i915_gem.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. #include <linux/dma-buf.h>
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable,
  43. bool nonblocking);
  44. static int i915_gem_phys_pwrite(struct drm_device *dev,
  45. struct drm_i915_gem_object *obj,
  46. struct drm_i915_gem_pwrite *args,
  47. struct drm_file *file);
  48. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  49. struct drm_i915_gem_object *obj);
  50. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  51. struct drm_i915_fence_reg *fence,
  52. bool enable);
  53. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  54. struct shrink_control *sc);
  55. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  56. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  57. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  58. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  59. {
  60. if (obj->tiling_mode)
  61. i915_gem_release_mmap(obj);
  62. /* As we do not have an associated fence register, we will force
  63. * a tiling change if we ever need to acquire one.
  64. */
  65. obj->fence_dirty = false;
  66. obj->fence_reg = I915_FENCE_REG_NONE;
  67. }
  68. /* some bookkeeping */
  69. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  70. size_t size)
  71. {
  72. dev_priv->mm.object_count++;
  73. dev_priv->mm.object_memory += size;
  74. }
  75. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  76. size_t size)
  77. {
  78. dev_priv->mm.object_count--;
  79. dev_priv->mm.object_memory -= size;
  80. }
  81. static int
  82. i915_gem_wait_for_error(struct drm_device *dev)
  83. {
  84. struct drm_i915_private *dev_priv = dev->dev_private;
  85. struct completion *x = &dev_priv->error_completion;
  86. unsigned long flags;
  87. int ret;
  88. if (!atomic_read(&dev_priv->mm.wedged))
  89. return 0;
  90. /*
  91. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  92. * userspace. If it takes that long something really bad is going on and
  93. * we should simply try to bail out and fail as gracefully as possible.
  94. */
  95. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  96. if (ret == 0) {
  97. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  98. return -EIO;
  99. } else if (ret < 0) {
  100. return ret;
  101. }
  102. if (atomic_read(&dev_priv->mm.wedged)) {
  103. /* GPU is hung, bump the completion count to account for
  104. * the token we just consumed so that we never hit zero and
  105. * end up waiting upon a subsequent completion event that
  106. * will never happen.
  107. */
  108. spin_lock_irqsave(&x->wait.lock, flags);
  109. x->done++;
  110. spin_unlock_irqrestore(&x->wait.lock, flags);
  111. }
  112. return 0;
  113. }
  114. int i915_mutex_lock_interruptible(struct drm_device *dev)
  115. {
  116. int ret;
  117. ret = i915_gem_wait_for_error(dev);
  118. if (ret)
  119. return ret;
  120. ret = mutex_lock_interruptible(&dev->struct_mutex);
  121. if (ret)
  122. return ret;
  123. WARN_ON(i915_verify_lists(dev));
  124. return 0;
  125. }
  126. static inline bool
  127. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  128. {
  129. return obj->gtt_space && !obj->active;
  130. }
  131. int
  132. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  133. struct drm_file *file)
  134. {
  135. struct drm_i915_gem_init *args = data;
  136. if (drm_core_check_feature(dev, DRIVER_MODESET))
  137. return -ENODEV;
  138. if (args->gtt_start >= args->gtt_end ||
  139. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  140. return -EINVAL;
  141. /* GEM with user mode setting was never supported on ilk and later. */
  142. if (INTEL_INFO(dev)->gen >= 5)
  143. return -ENODEV;
  144. mutex_lock(&dev->struct_mutex);
  145. i915_gem_init_global_gtt(dev, args->gtt_start,
  146. args->gtt_end, args->gtt_end);
  147. mutex_unlock(&dev->struct_mutex);
  148. return 0;
  149. }
  150. int
  151. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  152. struct drm_file *file)
  153. {
  154. struct drm_i915_private *dev_priv = dev->dev_private;
  155. struct drm_i915_gem_get_aperture *args = data;
  156. struct drm_i915_gem_object *obj;
  157. size_t pinned;
  158. pinned = 0;
  159. mutex_lock(&dev->struct_mutex);
  160. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  161. if (obj->pin_count)
  162. pinned += obj->gtt_space->size;
  163. mutex_unlock(&dev->struct_mutex);
  164. args->aper_size = dev_priv->mm.gtt_total;
  165. args->aper_available_size = args->aper_size - pinned;
  166. return 0;
  167. }
  168. static int
  169. i915_gem_create(struct drm_file *file,
  170. struct drm_device *dev,
  171. uint64_t size,
  172. uint32_t *handle_p)
  173. {
  174. struct drm_i915_gem_object *obj;
  175. int ret;
  176. u32 handle;
  177. size = roundup(size, PAGE_SIZE);
  178. if (size == 0)
  179. return -EINVAL;
  180. /* Allocate the new object */
  181. obj = i915_gem_alloc_object(dev, size);
  182. if (obj == NULL)
  183. return -ENOMEM;
  184. ret = drm_gem_handle_create(file, &obj->base, &handle);
  185. if (ret) {
  186. drm_gem_object_release(&obj->base);
  187. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  188. kfree(obj);
  189. return ret;
  190. }
  191. /* drop reference from allocate - handle holds it now */
  192. drm_gem_object_unreference(&obj->base);
  193. trace_i915_gem_object_create(obj);
  194. *handle_p = handle;
  195. return 0;
  196. }
  197. int
  198. i915_gem_dumb_create(struct drm_file *file,
  199. struct drm_device *dev,
  200. struct drm_mode_create_dumb *args)
  201. {
  202. /* have to work out size/pitch and return them */
  203. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  204. args->size = args->pitch * args->height;
  205. return i915_gem_create(file, dev,
  206. args->size, &args->handle);
  207. }
  208. int i915_gem_dumb_destroy(struct drm_file *file,
  209. struct drm_device *dev,
  210. uint32_t handle)
  211. {
  212. return drm_gem_handle_delete(file, handle);
  213. }
  214. /**
  215. * Creates a new mm object and returns a handle to it.
  216. */
  217. int
  218. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  219. struct drm_file *file)
  220. {
  221. struct drm_i915_gem_create *args = data;
  222. return i915_gem_create(file, dev,
  223. args->size, &args->handle);
  224. }
  225. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  226. {
  227. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  228. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  229. obj->tiling_mode != I915_TILING_NONE;
  230. }
  231. static inline int
  232. __copy_to_user_swizzled(char __user *cpu_vaddr,
  233. const char *gpu_vaddr, int gpu_offset,
  234. int length)
  235. {
  236. int ret, cpu_offset = 0;
  237. while (length > 0) {
  238. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  239. int this_length = min(cacheline_end - gpu_offset, length);
  240. int swizzled_gpu_offset = gpu_offset ^ 64;
  241. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  242. gpu_vaddr + swizzled_gpu_offset,
  243. this_length);
  244. if (ret)
  245. return ret + length;
  246. cpu_offset += this_length;
  247. gpu_offset += this_length;
  248. length -= this_length;
  249. }
  250. return 0;
  251. }
  252. static inline int
  253. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  254. const char __user *cpu_vaddr,
  255. int length)
  256. {
  257. int ret, cpu_offset = 0;
  258. while (length > 0) {
  259. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  260. int this_length = min(cacheline_end - gpu_offset, length);
  261. int swizzled_gpu_offset = gpu_offset ^ 64;
  262. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  263. cpu_vaddr + cpu_offset,
  264. this_length);
  265. if (ret)
  266. return ret + length;
  267. cpu_offset += this_length;
  268. gpu_offset += this_length;
  269. length -= this_length;
  270. }
  271. return 0;
  272. }
  273. /* Per-page copy function for the shmem pread fastpath.
