mmu.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. static int oos_shadow = 1;
  60. module_param(oos_shadow, bool, 0644);
  61. #ifndef MMU_DEBUG
  62. #define ASSERT(x) do { } while (0)
  63. #else
  64. #define ASSERT(x) \
  65. if (!(x)) { \
  66. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  67. __FILE__, __LINE__, #x); \
  68. }
  69. #endif
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  73. #define PT64_LEVEL_BITS 9
  74. #define PT64_LEVEL_SHIFT(level) \
  75. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  76. #define PT64_LEVEL_MASK(level) \
  77. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  78. #define PT64_INDEX(address, level)\
  79. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  80. #define PT32_LEVEL_BITS 10
  81. #define PT32_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  83. #define PT32_LEVEL_MASK(level) \
  84. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  85. #define PT32_INDEX(address, level)\
  86. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  87. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  88. #define PT64_DIR_BASE_ADDR_MASK \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  90. #define PT32_BASE_ADDR_MASK PAGE_MASK
  91. #define PT32_DIR_BASE_ADDR_MASK \
  92. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  93. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  94. | PT64_NX_MASK)
  95. #define PFERR_PRESENT_MASK (1U << 0)
  96. #define PFERR_WRITE_MASK (1U << 1)
  97. #define PFERR_USER_MASK (1U << 2)
  98. #define PFERR_FETCH_MASK (1U << 4)
  99. #define PT_DIRECTORY_LEVEL 2
  100. #define PT_PAGE_TABLE_LEVEL 1
  101. #define RMAP_EXT 4
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  107. struct kvm_rmap_desc {
  108. u64 *shadow_ptes[RMAP_EXT];
  109. struct kvm_rmap_desc *more;
  110. };
  111. struct kvm_shadow_walk {
  112. int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
  113. u64 addr, u64 *spte, int level);
  114. };
  115. struct kvm_unsync_walk {
  116. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  117. };
  118. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  119. static struct kmem_cache *pte_chain_cache;
  120. static struct kmem_cache *rmap_desc_cache;
  121. static struct kmem_cache *mmu_page_header_cache;
  122. static u64 __read_mostly shadow_trap_nonpresent_pte;
  123. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  124. static u64 __read_mostly shadow_base_present_pte;
  125. static u64 __read_mostly shadow_nx_mask;
  126. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  127. static u64 __read_mostly shadow_user_mask;
  128. static u64 __read_mostly shadow_accessed_mask;
  129. static u64 __read_mostly shadow_dirty_mask;
  130. static u64 __read_mostly shadow_mt_mask;
  131. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  132. {
  133. shadow_trap_nonpresent_pte = trap_pte;
  134. shadow_notrap_nonpresent_pte = notrap_pte;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  137. void kvm_mmu_set_base_ptes(u64 base_pte)
  138. {
  139. shadow_base_present_pte = base_pte;
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  142. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  143. u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
  144. {
  145. shadow_user_mask = user_mask;
  146. shadow_accessed_mask = accessed_mask;
  147. shadow_dirty_mask = dirty_mask;
  148. shadow_nx_mask = nx_mask;
  149. shadow_x_mask = x_mask;
  150. shadow_mt_mask = mt_mask;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  153. static int is_write_protection(struct kvm_vcpu *vcpu)
  154. {
  155. return vcpu->arch.cr0 & X86_CR0_WP;
  156. }
  157. static int is_cpuid_PSE36(void)
  158. {
  159. return 1;
  160. }
  161. static int is_nx(struct kvm_vcpu *vcpu)
  162. {
  163. return vcpu->arch.shadow_efer & EFER_NX;
  164. }
  165. static int is_present_pte(unsigned long pte)
  166. {
  167. return pte & PT_PRESENT_MASK;
  168. }
  169. static int is_shadow_present_pte(u64 pte)
  170. {
  171. return pte != shadow_trap_nonpresent_pte
  172. && pte != shadow_notrap_nonpresent_pte;
  173. }
  174. static int is_large_pte(u64 pte)
  175. {
  176. return pte & PT_PAGE_SIZE_MASK;
  177. }
  178. static int is_writeble_pte(unsigned long pte)
  179. {
  180. return pte & PT_WRITABLE_MASK;
  181. }
  182. static int is_dirty_pte(unsigned long pte)
  183. {
  184. return pte & shadow_dirty_mask;
  185. }
  186. static int is_rmap_pte(u64 pte)
  187. {
  188. return is_shadow_present_pte(pte);
  189. }
  190. static pfn_t spte_to_pfn(u64 pte)
  191. {
  192. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  193. }
  194. static gfn_t pse36_gfn_delta(u32 gpte)
  195. {
  196. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  197. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  198. }
  199. static void set_shadow_pte(u64 *sptep, u64 spte)
  200. {
  201. #ifdef CONFIG_X86_64
  202. set_64bit((unsigned long *)sptep, spte);
  203. #else
  204. set_64bit((unsigned long long *)sptep, spte);
  205. #endif
  206. }
  207. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  208. struct kmem_cache *base_cache, int min)
  209. {
  210. void *obj;
  211. if (cache->nobjs >= min)
  212. return 0;
  213. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  214. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  215. if (!obj)
  216. return -ENOMEM;
  217. cache->objects[cache->nobjs++] = obj;
  218. }
  219. return 0;
  220. }
  221. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  222. {
  223. while (mc->nobjs)
  224. kfree(mc->objects[--mc->nobjs]);
  225. }
  226. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  227. int min)
  228. {
  229. struct page *page;
  230. if (cache->nobjs >= min)
  231. return 0;
  232. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  233. page = alloc_page(GFP_KERNEL);
  234. if (!page)
  235. return -ENOMEM;
  236. set_page_private(page, 0);
  237. cache->objects[cache->nobjs++] = page_address(page);
  238. }
  239. return 0;
  240. }
  241. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  242. {
  243. while (mc->nobjs)
  244. free_page((unsigned long)mc->objects[--mc->nobjs]);
  245. }
  246. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  247. {
  248. int r;
  249. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  250. pte_chain_cache, 4);
  251. if (r)
  252. goto out;
  253. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  254. rmap_desc_cache, 4);
  255. if (r)
  256. goto out;
  257. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  258. if (r)
  259. goto out;
  260. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  261. mmu_page_header_cache, 4);
  262. out:
  263. return r;
  264. }
  265. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  266. {
  267. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  268. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  269. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  270. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  271. }
  272. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  273. size_t size)
  274. {
  275. void *p;
  276. BUG_ON(!mc->nobjs);
  277. p = mc->objects[--mc->nobjs];
  278. memset(p, 0, size);
  279. return p;
  280. }
  281. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  282. {
  283. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  284. sizeof(struct kvm_pte_chain));
  285. }
  286. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  287. {
  288. kfree(pc);
  289. }
  290. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  291. {
  292. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  293. sizeof(struct kvm_rmap_desc));
  294. }
  295. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  296. {
  297. kfree(rd);
  298. }
  299. /*
  300. * Return the pointer to the largepage write count for a given
  301. * gfn, handling slots that are not large page aligned.
  302. */
  303. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  304. {
  305. unsigned long idx;
  306. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  307. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  308. return &slot->lpage_info[idx].write_count;
  309. }
  310. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  311. {
  312. int *write_count;
  313. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  314. *write_count += 1;
  315. }
  316. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  317. {
  318. int *write_count;
  319. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  320. *write_count -= 1;
  321. WARN_ON(*write_count < 0);
  322. }
  323. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  324. {
  325. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  326. int *largepage_idx;
  327. if (slot) {
  328. largepage_idx = slot_largepage_idx(gfn, slot);
  329. return *largepage_idx;
  330. }
  331. return 1;
  332. }
  333. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  334. {
  335. struct vm_area_struct *vma;
  336. unsigned long addr;
  337. int ret = 0;
  338. addr = gfn_to_hva(kvm, gfn);
  339. if (kvm_is_error_hva(addr))
  340. return ret;
  341. down_read(&current->mm->mmap_sem);
  342. vma = find_vma(current->mm, addr);
  343. if (vma && is_vm_hugetlb_page(vma))
  344. ret = 1;
  345. up_read(&current->mm->mmap_sem);
  346. return ret;
  347. }
  348. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  349. {
  350. struct kvm_memory_slot *slot;
  351. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  352. return 0;
  353. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  354. return 0;
  355. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  356. if (slot && slot->dirty_bitmap)
  357. return 0;
  358. return 1;
  359. }
  360. /*
  361. * Take gfn and return the reverse mapping to it.
  362. * Note: gfn must be unaliased before this function get called
  363. */
  364. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  365. {
  366. struct kvm_memory_slot *slot;
  367. unsigned long idx;
  368. slot = gfn_to_memslot(kvm, gfn);
  369. if (!lpage)
  370. return &slot->rmap[gfn - slot->base_gfn];
  371. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  372. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  373. return &slot->lpage_info[idx].rmap_pde;
  374. }
  375. /*
  376. * Reverse mapping data structures:
  377. *
  378. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  379. * that points to page_address(page).
  380. *
  381. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  382. * containing more mappings.
