
  7576. struct drm_display_mode *mode,
  7577. int x, int y, struct drm_framebuffer *fb)
  7578. {
  7579. int ret;
  7580. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7581. if (ret == 0)
  7582. intel_modeset_check_state(crtc->dev);
  7583. return ret;
  7584. }
  7585. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7586. {
  7587. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7588. }
  7589. #undef for_each_intel_crtc_masked
  7590. static void intel_set_config_free(struct intel_set_config *config)
  7591. {
  7592. if (!config)
  7593. return;
  7594. kfree(config->save_connector_encoders);
  7595. kfree(config->save_encoder_crtcs);
  7596. kfree(config);
  7597. }
  7598. static int intel_set_config_save_state(struct drm_device *dev,
  7599. struct intel_set_config *config)
  7600. {
  7601. struct drm_encoder *encoder;
  7602. struct drm_connector *connector;
  7603. int count;
  7604. config->save_encoder_crtcs =
  7605. kcalloc(dev->mode_config.num_encoder,
  7606. sizeof(struct drm_crtc *), GFP_KERNEL);
  7607. if (!config->save_encoder_crtcs)
  7608. return -ENOMEM;
  7609. config->save_connector_encoders =
  7610. kcalloc(dev->mode_config.num_connector,
  7611. sizeof(struct drm_encoder *), GFP_KERNEL);
  7612. if (!config->save_connector_encoders)
  7613. return -ENOMEM;
  7614. /* Copy data. Note that driver private data is not affected.
  7615. * Should anything bad happen only the expected state is
  7616. * restored, not the drivers personal bookkeeping.
  7617. */
  7618. count = 0;
  7619. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7620. config->save_encoder_crtcs[count++] = encoder->crtc;
  7621. }
  7622. count = 0;
  7623. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7624. config->save_connector_encoders[count++] = connector->encoder;
  7625. }
  7626. return 0;
  7627. }
  7628. static void intel_set_config_restore_state(struct drm_device *dev,
  7629. struct intel_set_config *config)
  7630. {
  7631. struct intel_encoder *encoder;
  7632. struct intel_connector *connector;
  7633. int count;
  7634. count = 0;
  7635. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7636. encoder->new_crtc =
  7637. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7638. }
  7639. count = 0;
  7640. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7641. connector->new_encoder =
  7642. to_intel_encoder(config->save_connector_encoders[count++]);
  7643. }
  7644. }
  7645. static bool
  7646. is_crtc_connector_off(struct drm_mode_set *set)
  7647. {
  7648. int i;
  7649. if (set->num_connectors == 0)
  7650. return false;
  7651. if (WARN_ON(set->connectors == NULL))
  7652. return false;
  7653. for (i = 0; i < set->num_connectors; i++)
  7654. if (set->connectors[i]->encoder &&
  7655. set->connectors[i]->encoder->crtc == set->crtc &&
  7656. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7657. return true;
  7658. return false;
  7659. }
  7660. static void
  7661. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7662. struct intel_set_config *config)
  7663. {
  7664. /* We should be able to check here if the fb has the same properties
  7665. * and then just flip_or_move it */
  7666. if (is_crtc_connector_off(set)) {
  7667. config->mode_changed = true;
  7668. } else if (set->crtc->fb != set->fb) {
  7669. /* If we have no fb then treat it as a full mode set */
  7670. if (set->crtc->fb == NULL) {
  7671. struct intel_crtc *intel_crtc =
  7672. to_intel_crtc(set->crtc);
  7673. if (intel_crtc->active && i915_fastboot) {
  7674. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7675. config->fb_changed = true;
  7676. } else {
  7677. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7678. config->mode_changed = true;
  7679. }
  7680. } else if (set->fb == NULL) {
  7681. config->mode_changed = true;
  7682. } else if (set->fb->pixel_format !=
  7683. set->crtc->fb->pixel_format) {
  7684. config->mode_changed = true;
  7685. } else {
  7686. config->fb_changed = true;
  7687. }
  7688. }
  7689. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7690. config->fb_changed = true;
  7691. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7692. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7693. drm_mode_debug_printmodeline(&set->crtc->mode);
  7694. drm_mode_debug_printmodeline(set->mode);
  7695. config->mode_changed = true;
  7696. }
  7697. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7698. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7699. }
  7700. static int
  7701. intel_modeset_stage_output_state(struct drm_device *dev,
  7702. struct drm_mode_set *set,
  7703. struct intel_set_config *config)
  7704. {
  7705. struct drm_crtc *new_crtc;
  7706. struct intel_connector *connector;
  7707. struct intel_encoder *encoder;
  7708. int ro;
  7709. /* The upper layers ensure that we either disable a crtc or have a list
  7710. * of connectors. For paranoia, double-check this. */
  7711. WARN_ON(!set->fb && (set->num_connectors != 0));
  7712. WARN_ON(set->fb && (set->num_connectors == 0));
  7713. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7714. base.head) {
  7715. /* Otherwise traverse passed in connector list and get encoders
  7716. * for them. */
  7717. for (ro = 0; ro < set->num_connectors; ro++) {
  7718. if (set->connectors[ro] == &connector->base) {
  7719. connector->new_encoder = connector->encoder;
  7720. break;
  7721. }
  7722. }
  7723. /* If we disable the crtc, disable all its connectors. Also, if
  7724. * the connector is on the changing crtc but not on the new
  7725. * connector list, disable it. */
  7726. if ((!set->fb || ro == set->num_connectors) &&
  7727. connector->base.encoder &&
  7728. connector->base.encoder->crtc == set->crtc) {
  7729. connector->new_encoder = NULL;
  7730. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7731. connector->base.base.id,
  7732. drm_get_connector_name(&connector->base));
  7733. }
  7734. if (&connector->new_encoder->base != connector->base.encoder) {
  7735. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7736. config->mode_changed = true;
  7737. }
  7738. }
  7739. /* connector->new_encoder is now updated for all connectors. */
  7740. /* Update crtc of enabled connectors. */
  7741. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7742. base.head) {
  7743. if (!connector->new_encoder)
  7744. continue;
  7745. new_crtc = connector->new_encoder->base.crtc;
  7746. for (ro = 0; ro < set->num_connectors; ro++) {
  7747. if (set->connectors[ro] == &connector->base)
  7748. new_crtc = set->crtc;
  7749. }
  7750. /* Make sure the new CRTC will work with the encoder */
  7751. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7752. new_crtc)) {
  7753. return -EINVAL;
  7754. }
  7755. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7756. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7757. connector->base.base.id,
  7758. drm_get_connector_name(&connector->base),
  7759. new_crtc->base.id);
  7760. }
  7761. /* Check for any encoders that needs to be disabled. */
  7762. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7763. base.head) {
  7764. list_for_each_entry(connector,
  7765. &dev->mode_config.connector_list,
  7766. base.head) {
  7767. if (connector->new_encoder == encoder) {
  7768. WARN_ON(!connector->new_encoder->new_crtc);
  7769. goto next_encoder;
  7770. }
  7771. }
  7772. encoder->new_crtc = NULL;
  7773. next_encoder:
  7774. /* Only now check for crtc changes so we don't miss encoders
  7775. * that will be disabled. */
  7776. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7777. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7778. config->mode_changed = true;
  7779. }