  274. * Flushes invalid cachelines before reading the target if
  275. * needs_clflush is set. */
  276. static int
  277. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  278. char __user *user_data,
  279. bool page_do_bit17_swizzling, bool needs_clflush)
  280. {
  281. char *vaddr;
  282. int ret;
  283. if (unlikely(page_do_bit17_swizzling))
  284. return -EINVAL;
  285. vaddr = kmap_atomic(page);
  286. if (needs_clflush)
  287. drm_clflush_virt_range(vaddr + shmem_page_offset,
  288. page_length);
  289. ret = __copy_to_user_inatomic(user_data,
  290. vaddr + shmem_page_offset,
  291. page_length);
  292. kunmap_atomic(vaddr);
  293. return ret ? -EFAULT : 0;
  294. }
  295. static void
  296. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  297. bool swizzled)
  298. {
  299. if (unlikely(swizzled)) {
  300. unsigned long start = (unsigned long) addr;
  301. unsigned long end = (unsigned long) addr + length;
  302. /* For swizzling simply ensure that we always flush both
  303. * channels. Lame, but simple and it works. Swizzled
  304. * pwrite/pread is far from a hotpath - current userspace
  305. * doesn't use it at all. */
  306. start = round_down(start, 128);
  307. end = round_up(end, 128);
  308. drm_clflush_virt_range((void *)start, end - start);
  309. } else {
  310. drm_clflush_virt_range(addr, length);
  311. }
  312. }
  313. /* Only difference to the fast-path function is that this can handle bit17
  314. * and uses non-atomic copy and kmap functions. */
  315. static int
  316. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  317. char __user *user_data,
  318. bool page_do_bit17_swizzling, bool needs_clflush)
  319. {
  320. char *vaddr;
  321. int ret;
  322. vaddr = kmap(page);
  323. if (needs_clflush)
  324. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  325. page_length,
  326. page_do_bit17_swizzling);
  327. if (page_do_bit17_swizzling)
  328. ret = __copy_to_user_swizzled(user_data,
  329. vaddr, shmem_page_offset,
  330. page_length);
  331. else
  332. ret = __copy_to_user(user_data,
  333. vaddr + shmem_page_offset,
  334. page_length);
  335. kunmap(page);
  336. return ret ? - EFAULT : 0;
  337. }
  338. static int
  339. i915_gem_shmem_pread(struct drm_device *dev,
  340. struct drm_i915_gem_object *obj,
  341. struct drm_i915_gem_pread *args,
  342. struct drm_file *file)
  343. {
  344. char __user *user_data;
  345. ssize_t remain;
  346. loff_t offset;
  347. int shmem_page_offset, page_length, ret = 0;
  348. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  349. int hit_slowpath = 0;
  350. int prefaulted = 0;
  351. int needs_clflush = 0;
  352. struct scatterlist *sg;
  353. int i;
  354. user_data = (char __user *) (uintptr_t) args->data_ptr;
  355. remain = args->size;
  356. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  357. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  358. /* If we're not in the cpu read domain, set ourself into the gtt
  359. * read domain and manually flush cachelines (if required). This
  360. * optimizes for the case when the gpu will dirty the data
  361. * anyway again before the next pread happens. */
  362. if (obj->cache_level == I915_CACHE_NONE)
  363. needs_clflush = 1;
  364. if (obj->gtt_space) {
  365. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  366. if (ret)
  367. return ret;
  368. }
  369. }
  370. ret = i915_gem_object_get_pages(obj);
  371. if (ret)
  372. return ret;
  373. i915_gem_object_pin_pages(obj);
  374. offset = args->offset;
  375. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  376. struct page *page;
  377. if (i < offset >> PAGE_SHIFT)
  378. continue;
  379. if (remain <= 0)
  380. break;
  381. /* Operation in this page
  382. *
  383. * shmem_page_offset = offset within page in shmem file
  384. * page_length = bytes to copy for this page
  385. */
  386. shmem_page_offset = offset_in_page(offset);
  387. page_length = remain;
  388. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  389. page_length = PAGE_SIZE - shmem_page_offset;
  390. page = sg_page(sg);
  391. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  392. (page_to_phys(page) & (1 << 17)) != 0;
  393. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  394. user_data, page_do_bit17_swizzling,
  395. needs_clflush);
  396. if (ret == 0)
  397. goto next_page;
  398. hit_slowpath = 1;
  399. mutex_unlock(&dev->struct_mutex);
  400. if (!prefaulted) {
  401. ret = fault_in_multipages_writeable(user_data, remain);
  402. /* Userspace is tricking us, but we've already clobbered
  403. * its pages with the prefault and promised to write the
  404. * data up to the first fault. Hence ignore any errors
  405. * and just continue. */
  406. (void)ret;
  407. prefaulted = 1;
  408. }
  409. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  410. user_data, page_do_bit17_swizzling,
  411. needs_clflush);
  412. mutex_lock(&dev->struct_mutex);
  413. next_page:
  414. mark_page_accessed(page);
  415. if (ret)
  416. goto out;
  417. remain -= page_length;
  418. user_data += page_length;
  419. offset += page_length;
  420. }
  421. out:
  422. i915_gem_object_unpin_pages(obj);
  423. if (hit_slowpath) {
  424. /* Fixup: Kill any reinstated backing storage pages */
  425. if (obj->madv == __I915_MADV_PURGED)
  426. i915_gem_object_truncate(obj);
  427. }
  428. return ret;
  429. }
  430. /**
  431. * Reads data from the object referenced by handle.
  432. *
  433. * On error, the contents of *data are undefined.
  434. */
  435. int
  436. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  437. struct drm_file *file)
  438. {
  439. struct drm_i915_gem_pread *args = data;
  440. struct drm_i915_gem_object *obj;
  441. int ret = 0;
  442. if (args->size == 0)
  443. return 0;
  444. if (!access_ok(VERIFY_WRITE,
  445. (char __user *)(uintptr_t)args->data_ptr,
  446. args->size))
  447. return -EFAULT;
  448. ret = i915_mutex_lock_interruptible(dev);
  449. if (ret)
  450. return ret;
  451. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  452. if (&obj->base == NULL) {
  453. ret = -ENOENT;
  454. goto unlock;
  455. }
  456. /* Bounds check source. */
  457. if (args->offset > obj->base.size ||
  458. args->size > obj->base.size - args->offset) {
  459. ret = -EINVAL;
  460. goto out;
  461. }
  462. /* prime objects have no backing filp to GEM pread/pwrite
  463. * pages from.
  464. */
  465. if (!obj->base.filp) {
  466. ret = -EINVAL;
  467. goto out;
  468. }
  469. trace_i915_gem_object_pread(obj, args->offset, args->size);
  470. ret = i915_gem_shmem_pread(dev, obj, args, file);
  471. out:
  472. drm_gem_object_unreference(&obj->base);
  473. unlock:
  474. mutex_unlock(&dev->struct_mutex);
  475. return ret;
  476. }
  477. /* This is the fast write path which cannot handle
  478. * page faults in the source data
  479. */
  480. static inline int
  481. fast_user_write(struct io_mapping *mapping,
  482. loff_t page_base, int page_offset,
  483. char __user *user_data,
  484. int length)
  485. {
  486. void __iomem *vaddr_atomic;
  487. void *vaddr;
  488. unsigned long unwritten;
  489. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  490. /* We can use the cpu mem copy function because this is X86. */
  491. vaddr = (void __force*)vaddr_atomic + page_offset;
  492. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  493. user_data, length);
  494. io_mapping_unmap_atomic(vaddr_atomic);
  495. return unwritten;
  496. }
  497. /**
  498. * This is the fast pwrite path, where we copy the data directly from the
  499. * user into the GTT, uncached.
  500. */
  501. static int
  502. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  503. struct drm_i915_gem_object *obj,
  504. struct drm_i915_gem_pwrite *args,
  505. struct drm_file *file)
  506. {
  507. drm_i915_private_t *dev_priv = dev->dev_private;
  508. ssize_t remain;
  509. loff_t offset, page_base;
  510. char __user *user_data;
  511. int page_offset, page_length, ret;
  512. ret = i915_gem_object_pin(obj, 0, true, true);
  513. if (ret)
  514. goto out;
  515. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  516. if (ret)
  517. goto out_unpin;
  518. ret = i915_gem_object_put_fence(obj);
  519. if (ret)
  520. goto out_unpin;
  521. user_data = (char __user *) (uintptr_t) args->data_ptr;
  522. remain = args->size;
  523. offset = obj->gtt_offset + args->offset;
  524. while (remain > 0) {
  525. /* Operation in this page
  526. *
  527. * page_base = page offset within aperture
  528. * page_offset = offset within page
  529. * page_length = bytes to copy for this page
  530. */
  531. page_base = offset & PAGE_MASK;
  532. page_offset = offset_in_page(offset);
  533. page_length = remain;
  534. if ((page_offset + remain) > PAGE_SIZE)
  535. page_length = PAGE_SIZE - page_offset;
  536. /* If we get a fault while copying data, then (presumably) our
  537. * source page isn't available. Return the error and we'll
  538. * retry in the slow path.
  539. */
  540. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  541. page_offset, user_data, page_length)) {
  542. ret = -EFAULT;
  543. goto out_unpin;
  544. }
  545. remain -= page_length;
  546. user_data += page_length;
  547. offset += page_length;
  548. }
  549. out_unpin:
  550. i915_gem_object_unpin(obj);
  551. out:
  552. return ret;
  553. }
  554. /* Per-page copy function for the shmem pwrite fastpath.
