direct.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/task_io_accounting_ops.h>
  48. #include <linux/nfs_fs.h>
  49. #include <linux/nfs_page.h>
  50. #include <linux/sunrpc/clnt.h>
  51. #include <asm/uaccess.h>
  52. #include <linux/atomic.h>
  53. #include "internal.h"
  54. #include "iostat.h"
  55. #include "pnfs.h"
  56. #define NFSDBG_FACILITY NFSDBG_VFS
  57. static struct kmem_cache *nfs_direct_cachep;
  58. /*
  59. * This represents a set of asynchronous requests that we're waiting on
  60. */
  61. struct nfs_direct_req {
  62. struct kref kref; /* release manager */
  63. /* I/O parameters */
  64. struct nfs_open_context *ctx; /* file open context info */
  65. struct nfs_lock_context *l_ctx; /* Lock context info */
  66. struct kiocb * iocb; /* controlling i/o request */
  67. struct inode * inode; /* target file of i/o */
  68. /* completion state */
  69. atomic_t io_count; /* i/os we're waiting for */
  70. spinlock_t lock; /* protect completion state */
  71. ssize_t count, /* bytes actually processed */
  72. error; /* any reported error */
  73. struct completion completion; /* wait for i/o completion */
  74. /* commit state */
  75. struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
  76. struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
  77. struct work_struct work;
  78. int flags;
  79. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  80. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  81. struct nfs_writeverf verf; /* unstable write verifier */
  82. };
  83. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  84. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  85. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  86. static void nfs_direct_write_schedule_work(struct work_struct *work);
  87. static inline void get_dreq(struct nfs_direct_req *dreq)
  88. {
  89. atomic_inc(&dreq->io_count);
  90. }
  91. static inline int put_dreq(struct nfs_direct_req *dreq)
  92. {
  93. return atomic_dec_and_test(&dreq->io_count);
  94. }
  95. /**
  96. * nfs_direct_IO - NFS address space operation for direct I/O
  97. * @rw: direction (read or write)
  98. * @iocb: target I/O control block
  99. * @iov: array of vectors that define I/O buffer
  100. * @pos: offset in file to begin the operation
  101. * @nr_segs: size of iovec array
  102. *
  103. * The presence of this routine in the address space ops vector means
  104. * the NFS client supports direct I/O. However, we shunt off direct
  105. * read and write requests before the VFS gets them, so this method
  106. * should never be called.
  107. */
  108. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  109. {
  110. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  111. iocb->ki_filp->f_path.dentry->d_name.name,
  112. (long long) pos, nr_segs);
  113. return -EINVAL;
  114. }
  115. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  116. {
  117. unsigned int i;
  118. for (i = 0; i < npages; i++)
  119. page_cache_release(pages[i]);
  120. }
  121. void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
  122. struct nfs_direct_req *dreq)
  123. {
  124. cinfo->lock = &dreq->lock;
  125. cinfo->mds = &dreq->mds_cinfo;
  126. cinfo->ds = &dreq->ds_cinfo;
  127. cinfo->dreq = dreq;
  128. cinfo->completion_ops = &nfs_direct_commit_completion_ops;
  129. }
  130. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  131. {
  132. struct nfs_direct_req *dreq;
  133. dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
  134. if (!dreq)
  135. return NULL;
  136. kref_init(&dreq->kref);
  137. kref_get(&dreq->kref);
  138. init_completion(&dreq->completion);
  139. INIT_LIST_HEAD(&dreq->mds_cinfo.list);
  140. INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
  141. spin_lock_init(&dreq->lock);
  142. return dreq;
  143. }
  144. static void nfs_direct_req_free(struct kref *kref)
  145. {
  146. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  147. if (dreq->l_ctx != NULL)
  148. nfs_put_lock_context(dreq->l_ctx);
  149. if (dreq->ctx != NULL)
  150. put_nfs_open_context(dreq->ctx);
  151. kmem_cache_free(nfs_direct_cachep, dreq);
  152. }
  153. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  154. {
  155. kref_put(&dreq->kref, nfs_direct_req_free);
  156. }
  157. /*
  158. * Collects and returns the final error value/byte-count.