  383. */
  384. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  385. {
  386. struct kvm_mmu_page *sp;
  387. struct kvm_rmap_desc *desc;
  388. unsigned long *rmapp;
  389. int i;
  390. if (!is_rmap_pte(*spte))
  391. return;
  392. gfn = unalias_gfn(vcpu->kvm, gfn);
  393. sp = page_header(__pa(spte));
  394. sp->gfns[spte - sp->spt] = gfn;
  395. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  396. if (!*rmapp) {
  397. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  398. *rmapp = (unsigned long)spte;
  399. } else if (!(*rmapp & 1)) {
  400. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  401. desc = mmu_alloc_rmap_desc(vcpu);
  402. desc->shadow_ptes[0] = (u64 *)*rmapp;
  403. desc->shadow_ptes[1] = spte;
  404. *rmapp = (unsigned long)desc | 1;
  405. } else {
  406. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  407. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  408. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  409. desc = desc->more;
  410. if (desc->shadow_ptes[RMAP_EXT-1]) {
  411. desc->more = mmu_alloc_rmap_desc(vcpu);
  412. desc = desc->more;
  413. }
  414. for (i = 0; desc->shadow_ptes[i]; ++i)
  415. ;
  416. desc->shadow_ptes[i] = spte;
  417. }
  418. }
  419. static void rmap_desc_remove_entry(unsigned long *rmapp,
  420. struct kvm_rmap_desc *desc,
  421. int i,
  422. struct kvm_rmap_desc *prev_desc)
  423. {
  424. int j;
  425. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  426. ;
  427. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  428. desc->shadow_ptes[j] = NULL;
  429. if (j != 0)
  430. return;
  431. if (!prev_desc && !desc->more)
  432. *rmapp = (unsigned long)desc->shadow_ptes[0];
  433. else
  434. if (prev_desc)
  435. prev_desc->more = desc->more;
  436. else
  437. *rmapp = (unsigned long)desc->more | 1;
  438. mmu_free_rmap_desc(desc);
  439. }
  440. static void rmap_remove(struct kvm *kvm, u64 *spte)
  441. {
  442. struct kvm_rmap_desc *desc;
  443. struct kvm_rmap_desc *prev_desc;
  444. struct kvm_mmu_page *sp;
  445. pfn_t pfn;
  446. unsigned long *rmapp;
  447. int i;
  448. if (!is_rmap_pte(*spte))
  449. return;
  450. sp = page_header(__pa(spte));
  451. pfn = spte_to_pfn(*spte);
  452. if (*spte & shadow_accessed_mask)
  453. kvm_set_pfn_accessed(pfn);
  454. if (is_writeble_pte(*spte))
  455. kvm_release_pfn_dirty(pfn);
  456. else
  457. kvm_release_pfn_clean(pfn);
  458. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  459. if (!*rmapp) {
  460. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  461. BUG();
  462. } else if (!(*rmapp & 1)) {
  463. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  464. if ((u64 *)*rmapp != spte) {
  465. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  466. spte, *spte);
  467. BUG();
  468. }
  469. *rmapp = 0;
  470. } else {
  471. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  472. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  473. prev_desc = NULL;
  474. while (desc) {
  475. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  476. if (desc->shadow_ptes[i] == spte) {
  477. rmap_desc_remove_entry(rmapp,
  478. desc, i,
  479. prev_desc);
  480. return;
  481. }
  482. prev_desc = desc;
  483. desc = desc->more;
  484. }
  485. BUG();
  486. }
  487. }
  488. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  489. {
  490. struct kvm_rmap_desc *desc;
  491. struct kvm_rmap_desc *prev_desc;
  492. u64 *prev_spte;
  493. int i;
  494. if (!*rmapp)
  495. return NULL;
  496. else if (!(*rmapp & 1)) {
  497. if (!spte)
  498. return (u64 *)*rmapp;
  499. return NULL;
  500. }
  501. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  502. prev_desc = NULL;
  503. prev_spte = NULL;
  504. while (desc) {
  505. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  506. if (prev_spte == spte)
  507. return desc->shadow_ptes[i];
  508. prev_spte = desc->shadow_ptes[i];
  509. }
  510. desc = desc->more;
  511. }
  512. return NULL;
  513. }
  514. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  515. {
  516. unsigned long *rmapp;
  517. u64 *spte;
  518. int write_protected = 0;
  519. gfn = unalias_gfn(kvm, gfn);
  520. rmapp = gfn_to_rmap(kvm, gfn, 0);
  521. spte = rmap_next(kvm, rmapp, NULL);
  522. while (spte) {
  523. BUG_ON(!spte);
  524. BUG_ON(!(*spte & PT_PRESENT_MASK));
  525. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  526. if (is_writeble_pte(*spte)) {
  527. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  528. write_protected = 1;
  529. }
  530. spte = rmap_next(kvm, rmapp, spte);
  531. }
  532. if (write_protected) {
  533. pfn_t pfn;
  534. spte = rmap_next(kvm, rmapp, NULL);
  535. pfn = spte_to_pfn(*spte);
  536. kvm_set_pfn_dirty(pfn);
  537. }
  538. /* check for huge page mappings */
  539. rmapp = gfn_to_rmap(kvm, gfn, 1);
  540. spte = rmap_next(kvm, rmapp, NULL);
  541. while (spte) {
  542. BUG_ON(!spte);
  543. BUG_ON(!(*spte & PT_PRESENT_MASK));
  544. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  545. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  546. if (is_writeble_pte(*spte)) {
  547. rmap_remove(kvm, spte);
  548. --kvm->stat.lpages;
  549. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  550. spte = NULL;
  551. write_protected = 1;
  552. }
  553. spte = rmap_next(kvm, rmapp, spte);
  554. }
  555. if (write_protected)
  556. kvm_flush_remote_tlbs(kvm);
  557. }
  558. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  559. {
  560. u64 *spte;
  561. int need_tlb_flush = 0;
  562. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  563. BUG_ON(!(*spte & PT_PRESENT_MASK));
  564. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  565. rmap_remove(kvm, spte);
  566. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  567. need_tlb_flush = 1;
  568. }
  569. return need_tlb_flush;
  570. }
  571. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  572. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  573. {
  574. int i;
  575. int retval = 0;
  576. /*
  577. * If mmap_sem isn't taken, we can look the memslots with only
  578. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  579. */
  580. for (i = 0; i < kvm->nmemslots; i++) {
  581. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  582. unsigned long start = memslot->userspace_addr;
  583. unsigned long end;
  584. /* mmu_lock protects userspace_addr */
  585. if (!start)
  586. continue;
  587. end = start + (memslot->npages << PAGE_SHIFT);
  588. if (hva >= start && hva < end) {
  589. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  590. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  591. retval |= handler(kvm,
  592. &memslot->lpage_info[
  593. gfn_offset /
  594. KVM_PAGES_PER_HPAGE].rmap_pde);
  595. }
  596. }
  597. return retval;
  598. }
  599. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  600. {
  601. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  602. }
  603. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  604. {
  605. u64 *spte;
  606. int young = 0;
  607. /* always return old for EPT */
  608. if (!shadow_accessed_mask)
  609. return 0;
  610. spte = rmap_next(kvm, rmapp, NULL);
  611. while (spte) {
  612. int _young;
  613. u64 _spte = *spte;
  614. BUG_ON(!(_spte & PT_PRESENT_MASK));
  615. _young = _spte & PT_ACCESSED_MASK;
  616. if (_young) {
  617. young = 1;
  618. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  619. }
  620. spte = rmap_next(kvm, rmapp, spte);
  621. }
  622. return young;
  623. }
  624. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  625. {
  626. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  627. }
  628. #ifdef MMU_DEBUG
  629. static int is_empty_shadow_page(u64 *spt)
  630. {
  631. u64 *pos;
  632. u64 *end;
  633. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  634. if (is_shadow_present_pte(*pos)) {
  635. printk(KERN_ERR "%s: %p %llx\n", __func__,
  636. pos, *pos);
  637. return 0;
  638. }
  639. return 1;
  640. }
  641. #endif
  642. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  643. {
  644. ASSERT(is_empty_shadow_page(sp->spt));
  645. list_del(&sp->link);
  646. __free_page(virt_to_page(sp->spt));
  647. __free_page(virt_to_page(sp->gfns));
  648. kfree(sp);
  649. ++kvm->arch.n_free_mmu_pages;
  650. }
  651. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  652. {
  653. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  654. }
  655. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  656. u64 *parent_pte)
  657. {
  658. struct kvm_mmu_page *sp;
  659. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  660. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  661. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  662. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  663. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  664. ASSERT(is_empty_shadow_page(sp->spt));
  665. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  666. sp->multimapped = 0;
  667. sp->parent_pte = parent_pte;
  668. --vcpu->kvm->arch.n_free_mmu_pages;
  669. return sp;
  670. }
  671. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  672. struct kvm_mmu_page *sp, u64 *parent_pte)
  673. {
  674. struct kvm_pte_chain *pte_chain;
  675. struct hlist_node *node;
  676. int i;
  677. if (!parent_pte)
  678. return;
  679. if (!sp->multimapped) {
  680. u64 *old = sp->parent_pte;
  681. if (!old) {
  682. sp->parent_pte = parent_pte;
  683. return;
  684. }
  685. sp->multimapped = 1;
  686. pte_chain = mmu_alloc_pte_chain(vcpu);
  687. INIT_HLIST_HEAD(&sp->parent_ptes);
  688. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  689. pte_chain->parent_ptes[0] = old;
  690. }
  691. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  692. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  693. continue;
  694. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  695. if (!pte_chain->parent_ptes[i]) {
  696. pte_chain->parent_ptes[i] = parent_pte;
  697. return;
  698. }
  699. }
  700. pte_chain = mmu_alloc_pte_chain(vcpu);
  701. BUG_ON(!pte_chain);
  702. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  703. pte_chain->parent_ptes[0] = parent_pte;
  704. }