  555. * Flushes invalid cachelines before writing to the target if
  556. * needs_clflush_before is set and flushes out any written cachelines after
  557. * writing if needs_clflush is set. */
  558. static int
  559. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  560. char __user *user_data,
  561. bool page_do_bit17_swizzling,
  562. bool needs_clflush_before,
  563. bool needs_clflush_after)
  564. {
  565. char *vaddr;
  566. int ret;
  567. if (unlikely(page_do_bit17_swizzling))
  568. return -EINVAL;
  569. vaddr = kmap_atomic(page);
  570. if (needs_clflush_before)
  571. drm_clflush_virt_range(vaddr + shmem_page_offset,
  572. page_length);
  573. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  574. user_data,
  575. page_length);
  576. if (needs_clflush_after)
  577. drm_clflush_virt_range(vaddr + shmem_page_offset,
  578. page_length);
  579. kunmap_atomic(vaddr);
  580. return ret ? -EFAULT : 0;
  581. }
  582. /* Only difference to the fast-path function is that this can handle bit17
  583. * and uses non-atomic copy and kmap functions. */
  584. static int
  585. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  586. char __user *user_data,
  587. bool page_do_bit17_swizzling,
  588. bool needs_clflush_before,
  589. bool needs_clflush_after)
  590. {
  591. char *vaddr;
  592. int ret;
  593. vaddr = kmap(page);
  594. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  595. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  596. page_length,
  597. page_do_bit17_swizzling);
  598. if (page_do_bit17_swizzling)
  599. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  600. user_data,
  601. page_length);
  602. else
  603. ret = __copy_from_user(vaddr + shmem_page_offset,
  604. user_data,
  605. page_length);
  606. if (needs_clflush_after)
  607. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  608. page_length,
  609. page_do_bit17_swizzling);
  610. kunmap(page);
  611. return ret ? -EFAULT : 0;
  612. }
  613. static int
  614. i915_gem_shmem_pwrite(struct drm_device *dev,
  615. struct drm_i915_gem_object *obj,
  616. struct drm_i915_gem_pwrite *args,
  617. struct drm_file *file)
  618. {
  619. ssize_t remain;
  620. loff_t offset;
  621. char __user *user_data;
  622. int shmem_page_offset, page_length, ret = 0;
  623. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  624. int hit_slowpath = 0;
  625. int needs_clflush_after = 0;
  626. int needs_clflush_before = 0;
  627. int i;
  628. struct scatterlist *sg;
  629. user_data = (char __user *) (uintptr_t) args->data_ptr;
  630. remain = args->size;
  631. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  632. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  633. /* If we're not in the cpu write domain, set ourself into the gtt
  634. * write domain and manually flush cachelines (if required). This
  635. * optimizes for the case when the gpu will use the data
  636. * right away and we therefore have to clflush anyway. */
  637. if (obj->cache_level == I915_CACHE_NONE)
  638. needs_clflush_after = 1;
  639. if (obj->gtt_space) {
  640. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  641. if (ret)
  642. return ret;
  643. }
  644. }
  645. /* Same trick applies for invalidate partially written cachelines before
  646. * writing. */
  647. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  648. && obj->cache_level == I915_CACHE_NONE)
  649. needs_clflush_before = 1;
  650. ret = i915_gem_object_get_pages(obj);
  651. if (ret)
  652. return ret;
  653. i915_gem_object_pin_pages(obj);
  654. offset = args->offset;
  655. obj->dirty = 1;
  656. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  657. struct page *page;
  658. int partial_cacheline_write;
  659. if (i < offset >> PAGE_SHIFT)
  660. continue;
  661. if (remain <= 0)
  662. break;
  663. /* Operation in this page
  664. *
  665. * shmem_page_offset = offset within page in shmem file
  666. * page_length = bytes to copy for this page
  667. */
  668. shmem_page_offset = offset_in_page(offset);
  669. page_length = remain;
  670. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  671. page_length = PAGE_SIZE - shmem_page_offset;
  672. /* If we don't overwrite a cacheline completely we need to be
  673. * careful to have up-to-date data by first clflushing. Don't
  674. * overcomplicate things and flush the entire patch. */
  675. partial_cacheline_write = needs_clflush_before &&
  676. ((shmem_page_offset | page_length)
  677. & (boot_cpu_data.x86_clflush_size - 1));
  678. page = sg_page(sg);
  679. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  680. (page_to_phys(page) & (1 << 17)) != 0;
  681. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  682. user_data, page_do_bit17_swizzling,
  683. partial_cacheline_write,
  684. needs_clflush_after);
  685. if (ret == 0)
  686. goto next_page;
  687. hit_slowpath = 1;
  688. mutex_unlock(&dev->struct_mutex);
  689. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  690. user_data, page_do_bit17_swizzling,
  691. partial_cacheline_write,
  692. needs_clflush_after);
  693. mutex_lock(&dev->struct_mutex);
  694. next_page:
  695. set_page_dirty(page);
  696. mark_page_accessed(page);
  697. if (ret)
  698. goto out;
  699. remain -= page_length;
  700. user_data += page_length;
  701. offset += page_length;
  702. }
  703. out:
  704. i915_gem_object_unpin_pages(obj);
  705. if (hit_slowpath) {
  706. /* Fixup: Kill any reinstated backing storage pages */
  707. if (obj->madv == __I915_MADV_PURGED)
  708. i915_gem_object_truncate(obj);
  709. /* and flush dirty cachelines in case the object isn't in the cpu write
  710. * domain anymore. */
  711. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  712. i915_gem_clflush_object(obj);
  713. intel_gtt_chipset_flush();
  714. }
  715. }
  716. if (needs_clflush_after)
  717. intel_gtt_chipset_flush();
  718. return ret;
  719. }
  720. /**
  721. * Writes data to the object referenced by handle.
  722. *
  723. * On error, the contents of the buffer that were to be modified are undefined.
  724. */
  725. int
  726. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  727. struct drm_file *file)
  728. {
  729. struct drm_i915_gem_pwrite *args = data;
  730. struct drm_i915_gem_object *obj;
  731. int ret;
  732. if (args->size == 0)
  733. return 0;
  734. if (!access_ok(VERIFY_READ,
  735. (char __user *)(uintptr_t)args->data_ptr,
  736. args->size))
  737. return -EFAULT;
  738. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  739. args->size);
  740. if (ret)
  741. return -EFAULT;
  742. ret = i915_mutex_lock_interruptible(dev);
  743. if (ret)
  744. return ret;
  745. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  746. if (&obj->base == NULL) {
  747. ret = -ENOENT;
  748. goto unlock;
  749. }
  750. /* Bounds check destination. */
  751. if (args->offset > obj->base.size ||
  752. args->size > obj->base.size - args->offset) {
  753. ret = -EINVAL;
  754. goto out;
  755. }
  756. /* prime objects have no backing filp to GEM pread/pwrite
  757. * pages from.
  758. */
  759. if (!obj->base.filp) {
  760. ret = -EINVAL;
  761. goto out;
  762. }
  763. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  764. ret = -EFAULT;
  765. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  766. * it would end up going through the fenced access, and we'll get
  767. * different detiling behavior between reading and writing.
  768. * pread/pwrite currently are reading and writing from the CPU
  769. * perspective, requiring manual detiling by the client.
  770. */
  771. if (obj->phys_obj) {
  772. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  773. goto out;
  774. }
  775. if (obj->cache_level == I915_CACHE_NONE &&
  776. obj->tiling_mode == I915_TILING_NONE &&
  777. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  778. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  779. /* Note that the gtt paths might fail with non-page-backed user
  780. * pointers (e.g. gtt mappings when moving data between
  781. * textures). Fallback to the shmem path in that case. */
  782. }
  783. if (ret == -EFAULT || ret == -ENOSPC)
  784. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  785. out:
  786. drm_gem_object_unreference(&obj->base);
  787. unlock:
  788. mutex_unlock(&dev->struct_mutex);
  789. return ret;
  790. }
  791. int
  792. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  793. bool interruptible)
  794. {
  795. if (atomic_read(&dev_priv->mm.wedged)) {
  796. struct completion *x = &dev_priv->error_completion;
  797. bool recovery_complete;
  798. unsigned long flags;
  799. /* Give the error handler a chance to run. */
  800. spin_lock_irqsave(&x->wait.lock, flags);
  801. recovery_complete = x->done > 0;
  802. spin_unlock_irqrestore(&x->wait.lock, flags);
  803. /* Non-interruptible callers can't handle -EAGAIN, hence return
  804. * -EIO unconditionally for these. */
  805. if (!interruptible)
  806. return -EIO;
  807. /* Recovery complete, but still wedged means reset failure. */
  808. if (recovery_complete)
  809. return -EIO;
  810. return -EAGAIN;
  811. }
  812. return 0;
  813. }
  814. /*
  815. * Compare seqno against outstanding lazy request. Emit a request if they are
  816. * equal.