  159. */
  160. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  161. {
  162. ssize_t result = -EIOCBQUEUED;
  163. /* Async requests don't wait here */
  164. if (dreq->iocb)
  165. goto out;
  166. result = wait_for_completion_killable(&dreq->completion);
  167. if (!result)
  168. result = dreq->error;
  169. if (!result)
  170. result = dreq->count;
  171. out:
  172. return (ssize_t) result;
  173. }
  174. /*
  175. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  176. * the iocb is still valid here if this is a synchronous request.
  177. */
  178. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  179. {
  180. if (dreq->iocb) {
  181. long res = (long) dreq->error;
  182. if (!res)
  183. res = (long) dreq->count;
  184. aio_complete(dreq->iocb, res, 0);
  185. }
  186. complete_all(&dreq->completion);
  187. nfs_direct_req_release(dreq);
  188. }
  189. void nfs_direct_readpage_release(struct nfs_page *req)
  190. {
  191. dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
  192. req->wb_context->dentry->d_inode->i_sb->s_id,
  193. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  194. req->wb_bytes,
  195. (long long)req_offset(req));
  196. nfs_release_request(req);
  197. }
  198. static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
  199. {
  200. unsigned long bytes = 0;
  201. struct nfs_direct_req *dreq = hdr->dreq;
  202. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  203. goto out_put;
  204. spin_lock(&dreq->lock);
  205. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
  206. dreq->error = hdr->error;
  207. else
  208. dreq->count += hdr->good_bytes;
  209. spin_unlock(&dreq->lock);
  210. if (!test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
  211. while (!list_empty(&hdr->pages)) {
  212. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  213. struct page *page = req->wb_page;
  214. if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
  215. if (bytes > hdr->good_bytes)
  216. zero_user(page, 0, PAGE_SIZE);
  217. else if (hdr->good_bytes - bytes < PAGE_SIZE)
  218. zero_user_segment(page,
  219. hdr->good_bytes & ~PAGE_MASK,
  220. PAGE_SIZE);
  221. }
  222. bytes += req->wb_bytes;
  223. nfs_list_remove_request(req);
  224. if (!PageCompound(page))
  225. set_page_dirty(page);
  226. nfs_direct_readpage_release(req);
  227. }
  228. } else {
  229. while (!list_empty(&hdr->pages)) {
  230. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  231. if (bytes < hdr->good_bytes)
  232. if (!PageCompound(req->wb_page))
  233. set_page_dirty(req->wb_page);
  234. bytes += req->wb_bytes;
  235. nfs_list_remove_request(req);
  236. nfs_direct_readpage_release(req);
  237. }
  238. }
  239. out_put:
  240. if (put_dreq(dreq))
  241. nfs_direct_complete(dreq);
  242. hdr->release(hdr);
  243. }
  244. static void nfs_read_sync_pgio_error(struct list_head *head)
  245. {
  246. struct nfs_page *req;
  247. while (!list_empty(head)) {
  248. req = nfs_list_entry(head->next);
  249. nfs_list_remove_request(req);
  250. nfs_release_request(req);
  251. }
  252. }
  253. static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
  254. {
  255. get_dreq(hdr->dreq);
  256. }
  257. static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
  258. .error_cleanup = nfs_read_sync_pgio_error,
  259. .init_hdr = nfs_direct_pgio_init,
  260. .completion = nfs_direct_read_completion,
  261. };
  262. /*
  263. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  264. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  265. * bail and stop sending more reads. Read length accounting is
  266. * handled automatically by nfs_direct_read_result(). Otherwise, if
  267. * no requests have been sent, just return an error.