  7780. }
  7781. /* Now we've also updated encoder->new_crtc for all encoders. */
  7782. return 0;
  7783. }
  7784. static int intel_crtc_set_config(struct drm_mode_set *set)
  7785. {
  7786. struct drm_device *dev;
  7787. struct drm_mode_set save_set;
  7788. struct intel_set_config *config;
  7789. int ret;
  7790. BUG_ON(!set);
  7791. BUG_ON(!set->crtc);
  7792. BUG_ON(!set->crtc->helper_private);
  7793. /* Enforce sane interface api - has been abused by the fb helper. */
  7794. BUG_ON(!set->mode && set->fb);
  7795. BUG_ON(set->fb && set->num_connectors == 0);
  7796. if (set->fb) {
  7797. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7798. set->crtc->base.id, set->fb->base.id,
  7799. (int)set->num_connectors, set->x, set->y);
  7800. } else {
  7801. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7802. }
  7803. dev = set->crtc->dev;
  7804. ret = -ENOMEM;
  7805. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7806. if (!config)
  7807. goto out_config;
  7808. ret = intel_set_config_save_state(dev, config);
  7809. if (ret)
  7810. goto out_config;
  7811. save_set.crtc = set->crtc;
  7812. save_set.mode = &set->crtc->mode;
  7813. save_set.x = set->crtc->x;
  7814. save_set.y = set->crtc->y;
  7815. save_set.fb = set->crtc->fb;
  7816. /* Compute whether we need a full modeset, only an fb base update or no
  7817. * change at all. In the future we might also check whether only the
  7818. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7819. * such cases. */
  7820. intel_set_config_compute_mode_changes(set, config);
  7821. ret = intel_modeset_stage_output_state(dev, set, config);
  7822. if (ret)
  7823. goto fail;
  7824. if (config->mode_changed) {
  7825. ret = intel_set_mode(set->crtc, set->mode,
  7826. set->x, set->y, set->fb);
  7827. } else if (config->fb_changed) {
  7828. intel_crtc_wait_for_pending_flips(set->crtc);
  7829. ret = intel_pipe_set_base(set->crtc,
  7830. set->x, set->y, set->fb);
  7831. }
  7832. if (ret) {
  7833. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7834. set->crtc->base.id, ret);
  7835. fail:
  7836. intel_set_config_restore_state(dev, config);
  7837. /* Try to restore the config */
  7838. if (config->mode_changed &&
  7839. intel_set_mode(save_set.crtc, save_set.mode,
  7840. save_set.x, save_set.y, save_set.fb))
  7841. DRM_ERROR("failed to restore config after modeset failure\n");
  7842. }
  7843. out_config:
  7844. intel_set_config_free(config);
  7845. return ret;
  7846. }
  7847. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7848. .cursor_set = intel_crtc_cursor_set,
  7849. .cursor_move = intel_crtc_cursor_move,
  7850. .gamma_set = intel_crtc_gamma_set,
  7851. .set_config = intel_crtc_set_config,
  7852. .destroy = intel_crtc_destroy,
  7853. .page_flip = intel_crtc_page_flip,
  7854. };
  7855. static void intel_cpu_pll_init(struct drm_device *dev)
  7856. {
  7857. if (HAS_DDI(dev))
  7858. intel_ddi_pll_init(dev);
  7859. }
  7860. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7861. struct intel_shared_dpll *pll,
  7862. struct intel_dpll_hw_state *hw_state)
  7863. {
  7864. uint32_t val;
  7865. val = I915_READ(PCH_DPLL(pll->id));
  7866. hw_state->dpll = val;
  7867. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7868. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7869. return val & DPLL_VCO_ENABLE;
  7870. }
  7871. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7872. struct intel_shared_dpll *pll)
  7873. {
  7874. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7875. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7876. }
  7877. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7878. struct intel_shared_dpll *pll)
  7879. {
  7880. /* PCH refclock must be enabled first */
  7881. assert_pch_refclk_enabled(dev_priv);
  7882. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7883. /* Wait for the clocks to stabilize. */
  7884. POSTING_READ(PCH_DPLL(pll->id));
  7885. udelay(150);
  7886. /* The pixel multiplier can only be updated once the
  7887. * DPLL is enabled and the clocks are stable.
  7888. *
  7889. * So write it again.
  7890. */
  7891. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7892. POSTING_READ(PCH_DPLL(pll->id));
  7893. udelay(200);
  7894. }
  7895. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7896. struct intel_shared_dpll *pll)
  7897. {
  7898. struct drm_device *dev = dev_priv->dev;
  7899. struct intel_crtc *crtc;
  7900. /* Make sure no transcoder isn't still depending on us. */
  7901. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7902. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7903. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7904. }
  7905. I915_WRITE(PCH_DPLL(pll->id), 0);
  7906. POSTING_READ(PCH_DPLL(pll->id));
  7907. udelay(200);
  7908. }
  7909. static char *ibx_pch_dpll_names[] = {
  7910. "PCH DPLL A",
  7911. "PCH DPLL B",
  7912. };
  7913. static void ibx_pch_dpll_init(struct drm_device *dev)
  7914. {
  7915. struct drm_i915_private *dev_priv = dev->dev_private;
  7916. int i;
  7917. dev_priv->num_shared_dpll = 2;
  7918. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7919. dev_priv->shared_dplls[i].id = i;
  7920. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7921. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7922. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7923. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7924. dev_priv->shared_dplls[i].get_hw_state =
  7925. ibx_pch_dpll_get_hw_state;
  7926. }
  7927. }
  7928. static void intel_shared_dpll_init(struct drm_device *dev)
  7929. {
  7930. struct drm_i915_private *dev_priv = dev->dev_private;
  7931. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7932. ibx_pch_dpll_init(dev);
  7933. else
  7934. dev_priv->num_shared_dpll = 0;
  7935. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7936. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7937. dev_priv->num_shared_dpll);
  7938. }
  7939. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7940. {
  7941. drm_i915_private_t *dev_priv = dev->dev_private;
  7942. struct intel_crtc *intel_crtc;
  7943. int i;
  7944. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7945. if (intel_crtc == NULL)
  7946. return;
  7947. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7948. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7949. for (i = 0; i < 256; i++) {
  7950. intel_crtc->lut_r[i] = i;
  7951. intel_crtc->lut_g[i] = i;
  7952. intel_crtc->lut_b[i] = i;
  7953. }
  7954. /* Swap pipes & planes for FBC on pre-965 */
  7955. intel_crtc->pipe = pipe;
  7956. intel_crtc->plane = pipe;
  7957. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7958. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7959. intel_crtc->plane = !pipe;
  7960. }
  7961. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7962. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7963. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7964. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7965. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7966. }
  7967. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7968. struct drm_file *file)
  7969. {
  7970. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7971. struct drm_mode_object *drmmode_obj;
  7972. struct intel_crtc *crtc;
  7973. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7974. return -ENODEV;
  7975. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7976. DRM_MODE_OBJECT_CRTC);
  7977. if (!drmmode_obj) {
  7978. DRM_ERROR("no such CRTC id\n");
  7979. return -EINVAL;
  7980. }
  7981. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7982. pipe_from_crtc_id->pipe = crtc->pipe;