  817. */
  818. static int
  819. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  820. {
  821. int ret;
  822. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  823. ret = 0;
  824. if (seqno == ring->outstanding_lazy_request)
  825. ret = i915_add_request(ring, NULL, NULL);
  826. return ret;
  827. }
  828. /**
  829. * __wait_seqno - wait until execution of seqno has finished
  830. * @ring: the ring expected to report seqno
  831. * @seqno: duh!
  832. * @interruptible: do an interruptible wait (normally yes)
  833. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  834. *
  835. * Returns 0 if the seqno was found within the alloted time. Else returns the
  836. * errno with remaining time filled in timeout argument.
  837. */
  838. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  839. bool interruptible, struct timespec *timeout)
  840. {
  841. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  842. struct timespec before, now, wait_time={1,0};
  843. unsigned long timeout_jiffies;
  844. long end;
  845. bool wait_forever = true;
  846. int ret;
  847. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  848. return 0;
  849. trace_i915_gem_request_wait_begin(ring, seqno);
  850. if (timeout != NULL) {
  851. wait_time = *timeout;
  852. wait_forever = false;
  853. }
  854. timeout_jiffies = timespec_to_jiffies(&wait_time);
  855. if (WARN_ON(!ring->irq_get(ring)))
  856. return -ENODEV;
  857. /* Record current time in case interrupted by signal, or wedged * */
  858. getrawmonotonic(&before);
  859. #define EXIT_COND \
  860. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  861. atomic_read(&dev_priv->mm.wedged))
  862. do {
  863. if (interruptible)
  864. end = wait_event_interruptible_timeout(ring->irq_queue,
  865. EXIT_COND,
  866. timeout_jiffies);
  867. else
  868. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  869. timeout_jiffies);
  870. ret = i915_gem_check_wedge(dev_priv, interruptible);
  871. if (ret)
  872. end = ret;
  873. } while (end == 0 && wait_forever);
  874. getrawmonotonic(&now);
  875. ring->irq_put(ring);
  876. trace_i915_gem_request_wait_end(ring, seqno);
  877. #undef EXIT_COND
  878. if (timeout) {
  879. struct timespec sleep_time = timespec_sub(now, before);
  880. *timeout = timespec_sub(*timeout, sleep_time);
  881. }
  882. switch (end) {
  883. case -EIO:
  884. case -EAGAIN: /* Wedged */
  885. case -ERESTARTSYS: /* Signal */
  886. return (int)end;
  887. case 0: /* Timeout */
  888. if (timeout)
  889. set_normalized_timespec(timeout, 0, 0);
  890. return -ETIME;
  891. default: /* Completed */
  892. WARN_ON(end < 0); /* We're not aware of other errors */
  893. return 0;
  894. }
  895. }
  896. /**
  897. * Waits for a sequence number to be signaled, and cleans up the
  898. * request and object lists appropriately for that event.
  899. */
  900. int
  901. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  902. {
  903. struct drm_device *dev = ring->dev;
  904. struct drm_i915_private *dev_priv = dev->dev_private;
  905. bool interruptible = dev_priv->mm.interruptible;
  906. int ret;
  907. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  908. BUG_ON(seqno == 0);
  909. ret = i915_gem_check_wedge(dev_priv, interruptible);
  910. if (ret)
  911. return ret;
  912. ret = i915_gem_check_olr(ring, seqno);
  913. if (ret)
  914. return ret;
  915. return __wait_seqno(ring, seqno, interruptible, NULL);
  916. }
  917. /**
  918. * Ensures that all rendering to the object has completed and the object is
  919. * safe to unbind from the GTT or access from the CPU.
  920. */
  921. static __must_check int
  922. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  923. bool readonly)
  924. {
  925. struct intel_ring_buffer *ring = obj->ring;
  926. u32 seqno;
  927. int ret;
  928. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  929. if (seqno == 0)
  930. return 0;
  931. ret = i915_wait_seqno(ring, seqno);
  932. if (ret)
  933. return ret;
  934. i915_gem_retire_requests_ring(ring);
  935. /* Manually manage the write flush as we may have not yet
  936. * retired the buffer.
  937. */
  938. if (obj->last_write_seqno &&
  939. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  940. obj->last_write_seqno = 0;
  941. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  942. }
  943. return 0;
  944. }
  945. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  946. * as the object state may change during this call.
  947. */
  948. static __must_check int
  949. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  950. bool readonly)
  951. {
  952. struct drm_device *dev = obj->base.dev;
  953. struct drm_i915_private *dev_priv = dev->dev_private;
  954. struct intel_ring_buffer *ring = obj->ring;
  955. u32 seqno;
  956. int ret;
  957. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  958. BUG_ON(!dev_priv->mm.interruptible);
  959. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  960. if (seqno == 0)
  961. return 0;
  962. ret = i915_gem_check_wedge(dev_priv, true);
  963. if (ret)
  964. return ret;
  965. ret = i915_gem_check_olr(ring, seqno);
  966. if (ret)
  967. return ret;
  968. mutex_unlock(&dev->struct_mutex);
  969. ret = __wait_seqno(ring, seqno, true, NULL);
  970. mutex_lock(&dev->struct_mutex);
  971. i915_gem_retire_requests_ring(ring);
  972. /* Manually manage the write flush as we may have not yet
  973. * retired the buffer.
  974. */
  975. if (obj->last_write_seqno &&
  976. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  977. obj->last_write_seqno = 0;
  978. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  979. }
  980. return ret;
  981. }
  982. /**
  983. * Called when user space prepares to use an object with the CPU, either
  984. * through the mmap ioctl's mapping or a GTT mapping.
  985. */
  986. int
  987. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  988. struct drm_file *file)
  989. {
  990. struct drm_i915_gem_set_domain *args = data;
  991. struct drm_i915_gem_object *obj;
  992. uint32_t read_domains = args->read_domains;
  993. uint32_t write_domain = args->write_domain;
  994. int ret;
  995. /* Only handle setting domains to types used by the CPU. */
  996. if (write_domain & I915_GEM_GPU_DOMAINS)
  997. return -EINVAL;
  998. if (read_domains & I915_GEM_GPU_DOMAINS)
  999. return -EINVAL;
  1000. /* Having something in the write domain implies it's in the read
  1001. * domain, and only that read domain. Enforce that in the request.
  1002. */
  1003. if (write_domain != 0 && read_domains != write_domain)
  1004. return -EINVAL;
  1005. ret = i915_mutex_lock_interruptible(dev);
  1006. if (ret)
  1007. return ret;
  1008. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1009. if (&obj->base == NULL) {
  1010. ret = -ENOENT;
  1011. goto unlock;
  1012. }
  1013. /* Try to flush the object off the GPU without holding the lock.
  1014. * We will repeat the flush holding the lock in the normal manner
  1015. * to catch cases where we are gazumped.
  1016. */
  1017. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1018. if (ret)
  1019. goto unref;
  1020. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1021. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1022. /* Silently promote "you're not bound, there was nothing to do"
  1023. * to success, since the client was just asking us to
  1024. * make sure everything was done.
  1025. */
  1026. if (ret == -EINVAL)
  1027. ret = 0;
  1028. } else {
  1029. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1030. }
  1031. unref:
  1032. drm_gem_object_unreference(&obj->base);
  1033. unlock:
  1034. mutex_unlock(&dev->struct_mutex);
  1035. return ret;
  1036. }
  1037. /**
  1038. * Called when user space has done writes to this buffer
  1039. */
  1040. int
  1041. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1042. struct drm_file *file)
  1043. {
  1044. struct drm_i915_gem_sw_finish *args = data;
  1045. struct drm_i915_gem_object *obj;
  1046. int ret = 0;
  1047. ret = i915_mutex_lock_interruptible(dev);
  1048. if (ret)
  1049. return ret;
  1050. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1051. if (&obj->base == NULL) {
  1052. ret = -ENOENT;
  1053. goto unlock;
  1054. }
  1055. /* Pinned buffers may be scanout, so flush the cache */
  1056. if (obj->pin_count)
  1057. i915_gem_object_flush_cpu_write_domain(obj);
  1058. drm_gem_object_unreference(&obj->base);
  1059. unlock:
  1060. mutex_unlock(&dev->struct_mutex);
  1061. return ret;
  1062. }
  1063. /**
  1064. * Maps the contents of an object, returning the address it is mapped
  1065. * into.
  1066. *
  1067. * While the mapping holds a reference on the contents of the object, it doesn't
  1068. * imply a ref on the object itself.