  268. */
  269. static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
  270. const struct iovec *iov,
  271. loff_t pos)
  272. {
  273. struct nfs_direct_req *dreq = desc->pg_dreq;
  274. struct nfs_open_context *ctx = dreq->ctx;
  275. struct inode *inode = ctx->dentry->d_inode;
  276. unsigned long user_addr = (unsigned long)iov->iov_base;
  277. size_t count = iov->iov_len;
  278. size_t rsize = NFS_SERVER(inode)->rsize;
  279. unsigned int pgbase;
  280. int result;
  281. ssize_t started = 0;
  282. struct page **pagevec = NULL;
  283. unsigned int npages;
  284. do {
  285. size_t bytes;
  286. int i;
  287. pgbase = user_addr & ~PAGE_MASK;
  288. bytes = min(max(rsize, PAGE_SIZE), count);
  289. result = -ENOMEM;
  290. npages = nfs_page_array_len(pgbase, bytes);
  291. if (!pagevec)
  292. pagevec = kmalloc(npages * sizeof(struct page *),
  293. GFP_KERNEL);
  294. if (!pagevec)
  295. break;
  296. down_read(&current->mm->mmap_sem);
  297. result = get_user_pages(current, current->mm, user_addr,
  298. npages, 1, 0, pagevec, NULL);
  299. up_read(&current->mm->mmap_sem);
  300. if (result < 0)
  301. break;
  302. if ((unsigned)result < npages) {
  303. bytes = result * PAGE_SIZE;
  304. if (bytes <= pgbase) {
  305. nfs_direct_release_pages(pagevec, result);
  306. break;
  307. }
  308. bytes -= pgbase;
  309. npages = result;
  310. }
  311. for (i = 0; i < npages; i++) {
  312. struct nfs_page *req;
  313. unsigned int req_len = min(bytes, PAGE_SIZE - pgbase);
  314. /* XXX do we need to do the eof zeroing found in async_filler? */
  315. req = nfs_create_request(dreq->ctx, dreq->inode,
  316. pagevec[i],
  317. pgbase, req_len);
  318. if (IS_ERR(req)) {
  319. result = PTR_ERR(req);
  320. break;
  321. }
  322. req->wb_index = pos >> PAGE_SHIFT;
  323. req->wb_offset = pos & ~PAGE_MASK;
  324. if (!nfs_pageio_add_request(desc, req)) {
  325. result = desc->pg_error;
  326. nfs_release_request(req);
  327. break;
  328. }
  329. pgbase = 0;
  330. bytes -= req_len;
  331. started += req_len;
  332. user_addr += req_len;
  333. pos += req_len;
  334. count -= req_len;
  335. }
  336. /* The nfs_page now hold references to these pages */
  337. nfs_direct_release_pages(pagevec, npages);
  338. } while (count != 0 && result >= 0);
  339. kfree(pagevec);
  340. if (started)
  341. return started;
  342. return result < 0 ? (ssize_t) result : -EFAULT;
  343. }
  344. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  345. const struct iovec *iov,
  346. unsigned long nr_segs,
  347. loff_t pos)
  348. {
  349. struct nfs_pageio_descriptor desc;
  350. ssize_t result = -EINVAL;
  351. size_t requested_bytes = 0;
  352. unsigned long seg;
  353. nfs_pageio_init_read(&desc, dreq->inode,
  354. &nfs_direct_read_completion_ops);
  355. get_dreq(dreq);
  356. desc.pg_dreq = dreq;
  357. for (seg = 0; seg < nr_segs; seg++) {
  358. const struct iovec *vec = &iov[seg];
  359. result = nfs_direct_read_schedule_segment(&desc, vec, pos);
  360. if (result < 0)
  361. break;
  362. requested_bytes += result;
  363. if ((size_t)result < vec->iov_len)
  364. break;
  365. pos += vec->iov_len;
  366. }
  367. nfs_pageio_complete(&desc);
  368. /*
  369. * If no bytes were started, return the error, and let the
  370. * generic layer handle the completion.