  705. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  706. u64 *parent_pte)
  707. {
  708. struct kvm_pte_chain *pte_chain;
  709. struct hlist_node *node;
  710. int i;
  711. if (!sp->multimapped) {
  712. BUG_ON(sp->parent_pte != parent_pte);
  713. sp->parent_pte = NULL;
  714. return;
  715. }
  716. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  717. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  718. if (!pte_chain->parent_ptes[i])
  719. break;
  720. if (pte_chain->parent_ptes[i] != parent_pte)
  721. continue;
  722. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  723. && pte_chain->parent_ptes[i + 1]) {
  724. pte_chain->parent_ptes[i]
  725. = pte_chain->parent_ptes[i + 1];
  726. ++i;
  727. }
  728. pte_chain->parent_ptes[i] = NULL;
  729. if (i == 0) {
  730. hlist_del(&pte_chain->link);
  731. mmu_free_pte_chain(pte_chain);
  732. if (hlist_empty(&sp->parent_ptes)) {
  733. sp->multimapped = 0;
  734. sp->parent_pte = NULL;
  735. }
  736. }
  737. return;
  738. }
  739. BUG();
  740. }
  741. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  742. mmu_parent_walk_fn fn)
  743. {
  744. struct kvm_pte_chain *pte_chain;
  745. struct hlist_node *node;
  746. struct kvm_mmu_page *parent_sp;
  747. int i;
  748. if (!sp->multimapped && sp->parent_pte) {
  749. parent_sp = page_header(__pa(sp->parent_pte));
  750. fn(vcpu, parent_sp);
  751. mmu_parent_walk(vcpu, parent_sp, fn);
  752. return;
  753. }
  754. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  755. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  756. if (!pte_chain->parent_ptes[i])
  757. break;
  758. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  759. fn(vcpu, parent_sp);
  760. mmu_parent_walk(vcpu, parent_sp, fn);
  761. }
  762. }
  763. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  764. {
  765. unsigned int index;
  766. struct kvm_mmu_page *sp = page_header(__pa(spte));
  767. index = spte - sp->spt;
  768. __set_bit(index, sp->unsync_child_bitmap);
  769. sp->unsync_children = 1;
  770. }
  771. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  772. {
  773. struct kvm_pte_chain *pte_chain;
  774. struct hlist_node *node;
  775. int i;
  776. if (!sp->parent_pte)
  777. return;
  778. if (!sp->multimapped) {
  779. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  780. return;
  781. }
  782. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  783. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  784. if (!pte_chain->parent_ptes[i])
  785. break;
  786. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  787. }
  788. }
  789. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  790. {
  791. sp->unsync_children = 1;
  792. kvm_mmu_update_parents_unsync(sp);
  793. return 1;
  794. }
  795. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  796. struct kvm_mmu_page *sp)
  797. {
  798. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  799. kvm_mmu_update_parents_unsync(sp);
  800. }
  801. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  802. struct kvm_mmu_page *sp)
  803. {
  804. int i;
  805. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  806. sp->spt[i] = shadow_trap_nonpresent_pte;
  807. }
  808. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  809. struct kvm_mmu_page *sp)
  810. {
  811. return 1;
  812. }
  813. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  814. {
  815. }
  816. #define for_each_unsync_children(bitmap, idx) \
  817. for (idx = find_first_bit(bitmap, 512); \
  818. idx < 512; \
  819. idx = find_next_bit(bitmap, 512, idx+1))
  820. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  821. struct kvm_unsync_walk *walker)
  822. {
  823. int i, ret;
  824. if (!sp->unsync_children)
  825. return 0;
  826. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  827. u64 ent = sp->spt[i];
  828. if (is_shadow_present_pte(ent)) {
  829. struct kvm_mmu_page *child;
  830. child = page_header(ent & PT64_BASE_ADDR_MASK);
  831. if (child->unsync_children) {
  832. ret = mmu_unsync_walk(child, walker);
  833. if (ret)
  834. return ret;
  835. __clear_bit(i, sp->unsync_child_bitmap);
  836. }
  837. if (child->unsync) {
  838. ret = walker->entry(child, walker);
  839. __clear_bit(i, sp->unsync_child_bitmap);
  840. if (ret)
  841. return ret;
  842. }
  843. }
  844. }
  845. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  846. sp->unsync_children = 0;
  847. return 0;
  848. }
  849. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  850. {
  851. unsigned index;
  852. struct hlist_head *bucket;
  853. struct kvm_mmu_page *sp;
  854. struct hlist_node *node;
  855. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  856. index = kvm_page_table_hashfn(gfn);
  857. bucket = &kvm->arch.mmu_page_hash[index];
  858. hlist_for_each_entry(sp, node, bucket, hash_link)
  859. if (sp->gfn == gfn && !sp->role.metaphysical
  860. && !sp->role.invalid) {
  861. pgprintk("%s: found role %x\n",
  862. __func__, sp->role.word);
  863. return sp;
  864. }
  865. return NULL;
  866. }
  867. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  868. {
  869. WARN_ON(!sp->unsync);
  870. sp->unsync = 0;
  871. --kvm->stat.mmu_unsync;
  872. }
  873. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  874. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  875. {
  876. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  877. kvm_mmu_zap_page(vcpu->kvm, sp);
  878. return 1;
  879. }
  880. rmap_write_protect(vcpu->kvm, sp->gfn);
  881. kvm_unlink_unsync_page(vcpu->kvm, sp);
  882. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  883. kvm_mmu_zap_page(vcpu->kvm, sp);
  884. return 1;
  885. }
  886. kvm_mmu_flush_tlb(vcpu);
  887. return 0;
  888. }
  889. struct sync_walker {
  890. struct kvm_vcpu *vcpu;
  891. struct kvm_unsync_walk walker;
  892. };
  893. static int mmu_sync_fn(struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk)
  894. {
  895. struct sync_walker *sync_walk = container_of(walk, struct sync_walker,
  896. walker);
  897. struct kvm_vcpu *vcpu = sync_walk->vcpu;
  898. kvm_sync_page(vcpu, sp);
  899. return (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock));
  900. }
  901. static void mmu_sync_children(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  902. {
  903. struct sync_walker walker = {
  904. .walker = { .entry = mmu_sync_fn, },
  905. .vcpu = vcpu,
  906. };
  907. while (mmu_unsync_walk(sp, &walker.walker))
  908. cond_resched_lock(&vcpu->kvm->mmu_lock);
  909. }
  910. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  911. gfn_t gfn,
  912. gva_t gaddr,
  913. unsigned level,
  914. int metaphysical,
  915. unsigned access,
  916. u64 *parent_pte)
  917. {
  918. union kvm_mmu_page_role role;
  919. unsigned index;
  920. unsigned quadrant;
  921. struct hlist_head *bucket;
  922. struct kvm_mmu_page *sp;
  923. struct hlist_node *node, *tmp;
  924. role.word = 0;
  925. role.glevels = vcpu->arch.mmu.root_level;
  926. role.level = level;
  927. role.metaphysical = metaphysical;
  928. role.access = access;
  929. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  930. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  931. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  932. role.quadrant = quadrant;
  933. }
  934. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  935. gfn, role.word);
  936. index = kvm_page_table_hashfn(gfn);
  937. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  938. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  939. if (sp->gfn == gfn) {
  940. if (sp->unsync)
  941. if (kvm_sync_page(vcpu, sp))
  942. continue;
  943. if (sp->role.word != role.word)
  944. continue;
  945. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  946. if (sp->unsync_children) {
  947. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  948. kvm_mmu_mark_parents_unsync(vcpu, sp);
  949. }
  950. pgprintk("%s: found\n", __func__);
  951. return sp;
  952. }
  953. ++vcpu->kvm->stat.mmu_cache_miss;
  954. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  955. if (!sp)
  956. return sp;
  957. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  958. sp->gfn = gfn;
  959. sp->role = role;
  960. hlist_add_head(&sp->hash_link, bucket);
  961. if (!metaphysical) {
  962. rmap_write_protect(vcpu->kvm, gfn);
  963. account_shadowed(vcpu->kvm, gfn);
  964. }
  965. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  966. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  967. else
  968. nonpaging_prefetch_page(vcpu, sp);
  969. return sp;
  970. }
  971. static int walk_shadow(struct kvm_shadow_walk *walker,
  972. struct kvm_vcpu *vcpu, u64 addr)
  973. {
  974. hpa_t shadow_addr;
  975. int level;
  976. int r;
  977. u64 *sptep;
  978. unsigned index;
  979. shadow_addr = vcpu->arch.mmu.root_hpa;
  980. level = vcpu->arch.mmu.shadow_root_level;
  981. if (level == PT32E_ROOT_LEVEL) {
  982. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  983. shadow_addr &= PT64_BASE_ADDR_MASK;
  984. --level;
  985. }
  986. while (level >= PT_PAGE_TABLE_LEVEL) {
  987. index = SHADOW_PT_INDEX(addr, level);
  988. sptep = ((u64 *)__va(shadow_addr)) + index;
  989. r = walker->entry(walker, vcpu, addr, sptep, level);
  990. if (r)
  991. return r;
  992. shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
  993. --level;
  994. }
  995. return 0;
  996. }
  997. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  998. struct kvm_mmu_page *sp)
  999. {
  1000. unsigned i;
  1001. u64 *pt;
  1002. u64 ent;
  1003. pt = sp->spt;
  1004. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1005. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1006. if (is_shadow_present_pte(pt[i]))
  1007. rmap_remove(kvm, &pt[i]);
  1008. pt[i] = shadow_trap_nonpresent_pte;
  1009. }
  1010. return;
  1011. }
  1012. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1013. ent = pt[i];
  1014. if (is_shadow_present_pte(ent)) {
  1015. if (!is_large_pte(ent)) {
  1016. ent &= PT64_BASE_ADDR_MASK;
  1017. mmu_page_remove_parent_pte(page_header(ent),
  1018. &pt[i]);
  1019. } else {
  1020. --kvm->stat.lpages;
  1021. rmap_remove(kvm, &pt[i]);
  1022. }
  1023. }
  1024. pt[i] = shadow_trap_nonpresent_pte;
  1025. }