  1069. */
  1070. int
  1071. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1072. struct drm_file *file)
  1073. {
  1074. struct drm_i915_gem_mmap *args = data;
  1075. struct drm_gem_object *obj;
  1076. unsigned long addr;
  1077. obj = drm_gem_object_lookup(dev, file, args->handle);
  1078. if (obj == NULL)
  1079. return -ENOENT;
  1080. /* prime objects have no backing filp to GEM mmap
  1081. * pages from.
  1082. */
  1083. if (!obj->filp) {
  1084. drm_gem_object_unreference_unlocked(obj);
  1085. return -EINVAL;
  1086. }
  1087. addr = vm_mmap(obj->filp, 0, args->size,
  1088. PROT_READ | PROT_WRITE, MAP_SHARED,
  1089. args->offset);
  1090. drm_gem_object_unreference_unlocked(obj);
  1091. if (IS_ERR((void *)addr))
  1092. return addr;
  1093. args->addr_ptr = (uint64_t) addr;
  1094. return 0;
  1095. }
  1096. /**
  1097. * i915_gem_fault - fault a page into the GTT
  1098. * vma: VMA in question
  1099. * vmf: fault info
  1100. *
  1101. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1102. * from userspace. The fault handler takes care of binding the object to
  1103. * the GTT (if needed), allocating and programming a fence register (again,
  1104. * only if needed based on whether the old reg is still valid or the object
  1105. * is tiled) and inserting a new PTE into the faulting process.
  1106. *
  1107. * Note that the faulting process may involve evicting existing objects
  1108. * from the GTT and/or fence registers to make room. So performance may
  1109. * suffer if the GTT working set is large or there are few fence registers
  1110. * left.
  1111. */
  1112. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1113. {
  1114. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1115. struct drm_device *dev = obj->base.dev;
  1116. drm_i915_private_t *dev_priv = dev->dev_private;
  1117. pgoff_t page_offset;
  1118. unsigned long pfn;
  1119. int ret = 0;
  1120. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1121. /* We don't use vmf->pgoff since that has the fake offset */
  1122. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1123. PAGE_SHIFT;
  1124. ret = i915_mutex_lock_interruptible(dev);
  1125. if (ret)
  1126. goto out;
  1127. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1128. /* Now bind it into the GTT if needed */
  1129. if (!obj->map_and_fenceable) {
  1130. ret = i915_gem_object_unbind(obj);
  1131. if (ret)
  1132. goto unlock;
  1133. }
  1134. if (!obj->gtt_space) {
  1135. ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
  1136. if (ret)
  1137. goto unlock;
  1138. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1139. if (ret)
  1140. goto unlock;
  1141. }
  1142. if (!obj->has_global_gtt_mapping)
  1143. i915_gem_gtt_bind_object(obj, obj->cache_level);
  1144. ret = i915_gem_object_get_fence(obj);
  1145. if (ret)
  1146. goto unlock;
  1147. if (i915_gem_object_is_inactive(obj))
  1148. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1149. obj->fault_mappable = true;
  1150. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  1151. page_offset;
  1152. /* Finally, remap it using the new GTT offset */
  1153. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1154. unlock:
  1155. mutex_unlock(&dev->struct_mutex);
  1156. out:
  1157. switch (ret) {
  1158. case -EIO:
  1159. /* If this -EIO is due to a gpu hang, give the reset code a
  1160. * chance to clean up the mess. Otherwise return the proper
  1161. * SIGBUS. */
  1162. if (!atomic_read(&dev_priv->mm.wedged))
  1163. return VM_FAULT_SIGBUS;
  1164. case -EAGAIN:
  1165. /* Give the error handler a chance to run and move the
  1166. * objects off the GPU active list. Next time we service the
  1167. * fault, we should be able to transition the page into the
  1168. * GTT without touching the GPU (and so avoid further
  1169. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1170. * with coherency, just lost writes.
  1171. */
  1172. set_need_resched();
  1173. case 0:
  1174. case -ERESTARTSYS:
  1175. case -EINTR:
  1176. return VM_FAULT_NOPAGE;
  1177. case -ENOMEM:
  1178. return VM_FAULT_OOM;
  1179. default:
  1180. return VM_FAULT_SIGBUS;
  1181. }
  1182. }
  1183. /**
  1184. * i915_gem_release_mmap - remove physical page mappings
  1185. * @obj: obj in question
  1186. *
  1187. * Preserve the reservation of the mmapping with the DRM core code, but
  1188. * relinquish ownership of the pages back to the system.
  1189. *
  1190. * It is vital that we remove the page mapping if we have mapped a tiled
  1191. * object through the GTT and then lose the fence register due to
  1192. * resource pressure. Similarly if the object has been moved out of the
  1193. * aperture, than pages mapped into userspace must be revoked. Removing the
  1194. * mapping will then trigger a page fault on the next user access, allowing
  1195. * fixup by i915_gem_fault().
  1196. */
  1197. void
  1198. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1199. {
  1200. if (!obj->fault_mappable)
  1201. return;
  1202. if (obj->base.dev->dev_mapping)
  1203. unmap_mapping_range(obj->base.dev->dev_mapping,
  1204. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1205. obj->base.size, 1);
  1206. obj->fault_mappable = false;
  1207. }
  1208. static uint32_t
  1209. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1210. {
  1211. uint32_t gtt_size;
  1212. if (INTEL_INFO(dev)->gen >= 4 ||
  1213. tiling_mode == I915_TILING_NONE)
  1214. return size;
  1215. /* Previous chips need a power-of-two fence region when tiling */
  1216. if (INTEL_INFO(dev)->gen == 3)
  1217. gtt_size = 1024*1024;
  1218. else
  1219. gtt_size = 512*1024;
  1220. while (gtt_size < size)
  1221. gtt_size <<= 1;
  1222. return gtt_size;
  1223. }
  1224. /**
  1225. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1226. * @obj: object to check
  1227. *
  1228. * Return the required GTT alignment for an object, taking into account
  1229. * potential fence register mapping.
  1230. */
  1231. static uint32_t
  1232. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1233. uint32_t size,
  1234. int tiling_mode)
  1235. {
  1236. /*
  1237. * Minimum alignment is 4k (GTT page size), but might be greater
  1238. * if a fence register is needed for the object.
  1239. */
  1240. if (INTEL_INFO(dev)->gen >= 4 ||
  1241. tiling_mode == I915_TILING_NONE)
  1242. return 4096;
  1243. /*
  1244. * Previous chips need to be aligned to the size of the smallest
  1245. * fence register that can contain the object.
  1246. */
  1247. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1248. }
  1249. /**
  1250. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1251. * unfenced object
  1252. * @dev: the device
  1253. * @size: size of the object
  1254. * @tiling_mode: tiling mode of the object
  1255. *
  1256. * Return the required GTT alignment for an object, only taking into account
  1257. * unfenced tiled surface requirements.
  1258. */
  1259. uint32_t
  1260. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1261. uint32_t size,
  1262. int tiling_mode)
  1263. {
  1264. /*
  1265. * Minimum alignment is 4k (GTT page size) for sane hw.
  1266. */
  1267. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1268. tiling_mode == I915_TILING_NONE)
  1269. return 4096;
  1270. /* Previous hardware however needs to be aligned to a power-of-two
  1271. * tile height. The simplest method for determining this is to reuse
  1272. * the power-of-tile object size.
  1273. */
  1274. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1275. }
  1276. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1277. {
  1278. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1279. int ret;
  1280. if (obj->base.map_list.map)
  1281. return 0;
  1282. ret = drm_gem_create_mmap_offset(&obj->base);
  1283. if (ret != -ENOSPC)
  1284. return ret;
  1285. /* Badly fragmented mmap space? The only way we can recover
  1286. * space is by destroying unwanted objects. We can't randomly release
  1287. * mmap_offsets as userspace expects them to be persistent for the
  1288. * lifetime of the objects. The closest we can is to release the
  1289. * offsets on purgeable objects by truncating it and marking it purged,
  1290. * which prevents userspace from ever using that object again.