  7983. return 0;
  7984. }
  7985. static int intel_encoder_clones(struct intel_encoder *encoder)
  7986. {
  7987. struct drm_device *dev = encoder->base.dev;
  7988. struct intel_encoder *source_encoder;
  7989. int index_mask = 0;
  7990. int entry = 0;
  7991. list_for_each_entry(source_encoder,
  7992. &dev->mode_config.encoder_list, base.head) {
  7993. if (encoder == source_encoder)
  7994. index_mask |= (1 << entry);
  7995. /* Intel hw has only one MUX where enocoders could be cloned. */
  7996. if (encoder->cloneable && source_encoder->cloneable)
  7997. index_mask |= (1 << entry);
  7998. entry++;
  7999. }
  8000. return index_mask;
  8001. }
  8002. static bool has_edp_a(struct drm_device *dev)
  8003. {
  8004. struct drm_i915_private *dev_priv = dev->dev_private;
  8005. if (!IS_MOBILE(dev))
  8006. return false;
  8007. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8008. return false;
  8009. if (IS_GEN5(dev) &&
  8010. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8011. return false;
  8012. return true;
  8013. }
  8014. static void intel_setup_outputs(struct drm_device *dev)
  8015. {
  8016. struct drm_i915_private *dev_priv = dev->dev_private;
  8017. struct intel_encoder *encoder;
  8018. bool dpd_is_edp = false;
  8019. intel_lvds_init(dev);
  8020. if (!IS_ULT(dev))
  8021. intel_crt_init(dev);
  8022. if (HAS_DDI(dev)) {
  8023. int found;
  8024. /* Haswell uses DDI functions to detect digital outputs */
  8025. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8026. /* DDI A only supports eDP */
  8027. if (found)
  8028. intel_ddi_init(dev, PORT_A);
  8029. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8030. * register */
  8031. found = I915_READ(SFUSE_STRAP);
  8032. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8033. intel_ddi_init(dev, PORT_B);
  8034. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8035. intel_ddi_init(dev, PORT_C);
  8036. if (found & SFUSE_STRAP_DDID_DETECTED)
  8037. intel_ddi_init(dev, PORT_D);
  8038. } else if (HAS_PCH_SPLIT(dev)) {
  8039. int found;
  8040. dpd_is_edp = intel_dpd_is_edp(dev);
  8041. if (has_edp_a(dev))
  8042. intel_dp_init(dev, DP_A, PORT_A);
  8043. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8044. /* PCH SDVOB multiplex with HDMIB */
  8045. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8046. if (!found)
  8047. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8048. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8049. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8050. }
  8051. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8052. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8053. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8054. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8055. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8056. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8057. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8058. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8059. } else if (IS_VALLEYVIEW(dev)) {
  8060. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  8061. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8062. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8063. PORT_C);
  8064. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8065. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8066. PORT_C);
  8067. }
  8068. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8069. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8070. PORT_B);
  8071. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8072. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8073. }
  8074. intel_dsi_init(dev);
  8075. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8076. bool found = false;
  8077. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8078. DRM_DEBUG_KMS("probing SDVOB\n");
  8079. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8080. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8081. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8082. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8083. }
  8084. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8085. intel_dp_init(dev, DP_B, PORT_B);
  8086. }
  8087. /* Before G4X SDVOC doesn't have its own detect register */
  8088. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8089. DRM_DEBUG_KMS("probing SDVOC\n");
  8090. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8091. }
  8092. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8093. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8094. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8095. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8096. }
  8097. if (SUPPORTS_INTEGRATED_DP(dev))
  8098. intel_dp_init(dev, DP_C, PORT_C);
  8099. }
  8100. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8101. (I915_READ(DP_D) & DP_DETECTED))
  8102. intel_dp_init(dev, DP_D, PORT_D);
  8103. } else if (IS_GEN2(dev))
  8104. intel_dvo_init(dev);
  8105. if (SUPPORTS_TV(dev))
  8106. intel_tv_init(dev);
  8107. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8108. encoder->base.possible_crtcs = encoder->crtc_mask;
  8109. encoder->base.possible_clones =
  8110. intel_encoder_clones(encoder);
  8111. }
  8112. intel_init_pch_refclk(dev);
  8113. drm_helper_move_panel_connectors_to_head(dev);
  8114. }
  8115. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8116. {
  8117. drm_framebuffer_cleanup(&fb->base);
  8118. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8119. }
  8120. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8121. {
  8122. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8123. intel_framebuffer_fini(intel_fb);
  8124. kfree(intel_fb);
  8125. }
  8126. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8127. struct drm_file *file,
  8128. unsigned int *handle)
  8129. {
  8130. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8131. struct drm_i915_gem_object *obj = intel_fb->obj;
  8132. return drm_gem_handle_create(file, &obj->base, handle);
  8133. }
  8134. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8135. .destroy = intel_user_framebuffer_destroy,
  8136. .create_handle = intel_user_framebuffer_create_handle,
  8137. };
  8138. int intel_framebuffer_init(struct drm_device *dev,
  8139. struct intel_framebuffer *intel_fb,
  8140. struct drm_mode_fb_cmd2 *mode_cmd,
  8141. struct drm_i915_gem_object *obj)
  8142. {
  8143. int pitch_limit;
  8144. int ret;
  8145. if (obj->tiling_mode == I915_TILING_Y) {
  8146. DRM_DEBUG("hardware does not support tiling Y\n");
  8147. return -EINVAL;
  8148. }
  8149. if (mode_cmd->pitches[0] & 63) {
  8150. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8151. mode_cmd->pitches[0]);
  8152. return -EINVAL;
  8153. }
  8154. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8155. pitch_limit = 32*1024;
  8156. } else if (INTEL_INFO(dev)->gen >= 4) {
  8157. if (obj->tiling_mode)
  8158. pitch_limit = 16*1024;
  8159. else
  8160. pitch_limit = 32*1024;
  8161. } else if (INTEL_INFO(dev)->gen >= 3) {
  8162. if (obj->tiling_mode)
  8163. pitch_limit = 8*1024;
  8164. else
  8165. pitch_limit = 16*1024;
  8166. } else
  8167. /* XXX DSPC is limited to 4k tiled */
  8168. pitch_limit = 8*1024;
  8169. if (mode_cmd->pitches[0] > pitch_limit) {
  8170. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8171. obj->tiling_mode ? "tiled" : "linear",
  8172. mode_cmd->pitches[0], pitch_limit);
  8173. return -EINVAL;
  8174. }
  8175. if (obj->tiling_mode != I915_TILING_NONE &&
  8176. mode_cmd->pitches[0] != obj->stride) {
  8177. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8178. mode_cmd->pitches[0], obj->stride);