  371. */
  372. if (requested_bytes == 0) {
  373. nfs_direct_req_release(dreq);
  374. return result < 0 ? result : -EIO;
  375. }
  376. if (put_dreq(dreq))
  377. nfs_direct_complete(dreq);
  378. return 0;
  379. }
  380. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  381. unsigned long nr_segs, loff_t pos)
  382. {
  383. ssize_t result = -ENOMEM;
  384. struct inode *inode = iocb->ki_filp->f_mapping->host;
  385. struct nfs_direct_req *dreq;
  386. dreq = nfs_direct_req_alloc();
  387. if (dreq == NULL)
  388. goto out;
  389. dreq->inode = inode;
  390. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  391. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  392. if (dreq->l_ctx == NULL)
  393. goto out_release;
  394. if (!is_sync_kiocb(iocb))
  395. dreq->iocb = iocb;
  396. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  397. if (!result)
  398. result = nfs_direct_wait(dreq);
  399. out_release:
  400. nfs_direct_req_release(dreq);
  401. out:
  402. return result;
  403. }
  404. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  405. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  406. {
  407. struct nfs_pageio_descriptor desc;
  408. struct nfs_page *req, *tmp;
  409. LIST_HEAD(reqs);
  410. struct nfs_commit_info cinfo;
  411. LIST_HEAD(failed);
  412. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  413. pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
  414. spin_lock(cinfo.lock);
  415. nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
  416. spin_unlock(cinfo.lock);
  417. dreq->count = 0;
  418. get_dreq(dreq);
  419. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE,
  420. &nfs_direct_write_completion_ops);
  421. desc.pg_dreq = dreq;
  422. list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
  423. if (!nfs_pageio_add_request(&desc, req)) {
  424. nfs_list_add_request(req, &failed);
  425. spin_lock(cinfo.lock);
  426. dreq->flags = 0;
  427. dreq->error = -EIO;
  428. spin_unlock(cinfo.lock);
  429. }
  430. }
  431. nfs_pageio_complete(&desc);
  432. while (!list_empty(&failed)) {
  433. nfs_release_request(req);
  434. nfs_unlock_request(req);
  435. }
  436. if (put_dreq(dreq))
  437. nfs_direct_write_complete(dreq, dreq->inode);
  438. }
  439. static void nfs_direct_commit_complete(struct nfs_commit_data *data)
  440. {
  441. struct nfs_direct_req *dreq = data->dreq;
  442. struct nfs_commit_info cinfo;
  443. struct nfs_page *req;
  444. int status = data->task.tk_status;
  445. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  446. if (status < 0) {
  447. dprintk("NFS: %5u commit failed with error %d.\n",
  448. data->task.tk_pid, status);
  449. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  450. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  451. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  452. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  453. }
  454. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  455. while (!list_empty(&data->pages)) {
  456. req = nfs_list_entry(data->pages.next);
  457. nfs_list_remove_request(req);
  458. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
  459. /* Note the rewrite will go through mds */
  460. nfs_mark_request_commit(req, NULL, &cinfo);
  461. } else
  462. nfs_release_request(req);
  463. nfs_unlock_request(req);
  464. }
  465. if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
  466. nfs_direct_write_complete(dreq, data->inode);
  467. }
  468. static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
  469. {
  470. /* There is no lock to clear */
  471. }
  472. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
  473. .completion = nfs_direct_commit_complete,
  474. .error_cleanup = nfs_direct_error_cleanup,
  475. };
  476. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  477. {
  478. int res;
  479. struct nfs_commit_info cinfo;
  480. LIST_HEAD(mds_list);
  481. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  482. nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
  483. res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
  484. if (res < 0) /* res == -ENOMEM */
  485. nfs_direct_write_reschedule(dreq);
  486. }
  487. static void nfs_direct_write_schedule_work(struct work_struct *work)
  488. {
  489. struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
  490. int flags = dreq->flags;
  491. dreq->flags = 0;
  492. switch (flags) {
  493. case NFS_ODIRECT_DO_COMMIT:
  494. nfs_direct_commit_schedule(dreq);
  495. break;
  496. case NFS_ODIRECT_RESCHED_WRITES:
  497. nfs_direct_write_reschedule(dreq);
  498. break;
  499. default:
  500. nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
  501. nfs_direct_complete(dreq);
  502. }
  503. }
  504. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  505. {
  506. schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
  507. }
  508. #else
  509. static void nfs_direct_write_schedule_work(struct work_struct *work)
  510. {
  511. }
  512. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  513. {
  514. nfs_zap_mapping(inode, inode->i_mapping);
  515. nfs_direct_complete(dreq);
  516. }
  517. #endif
  518. /*
  519. * NB: Return the value of the first error return code. Subsequent
  520. * errors after the first one are ignored.