  1291. */
  1292. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1293. ret = drm_gem_create_mmap_offset(&obj->base);
  1294. if (ret != -ENOSPC)
  1295. return ret;
  1296. i915_gem_shrink_all(dev_priv);
  1297. return drm_gem_create_mmap_offset(&obj->base);
  1298. }
  1299. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1300. {
  1301. if (!obj->base.map_list.map)
  1302. return;
  1303. drm_gem_free_mmap_offset(&obj->base);
  1304. }
  1305. int
  1306. i915_gem_mmap_gtt(struct drm_file *file,
  1307. struct drm_device *dev,
  1308. uint32_t handle,
  1309. uint64_t *offset)
  1310. {
  1311. struct drm_i915_private *dev_priv = dev->dev_private;
  1312. struct drm_i915_gem_object *obj;
  1313. int ret;
  1314. ret = i915_mutex_lock_interruptible(dev);
  1315. if (ret)
  1316. return ret;
  1317. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1318. if (&obj->base == NULL) {
  1319. ret = -ENOENT;
  1320. goto unlock;
  1321. }
  1322. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1323. ret = -E2BIG;
  1324. goto out;
  1325. }
  1326. if (obj->madv != I915_MADV_WILLNEED) {
  1327. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1328. ret = -EINVAL;
  1329. goto out;
  1330. }
  1331. ret = i915_gem_object_create_mmap_offset(obj);
  1332. if (ret)
  1333. goto out;
  1334. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1335. out:
  1336. drm_gem_object_unreference(&obj->base);
  1337. unlock:
  1338. mutex_unlock(&dev->struct_mutex);
  1339. return ret;
  1340. }
  1341. /**
  1342. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1343. * @dev: DRM device
  1344. * @data: GTT mapping ioctl data
  1345. * @file: GEM object info
  1346. *
  1347. * Simply returns the fake offset to userspace so it can mmap it.
  1348. * The mmap call will end up in drm_gem_mmap(), which will set things
  1349. * up so we can get faults in the handler above.
  1350. *
  1351. * The fault handler will take care of binding the object into the GTT
  1352. * (since it may have been evicted to make room for something), allocating
  1353. * a fence register, and mapping the appropriate aperture address into
  1354. * userspace.
  1355. */
  1356. int
  1357. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1358. struct drm_file *file)
  1359. {
  1360. struct drm_i915_gem_mmap_gtt *args = data;
  1361. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1362. }
  1363. /* Immediately discard the backing storage */
  1364. static void
  1365. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1366. {
  1367. struct inode *inode;
  1368. i915_gem_object_free_mmap_offset(obj);
  1369. if (obj->base.filp == NULL)
  1370. return;
  1371. /* Our goal here is to return as much of the memory as
  1372. * is possible back to the system as we are called from OOM.
  1373. * To do this we must instruct the shmfs to drop all of its
  1374. * backing pages, *now*.
  1375. */
  1376. inode = obj->base.filp->f_path.dentry->d_inode;
  1377. shmem_truncate_range(inode, 0, (loff_t)-1);
  1378. obj->madv = __I915_MADV_PURGED;
  1379. }
  1380. static inline int
  1381. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1382. {
  1383. return obj->madv == I915_MADV_DONTNEED;
  1384. }
  1385. static void
  1386. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1387. {
  1388. int page_count = obj->base.size / PAGE_SIZE;
  1389. struct scatterlist *sg;
  1390. int ret, i;
  1391. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1392. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1393. if (ret) {
  1394. /* In the event of a disaster, abandon all caches and
  1395. * hope for the best.
  1396. */
  1397. WARN_ON(ret != -EIO);
  1398. i915_gem_clflush_object(obj);
  1399. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1400. }
  1401. if (i915_gem_object_needs_bit17_swizzle(obj))
  1402. i915_gem_object_save_bit_17_swizzle(obj);
  1403. if (obj->madv == I915_MADV_DONTNEED)
  1404. obj->dirty = 0;
  1405. for_each_sg(obj->pages->sgl, sg, page_count, i) {
  1406. struct page *page = sg_page(sg);
  1407. if (obj->dirty)
  1408. set_page_dirty(page);
  1409. if (obj->madv == I915_MADV_WILLNEED)
  1410. mark_page_accessed(page);
  1411. page_cache_release(page);
  1412. }
  1413. obj->dirty = 0;
  1414. sg_free_table(obj->pages);
  1415. kfree(obj->pages);
  1416. }
  1417. static int
  1418. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1419. {
  1420. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1421. if (obj->pages == NULL)
  1422. return 0;
  1423. BUG_ON(obj->gtt_space);
  1424. if (obj->pages_pin_count)
  1425. return -EBUSY;
  1426. ops->put_pages(obj);
  1427. obj->pages = NULL;
  1428. list_del(&obj->gtt_list);
  1429. if (i915_gem_object_is_purgeable(obj))
  1430. i915_gem_object_truncate(obj);
  1431. return 0;
  1432. }
  1433. static long
  1434. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1435. {
  1436. struct drm_i915_gem_object *obj, *next;
  1437. long count = 0;
  1438. list_for_each_entry_safe(obj, next,
  1439. &dev_priv->mm.unbound_list,
  1440. gtt_list) {
  1441. if (i915_gem_object_is_purgeable(obj) &&
  1442. i915_gem_object_put_pages(obj) == 0) {
  1443. count += obj->base.size >> PAGE_SHIFT;
  1444. if (count >= target)
  1445. return count;
  1446. }
  1447. }
  1448. list_for_each_entry_safe(obj, next,
  1449. &dev_priv->mm.inactive_list,
  1450. mm_list) {
  1451. if (i915_gem_object_is_purgeable(obj) &&
  1452. i915_gem_object_unbind(obj) == 0 &&
  1453. i915_gem_object_put_pages(obj) == 0) {
  1454. count += obj->base.size >> PAGE_SHIFT;
  1455. if (count >= target)
  1456. return count;
  1457. }
  1458. }
  1459. return count;
  1460. }
  1461. static void
  1462. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1463. {
  1464. struct drm_i915_gem_object *obj, *next;
  1465. i915_gem_evict_everything(dev_priv->dev);
  1466. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
  1467. i915_gem_object_put_pages(obj);
  1468. }
  1469. static int
  1470. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1471. {
  1472. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1473. int page_count, i;
  1474. struct address_space *mapping;
  1475. struct sg_table *st;
  1476. struct scatterlist *sg;
  1477. struct page *page;
  1478. gfp_t gfp;
  1479. /* Assert that the object is not currently in any GPU domain. As it
  1480. * wasn't in the GTT, there shouldn't be any way it could have been in
  1481. * a GPU cache
  1482. */
  1483. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1484. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1485. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1486. if (st == NULL)
  1487. return -ENOMEM;
  1488. page_count = obj->base.size / PAGE_SIZE;
  1489. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1490. sg_free_table(st);
  1491. kfree(st);
  1492. return -ENOMEM;
  1493. }
  1494. /* Get the list of pages out of our struct file. They'll be pinned
  1495. * at this point until we release them.
  1496. *
  1497. * Fail silently without starting the shrinker
  1498. */
  1499. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  1500. gfp = mapping_gfp_mask(mapping);
  1501. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1502. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1503. for_each_sg(st->sgl, sg, page_count, i) {
  1504. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1505. if (IS_ERR(page)) {
  1506. i915_gem_purge(dev_priv, page_count);
  1507. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1508. }
  1509. if (IS_ERR(page)) {
  1510. /* We've tried hard to allocate the memory by reaping
  1511. * our own buffer, now let the real VM do its job and
  1512. * go down in flames if truly OOM.
  1513. */
  1514. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
  1515. gfp |= __GFP_IO | __GFP_WAIT;
  1516. i915_gem_shrink_all(dev_priv);
  1517. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1518. if (IS_ERR(page))
  1519. goto err_pages;
  1520. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1521. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1522. }
  1523. sg_set_page(sg, page, PAGE_SIZE, 0);
  1524. }
  1525. if (i915_gem_object_needs_bit17_swizzle(obj))
  1526. i915_gem_object_do_bit_17_swizzle(obj);
  1527. obj->pages = st;
  1528. return 0;
  1529. err_pages:
  1530. for_each_sg(st->sgl, sg, i, page_count)
  1531. page_cache_release(sg_page(sg));
  1532. sg_free_table(st);
  1533. kfree(st);
  1534. return PTR_ERR(page);
  1535. }
  1536. /* Ensure that the associated pages are gathered from the backing storage
  1537. * and pinned into our object. i915_gem_object_get_pages() may be called
  1538. * multiple times before they are released by a single call to
  1539. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1540. * either as a result of memory pressure (reaping pages under the shrinker)
  1541. * or as the object is itself released.