  8179. return -EINVAL;
  8180. }
  8181. /* Reject formats not supported by any plane early. */
  8182. switch (mode_cmd->pixel_format) {
  8183. case DRM_FORMAT_C8:
  8184. case DRM_FORMAT_RGB565:
  8185. case DRM_FORMAT_XRGB8888:
  8186. case DRM_FORMAT_ARGB8888:
  8187. break;
  8188. case DRM_FORMAT_XRGB1555:
  8189. case DRM_FORMAT_ARGB1555:
  8190. if (INTEL_INFO(dev)->gen > 3) {
  8191. DRM_DEBUG("unsupported pixel format: %s\n",
  8192. drm_get_format_name(mode_cmd->pixel_format));
  8193. return -EINVAL;
  8194. }
  8195. break;
  8196. case DRM_FORMAT_XBGR8888:
  8197. case DRM_FORMAT_ABGR8888:
  8198. case DRM_FORMAT_XRGB2101010:
  8199. case DRM_FORMAT_ARGB2101010:
  8200. case DRM_FORMAT_XBGR2101010:
  8201. case DRM_FORMAT_ABGR2101010:
  8202. if (INTEL_INFO(dev)->gen < 4) {
  8203. DRM_DEBUG("unsupported pixel format: %s\n",
  8204. drm_get_format_name(mode_cmd->pixel_format));
  8205. return -EINVAL;
  8206. }
  8207. break;
  8208. case DRM_FORMAT_YUYV:
  8209. case DRM_FORMAT_UYVY:
  8210. case DRM_FORMAT_YVYU:
  8211. case DRM_FORMAT_VYUY:
  8212. if (INTEL_INFO(dev)->gen < 5) {
  8213. DRM_DEBUG("unsupported pixel format: %s\n",
  8214. drm_get_format_name(mode_cmd->pixel_format));
  8215. return -EINVAL;
  8216. }
  8217. break;
  8218. default:
  8219. DRM_DEBUG("unsupported pixel format: %s\n",
  8220. drm_get_format_name(mode_cmd->pixel_format));
  8221. return -EINVAL;
  8222. }
  8223. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8224. if (mode_cmd->offsets[0] != 0)
  8225. return -EINVAL;
  8226. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8227. intel_fb->obj = obj;
  8228. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8229. if (ret) {
  8230. DRM_ERROR("framebuffer init failed %d\n", ret);
  8231. return ret;
  8232. }
  8233. return 0;
  8234. }
  8235. static struct drm_framebuffer *
  8236. intel_user_framebuffer_create(struct drm_device *dev,
  8237. struct drm_file *filp,
  8238. struct drm_mode_fb_cmd2 *mode_cmd)
  8239. {
  8240. struct drm_i915_gem_object *obj;
  8241. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8242. mode_cmd->handles[0]));
  8243. if (&obj->base == NULL)
  8244. return ERR_PTR(-ENOENT);
  8245. return intel_framebuffer_create(dev, mode_cmd, obj);
  8246. }
  8247. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8248. .fb_create = intel_user_framebuffer_create,
  8249. .output_poll_changed = intel_fb_output_poll_changed,
  8250. };
  8251. /* Set up chip specific display functions */
  8252. static void intel_init_display(struct drm_device *dev)
  8253. {
  8254. struct drm_i915_private *dev_priv = dev->dev_private;
  8255. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8256. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8257. else if (IS_VALLEYVIEW(dev))
  8258. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8259. else if (IS_PINEVIEW(dev))
  8260. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8261. else
  8262. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8263. if (HAS_DDI(dev)) {
  8264. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8265. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8266. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8267. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8268. dev_priv->display.off = haswell_crtc_off;
  8269. dev_priv->display.update_plane = ironlake_update_plane;
  8270. } else if (HAS_PCH_SPLIT(dev)) {
  8271. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8272. dev_priv->display.get_clock = ironlake_crtc_clock_get;
  8273. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8274. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8275. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8276. dev_priv->display.off = ironlake_crtc_off;
  8277. dev_priv->display.update_plane = ironlake_update_plane;
  8278. } else if (IS_VALLEYVIEW(dev)) {
  8279. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8280. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8281. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8282. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8283. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8284. dev_priv->display.off = i9xx_crtc_off;
  8285. dev_priv->display.update_plane = i9xx_update_plane;
  8286. } else {
  8287. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8288. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8289. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8290. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8291. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8292. dev_priv->display.off = i9xx_crtc_off;
  8293. dev_priv->display.update_plane = i9xx_update_plane;
  8294. }
  8295. /* Returns the core display clock speed */
  8296. if (IS_VALLEYVIEW(dev))
  8297. dev_priv->display.get_display_clock_speed =
  8298. valleyview_get_display_clock_speed;
  8299. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8300. dev_priv->display.get_display_clock_speed =
  8301. i945_get_display_clock_speed;
  8302. else if (IS_I915G(dev))
  8303. dev_priv->display.get_display_clock_speed =
  8304. i915_get_display_clock_speed;
  8305. else if (IS_I945GM(dev) || IS_845G(dev))
  8306. dev_priv->display.get_display_clock_speed =
  8307. i9xx_misc_get_display_clock_speed;
  8308. else if (IS_PINEVIEW(dev))
  8309. dev_priv->display.get_display_clock_speed =
  8310. pnv_get_display_clock_speed;
  8311. else if (IS_I915GM(dev))
  8312. dev_priv->display.get_display_clock_speed =
  8313. i915gm_get_display_clock_speed;
  8314. else if (IS_I865G(dev))
  8315. dev_priv->display.get_display_clock_speed =
  8316. i865_get_display_clock_speed;
  8317. else if (IS_I85X(dev))
  8318. dev_priv->display.get_display_clock_speed =
  8319. i855_get_display_clock_speed;
  8320. else /* 852, 830 */
  8321. dev_priv->display.get_display_clock_speed =
  8322. i830_get_display_clock_speed;
  8323. if (HAS_PCH_SPLIT(dev)) {
  8324. if (IS_GEN5(dev)) {
  8325. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8326. dev_priv->display.write_eld = ironlake_write_eld;
  8327. } else if (IS_GEN6(dev)) {
  8328. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8329. dev_priv->display.write_eld = ironlake_write_eld;
  8330. } else if (IS_IVYBRIDGE(dev)) {
  8331. /* FIXME: detect B0+ stepping and use auto training */
  8332. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8333. dev_priv->display.write_eld = ironlake_write_eld;
  8334. dev_priv->display.modeset_global_resources =
  8335. ivb_modeset_global_resources;
  8336. } else if (IS_HASWELL(dev)) {
  8337. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8338. dev_priv->display.write_eld = haswell_write_eld;
  8339. dev_priv->display.modeset_global_resources =
  8340. haswell_modeset_global_resources;
  8341. }
  8342. } else if (IS_G4X(dev)) {
  8343. dev_priv->display.write_eld = g4x_write_eld;
  8344. }
  8345. /* Default just returns -ENODEV to indicate unsupported */
  8346. dev_priv->display.queue_flip = intel_default_queue_flip;
  8347. switch (INTEL_INFO(dev)->gen) {
  8348. case 2:
  8349. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8350. break;
  8351. case 3:
  8352. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8353. break;
  8354. case 4:
  8355. case 5:
  8356. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8357. break;
  8358. case 6:
  8359. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8360. break;
  8361. case 7:
  8362. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8363. break;
  8364. }
  8365. }
  8366. /*
  8367. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8368. * resume, or other times. This quirk makes sure that's the case for
  8369. * affected systems.