  1026. }
  1027. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1028. {
  1029. mmu_page_remove_parent_pte(sp, parent_pte);
  1030. }
  1031. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1032. {
  1033. int i;
  1034. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  1035. if (kvm->vcpus[i])
  1036. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  1037. }
  1038. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1039. {
  1040. u64 *parent_pte;
  1041. while (sp->multimapped || sp->parent_pte) {
  1042. if (!sp->multimapped)
  1043. parent_pte = sp->parent_pte;
  1044. else {
  1045. struct kvm_pte_chain *chain;
  1046. chain = container_of(sp->parent_ptes.first,
  1047. struct kvm_pte_chain, link);
  1048. parent_pte = chain->parent_ptes[0];
  1049. }
  1050. BUG_ON(!parent_pte);
  1051. kvm_mmu_put_page(sp, parent_pte);
  1052. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  1053. }
  1054. }
  1055. struct zap_walker {
  1056. struct kvm_unsync_walk walker;
  1057. struct kvm *kvm;
  1058. int zapped;
  1059. };
  1060. static int mmu_zap_fn(struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk)
  1061. {
  1062. struct zap_walker *zap_walk = container_of(walk, struct zap_walker,
  1063. walker);
  1064. kvm_mmu_zap_page(zap_walk->kvm, sp);
  1065. zap_walk->zapped = 1;
  1066. return 0;
  1067. }
  1068. static int mmu_zap_unsync_children(struct kvm *kvm, struct kvm_mmu_page *sp)
  1069. {
  1070. struct zap_walker walker = {
  1071. .walker = { .entry = mmu_zap_fn, },
  1072. .kvm = kvm,
  1073. .zapped = 0,
  1074. };
  1075. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  1076. return 0;
  1077. mmu_unsync_walk(sp, &walker.walker);
  1078. return walker.zapped;
  1079. }
  1080. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1081. {
  1082. int ret;
  1083. ++kvm->stat.mmu_shadow_zapped;
  1084. ret = mmu_zap_unsync_children(kvm, sp);
  1085. kvm_mmu_page_unlink_children(kvm, sp);
  1086. kvm_mmu_unlink_parents(kvm, sp);
  1087. kvm_flush_remote_tlbs(kvm);
  1088. if (!sp->role.invalid && !sp->role.metaphysical)
  1089. unaccount_shadowed(kvm, sp->gfn);
  1090. if (sp->unsync)
  1091. kvm_unlink_unsync_page(kvm, sp);
  1092. if (!sp->root_count) {
  1093. hlist_del(&sp->hash_link);
  1094. kvm_mmu_free_page(kvm, sp);
  1095. } else {
  1096. sp->role.invalid = 1;
  1097. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1098. kvm_reload_remote_mmus(kvm);
  1099. }
  1100. kvm_mmu_reset_last_pte_updated(kvm);
  1101. return ret;
  1102. }
  1103. /*
  1104. * Changing the number of mmu pages allocated to the vm
  1105. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1106. */
  1107. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1108. {
  1109. /*
  1110. * If we set the number of mmu pages to be smaller be than the
  1111. * number of actived pages , we must to free some mmu pages before we
  1112. * change the value
  1113. */
  1114. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  1115. kvm_nr_mmu_pages) {
  1116. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  1117. - kvm->arch.n_free_mmu_pages;
  1118. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  1119. struct kvm_mmu_page *page;
  1120. page = container_of(kvm->arch.active_mmu_pages.prev,
  1121. struct kvm_mmu_page, link);
  1122. kvm_mmu_zap_page(kvm, page);
  1123. n_used_mmu_pages--;
  1124. }
  1125. kvm->arch.n_free_mmu_pages = 0;
  1126. }
  1127. else
  1128. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1129. - kvm->arch.n_alloc_mmu_pages;
  1130. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1131. }
  1132. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1133. {
  1134. unsigned index;
  1135. struct hlist_head *bucket;
  1136. struct kvm_mmu_page *sp;
  1137. struct hlist_node *node, *n;
  1138. int r;
  1139. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1140. r = 0;
  1141. index = kvm_page_table_hashfn(gfn);
  1142. bucket = &kvm->arch.mmu_page_hash[index];
  1143. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1144. if (sp->gfn == gfn && !sp->role.metaphysical) {
  1145. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1146. sp->role.word);
  1147. r = 1;
  1148. if (kvm_mmu_zap_page(kvm, sp))
  1149. n = bucket->first;
  1150. }
  1151. return r;
  1152. }
  1153. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1154. {
  1155. struct kvm_mmu_page *sp;
  1156. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  1157. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  1158. kvm_mmu_zap_page(kvm, sp);
  1159. }
  1160. }
  1161. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1162. {
  1163. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1164. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1165. __set_bit(slot, sp->slot_bitmap);
  1166. }
  1167. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1168. {
  1169. int i;
  1170. u64 *pt = sp->spt;
  1171. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1172. return;
  1173. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1174. if (pt[i] == shadow_notrap_nonpresent_pte)
  1175. set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
  1176. }
  1177. }
  1178. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1179. {
  1180. struct page *page;
  1181. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1182. if (gpa == UNMAPPED_GVA)
  1183. return NULL;
  1184. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1185. return page;
  1186. }
  1187. /*
  1188. * The function is based on mtrr_type_lookup() in
  1189. * arch/x86/kernel/cpu/mtrr/generic.c
  1190. */
  1191. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1192. u64 start, u64 end)
  1193. {
  1194. int i;
  1195. u64 base, mask;
  1196. u8 prev_match, curr_match;
  1197. int num_var_ranges = KVM_NR_VAR_MTRR;
  1198. if (!mtrr_state->enabled)
  1199. return 0xFF;
  1200. /* Make end inclusive end, instead of exclusive */
  1201. end--;
  1202. /* Look in fixed ranges. Just return the type as per start */
  1203. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1204. int idx;
  1205. if (start < 0x80000) {
  1206. idx = 0;
  1207. idx += (start >> 16);
  1208. return mtrr_state->fixed_ranges[idx];
  1209. } else if (start < 0xC0000) {
  1210. idx = 1 * 8;
  1211. idx += ((start - 0x80000) >> 14);
  1212. return mtrr_state->fixed_ranges[idx];
  1213. } else if (start < 0x1000000) {
  1214. idx = 3 * 8;
  1215. idx += ((start - 0xC0000) >> 12);
  1216. return mtrr_state->fixed_ranges[idx];
  1217. }
  1218. }
  1219. /*
  1220. * Look in variable ranges
  1221. * Look of multiple ranges matching this address and pick type
  1222. * as per MTRR precedence
  1223. */
  1224. if (!(mtrr_state->enabled & 2))
  1225. return mtrr_state->def_type;
  1226. prev_match = 0xFF;
  1227. for (i = 0; i < num_var_ranges; ++i) {
  1228. unsigned short start_state, end_state;
  1229. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1230. continue;
  1231. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1232. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1233. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1234. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1235. start_state = ((start & mask) == (base & mask));
  1236. end_state = ((end & mask) == (base & mask));
  1237. if (start_state != end_state)
  1238. return 0xFE;
  1239. if ((start & mask) != (base & mask))
  1240. continue;
  1241. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1242. if (prev_match == 0xFF) {
  1243. prev_match = curr_match;
  1244. continue;
  1245. }
  1246. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1247. curr_match == MTRR_TYPE_UNCACHABLE)
  1248. return MTRR_TYPE_UNCACHABLE;
  1249. if ((prev_match == MTRR_TYPE_WRBACK &&
  1250. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1251. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1252. curr_match == MTRR_TYPE_WRBACK)) {
  1253. prev_match = MTRR_TYPE_WRTHROUGH;
  1254. curr_match = MTRR_TYPE_WRTHROUGH;
  1255. }
  1256. if (prev_match != curr_match)
  1257. return MTRR_TYPE_UNCACHABLE;
  1258. }
  1259. if (prev_match != 0xFF)
  1260. return prev_match;
  1261. return mtrr_state->def_type;
  1262. }
  1263. static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1264. {
  1265. u8 mtrr;
  1266. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1267. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1268. if (mtrr == 0xfe || mtrr == 0xff)
  1269. mtrr = MTRR_TYPE_WRBACK;
  1270. return mtrr;
  1271. }
  1272. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1273. {
  1274. unsigned index;
  1275. struct hlist_head *bucket;
  1276. struct kvm_mmu_page *s;
  1277. struct hlist_node *node, *n;
  1278. index = kvm_page_table_hashfn(sp->gfn);
  1279. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1280. /* don't unsync if pagetable is shadowed with multiple roles */
  1281. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1282. if (s->gfn != sp->gfn || s->role.metaphysical)
  1283. continue;
  1284. if (s->role.word != sp->role.word)
  1285. return 1;
  1286. }
  1287. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1288. ++vcpu->kvm->stat.mmu_unsync;
  1289. sp->unsync = 1;
  1290. mmu_convert_notrap(sp);
  1291. return 0;
  1292. }
  1293. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1294. bool can_unsync)
  1295. {
  1296. struct kvm_mmu_page *shadow;
  1297. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1298. if (shadow) {
  1299. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1300. return 1;
  1301. if (shadow->unsync)
  1302. return 0;
  1303. if (can_unsync && oos_shadow)
  1304. return kvm_unsync_page(vcpu, shadow);
  1305. return 1;
  1306. }
  1307. return 0;
  1308. }
  1309. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1310. unsigned pte_access, int user_fault,
  1311. int write_fault, int dirty, int largepage,
  1312. gfn_t gfn, pfn_t pfn, bool speculative,
  1313. bool can_unsync)
  1314. {
  1315. u64 spte;
  1316. int ret = 0;
  1317. u64 mt_mask = shadow_mt_mask;
  1318. /*
  1319. * We don't set the accessed bit, since we sometimes want to see
  1320. * whether the guest actually used the pte (in order to detect
  1321. * demand paging).