  521. */
  522. /*
  523. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  524. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  525. * bail and stop sending more writes. Write length accounting is
  526. * handled automatically by nfs_direct_write_result(). Otherwise, if
  527. * no requests have been sent, just return an error.
  528. */
  529. static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
  530. const struct iovec *iov,
  531. loff_t pos)
  532. {
  533. struct nfs_direct_req *dreq = desc->pg_dreq;
  534. struct nfs_open_context *ctx = dreq->ctx;
  535. struct inode *inode = ctx->dentry->d_inode;
  536. unsigned long user_addr = (unsigned long)iov->iov_base;
  537. size_t count = iov->iov_len;
  538. size_t wsize = NFS_SERVER(inode)->wsize;
  539. unsigned int pgbase;
  540. int result;
  541. ssize_t started = 0;
  542. struct page **pagevec = NULL;
  543. unsigned int npages;
  544. do {
  545. size_t bytes;
  546. int i;
  547. pgbase = user_addr & ~PAGE_MASK;
  548. bytes = min(max(wsize, PAGE_SIZE), count);
  549. result = -ENOMEM;
  550. npages = nfs_page_array_len(pgbase, bytes);
  551. if (!pagevec)
  552. pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
  553. if (!pagevec)
  554. break;
  555. down_read(&current->mm->mmap_sem);
  556. result = get_user_pages(current, current->mm, user_addr,
  557. npages, 0, 0, pagevec, NULL);
  558. up_read(&current->mm->mmap_sem);
  559. if (result < 0)
  560. break;
  561. if ((unsigned)result < npages) {
  562. bytes = result * PAGE_SIZE;
  563. if (bytes <= pgbase) {
  564. nfs_direct_release_pages(pagevec, result);
  565. break;
  566. }
  567. bytes -= pgbase;
  568. npages = result;
  569. }
  570. for (i = 0; i < npages; i++) {
  571. struct nfs_page *req;
  572. unsigned int req_len = min(bytes, PAGE_SIZE - pgbase);
  573. req = nfs_create_request(dreq->ctx, dreq->inode,
  574. pagevec[i],
  575. pgbase, req_len);
  576. if (IS_ERR(req)) {
  577. result = PTR_ERR(req);
  578. break;
  579. }
  580. nfs_lock_request(req);
  581. req->wb_index = pos >> PAGE_SHIFT;
  582. req->wb_offset = pos & ~PAGE_MASK;
  583. if (!nfs_pageio_add_request(desc, req)) {
  584. result = desc->pg_error;
  585. nfs_unlock_request(req);
  586. nfs_release_request(req);
  587. break;
  588. }
  589. pgbase = 0;
  590. bytes -= req_len;
  591. started += req_len;
  592. user_addr += req_len;
  593. pos += req_len;
  594. count -= req_len;
  595. }
  596. /* The nfs_page now hold references to these pages */
  597. nfs_direct_release_pages(pagevec, npages);
  598. } while (count != 0 && result >= 0);
  599. kfree(pagevec);
  600. if (started)
  601. return started;
  602. return result < 0 ? (ssize_t) result : -EFAULT;
  603. }
  604. static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
  605. {
  606. struct nfs_direct_req *dreq = hdr->dreq;
  607. struct nfs_commit_info cinfo;
  608. int bit = -1;
  609. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  610. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  611. goto out_put;
  612. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  613. spin_lock(&dreq->lock);
  614. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
  615. dreq->flags = 0;
  616. dreq->error = hdr->error;
  617. }
  618. if (dreq->error != 0)
  619. bit = NFS_IOHDR_ERROR;
  620. else {
  621. dreq->count += hdr->good_bytes;
  622. if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
  623. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  624. bit = NFS_IOHDR_NEED_RESCHED;
  625. } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
  626. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
  627. bit = NFS_IOHDR_NEED_RESCHED;
  628. else if (dreq->flags == 0) {
  629. memcpy(&dreq->verf, &req->wb_verf,
  630. sizeof(dreq->verf));
  631. bit = NFS_IOHDR_NEED_COMMIT;
  632. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  633. } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
  634. if (memcmp(&dreq->verf, &req->wb_verf, sizeof(dreq->verf))) {