  8370. */
  8371. static void quirk_pipea_force(struct drm_device *dev)
  8372. {
  8373. struct drm_i915_private *dev_priv = dev->dev_private;
  8374. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8375. DRM_INFO("applying pipe a force quirk\n");
  8376. }
  8377. /*
  8378. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8379. */
  8380. static void quirk_ssc_force_disable(struct drm_device *dev)
  8381. {
  8382. struct drm_i915_private *dev_priv = dev->dev_private;
  8383. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8384. DRM_INFO("applying lvds SSC disable quirk\n");
  8385. }
  8386. /*
  8387. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8388. * brightness value
  8389. */
  8390. static void quirk_invert_brightness(struct drm_device *dev)
  8391. {
  8392. struct drm_i915_private *dev_priv = dev->dev_private;
  8393. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8394. DRM_INFO("applying inverted panel brightness quirk\n");
  8395. }
  8396. /*
  8397. * Some machines (Dell XPS13) suffer broken backlight controls if
  8398. * BLM_PCH_PWM_ENABLE is set.
  8399. */
  8400. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8401. {
  8402. struct drm_i915_private *dev_priv = dev->dev_private;
  8403. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8404. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8405. }
  8406. struct intel_quirk {
  8407. int device;
  8408. int subsystem_vendor;
  8409. int subsystem_device;
  8410. void (*hook)(struct drm_device *dev);
  8411. };
  8412. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8413. struct intel_dmi_quirk {
  8414. void (*hook)(struct drm_device *dev);
  8415. const struct dmi_system_id (*dmi_id_list)[];
  8416. };
  8417. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8418. {
  8419. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8420. return 1;
  8421. }
  8422. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8423. {
  8424. .dmi_id_list = &(const struct dmi_system_id[]) {
  8425. {
  8426. .callback = intel_dmi_reverse_brightness,
  8427. .ident = "NCR Corporation",
  8428. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8429. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8430. },
  8431. },
  8432. { } /* terminating entry */
  8433. },
  8434. .hook = quirk_invert_brightness,
  8435. },
  8436. };
  8437. static struct intel_quirk intel_quirks[] = {
  8438. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8439. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8440. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8441. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8442. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8443. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8444. /* 830/845 need to leave pipe A & dpll A up */
  8445. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8446. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8447. /* Lenovo U160 cannot use SSC on LVDS */
  8448. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8449. /* Sony Vaio Y cannot use SSC on LVDS */
  8450. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8451. /* Acer Aspire 5734Z must invert backlight brightness */
  8452. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8453. /* Acer/eMachines G725 */
  8454. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8455. /* Acer/eMachines e725 */
  8456. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8457. /* Acer/Packard Bell NCL20 */
  8458. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8459. /* Acer Aspire 4736Z */
  8460. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8461. /* Dell XPS13 HD Sandy Bridge */
  8462. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8463. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8464. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8465. };
  8466. static void intel_init_quirks(struct drm_device *dev)
  8467. {
  8468. struct pci_dev *d = dev->pdev;
  8469. int i;
  8470. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8471. struct intel_quirk *q = &intel_quirks[i];
  8472. if (d->device == q->device &&
  8473. (d->subsystem_vendor == q->subsystem_vendor ||
  8474. q->subsystem_vendor == PCI_ANY_ID) &&
  8475. (d->subsystem_device == q->subsystem_device ||
  8476. q->subsystem_device == PCI_ANY_ID))
  8477. q->hook(dev);
  8478. }
  8479. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8480. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8481. intel_dmi_quirks[i].hook(dev);
  8482. }
  8483. }
  8484. /* Disable the VGA plane that we never use */
  8485. static void i915_disable_vga(struct drm_device *dev)
  8486. {
  8487. struct drm_i915_private *dev_priv = dev->dev_private;
  8488. u8 sr1;
  8489. u32 vga_reg = i915_vgacntrl_reg(dev);
  8490. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8491. outb(SR01, VGA_SR_INDEX);
  8492. sr1 = inb(VGA_SR_DATA);
  8493. outb(sr1 | 1<<5, VGA_SR_DATA);
  8494. /* Disable VGA memory on Intel HD */
  8495. if (HAS_PCH_SPLIT(dev)) {
  8496. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8497. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8498. VGA_RSRC_NORMAL_IO |
  8499. VGA_RSRC_NORMAL_MEM);
  8500. }
  8501. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8502. udelay(300);
  8503. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8504. POSTING_READ(vga_reg);
  8505. }
  8506. static void i915_enable_vga(struct drm_device *dev)
  8507. {
  8508. /* Enable VGA memory on Intel HD */
  8509. if (HAS_PCH_SPLIT(dev)) {
  8510. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8511. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8512. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8513. VGA_RSRC_LEGACY_MEM |
  8514. VGA_RSRC_NORMAL_IO |
  8515. VGA_RSRC_NORMAL_MEM);
  8516. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8517. }
  8518. }
  8519. void intel_modeset_init_hw(struct drm_device *dev)
  8520. {
  8521. intel_init_power_well(dev);
  8522. intel_prepare_ddi(dev);
  8523. intel_init_clock_gating(dev);
  8524. mutex_lock(&dev->struct_mutex);
  8525. intel_enable_gt_powersave(dev);
  8526. mutex_unlock(&dev->struct_mutex);
  8527. }
  8528. void intel_modeset_suspend_hw(struct drm_device *dev)
  8529. {
  8530. intel_suspend_hw(dev);
  8531. }
  8532. void intel_modeset_init(struct drm_device *dev)
  8533. {
  8534. struct drm_i915_private *dev_priv = dev->dev_private;
  8535. int i, j, ret;
  8536. drm_mode_config_init(dev);
  8537. dev->mode_config.min_width = 0;
  8538. dev->mode_config.min_height = 0;
  8539. dev->mode_config.preferred_depth = 24;
  8540. dev->mode_config.prefer_shadow = 1;
  8541. dev->mode_config.funcs = &intel_mode_funcs;
  8542. intel_init_quirks(dev);
  8543. intel_init_pm(dev);
  8544. if (INTEL_INFO(dev)->num_pipes == 0)
  8545. return;
  8546. intel_init_display(dev);
  8547. if (IS_GEN2(dev)) {
  8548. dev->mode_config.max_width = 2048;