  1542. */
  1543. int
  1544. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1545. {
  1546. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1547. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1548. int ret;
  1549. if (obj->pages)
  1550. return 0;
  1551. BUG_ON(obj->pages_pin_count);
  1552. ret = ops->get_pages(obj);
  1553. if (ret)
  1554. return ret;
  1555. list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  1556. return 0;
  1557. }
  1558. void
  1559. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1560. struct intel_ring_buffer *ring,
  1561. u32 seqno)
  1562. {
  1563. struct drm_device *dev = obj->base.dev;
  1564. struct drm_i915_private *dev_priv = dev->dev_private;
  1565. BUG_ON(ring == NULL);
  1566. obj->ring = ring;
  1567. /* Add a reference if we're newly entering the active list. */
  1568. if (!obj->active) {
  1569. drm_gem_object_reference(&obj->base);
  1570. obj->active = 1;
  1571. }
  1572. /* Move from whatever list we were on to the tail of execution. */
  1573. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1574. list_move_tail(&obj->ring_list, &ring->active_list);
  1575. obj->last_read_seqno = seqno;
  1576. if (obj->fenced_gpu_access) {
  1577. obj->last_fenced_seqno = seqno;
  1578. /* Bump MRU to take account of the delayed flush */
  1579. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1580. struct drm_i915_fence_reg *reg;
  1581. reg = &dev_priv->fence_regs[obj->fence_reg];
  1582. list_move_tail(&reg->lru_list,
  1583. &dev_priv->mm.fence_list);
  1584. }
  1585. }
  1586. }
  1587. static void
  1588. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1589. {
  1590. struct drm_device *dev = obj->base.dev;
  1591. struct drm_i915_private *dev_priv = dev->dev_private;
  1592. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1593. BUG_ON(!obj->active);
  1594. if (obj->pin_count) /* are we a framebuffer? */
  1595. intel_mark_fb_idle(obj);
  1596. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1597. list_del_init(&obj->ring_list);
  1598. obj->ring = NULL;
  1599. obj->last_read_seqno = 0;
  1600. obj->last_write_seqno = 0;
  1601. obj->base.write_domain = 0;
  1602. obj->last_fenced_seqno = 0;
  1603. obj->fenced_gpu_access = false;
  1604. obj->active = 0;
  1605. drm_gem_object_unreference(&obj->base);
  1606. WARN_ON(i915_verify_lists(dev));
  1607. }
  1608. static u32
  1609. i915_gem_get_seqno(struct drm_device *dev)
  1610. {
  1611. drm_i915_private_t *dev_priv = dev->dev_private;
  1612. u32 seqno = dev_priv->next_seqno;
  1613. /* reserve 0 for non-seqno */
  1614. if (++dev_priv->next_seqno == 0)
  1615. dev_priv->next_seqno = 1;
  1616. return seqno;
  1617. }
  1618. u32
  1619. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1620. {
  1621. if (ring->outstanding_lazy_request == 0)
  1622. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1623. return ring->outstanding_lazy_request;
  1624. }
  1625. int
  1626. i915_add_request(struct intel_ring_buffer *ring,
  1627. struct drm_file *file,
  1628. struct drm_i915_gem_request *request)
  1629. {
  1630. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1631. uint32_t seqno;
  1632. u32 request_ring_position;
  1633. int was_empty;
  1634. int ret;
  1635. /*
  1636. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1637. * after having emitted the batchbuffer command. Hence we need to fix
  1638. * things up similar to emitting the lazy request. The difference here
  1639. * is that the flush _must_ happen before the next request, no matter
  1640. * what.
  1641. */
  1642. ret = intel_ring_flush_all_caches(ring);
  1643. if (ret)
  1644. return ret;
  1645. if (request == NULL) {
  1646. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1647. if (request == NULL)
  1648. return -ENOMEM;
  1649. }
  1650. seqno = i915_gem_next_request_seqno(ring);
  1651. /* Record the position of the start of the request so that
  1652. * should we detect the updated seqno part-way through the
  1653. * GPU processing the request, we never over-estimate the
  1654. * position of the head.
  1655. */
  1656. request_ring_position = intel_ring_get_tail(ring);
  1657. ret = ring->add_request(ring, &seqno);
  1658. if (ret) {
  1659. kfree(request);
  1660. return ret;
  1661. }
  1662. trace_i915_gem_request_add(ring, seqno);
  1663. request->seqno = seqno;
  1664. request->ring = ring;
  1665. request->tail = request_ring_position;
  1666. request->emitted_jiffies = jiffies;
  1667. was_empty = list_empty(&ring->request_list);
  1668. list_add_tail(&request->list, &ring->request_list);
  1669. request->file_priv = NULL;
  1670. if (file) {
  1671. struct drm_i915_file_private *file_priv = file->driver_priv;
  1672. spin_lock(&file_priv->mm.lock);
  1673. request->file_priv = file_priv;
  1674. list_add_tail(&request->client_list,
  1675. &file_priv->mm.request_list);
  1676. spin_unlock(&file_priv->mm.lock);
  1677. }
  1678. ring->outstanding_lazy_request = 0;
  1679. if (!dev_priv->mm.suspended) {
  1680. if (i915_enable_hangcheck) {
  1681. mod_timer(&dev_priv->hangcheck_timer,
  1682. jiffies +
  1683. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1684. }
  1685. if (was_empty) {
  1686. queue_delayed_work(dev_priv->wq,
  1687. &dev_priv->mm.retire_work, HZ);
  1688. intel_mark_busy(dev_priv->dev);
  1689. }
  1690. }
  1691. return 0;
  1692. }
  1693. static inline void
  1694. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1695. {
  1696. struct drm_i915_file_private *file_priv = request->file_priv;
  1697. if (!file_priv)
  1698. return;
  1699. spin_lock(&file_priv->mm.lock);
  1700. if (request->file_priv) {
  1701. list_del(&request->client_list);
  1702. request->file_priv = NULL;
  1703. }
  1704. spin_unlock(&file_priv->mm.lock);
  1705. }
  1706. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1707. struct intel_ring_buffer *ring)
  1708. {
  1709. while (!list_empty(&ring->request_list)) {
  1710. struct drm_i915_gem_request *request;
  1711. request = list_first_entry(&ring->request_list,
  1712. struct drm_i915_gem_request,
  1713. list);
  1714. list_del(&request->list);
  1715. i915_gem_request_remove_from_client(request);
  1716. kfree(request);
  1717. }
  1718. while (!list_empty(&ring->active_list)) {
  1719. struct drm_i915_gem_object *obj;
  1720. obj = list_first_entry(&ring->active_list,
  1721. struct drm_i915_gem_object,
  1722. ring_list);
  1723. i915_gem_object_move_to_inactive(obj);
  1724. }
  1725. }
  1726. static void i915_gem_reset_fences(struct drm_device *dev)
  1727. {
  1728. struct drm_i915_private *dev_priv = dev->dev_private;
  1729. int i;
  1730. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1731. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1732. i915_gem_write_fence(dev, i, NULL);
  1733. if (reg->obj)
  1734. i915_gem_object_fence_lost(reg->obj);
  1735. reg->pin_count = 0;
  1736. reg->obj = NULL;
  1737. INIT_LIST_HEAD(&reg->lru_list);
  1738. }
  1739. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1740. }
  1741. void i915_gem_reset(struct drm_device *dev)
  1742. {
  1743. struct drm_i915_private *dev_priv = dev->dev_private;
  1744. struct drm_i915_gem_object *obj;
  1745. struct intel_ring_buffer *ring;
  1746. int i;
  1747. for_each_ring(ring, dev_priv, i)
  1748. i915_gem_reset_ring_lists(dev_priv, ring);
  1749. /* Move everything out of the GPU domains to ensure we do any
  1750. * necessary invalidation upon reuse.
  1751. */
  1752. list_for_each_entry(obj,
  1753. &dev_priv->mm.inactive_list,
  1754. mm_list)
  1755. {
  1756. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1757. }
  1758. /* The fence registers are invalidated so clear them out */
  1759. i915_gem_reset_fences(dev);
  1760. }
  1761. /**
  1762. * This function clears the request list as sequence numbers are passed.
  1763. */
  1764. void
  1765. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1766. {
  1767. uint32_t seqno;
  1768. int i;
  1769. if (list_empty(&ring->request_list))
  1770. return;
  1771. WARN_ON(i915_verify_lists(ring->dev));
  1772. seqno = ring->get_seqno(ring, true);
  1773. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1774. if (seqno >= ring->sync_seqno[i])
  1775. ring->sync_seqno[i] = 0;
  1776. while (!list_empty(&ring->request_list)) {
  1777. struct drm_i915_gem_request *request;
  1778. request = list_first_entry(&ring->request_list,
  1779. struct drm_i915_gem_request,
  1780. list);
  1781. if (!i915_seqno_passed(seqno, request->seqno))
  1782. break;
  1783. trace_i915_gem_request_retire(ring, request->seqno);
  1784. /* We know the GPU must have read the request to have
  1785. * sent us the seqno + interrupt, so use the position
  1786. * of tail of the request to update the last known position
  1787. * of the GPU head.