  1322. */
  1323. spte = shadow_base_present_pte | shadow_dirty_mask;
  1324. if (!speculative)
  1325. spte |= shadow_accessed_mask;
  1326. if (!dirty)
  1327. pte_access &= ~ACC_WRITE_MASK;
  1328. if (pte_access & ACC_EXEC_MASK)
  1329. spte |= shadow_x_mask;
  1330. else
  1331. spte |= shadow_nx_mask;
  1332. if (pte_access & ACC_USER_MASK)
  1333. spte |= shadow_user_mask;
  1334. if (largepage)
  1335. spte |= PT_PAGE_SIZE_MASK;
  1336. if (mt_mask) {
  1337. mt_mask = get_memory_type(vcpu, gfn) <<
  1338. kvm_x86_ops->get_mt_mask_shift();
  1339. spte |= mt_mask;
  1340. }
  1341. spte |= (u64)pfn << PAGE_SHIFT;
  1342. if ((pte_access & ACC_WRITE_MASK)
  1343. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1344. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1345. ret = 1;
  1346. spte = shadow_trap_nonpresent_pte;
  1347. goto set_pte;
  1348. }
  1349. spte |= PT_WRITABLE_MASK;
  1350. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1351. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1352. __func__, gfn);
  1353. ret = 1;
  1354. pte_access &= ~ACC_WRITE_MASK;
  1355. if (is_writeble_pte(spte))
  1356. spte &= ~PT_WRITABLE_MASK;
  1357. }
  1358. }
  1359. if (pte_access & ACC_WRITE_MASK)
  1360. mark_page_dirty(vcpu->kvm, gfn);
  1361. set_pte:
  1362. set_shadow_pte(shadow_pte, spte);
  1363. return ret;
  1364. }
  1365. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1366. unsigned pt_access, unsigned pte_access,
  1367. int user_fault, int write_fault, int dirty,
  1368. int *ptwrite, int largepage, gfn_t gfn,
  1369. pfn_t pfn, bool speculative)
  1370. {
  1371. int was_rmapped = 0;
  1372. int was_writeble = is_writeble_pte(*shadow_pte);
  1373. pgprintk("%s: spte %llx access %x write_fault %d"
  1374. " user_fault %d gfn %lx\n",
  1375. __func__, *shadow_pte, pt_access,
  1376. write_fault, user_fault, gfn);
  1377. if (is_rmap_pte(*shadow_pte)) {
  1378. /*
  1379. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1380. * the parent of the now unreachable PTE.
  1381. */
  1382. if (largepage && !is_large_pte(*shadow_pte)) {
  1383. struct kvm_mmu_page *child;
  1384. u64 pte = *shadow_pte;
  1385. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1386. mmu_page_remove_parent_pte(child, shadow_pte);
  1387. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1388. pgprintk("hfn old %lx new %lx\n",
  1389. spte_to_pfn(*shadow_pte), pfn);
  1390. rmap_remove(vcpu->kvm, shadow_pte);
  1391. } else {
  1392. if (largepage)
  1393. was_rmapped = is_large_pte(*shadow_pte);
  1394. else
  1395. was_rmapped = 1;
  1396. }
  1397. }
  1398. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1399. dirty, largepage, gfn, pfn, speculative, true)) {
  1400. if (write_fault)
  1401. *ptwrite = 1;
  1402. kvm_x86_ops->tlb_flush(vcpu);
  1403. }
  1404. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1405. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1406. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1407. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1408. *shadow_pte, shadow_pte);
  1409. if (!was_rmapped && is_large_pte(*shadow_pte))
  1410. ++vcpu->kvm->stat.lpages;
  1411. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1412. if (!was_rmapped) {
  1413. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1414. if (!is_rmap_pte(*shadow_pte))
  1415. kvm_release_pfn_clean(pfn);
  1416. } else {
  1417. if (was_writeble)
  1418. kvm_release_pfn_dirty(pfn);
  1419. else
  1420. kvm_release_pfn_clean(pfn);
  1421. }
  1422. if (speculative) {
  1423. vcpu->arch.last_pte_updated = shadow_pte;
  1424. vcpu->arch.last_pte_gfn = gfn;
  1425. }
  1426. }
  1427. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1428. {
  1429. }
  1430. struct direct_shadow_walk {
  1431. struct kvm_shadow_walk walker;
  1432. pfn_t pfn;
  1433. int write;
  1434. int largepage;
  1435. int pt_write;
  1436. };
  1437. static int direct_map_entry(struct kvm_shadow_walk *_walk,
  1438. struct kvm_vcpu *vcpu,
  1439. u64 addr, u64 *sptep, int level)
  1440. {
  1441. struct direct_shadow_walk *walk =
  1442. container_of(_walk, struct direct_shadow_walk, walker);
  1443. struct kvm_mmu_page *sp;
  1444. gfn_t pseudo_gfn;
  1445. gfn_t gfn = addr >> PAGE_SHIFT;
  1446. if (level == PT_PAGE_TABLE_LEVEL
  1447. || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
  1448. mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
  1449. 0, walk->write, 1, &walk->pt_write,
  1450. walk->largepage, gfn, walk->pfn, false);
  1451. ++vcpu->stat.pf_fixed;
  1452. return 1;
  1453. }
  1454. if (*sptep == shadow_trap_nonpresent_pte) {
  1455. pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1456. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
  1457. 1, ACC_ALL, sptep);
  1458. if (!sp) {
  1459. pgprintk("nonpaging_map: ENOMEM\n");
  1460. kvm_release_pfn_clean(walk->pfn);
  1461. return -ENOMEM;
  1462. }
  1463. set_shadow_pte(sptep,
  1464. __pa(sp->spt)
  1465. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1466. | shadow_user_mask | shadow_x_mask);
  1467. }
  1468. return 0;
  1469. }
  1470. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1471. int largepage, gfn_t gfn, pfn_t pfn)
  1472. {
  1473. int r;
  1474. struct direct_shadow_walk walker = {
  1475. .walker = { .entry = direct_map_entry, },
  1476. .pfn = pfn,
  1477. .largepage = largepage,
  1478. .write = write,
  1479. .pt_write = 0,
  1480. };
  1481. r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
  1482. if (r < 0)
  1483. return r;
  1484. return walker.pt_write;
  1485. }
  1486. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1487. {
  1488. int r;
  1489. int largepage = 0;
  1490. pfn_t pfn;
  1491. unsigned long mmu_seq;
  1492. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1493. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1494. largepage = 1;
  1495. }
  1496. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1497. smp_rmb();
  1498. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1499. /* mmio */
  1500. if (is_error_pfn(pfn)) {
  1501. kvm_release_pfn_clean(pfn);
  1502. return 1;
  1503. }
  1504. spin_lock(&vcpu->kvm->mmu_lock);
  1505. if (mmu_notifier_retry(vcpu, mmu_seq))
  1506. goto out_unlock;
  1507. kvm_mmu_free_some_pages(vcpu);
  1508. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1509. spin_unlock(&vcpu->kvm->mmu_lock);
  1510. return r;
  1511. out_unlock:
  1512. spin_unlock(&vcpu->kvm->mmu_lock);
  1513. kvm_release_pfn_clean(pfn);
  1514. return 0;
  1515. }
  1516. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1517. {
  1518. int i;
  1519. struct kvm_mmu_page *sp;
  1520. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1521. return;
  1522. spin_lock(&vcpu->kvm->mmu_lock);
  1523. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1524. hpa_t root = vcpu->arch.mmu.root_hpa;
  1525. sp = page_header(root);
  1526. --sp->root_count;
  1527. if (!sp->root_count && sp->role.invalid)
  1528. kvm_mmu_zap_page(vcpu->kvm, sp);
  1529. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1530. spin_unlock(&vcpu->kvm->mmu_lock);
  1531. return;
  1532. }
  1533. for (i = 0; i < 4; ++i) {
  1534. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1535. if (root) {
  1536. root &= PT64_BASE_ADDR_MASK;
  1537. sp = page_header(root);
  1538. --sp->root_count;
  1539. if (!sp->root_count && sp->role.invalid)
  1540. kvm_mmu_zap_page(vcpu->kvm, sp);
  1541. }
  1542. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1543. }
  1544. spin_unlock(&vcpu->kvm->mmu_lock);
  1545. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1546. }
  1547. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1548. {
  1549. int i;
  1550. gfn_t root_gfn;
  1551. struct kvm_mmu_page *sp;
  1552. int metaphysical = 0;
  1553. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1554. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1555. hpa_t root = vcpu->arch.mmu.root_hpa;
  1556. ASSERT(!VALID_PAGE(root));
  1557. if (tdp_enabled)
  1558. metaphysical = 1;
  1559. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1560. PT64_ROOT_LEVEL, metaphysical,
  1561. ACC_ALL, NULL);
  1562. root = __pa(sp->spt);
  1563. ++sp->root_count;
  1564. vcpu->arch.mmu.root_hpa = root;
  1565. return;
  1566. }
  1567. metaphysical = !is_paging(vcpu);
  1568. if (tdp_enabled)
  1569. metaphysical = 1;
  1570. for (i = 0; i < 4; ++i) {
  1571. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1572. ASSERT(!VALID_PAGE(root));
  1573. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1574. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1575. vcpu->arch.mmu.pae_root[i] = 0;
  1576. continue;
  1577. }
  1578. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1579. } else if (vcpu->arch.mmu.root_level == 0)
  1580. root_gfn = 0;
  1581. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1582. PT32_ROOT_LEVEL, metaphysical,
  1583. ACC_ALL, NULL);
  1584. root = __pa(sp->spt);
  1585. ++sp->root_count;
  1586. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1587. }
  1588. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1589. }
  1590. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1591. {
  1592. int i;
  1593. struct kvm_mmu_page *sp;
  1594. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1595. return;
  1596. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1597. hpa_t root = vcpu->arch.mmu.root_hpa;
  1598. sp = page_header(root);
  1599. mmu_sync_children(vcpu, sp);
  1600. return;
  1601. }
  1602. for (i = 0; i < 4; ++i) {
  1603. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1604. if (root) {
  1605. root &= PT64_BASE_ADDR_MASK;
  1606. sp = page_header(root);
  1607. mmu_sync_children(vcpu, sp);
  1608. }
  1609. }
  1610. }
  1611. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1612. {
  1613. spin_lock(&vcpu->kvm->mmu_lock);
  1614. mmu_sync_roots(vcpu);
  1615. spin_unlock(&vcpu->kvm->mmu_lock);
  1616. }
  1617. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1618. {
  1619. return vaddr;