  8549. dev->mode_config.max_height = 2048;
  8550. } else if (IS_GEN3(dev)) {
  8551. dev->mode_config.max_width = 4096;
  8552. dev->mode_config.max_height = 4096;
  8553. } else {
  8554. dev->mode_config.max_width = 8192;
  8555. dev->mode_config.max_height = 8192;
  8556. }
  8557. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8558. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8559. INTEL_INFO(dev)->num_pipes,
  8560. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8561. for_each_pipe(i) {
  8562. intel_crtc_init(dev, i);
  8563. for (j = 0; j < dev_priv->num_plane; j++) {
  8564. ret = intel_plane_init(dev, i, j);
  8565. if (ret)
  8566. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8567. pipe_name(i), sprite_name(i, j), ret);
  8568. }
  8569. }
  8570. intel_cpu_pll_init(dev);
  8571. intel_shared_dpll_init(dev);
  8572. /* Just disable it once at startup */
  8573. i915_disable_vga(dev);
  8574. intel_setup_outputs(dev);
  8575. /* Just in case the BIOS is doing something questionable. */
  8576. intel_disable_fbc(dev);
  8577. }
  8578. static void
  8579. intel_connector_break_all_links(struct intel_connector *connector)
  8580. {
  8581. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8582. connector->base.encoder = NULL;
  8583. connector->encoder->connectors_active = false;
  8584. connector->encoder->base.crtc = NULL;
  8585. }
  8586. static void intel_enable_pipe_a(struct drm_device *dev)
  8587. {
  8588. struct intel_connector *connector;
  8589. struct drm_connector *crt = NULL;
  8590. struct intel_load_detect_pipe load_detect_temp;
  8591. /* We can't just switch on the pipe A, we need to set things up with a
  8592. * proper mode and output configuration. As a gross hack, enable pipe A
  8593. * by enabling the load detect pipe once. */
  8594. list_for_each_entry(connector,
  8595. &dev->mode_config.connector_list,
  8596. base.head) {
  8597. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8598. crt = &connector->base;
  8599. break;
  8600. }
  8601. }
  8602. if (!crt)
  8603. return;
  8604. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8605. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8606. }
  8607. static bool
  8608. intel_check_plane_mapping(struct intel_crtc *crtc)
  8609. {
  8610. struct drm_device *dev = crtc->base.dev;
  8611. struct drm_i915_private *dev_priv = dev->dev_private;
  8612. u32 reg, val;
  8613. if (INTEL_INFO(dev)->num_pipes == 1)
  8614. return true;
  8615. reg = DSPCNTR(!crtc->plane);
  8616. val = I915_READ(reg);
  8617. if ((val & DISPLAY_PLANE_ENABLE) &&
  8618. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8619. return false;
  8620. return true;
  8621. }
  8622. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8623. {
  8624. struct drm_device *dev = crtc->base.dev;
  8625. struct drm_i915_private *dev_priv = dev->dev_private;
  8626. u32 reg;
  8627. /* Clear any frame start delays used for debugging left by the BIOS */
  8628. reg = PIPECONF(crtc->config.cpu_transcoder);
  8629. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8630. /* We need to sanitize the plane -> pipe mapping first because this will
  8631. * disable the crtc (and hence change the state) if it is wrong. Note
  8632. * that gen4+ has a fixed plane -> pipe mapping. */
  8633. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8634. struct intel_connector *connector;
  8635. bool plane;
  8636. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8637. crtc->base.base.id);
  8638. /* Pipe has the wrong plane attached and the plane is active.
  8639. * Temporarily change the plane mapping and disable everything
  8640. * ... */
  8641. plane = crtc->plane;
  8642. crtc->plane = !plane;
  8643. dev_priv->display.crtc_disable(&crtc->base);
  8644. crtc->plane = plane;
  8645. /* ... and break all links. */
  8646. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8647. base.head) {
  8648. if (connector->encoder->base.crtc != &crtc->base)
  8649. continue;
  8650. intel_connector_break_all_links(connector);
  8651. }
  8652. WARN_ON(crtc->active);
  8653. crtc->base.enabled = false;
  8654. }
  8655. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8656. crtc->pipe == PIPE_A && !crtc->active) {
  8657. /* BIOS forgot to enable pipe A, this mostly happens after
  8658. * resume. Force-enable the pipe to fix this, the update_dpms
  8659. * call below we restore the pipe to the right state, but leave
  8660. * the required bits on. */
  8661. intel_enable_pipe_a(dev);
  8662. }
  8663. /* Adjust the state of the output pipe according to whether we
  8664. * have active connectors/encoders. */
  8665. intel_crtc_update_dpms(&crtc->base);
  8666. if (crtc->active != crtc->base.enabled) {
  8667. struct intel_encoder *encoder;
  8668. /* This can happen either due to bugs in the get_hw_state
  8669. * functions or because the pipe is force-enabled due to the
  8670. * pipe A quirk. */
  8671. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8672. crtc->base.base.id,
  8673. crtc->base.enabled ? "enabled" : "disabled",
  8674. crtc->active ? "enabled" : "disabled");
  8675. crtc->base.enabled = crtc->active;
  8676. /* Because we only establish the connector -> encoder ->
  8677. * crtc links if something is active, this means the
  8678. * crtc is now deactivated. Break the links. connector
  8679. * -> encoder links are only establish when things are
  8680. * actually up, hence no need to break them. */
  8681. WARN_ON(crtc->active);
  8682. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8683. WARN_ON(encoder->connectors_active);
  8684. encoder->base.crtc = NULL;
  8685. }
  8686. }
  8687. }
  8688. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8689. {
  8690. struct intel_connector *connector;
  8691. struct drm_device *dev = encoder->base.dev;
  8692. /* We need to check both for a crtc link (meaning that the
  8693. * encoder is active and trying to read from a pipe) and the
  8694. * pipe itself being active. */
  8695. bool has_active_crtc = encoder->base.crtc &&
  8696. to_intel_crtc(encoder->base.crtc)->active;
  8697. if (encoder->connectors_active && !has_active_crtc) {
  8698. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8699. encoder->base.base.id,
  8700. drm_get_encoder_name(&encoder->base));
  8701. /* Connector is active, but has no active pipe. This is
  8702. * fallout from our resume register restoring. Disable
  8703. * the encoder manually again. */
  8704. if (encoder->base.crtc) {
  8705. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8706. encoder->base.base.id,
  8707. drm_get_encoder_name(&encoder->base));
  8708. encoder->disable(encoder);
  8709. }
  8710. /* Inconsistent output/port/pipe state happens presumably due to
  8711. * a bug in one of the get_hw_state functions. Or someplace else
  8712. * in our code, like the register restore mess on resume. Clamp
  8713. * things to off as a safer default. */