  635. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  636. bit = NFS_IOHDR_NEED_RESCHED;
  637. } else
  638. bit = NFS_IOHDR_NEED_COMMIT;
  639. }
  640. }
  641. }
  642. spin_unlock(&dreq->lock);
  643. while (!list_empty(&hdr->pages)) {
  644. req = nfs_list_entry(hdr->pages.next);
  645. nfs_list_remove_request(req);
  646. switch (bit) {
  647. case NFS_IOHDR_NEED_RESCHED:
  648. case NFS_IOHDR_NEED_COMMIT:
  649. nfs_mark_request_commit(req, hdr->lseg, &cinfo);
  650. break;
  651. default:
  652. nfs_release_request(req);
  653. }
  654. nfs_unlock_request(req);
  655. }
  656. out_put:
  657. if (put_dreq(dreq))
  658. nfs_direct_write_complete(dreq, hdr->inode);
  659. hdr->release(hdr);
  660. }
  661. static void nfs_write_sync_pgio_error(struct list_head *head)
  662. {
  663. struct nfs_page *req;
  664. while (!list_empty(head)) {
  665. req = nfs_list_entry(head->next);
  666. nfs_list_remove_request(req);
  667. nfs_release_request(req);
  668. nfs_unlock_request(req);
  669. }
  670. }
  671. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
  672. .error_cleanup = nfs_write_sync_pgio_error,
  673. .init_hdr = nfs_direct_pgio_init,
  674. .completion = nfs_direct_write_completion,
  675. };
  676. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  677. const struct iovec *iov,
  678. unsigned long nr_segs,
  679. loff_t pos)
  680. {
  681. struct nfs_pageio_descriptor desc;
  682. ssize_t result = 0;
  683. size_t requested_bytes = 0;
  684. unsigned long seg;
  685. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_COND_STABLE,
  686. &nfs_direct_write_completion_ops);
  687. desc.pg_dreq = dreq;
  688. get_dreq(dreq);
  689. for (seg = 0; seg < nr_segs; seg++) {
  690. const struct iovec *vec = &iov[seg];
  691. result = nfs_direct_write_schedule_segment(&desc, vec, pos);
  692. if (result < 0)
  693. break;
  694. requested_bytes += result;
  695. if ((size_t)result < vec->iov_len)
  696. break;
  697. pos += vec->iov_len;
  698. }
  699. nfs_pageio_complete(&desc);
  700. /*
  701. * If no bytes were started, return the error, and let the
  702. * generic layer handle the completion.
  703. */
  704. if (requested_bytes == 0) {
  705. nfs_direct_req_release(dreq);
  706. return result < 0 ? result : -EIO;
  707. }
  708. if (put_dreq(dreq))
  709. nfs_direct_write_complete(dreq, dreq->inode);
  710. return 0;
  711. }
  712. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  713. unsigned long nr_segs, loff_t pos,
  714. size_t count)
  715. {
  716. ssize_t result = -ENOMEM;
  717. struct inode *inode = iocb->ki_filp->f_mapping->host;
  718. struct nfs_direct_req *dreq;
  719. dreq = nfs_direct_req_alloc();
  720. if (!dreq)
  721. goto out;
  722. dreq->inode = inode;
  723. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  724. dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
  725. if (dreq->l_ctx == NULL)
  726. goto out_release;
  727. if (!is_sync_kiocb(iocb))
  728. dreq->iocb = iocb;
  729. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos);
  730. if (!result)
  731. result = nfs_direct_wait(dreq);
  732. out_release:
  733. nfs_direct_req_release(dreq);
  734. out:
  735. return result;
  736. }
  737. /**
  738. * nfs_file_direct_read - file direct read operation for NFS files
  739. * @iocb: target I/O control block
  740. * @iov: vector of user buffers into which to read data
  741. * @nr_segs: size of iov vector
  742. * @pos: byte offset in file where reading starts
  743. *
  744. * We use this function for direct reads instead of calling
  745. * generic_file_aio_read() in order to avoid gfar's check to see if
  746. * the request starts before the end of the file. For that check
  747. * to work, we must generate a GETATTR before each direct read, and
  748. * even then there is a window between the GETATTR and the subsequent
  749. * READ where the file size could change. Our preference is simply
  750. * to do all reads the application wants, and the server will take
  751. * care of managing the end of file boundary.