  1620. }
  1621. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1622. u32 error_code)
  1623. {
  1624. gfn_t gfn;
  1625. int r;
  1626. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1627. r = mmu_topup_memory_caches(vcpu);
  1628. if (r)
  1629. return r;
  1630. ASSERT(vcpu);
  1631. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1632. gfn = gva >> PAGE_SHIFT;
  1633. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1634. error_code & PFERR_WRITE_MASK, gfn);
  1635. }
  1636. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1637. u32 error_code)
  1638. {
  1639. pfn_t pfn;
  1640. int r;
  1641. int largepage = 0;
  1642. gfn_t gfn = gpa >> PAGE_SHIFT;
  1643. unsigned long mmu_seq;
  1644. ASSERT(vcpu);
  1645. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1646. r = mmu_topup_memory_caches(vcpu);
  1647. if (r)
  1648. return r;
  1649. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1650. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1651. largepage = 1;
  1652. }
  1653. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1654. smp_rmb();
  1655. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1656. if (is_error_pfn(pfn)) {
  1657. kvm_release_pfn_clean(pfn);
  1658. return 1;
  1659. }
  1660. spin_lock(&vcpu->kvm->mmu_lock);
  1661. if (mmu_notifier_retry(vcpu, mmu_seq))
  1662. goto out_unlock;
  1663. kvm_mmu_free_some_pages(vcpu);
  1664. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1665. largepage, gfn, pfn);
  1666. spin_unlock(&vcpu->kvm->mmu_lock);
  1667. return r;
  1668. out_unlock:
  1669. spin_unlock(&vcpu->kvm->mmu_lock);
  1670. kvm_release_pfn_clean(pfn);
  1671. return 0;
  1672. }
  1673. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1674. {
  1675. mmu_free_roots(vcpu);
  1676. }
  1677. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1678. {
  1679. struct kvm_mmu *context = &vcpu->arch.mmu;
  1680. context->new_cr3 = nonpaging_new_cr3;
  1681. context->page_fault = nonpaging_page_fault;
  1682. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1683. context->free = nonpaging_free;
  1684. context->prefetch_page = nonpaging_prefetch_page;
  1685. context->sync_page = nonpaging_sync_page;
  1686. context->invlpg = nonpaging_invlpg;
  1687. context->root_level = 0;
  1688. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1689. context->root_hpa = INVALID_PAGE;
  1690. return 0;
  1691. }
  1692. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1693. {
  1694. ++vcpu->stat.tlb_flush;
  1695. kvm_x86_ops->tlb_flush(vcpu);
  1696. }
  1697. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1698. {
  1699. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1700. mmu_free_roots(vcpu);
  1701. }
  1702. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1703. u64 addr,
  1704. u32 err_code)
  1705. {
  1706. kvm_inject_page_fault(vcpu, addr, err_code);
  1707. }
  1708. static void paging_free(struct kvm_vcpu *vcpu)
  1709. {
  1710. nonpaging_free(vcpu);
  1711. }
  1712. #define PTTYPE 64
  1713. #include "paging_tmpl.h"
  1714. #undef PTTYPE
  1715. #define PTTYPE 32
  1716. #include "paging_tmpl.h"
  1717. #undef PTTYPE
  1718. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1719. {
  1720. struct kvm_mmu *context = &vcpu->arch.mmu;
  1721. ASSERT(is_pae(vcpu));
  1722. context->new_cr3 = paging_new_cr3;
  1723. context->page_fault = paging64_page_fault;
  1724. context->gva_to_gpa = paging64_gva_to_gpa;
  1725. context->prefetch_page = paging64_prefetch_page;
  1726. context->sync_page = paging64_sync_page;
  1727. context->invlpg = paging64_invlpg;
  1728. context->free = paging_free;
  1729. context->root_level = level;
  1730. context->shadow_root_level = level;
  1731. context->root_hpa = INVALID_PAGE;
  1732. return 0;
  1733. }
  1734. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1735. {
  1736. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1737. }
  1738. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1739. {
  1740. struct kvm_mmu *context = &vcpu->arch.mmu;
  1741. context->new_cr3 = paging_new_cr3;
  1742. context->page_fault = paging32_page_fault;
  1743. context->gva_to_gpa = paging32_gva_to_gpa;
  1744. context->free = paging_free;
  1745. context->prefetch_page = paging32_prefetch_page;
  1746. context->sync_page = paging32_sync_page;
  1747. context->invlpg = paging32_invlpg;
  1748. context->root_level = PT32_ROOT_LEVEL;
  1749. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1750. context->root_hpa = INVALID_PAGE;
  1751. return 0;
  1752. }
  1753. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1754. {
  1755. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1756. }
  1757. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1758. {
  1759. struct kvm_mmu *context = &vcpu->arch.mmu;
  1760. context->new_cr3 = nonpaging_new_cr3;
  1761. context->page_fault = tdp_page_fault;
  1762. context->free = nonpaging_free;
  1763. context->prefetch_page = nonpaging_prefetch_page;
  1764. context->sync_page = nonpaging_sync_page;
  1765. context->invlpg = nonpaging_invlpg;
  1766. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1767. context->root_hpa = INVALID_PAGE;
  1768. if (!is_paging(vcpu)) {
  1769. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1770. context->root_level = 0;
  1771. } else if (is_long_mode(vcpu)) {
  1772. context->gva_to_gpa = paging64_gva_to_gpa;
  1773. context->root_level = PT64_ROOT_LEVEL;
  1774. } else if (is_pae(vcpu)) {
  1775. context->gva_to_gpa = paging64_gva_to_gpa;
  1776. context->root_level = PT32E_ROOT_LEVEL;
  1777. } else {
  1778. context->gva_to_gpa = paging32_gva_to_gpa;
  1779. context->root_level = PT32_ROOT_LEVEL;
  1780. }
  1781. return 0;
  1782. }
  1783. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1784. {
  1785. ASSERT(vcpu);
  1786. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1787. if (!is_paging(vcpu))
  1788. return nonpaging_init_context(vcpu);
  1789. else if (is_long_mode(vcpu))
  1790. return paging64_init_context(vcpu);
  1791. else if (is_pae(vcpu))
  1792. return paging32E_init_context(vcpu);
  1793. else
  1794. return paging32_init_context(vcpu);
  1795. }
  1796. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1797. {
  1798. vcpu->arch.update_pte.pfn = bad_pfn;
  1799. if (tdp_enabled)
  1800. return init_kvm_tdp_mmu(vcpu);
  1801. else
  1802. return init_kvm_softmmu(vcpu);
  1803. }
  1804. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1805. {
  1806. ASSERT(vcpu);
  1807. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1808. vcpu->arch.mmu.free(vcpu);
  1809. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1810. }
  1811. }
  1812. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1813. {
  1814. destroy_kvm_mmu(vcpu);
  1815. return init_kvm_mmu(vcpu);
  1816. }
  1817. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1818. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1819. {
  1820. int r;
  1821. r = mmu_topup_memory_caches(vcpu);
  1822. if (r)
  1823. goto out;
  1824. spin_lock(&vcpu->kvm->mmu_lock);
  1825. kvm_mmu_free_some_pages(vcpu);
  1826. mmu_alloc_roots(vcpu);
  1827. mmu_sync_roots(vcpu);
  1828. spin_unlock(&vcpu->kvm->mmu_lock);
  1829. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1830. kvm_mmu_flush_tlb(vcpu);
  1831. out:
  1832. return r;
  1833. }
  1834. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1835. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1836. {
  1837. mmu_free_roots(vcpu);
  1838. }
  1839. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1840. struct kvm_mmu_page *sp,
  1841. u64 *spte)
  1842. {
  1843. u64 pte;
  1844. struct kvm_mmu_page *child;
  1845. pte = *spte;
  1846. if (is_shadow_present_pte(pte)) {
  1847. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1848. is_large_pte(pte))
  1849. rmap_remove(vcpu->kvm, spte);
  1850. else {
  1851. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1852. mmu_page_remove_parent_pte(child, spte);
  1853. }
  1854. }
  1855. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1856. if (is_large_pte(pte))
  1857. --vcpu->kvm->stat.lpages;
  1858. }
  1859. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1860. struct kvm_mmu_page *sp,
  1861. u64 *spte,
  1862. const void *new)
  1863. {
  1864. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1865. if (!vcpu->arch.update_pte.largepage ||
  1866. sp->role.glevels == PT32_ROOT_LEVEL) {
  1867. ++vcpu->kvm->stat.mmu_pde_zapped;
  1868. return;
  1869. }
  1870. }
  1871. ++vcpu->kvm->stat.mmu_pte_updated;
  1872. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1873. paging32_update_pte(vcpu, sp, spte, new);
  1874. else
  1875. paging64_update_pte(vcpu, sp, spte, new);
  1876. }
  1877. static bool need_remote_flush(u64 old, u64 new)
  1878. {
  1879. if (!is_shadow_present_pte(old))
  1880. return false;
  1881. if (!is_shadow_present_pte(new))
  1882. return true;
  1883. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1884. return true;
  1885. old ^= PT64_NX_MASK;
  1886. new ^= PT64_NX_MASK;
  1887. return (old & ~new & PT64_PERM_MASK) != 0;
  1888. }
  1889. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1890. {
  1891. if (need_remote_flush(old, new))
  1892. kvm_flush_remote_tlbs(vcpu->kvm);
  1893. else
  1894. kvm_mmu_flush_tlb(vcpu);
  1895. }
  1896. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1897. {
  1898. u64 *spte = vcpu->arch.last_pte_updated;
  1899. return !!(spte && (*spte & shadow_accessed_mask));
  1900. }
  1901. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1902. const u8 *new, int bytes)
  1903. {
  1904. gfn_t gfn;
  1905. int r;
  1906. u64 gpte = 0;
  1907. pfn_t pfn;
  1908. vcpu->arch.update_pte.largepage = 0;
  1909. if (bytes != 4 && bytes != 8)
  1910. return;
  1911. /*
  1912. * Assume that the pte write on a page table of the same type
  1913. * as the current vcpu paging mode. This is nearly always true
  1914. * (might be false while changing modes). Note it is verified later
  1915. * by update_pte().