  8714. list_for_each_entry(connector,
  8715. &dev->mode_config.connector_list,
  8716. base.head) {
  8717. if (connector->encoder != encoder)
  8718. continue;
  8719. intel_connector_break_all_links(connector);
  8720. }
  8721. }
  8722. /* Enabled encoders without active connectors will be fixed in
  8723. * the crtc fixup. */
  8724. }
  8725. void i915_redisable_vga(struct drm_device *dev)
  8726. {
  8727. struct drm_i915_private *dev_priv = dev->dev_private;
  8728. u32 vga_reg = i915_vgacntrl_reg(dev);
  8729. /* This function can be called both from intel_modeset_setup_hw_state or
  8730. * at a very early point in our resume sequence, where the power well
  8731. * structures are not yet restored. Since this function is at a very
  8732. * paranoid "someone might have enabled VGA while we were not looking"
  8733. * level, just check if the power well is enabled instead of trying to
  8734. * follow the "don't touch the power well if we don't need it" policy
  8735. * the rest of the driver uses. */
  8736. if (HAS_POWER_WELL(dev) &&
  8737. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8738. return;
  8739. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8740. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8741. i915_disable_vga(dev);
  8742. }
  8743. }
  8744. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8745. {
  8746. struct drm_i915_private *dev_priv = dev->dev_private;
  8747. enum pipe pipe;
  8748. struct intel_crtc *crtc;
  8749. struct intel_encoder *encoder;
  8750. struct intel_connector *connector;
  8751. int i;
  8752. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8753. base.head) {
  8754. memset(&crtc->config, 0, sizeof(crtc->config));
  8755. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8756. &crtc->config);
  8757. crtc->base.enabled = crtc->active;
  8758. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8759. crtc->base.base.id,
  8760. crtc->active ? "enabled" : "disabled");
  8761. }
  8762. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8763. if (HAS_DDI(dev))
  8764. intel_ddi_setup_hw_pll_state(dev);
  8765. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8766. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8767. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8768. pll->active = 0;
  8769. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8770. base.head) {
  8771. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8772. pll->active++;
  8773. }
  8774. pll->refcount = pll->active;
  8775. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8776. pll->name, pll->refcount, pll->on);
  8777. }
  8778. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8779. base.head) {
  8780. pipe = 0;
  8781. if (encoder->get_hw_state(encoder, &pipe)) {
  8782. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8783. encoder->base.crtc = &crtc->base;
  8784. if (encoder->get_config)
  8785. encoder->get_config(encoder, &crtc->config);
  8786. } else {
  8787. encoder->base.crtc = NULL;
  8788. }
  8789. encoder->connectors_active = false;
  8790. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8791. encoder->base.base.id,
  8792. drm_get_encoder_name(&encoder->base),
  8793. encoder->base.crtc ? "enabled" : "disabled",
  8794. pipe);
  8795. }
  8796. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8797. base.head) {
  8798. if (!crtc->active)
  8799. continue;
  8800. if (dev_priv->display.get_clock)
  8801. dev_priv->display.get_clock(crtc,
  8802. &crtc->config);
  8803. }
  8804. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8805. base.head) {
  8806. if (connector->get_hw_state(connector)) {
  8807. connector->base.dpms = DRM_MODE_DPMS_ON;
  8808. connector->encoder->connectors_active = true;
  8809. connector->base.encoder = &connector->encoder->base;
  8810. } else {
  8811. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8812. connector->base.encoder = NULL;
  8813. }
  8814. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8815. connector->base.base.id,
  8816. drm_get_connector_name(&connector->base),
  8817. connector->base.encoder ? "enabled" : "disabled");
  8818. }
  8819. }
  8820. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8821. * and i915 state tracking structures. */
  8822. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8823. bool force_restore)
  8824. {
  8825. struct drm_i915_private *dev_priv = dev->dev_private;
  8826. enum pipe pipe;
  8827. struct drm_plane *plane;
  8828. struct intel_crtc *crtc;
  8829. struct intel_encoder *encoder;
  8830. int i;
  8831. intel_modeset_readout_hw_state(dev);
  8832. /*
  8833. * Now that we have the config, copy it to each CRTC struct
  8834. * Note that this could go away if we move to using crtc_config
  8835. * checking everywhere.
  8836. */
  8837. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8838. base.head) {
  8839. if (crtc->active && i915_fastboot) {
  8840. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8841. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8842. crtc->base.base.id);
  8843. drm_mode_debug_printmodeline(&crtc->base.mode);
  8844. }
  8845. }
  8846. /* HW state is read out, now we need to sanitize this mess. */
  8847. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8848. base.head) {
  8849. intel_sanitize_encoder(encoder);
  8850. }
  8851. for_each_pipe(pipe) {
  8852. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8853. intel_sanitize_crtc(crtc);
  8854. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8855. }
  8856. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8857. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8858. if (!pll->on || pll->active)
  8859. continue;
  8860. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8861. pll->disable(dev_priv, pll);
  8862. pll->on = false;
  8863. }
  8864. if (force_restore) {
  8865. /*
  8866. * We need to use raw interfaces for restoring state to avoid
  8867. * checking (bogus) intermediate states.
  8868. */
  8869. for_each_pipe(pipe) {
  8870. struct drm_crtc *crtc =
  8871. dev_priv->pipe_to_crtc_mapping[pipe];
  8872. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8873. crtc->fb);
  8874. }
  8875. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8876. intel_plane_restore(plane);
  8877. i915_redisable_vga(dev);
  8878. } else {
  8879. intel_modeset_update_staged_output_state(dev);
  8880. }
  8881. intel_modeset_check_state(dev);
  8882. drm_mode_config_reset(dev);
  8883. }
  8884. void intel_modeset_gem_init(struct drm_device *dev)
  8885. {
  8886. intel_modeset_init_hw(dev);
  8887. intel_setup_overlay(dev);
  8888. intel_modeset_setup_hw_state(dev, false);
  8889. }
  8890. void intel_modeset_cleanup(struct drm_device *dev)
  8891. {
  8892. struct drm_i915_private *dev_priv = dev->dev_private;
  8893. struct drm_crtc *crtc;
  8894. /*
  8895. * Interrupts and polling as the first thing to avoid creating havoc.