  752. *
  753. * This function also eliminates unnecessarily updating the file's
  754. * atime locally, as the NFS server sets the file's atime, and this
  755. * client must read the updated atime from the server back into its
  756. * cache.
  757. */
  758. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  759. unsigned long nr_segs, loff_t pos)
  760. {
  761. ssize_t retval = -EINVAL;
  762. struct file *file = iocb->ki_filp;
  763. struct address_space *mapping = file->f_mapping;
  764. size_t count;
  765. count = iov_length(iov, nr_segs);
  766. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  767. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  768. file->f_path.dentry->d_parent->d_name.name,
  769. file->f_path.dentry->d_name.name,
  770. count, (long long) pos);
  771. retval = 0;
  772. if (!count)
  773. goto out;
  774. retval = nfs_sync_mapping(mapping);
  775. if (retval)
  776. goto out;
  777. task_io_account_read(count);
  778. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  779. if (retval > 0)
  780. iocb->ki_pos = pos + retval;
  781. out:
  782. return retval;
  783. }
  784. /**
  785. * nfs_file_direct_write - file direct write operation for NFS files
  786. * @iocb: target I/O control block
  787. * @iov: vector of user buffers from which to write data
  788. * @nr_segs: size of iov vector
  789. * @pos: byte offset in file where writing starts
  790. *
  791. * We use this function for direct writes instead of calling
  792. * generic_file_aio_write() in order to avoid taking the inode
  793. * semaphore and updating the i_size. The NFS server will set
  794. * the new i_size and this client must read the updated size
  795. * back into its cache. We let the server do generic write
  796. * parameter checking and report problems.
  797. *
  798. * We eliminate local atime updates, see direct read above.
  799. *
  800. * We avoid unnecessary page cache invalidations for normal cached
  801. * readers of this file.
  802. *
  803. * Note that O_APPEND is not supported for NFS direct writes, as there
  804. * is no atomic O_APPEND write facility in the NFS protocol.
  805. */
  806. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  807. unsigned long nr_segs, loff_t pos)
  808. {
  809. ssize_t retval = -EINVAL;
  810. struct file *file = iocb->ki_filp;
  811. struct address_space *mapping = file->f_mapping;
  812. size_t count;
  813. count = iov_length(iov, nr_segs);
  814. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  815. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  816. file->f_path.dentry->d_parent->d_name.name,
  817. file->f_path.dentry->d_name.name,
  818. count, (long long) pos);
  819. retval = generic_write_checks(file, &pos, &count, 0);
  820. if (retval)
  821. goto out;
  822. retval = -EINVAL;
  823. if ((ssize_t) count < 0)
  824. goto out;
  825. retval = 0;
  826. if (!count)
  827. goto out;
  828. retval = nfs_sync_mapping(mapping);
  829. if (retval)
  830. goto out;
  831. task_io_account_write(count);
  832. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  833. if (retval > 0) {
  834. struct inode *inode = mapping->host;
  835. iocb->ki_pos = pos + retval;
  836. spin_lock(&inode->i_lock);
  837. if (i_size_read(inode) < iocb->ki_pos)
  838. i_size_write(inode, iocb->ki_pos);
  839. spin_unlock(&inode->i_lock);
  840. }
  841. out:
  842. return retval;
  843. }
  844. /**
  845. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  846. *
  847. */
  848. int __init nfs_init_directcache(void)
  849. {
  850. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  851. sizeof(struct nfs_direct_req),
  852. 0, (SLAB_RECLAIM_ACCOUNT|
  853. SLAB_MEM_SPREAD),
  854. NULL);
  855. if (nfs_direct_cachep == NULL)
  856. return -ENOMEM;
  857. return 0;
  858. }
  859. /**
  860. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  861. *
  862. */
  863. void nfs_destroy_directcache(void)
  864. {
  865. kmem_cache_destroy(nfs_direct_cachep);
  866. }