  1916. */
  1917. if (is_pae(vcpu)) {
  1918. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1919. if ((bytes == 4) && (gpa % 4 == 0)) {
  1920. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1921. if (r)
  1922. return;
  1923. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1924. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1925. memcpy((void *)&gpte, new, 8);
  1926. }
  1927. } else {
  1928. if ((bytes == 4) && (gpa % 4 == 0))
  1929. memcpy((void *)&gpte, new, 4);
  1930. }
  1931. if (!is_present_pte(gpte))
  1932. return;
  1933. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1934. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1935. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1936. vcpu->arch.update_pte.largepage = 1;
  1937. }
  1938. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1939. smp_rmb();
  1940. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1941. if (is_error_pfn(pfn)) {
  1942. kvm_release_pfn_clean(pfn);
  1943. return;
  1944. }
  1945. vcpu->arch.update_pte.gfn = gfn;
  1946. vcpu->arch.update_pte.pfn = pfn;
  1947. }
  1948. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  1949. {
  1950. u64 *spte = vcpu->arch.last_pte_updated;
  1951. if (spte
  1952. && vcpu->arch.last_pte_gfn == gfn
  1953. && shadow_accessed_mask
  1954. && !(*spte & shadow_accessed_mask)
  1955. && is_shadow_present_pte(*spte))
  1956. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  1957. }
  1958. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1959. const u8 *new, int bytes)
  1960. {
  1961. gfn_t gfn = gpa >> PAGE_SHIFT;
  1962. struct kvm_mmu_page *sp;
  1963. struct hlist_node *node, *n;
  1964. struct hlist_head *bucket;
  1965. unsigned index;
  1966. u64 entry, gentry;
  1967. u64 *spte;
  1968. unsigned offset = offset_in_page(gpa);
  1969. unsigned pte_size;
  1970. unsigned page_offset;
  1971. unsigned misaligned;
  1972. unsigned quadrant;
  1973. int level;
  1974. int flooded = 0;
  1975. int npte;
  1976. int r;
  1977. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1978. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1979. spin_lock(&vcpu->kvm->mmu_lock);
  1980. kvm_mmu_access_page(vcpu, gfn);
  1981. kvm_mmu_free_some_pages(vcpu);
  1982. ++vcpu->kvm->stat.mmu_pte_write;
  1983. kvm_mmu_audit(vcpu, "pre pte write");
  1984. if (gfn == vcpu->arch.last_pt_write_gfn
  1985. && !last_updated_pte_accessed(vcpu)) {
  1986. ++vcpu->arch.last_pt_write_count;
  1987. if (vcpu->arch.last_pt_write_count >= 3)
  1988. flooded = 1;
  1989. } else {
  1990. vcpu->arch.last_pt_write_gfn = gfn;
  1991. vcpu->arch.last_pt_write_count = 1;
  1992. vcpu->arch.last_pte_updated = NULL;
  1993. }
  1994. index = kvm_page_table_hashfn(gfn);
  1995. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1996. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1997. if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
  1998. continue;
  1999. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2000. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2001. misaligned |= bytes < 4;
  2002. if (misaligned || flooded) {
  2003. /*
  2004. * Misaligned accesses are too much trouble to fix
  2005. * up; also, they usually indicate a page is not used
  2006. * as a page table.
  2007. *
  2008. * If we're seeing too many writes to a page,
  2009. * it may no longer be a page table, or we may be
  2010. * forking, in which case it is better to unmap the
  2011. * page.
  2012. */
  2013. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2014. gpa, bytes, sp->role.word);
  2015. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2016. n = bucket->first;
  2017. ++vcpu->kvm->stat.mmu_flooded;
  2018. continue;
  2019. }
  2020. page_offset = offset;
  2021. level = sp->role.level;
  2022. npte = 1;
  2023. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2024. page_offset <<= 1; /* 32->64 */
  2025. /*
  2026. * A 32-bit pde maps 4MB while the shadow pdes map
  2027. * only 2MB. So we need to double the offset again
  2028. * and zap two pdes instead of one.
  2029. */
  2030. if (level == PT32_ROOT_LEVEL) {
  2031. page_offset &= ~7; /* kill rounding error */
  2032. page_offset <<= 1;
  2033. npte = 2;
  2034. }
  2035. quadrant = page_offset >> PAGE_SHIFT;
  2036. page_offset &= ~PAGE_MASK;
  2037. if (quadrant != sp->role.quadrant)
  2038. continue;
  2039. }
  2040. spte = &sp->spt[page_offset / sizeof(*spte)];
  2041. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2042. gentry = 0;
  2043. r = kvm_read_guest_atomic(vcpu->kvm,
  2044. gpa & ~(u64)(pte_size - 1),
  2045. &gentry, pte_size);
  2046. new = (const void *)&gentry;
  2047. if (r < 0)
  2048. new = NULL;
  2049. }
  2050. while (npte--) {
  2051. entry = *spte;
  2052. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2053. if (new)
  2054. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2055. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2056. ++spte;
  2057. }
  2058. }
  2059. kvm_mmu_audit(vcpu, "post pte write");
  2060. spin_unlock(&vcpu->kvm->mmu_lock);
  2061. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2062. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2063. vcpu->arch.update_pte.pfn = bad_pfn;
  2064. }
  2065. }
  2066. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2067. {
  2068. gpa_t gpa;
  2069. int r;
  2070. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2071. spin_lock(&vcpu->kvm->mmu_lock);
  2072. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2073. spin_unlock(&vcpu->kvm->mmu_lock);
  2074. return r;
  2075. }
  2076. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2077. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2078. {
  2079. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2080. struct kvm_mmu_page *sp;
  2081. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2082. struct kvm_mmu_page, link);
  2083. kvm_mmu_zap_page(vcpu->kvm, sp);
  2084. ++vcpu->kvm->stat.mmu_recycled;
  2085. }
  2086. }
  2087. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2088. {
  2089. int r;
  2090. enum emulation_result er;
  2091. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2092. if (r < 0)
  2093. goto out;
  2094. if (!r) {
  2095. r = 1;
  2096. goto out;
  2097. }
  2098. r = mmu_topup_memory_caches(vcpu);
  2099. if (r)
  2100. goto out;
  2101. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2102. switch (er) {
  2103. case EMULATE_DONE:
  2104. return 1;
  2105. case EMULATE_DO_MMIO:
  2106. ++vcpu->stat.mmio_exits;
  2107. return 0;
  2108. case EMULATE_FAIL:
  2109. kvm_report_emulation_failure(vcpu, "pagetable");
  2110. return 1;
  2111. default:
  2112. BUG();
  2113. }
  2114. out:
  2115. return r;
  2116. }
  2117. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2118. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2119. {
  2120. spin_lock(&vcpu->kvm->mmu_lock);
  2121. vcpu->arch.mmu.invlpg(vcpu, gva);
  2122. spin_unlock(&vcpu->kvm->mmu_lock);
  2123. kvm_mmu_flush_tlb(vcpu);
  2124. ++vcpu->stat.invlpg;
  2125. }
  2126. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2127. void kvm_enable_tdp(void)
  2128. {
  2129. tdp_enabled = true;
  2130. }
  2131. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2132. void kvm_disable_tdp(void)
  2133. {
  2134. tdp_enabled = false;
  2135. }
  2136. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2137. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2138. {
  2139. struct kvm_mmu_page *sp;
  2140. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2141. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  2142. struct kvm_mmu_page, link);
  2143. kvm_mmu_zap_page(vcpu->kvm, sp);
  2144. cond_resched();
  2145. }
  2146. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2147. }
  2148. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2149. {
  2150. struct page *page;
  2151. int i;
  2152. ASSERT(vcpu);
  2153. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2154. vcpu->kvm->arch.n_free_mmu_pages =
  2155. vcpu->kvm->arch.n_requested_mmu_pages;
  2156. else
  2157. vcpu->kvm->arch.n_free_mmu_pages =
  2158. vcpu->kvm->arch.n_alloc_mmu_pages;
  2159. /*
  2160. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2161. * Therefore we need to allocate shadow page tables in the first
  2162. * 4GB of memory, which happens to fit the DMA32 zone.
  2163. */
  2164. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2165. if (!page)
  2166. goto error_1;
  2167. vcpu->arch.mmu.pae_root = page_address(page);
  2168. for (i = 0; i < 4; ++i)
  2169. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2170. return 0;
  2171. error_1:
  2172. free_mmu_pages(vcpu);
  2173. return -ENOMEM;
  2174. }
  2175. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2176. {
  2177. ASSERT(vcpu);
  2178. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2179. return alloc_mmu_pages(vcpu);
  2180. }
  2181. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2182. {
  2183. ASSERT(vcpu);
  2184. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2185. return init_kvm_mmu(vcpu);
  2186. }
  2187. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2188. {
  2189. ASSERT(vcpu);
  2190. destroy_kvm_mmu(vcpu);
  2191. free_mmu_pages(vcpu);
  2192. mmu_free_memory_caches(vcpu);
  2193. }
  2194. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2195. {
  2196. struct kvm_mmu_page *sp;
  2197. spin_lock(&kvm->mmu_lock);
  2198. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2199. int i;
  2200. u64 *pt;
  2201. if (!test_bit(slot, sp->slot_bitmap))
  2202. continue;
  2203. pt = sp->spt;
  2204. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2205. /* avoid RMW */
  2206. if (pt[i] & PT_WRITABLE_MASK)
  2207. pt[i] &= ~PT_WRITABLE_MASK;
  2208. }
  2209. kvm_flush_remote_tlbs(kvm);
  2210. spin_unlock(&kvm->mmu_lock);
  2211. }
  2212. void kvm_mmu_zap_all(struct kvm *kvm)
  2213. {
  2214. struct kvm_mmu_page *sp, *node;
  2215. spin_lock(&kvm->mmu_lock);
  2216. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2217. if (kvm_mmu_zap_page(kvm, sp))
  2218. node = container_of(kvm->arch.active_mmu_pages.next,
  2219. struct kvm_mmu_page, link);
  2220. spin_unlock(&kvm->mmu_lock);
  2221. kvm_flush_remote_tlbs(kvm);
  2222. }
  2223. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2224. {
  2225. struct kvm_mmu_page *page;
  2226. page = container_of(kvm->arch.active_mmu_pages.prev,
  2227. struct kvm_mmu_page, link);
  2228. kvm_mmu_zap_page(kvm, page);
  2229. }
  2230. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2231. {
  2232. struct kvm *kvm;
  2233. struct kvm *kvm_freed = NULL;
  2234. int cache_count = 0;
  2235. spin_lock(&kvm_lock);
  2236. list_for_each_entry(kvm, &vm_list, vm_list) {
  2237. int npages;
  2238. if (!down_read_trylock(&kvm->slots_lock))
  2239. continue;
  2240. spin_lock(&kvm->mmu_lock);
  2241. npages = kvm->arch.n_alloc_mmu_pages -
  2242. kvm->arch.n_free_mmu_pages;
  2243. cache_count += npages;
  2244. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2245. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2246. cache_count--;
  2247. kvm_freed = kvm;
  2248. }
  2249. nr_to_scan--;
  2250. spin_unlock(&kvm->mmu_lock);
  2251. up_read(&kvm->slots_lock);
  2252. }
  2253. if (kvm_freed)
  2254. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2255. spin_unlock(&kvm_lock);
  2256. return cache_count;
  2257. }
  2258. static struct shrinker mmu_shrinker = {
  2259. .shrink = mmu_shrink,
  2260. .seeks = DEFAULT_SEEKS * 10,
  2261. };
  2262. static void mmu_destroy_caches(void)
  2263. {
  2264. if (pte_chain_cache)
  2265. kmem_cache_destroy(pte_chain_cache);
  2266. if (rmap_desc_cache)
  2267. kmem_cache_destroy(rmap_desc_cache);
  2268. if (mmu_page_header_cache)
  2269. kmem_cache_destroy(mmu_page_header_cache);
  2270. }
  2271. void kvm_mmu_module_exit(void)
  2272. {
  2273. mmu_destroy_caches();
  2274. unregister_shrinker(&mmu_shrinker);
  2275. }
  2276. int kvm_mmu_module_init(void)
  2277. {
  2278. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2279. sizeof(struct kvm_pte_chain),
  2280. 0, 0, NULL);
  2281. if (!pte_chain_cache)
  2282. goto nomem;
  2283. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2284. sizeof(struct kvm_rmap_desc),
  2285. 0, 0, NULL);
  2286. if (!rmap_desc_cache)
  2287. goto nomem;
  2288. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2289. sizeof(struct kvm_mmu_page),
  2290. 0, 0, NULL);
  2291. if (!mmu_page_header_cache)
  2292. goto nomem;
  2293. register_shrinker(&mmu_shrinker);
  2294. return 0;
  2295. nomem:
  2296. mmu_destroy_caches();
  2297. return -ENOMEM;
  2298. }
  2299. /*
  2300. * Caculate mmu pages needed for kvm.