  8896. * Too much stuff here (turning of rps, connectors, ...) would
  8897. * experience fancy races otherwise.
  8898. */
  8899. drm_irq_uninstall(dev);
  8900. cancel_work_sync(&dev_priv->hotplug_work);
  8901. /*
  8902. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8903. * poll handlers. Hence disable polling after hpd handling is shut down.
  8904. */
  8905. drm_kms_helper_poll_fini(dev);
  8906. mutex_lock(&dev->struct_mutex);
  8907. intel_unregister_dsm_handler();
  8908. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8909. /* Skip inactive CRTCs */
  8910. if (!crtc->fb)
  8911. continue;
  8912. intel_increase_pllclock(crtc);
  8913. }
  8914. intel_disable_fbc(dev);
  8915. i915_enable_vga(dev);
  8916. intel_disable_gt_powersave(dev);
  8917. ironlake_teardown_rc6(dev);
  8918. mutex_unlock(&dev->struct_mutex);
  8919. /* flush any delayed tasks or pending work */
  8920. flush_scheduled_work();
  8921. /* destroy backlight, if any, before the connectors */
  8922. intel_panel_destroy_backlight(dev);
  8923. drm_mode_config_cleanup(dev);
  8924. intel_cleanup_overlay(dev);
  8925. }
  8926. /*
  8927. * Return which encoder is currently attached for connector.
  8928. */
  8929. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8930. {
  8931. return &intel_attached_encoder(connector)->base;
  8932. }
  8933. void intel_connector_attach_encoder(struct intel_connector *connector,
  8934. struct intel_encoder *encoder)
  8935. {
  8936. connector->encoder = encoder;
  8937. drm_mode_connector_attach_encoder(&connector->base,
  8938. &encoder->base);
  8939. }
  8940. /*
  8941. * set vga decode state - true == enable VGA decode
  8942. */
  8943. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8944. {
  8945. struct drm_i915_private *dev_priv = dev->dev_private;
  8946. u16 gmch_ctrl;
  8947. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8948. if (state)
  8949. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8950. else
  8951. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8952. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8953. return 0;
  8954. }
  8955. struct intel_display_error_state {
  8956. u32 power_well_driver;
  8957. int num_transcoders;
  8958. struct intel_cursor_error_state {
  8959. u32 control;
  8960. u32 position;
  8961. u32 base;
  8962. u32 size;
  8963. } cursor[I915_MAX_PIPES];
  8964. struct intel_pipe_error_state {
  8965. u32 source;
  8966. } pipe[I915_MAX_PIPES];
  8967. struct intel_plane_error_state {
  8968. u32 control;
  8969. u32 stride;
  8970. u32 size;
  8971. u32 pos;
  8972. u32 addr;
  8973. u32 surface;
  8974. u32 tile_offset;
  8975. } plane[I915_MAX_PIPES];
  8976. struct intel_transcoder_error_state {
  8977. enum transcoder cpu_transcoder;
  8978. u32 conf;
  8979. u32 htotal;
  8980. u32 hblank;
  8981. u32 hsync;
  8982. u32 vtotal;
  8983. u32 vblank;
  8984. u32 vsync;
  8985. } transcoder[4];
  8986. };
  8987. struct intel_display_error_state *
  8988. intel_display_capture_error_state(struct drm_device *dev)
  8989. {
  8990. drm_i915_private_t *dev_priv = dev->dev_private;
  8991. struct intel_display_error_state *error;
  8992. int transcoders[] = {
  8993. TRANSCODER_A,
  8994. TRANSCODER_B,
  8995. TRANSCODER_C,
  8996. TRANSCODER_EDP,
  8997. };
  8998. int i;
  8999. if (INTEL_INFO(dev)->num_pipes == 0)
  9000. return NULL;
  9001. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  9002. if (error == NULL)
  9003. return NULL;
  9004. if (HAS_POWER_WELL(dev))
  9005. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9006. for_each_pipe(i) {
  9007. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9008. error->cursor[i].control = I915_READ(CURCNTR(i));
  9009. error->cursor[i].position = I915_READ(CURPOS(i));
  9010. error->cursor[i].base = I915_READ(CURBASE(i));
  9011. } else {
  9012. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9013. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9014. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9015. }
  9016. error->plane[i].control = I915_READ(DSPCNTR(i));
  9017. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9018. if (INTEL_INFO(dev)->gen <= 3) {
  9019. error->plane[i].size = I915_READ(DSPSIZE(i));
  9020. error->plane[i].pos = I915_READ(DSPPOS(i));
  9021. }
  9022. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9023. error->plane[i].addr = I915_READ(DSPADDR(i));
  9024. if (INTEL_INFO(dev)->gen >= 4) {
  9025. error->plane[i].surface = I915_READ(DSPSURF(i));
  9026. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9027. }
  9028. error->pipe[i].source = I915_READ(PIPESRC(i));
  9029. }
  9030. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9031. if (HAS_DDI(dev_priv->dev))
  9032. error->num_transcoders++; /* Account for eDP. */
  9033. for (i = 0; i < error->num_transcoders; i++) {
  9034. enum transcoder cpu_transcoder = transcoders[i];
  9035. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9036. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9037. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9038. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9039. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9040. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9041. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9042. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9043. }
  9044. /* In the code above we read the registers without checking if the power
  9045. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  9046. * prevent the next I915_WRITE from detecting it and printing an error
  9047. * message. */
  9048. intel_uncore_clear_errors(dev);
  9049. return error;
  9050. }
  9051. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9052. void
  9053. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9054. struct drm_device *dev,
  9055. struct intel_display_error_state *error)
  9056. {
  9057. int i;
  9058. if (!error)
  9059. return;
  9060. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9061. if (HAS_POWER_WELL(dev))
  9062. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9063. error->power_well_driver);
  9064. for_each_pipe(i) {
  9065. err_printf(m, "Pipe [%d]:\n", i);
  9066. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9067. err_printf(m, "Plane [%d]:\n", i);
  9068. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9069. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9070. if (INTEL_INFO(dev)->gen <= 3) {
  9071. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9072. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9073. }
  9074. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9075. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9076. if (INTEL_INFO(dev)->gen >= 4) {
  9077. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9078. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9079. }
  9080. err_printf(m, "Cursor [%d]:\n", i);
  9081. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9082. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9083. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9084. }
  9085. for (i = 0; i < error->num_transcoders; i++) {
  9086. err_printf(m, " CPU transcoder: %c\n",
  9087. transcoder_name(error->transcoder[i].cpu_transcoder));
  9088. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9089. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9090. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9091. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9092. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9093. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9094. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9095. }
  9096. }