  2301. */
  2302. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2303. {
  2304. int i;
  2305. unsigned int nr_mmu_pages;
  2306. unsigned int nr_pages = 0;
  2307. for (i = 0; i < kvm->nmemslots; i++)
  2308. nr_pages += kvm->memslots[i].npages;
  2309. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2310. nr_mmu_pages = max(nr_mmu_pages,
  2311. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2312. return nr_mmu_pages;
  2313. }
  2314. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2315. unsigned len)
  2316. {
  2317. if (len > buffer->len)
  2318. return NULL;
  2319. return buffer->ptr;
  2320. }
  2321. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2322. unsigned len)
  2323. {
  2324. void *ret;
  2325. ret = pv_mmu_peek_buffer(buffer, len);
  2326. if (!ret)
  2327. return ret;
  2328. buffer->ptr += len;
  2329. buffer->len -= len;
  2330. buffer->processed += len;
  2331. return ret;
  2332. }
  2333. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2334. gpa_t addr, gpa_t value)
  2335. {
  2336. int bytes = 8;
  2337. int r;
  2338. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2339. bytes = 4;
  2340. r = mmu_topup_memory_caches(vcpu);
  2341. if (r)
  2342. return r;
  2343. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2344. return -EFAULT;
  2345. return 1;
  2346. }
  2347. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2348. {
  2349. kvm_x86_ops->tlb_flush(vcpu);
  2350. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  2351. return 1;
  2352. }
  2353. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2354. {
  2355. spin_lock(&vcpu->kvm->mmu_lock);
  2356. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2357. spin_unlock(&vcpu->kvm->mmu_lock);
  2358. return 1;
  2359. }
  2360. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2361. struct kvm_pv_mmu_op_buffer *buffer)
  2362. {
  2363. struct kvm_mmu_op_header *header;
  2364. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2365. if (!header)
  2366. return 0;
  2367. switch (header->op) {
  2368. case KVM_MMU_OP_WRITE_PTE: {
  2369. struct kvm_mmu_op_write_pte *wpte;
  2370. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2371. if (!wpte)
  2372. return 0;
  2373. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2374. wpte->pte_val);
  2375. }
  2376. case KVM_MMU_OP_FLUSH_TLB: {
  2377. struct kvm_mmu_op_flush_tlb *ftlb;
  2378. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2379. if (!ftlb)
  2380. return 0;
  2381. return kvm_pv_mmu_flush_tlb(vcpu);
  2382. }
  2383. case KVM_MMU_OP_RELEASE_PT: {
  2384. struct kvm_mmu_op_release_pt *rpt;
  2385. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2386. if (!rpt)
  2387. return 0;
  2388. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2389. }
  2390. default: return 0;
  2391. }
  2392. }
  2393. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2394. gpa_t addr, unsigned long *ret)
  2395. {
  2396. int r;
  2397. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2398. buffer->ptr = buffer->buf;
  2399. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2400. buffer->processed = 0;
  2401. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2402. if (r)
  2403. goto out;
  2404. while (buffer->len) {
  2405. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2406. if (r < 0)
  2407. goto out;
  2408. if (r == 0)
  2409. break;
  2410. }
  2411. r = 1;
  2412. out:
  2413. *ret = buffer->processed;
  2414. return r;
  2415. }
  2416. #ifdef AUDIT
  2417. static const char *audit_msg;
  2418. static gva_t canonicalize(gva_t gva)
  2419. {
  2420. #ifdef CONFIG_X86_64
  2421. gva = (long long)(gva << 16) >> 16;
  2422. #endif
  2423. return gva;
  2424. }
  2425. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2426. gva_t va, int level)
  2427. {
  2428. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2429. int i;
  2430. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2431. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2432. u64 ent = pt[i];
  2433. if (ent == shadow_trap_nonpresent_pte)
  2434. continue;
  2435. va = canonicalize(va);
  2436. if (level > 1) {
  2437. if (ent == shadow_notrap_nonpresent_pte)
  2438. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2439. " in nonleaf level: levels %d gva %lx"
  2440. " level %d pte %llx\n", audit_msg,
  2441. vcpu->arch.mmu.root_level, va, level, ent);
  2442. audit_mappings_page(vcpu, ent, va, level - 1);
  2443. } else {
  2444. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2445. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2446. if (is_shadow_present_pte(ent)
  2447. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2448. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2449. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2450. audit_msg, vcpu->arch.mmu.root_level,
  2451. va, gpa, hpa, ent,
  2452. is_shadow_present_pte(ent));
  2453. else if (ent == shadow_notrap_nonpresent_pte
  2454. && !is_error_hpa(hpa))
  2455. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2456. " valid guest gva %lx\n", audit_msg, va);
  2457. kvm_release_pfn_clean(pfn);
  2458. }
  2459. }
  2460. }
  2461. static void audit_mappings(struct kvm_vcpu *vcpu)
  2462. {
  2463. unsigned i;
  2464. if (vcpu->arch.mmu.root_level == 4)
  2465. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2466. else
  2467. for (i = 0; i < 4; ++i)
  2468. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2469. audit_mappings_page(vcpu,
  2470. vcpu->arch.mmu.pae_root[i],
  2471. i << 30,
  2472. 2);
  2473. }
  2474. static int count_rmaps(struct kvm_vcpu *vcpu)
  2475. {
  2476. int nmaps = 0;
  2477. int i, j, k;
  2478. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2479. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2480. struct kvm_rmap_desc *d;
  2481. for (j = 0; j < m->npages; ++j) {
  2482. unsigned long *rmapp = &m->rmap[j];
  2483. if (!*rmapp)
  2484. continue;
  2485. if (!(*rmapp & 1)) {
  2486. ++nmaps;
  2487. continue;
  2488. }
  2489. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2490. while (d) {
  2491. for (k = 0; k < RMAP_EXT; ++k)
  2492. if (d->shadow_ptes[k])
  2493. ++nmaps;
  2494. else
  2495. break;
  2496. d = d->more;
  2497. }
  2498. }
  2499. }
  2500. return nmaps;
  2501. }
  2502. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2503. {
  2504. int nmaps = 0;
  2505. struct kvm_mmu_page *sp;
  2506. int i;
  2507. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2508. u64 *pt = sp->spt;
  2509. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2510. continue;
  2511. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2512. u64 ent = pt[i];
  2513. if (!(ent & PT_PRESENT_MASK))
  2514. continue;
  2515. if (!(ent & PT_WRITABLE_MASK))
  2516. continue;
  2517. ++nmaps;
  2518. }
  2519. }
  2520. return nmaps;
  2521. }
  2522. static void audit_rmap(struct kvm_vcpu *vcpu)
  2523. {
  2524. int n_rmap = count_rmaps(vcpu);
  2525. int n_actual = count_writable_mappings(vcpu);
  2526. if (n_rmap != n_actual)
  2527. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2528. __func__, audit_msg, n_rmap, n_actual);
  2529. }
  2530. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2531. {
  2532. struct kvm_mmu_page *sp;
  2533. struct kvm_memory_slot *slot;
  2534. unsigned long *rmapp;
  2535. gfn_t gfn;
  2536. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2537. if (sp->role.metaphysical)
  2538. continue;
  2539. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2540. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2541. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2542. if (*rmapp)
  2543. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2544. " mappings: gfn %lx role %x\n",
  2545. __func__, audit_msg, sp->gfn,
  2546. sp->role.word);
  2547. }
  2548. }
  2549. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2550. {
  2551. int olddbg = dbg;
  2552. dbg = 0;
  2553. audit_msg = msg;
  2554. audit_rmap(vcpu);
  2555. audit_write_protection(vcpu);
  2556. audit_mappings(vcpu);
  2557. dbg = olddbg;
  2558. }
  2559. #endif