  1788. */
  1789. ring->last_retired_head = request->tail;
  1790. list_del(&request->list);
  1791. i915_gem_request_remove_from_client(request);
  1792. kfree(request);
  1793. }
  1794. /* Move any buffers on the active list that are no longer referenced
  1795. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1796. */
  1797. while (!list_empty(&ring->active_list)) {
  1798. struct drm_i915_gem_object *obj;
  1799. obj = list_first_entry(&ring->active_list,
  1800. struct drm_i915_gem_object,
  1801. ring_list);
  1802. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1803. break;
  1804. i915_gem_object_move_to_inactive(obj);
  1805. }
  1806. if (unlikely(ring->trace_irq_seqno &&
  1807. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1808. ring->irq_put(ring);
  1809. ring->trace_irq_seqno = 0;
  1810. }
  1811. WARN_ON(i915_verify_lists(ring->dev));
  1812. }
  1813. void
  1814. i915_gem_retire_requests(struct drm_device *dev)
  1815. {
  1816. drm_i915_private_t *dev_priv = dev->dev_private;
  1817. struct intel_ring_buffer *ring;
  1818. int i;
  1819. for_each_ring(ring, dev_priv, i)
  1820. i915_gem_retire_requests_ring(ring);
  1821. }
  1822. static void
  1823. i915_gem_retire_work_handler(struct work_struct *work)
  1824. {
  1825. drm_i915_private_t *dev_priv;
  1826. struct drm_device *dev;
  1827. struct intel_ring_buffer *ring;
  1828. bool idle;
  1829. int i;
  1830. dev_priv = container_of(work, drm_i915_private_t,
  1831. mm.retire_work.work);
  1832. dev = dev_priv->dev;
  1833. /* Come back later if the device is busy... */
  1834. if (!mutex_trylock(&dev->struct_mutex)) {
  1835. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1836. return;
  1837. }
  1838. i915_gem_retire_requests(dev);
  1839. /* Send a periodic flush down the ring so we don't hold onto GEM
  1840. * objects indefinitely.
  1841. */
  1842. idle = true;
  1843. for_each_ring(ring, dev_priv, i) {
  1844. if (ring->gpu_caches_dirty)
  1845. i915_add_request(ring, NULL, NULL);
  1846. idle &= list_empty(&ring->request_list);
  1847. }
  1848. if (!dev_priv->mm.suspended && !idle)
  1849. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1850. if (idle)
  1851. intel_mark_idle(dev);
  1852. mutex_unlock(&dev->struct_mutex);
  1853. }
  1854. /**
  1855. * Ensures that an object will eventually get non-busy by flushing any required
  1856. * write domains, emitting any outstanding lazy request and retiring and
  1857. * completed requests.
  1858. */
  1859. static int
  1860. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1861. {
  1862. int ret;
  1863. if (obj->active) {
  1864. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1865. if (ret)
  1866. return ret;
  1867. i915_gem_retire_requests_ring(obj->ring);
  1868. }
  1869. return 0;
  1870. }
  1871. /**
  1872. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1873. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1874. *
  1875. * Returns 0 if successful, else an error is returned with the remaining time in
  1876. * the timeout parameter.
  1877. * -ETIME: object is still busy after timeout
  1878. * -ERESTARTSYS: signal interrupted the wait
  1879. * -ENONENT: object doesn't exist
  1880. * Also possible, but rare:
  1881. * -EAGAIN: GPU wedged
  1882. * -ENOMEM: damn
  1883. * -ENODEV: Internal IRQ fail
  1884. * -E?: The add request failed
  1885. *
  1886. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1887. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1888. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1889. * without holding struct_mutex the object may become re-busied before this
  1890. * function completes. A similar but shorter * race condition exists in the busy
  1891. * ioctl
  1892. */
  1893. int
  1894. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1895. {
  1896. struct drm_i915_gem_wait *args = data;
  1897. struct drm_i915_gem_object *obj;
  1898. struct intel_ring_buffer *ring = NULL;
  1899. struct timespec timeout_stack, *timeout = NULL;
  1900. u32 seqno = 0;
  1901. int ret = 0;
  1902. if (args->timeout_ns >= 0) {
  1903. timeout_stack = ns_to_timespec(args->timeout_ns);
  1904. timeout = &timeout_stack;
  1905. }
  1906. ret = i915_mutex_lock_interruptible(dev);
  1907. if (ret)
  1908. return ret;
  1909. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1910. if (&obj->base == NULL) {
  1911. mutex_unlock(&dev->struct_mutex);
  1912. return -ENOENT;
  1913. }
  1914. /* Need to make sure the object gets inactive eventually. */
  1915. ret = i915_gem_object_flush_active(obj);
  1916. if (ret)
  1917. goto out;
  1918. if (obj->active) {
  1919. seqno = obj->last_read_seqno;
  1920. ring = obj->ring;
  1921. }
  1922. if (seqno == 0)
  1923. goto out;
  1924. /* Do this after OLR check to make sure we make forward progress polling
  1925. * on this IOCTL with a 0 timeout (like busy ioctl)
  1926. */
  1927. if (!args->timeout_ns) {
  1928. ret = -ETIME;
  1929. goto out;
  1930. }
  1931. drm_gem_object_unreference(&obj->base);
  1932. mutex_unlock(&dev->struct_mutex);
  1933. ret = __wait_seqno(ring, seqno, true, timeout);
  1934. if (timeout) {
  1935. WARN_ON(!timespec_valid(timeout));
  1936. args->timeout_ns = timespec_to_ns(timeout);
  1937. }
  1938. return ret;
  1939. out:
  1940. drm_gem_object_unreference(&obj->base);
  1941. mutex_unlock(&dev->struct_mutex);
  1942. return ret;
  1943. }
  1944. /**
  1945. * i915_gem_object_sync - sync an object to a ring.
  1946. *
  1947. * @obj: object which may be in use on another ring.
  1948. * @to: ring we wish to use the object on. May be NULL.
  1949. *
  1950. * This code is meant to abstract object synchronization with the GPU.
  1951. * Calling with NULL implies synchronizing the object with the CPU
  1952. * rather than a particular GPU ring.
  1953. *
  1954. * Returns 0 if successful, else propagates up the lower layer error.
  1955. */
  1956. int
  1957. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1958. struct intel_ring_buffer *to)
  1959. {
  1960. struct intel_ring_buffer *from = obj->ring;
  1961. u32 seqno;
  1962. int ret, idx;
  1963. if (from == NULL || to == from)
  1964. return 0;
  1965. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1966. return i915_gem_object_wait_rendering(obj, false);
  1967. idx = intel_ring_sync_index(from, to);
  1968. seqno = obj->last_read_seqno;
  1969. if (seqno <= from->sync_seqno[idx])
  1970. return 0;
  1971. ret = i915_gem_check_olr(obj->ring, seqno);
  1972. if (ret)
  1973. return ret;
  1974. ret = to->sync_to(to, from, seqno);
  1975. if (!ret)
  1976. from->sync_seqno[idx] = seqno;
  1977. return ret;
  1978. }
  1979. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1980. {
  1981. u32 old_write_domain, old_read_domains;
  1982. /* Act a barrier for all accesses through the GTT */
  1983. mb();
  1984. /* Force a pagefault for domain tracking on next user access */
  1985. i915_gem_release_mmap(obj);
  1986. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1987. return;
  1988. old_read_domains = obj->base.read_domains;
  1989. old_write_domain = obj->base.write_domain;
  1990. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1991. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1992. trace_i915_gem_object_change_domain(obj,
  1993. old_read_domains,
  1994. old_write_domain);
  1995. }
  1996. /**
  1997. * Unbinds an object from the GTT aperture.
  1998. */
  1999. int
  2000. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  2001. {
  2002. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2003. int ret = 0;
  2004. if (obj->gtt_space == NULL)
  2005. return 0;
  2006. if (obj->pin_count)
  2007. return -EBUSY;
  2008. BUG_ON(obj->pages == NULL);
  2009. ret = i915_gem_object_finish_gpu(obj);
  2010. if (ret)
  2011. return ret;
  2012. /* Continue on if we fail due to EIO, the GPU is hung so we
  2013. * should be safe and we need to cleanup or else we might
  2014. * cause memory corruption through use-after-free.
  2015. */
  2016. i915_gem_object_finish_gtt(obj);
  2017. /* release the fence reg _after_ flushing */
  2018. ret = i915_gem_object_put_fence(obj);
  2019. if (ret)
  2020. return ret;
  2021. trace_i915_gem_object_unbind(obj);
  2022. if (obj->has_global_gtt_mapping)
  2023. i915_gem_gtt_unbind_object(obj);
  2024. if (obj->has_aliasing_ppgtt_mapping) {
  2025. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2026. obj->has_aliasing_ppgtt_mapping = 0;
  2027. }
  2028. i915_gem_gtt_finish_object(obj);
  2029. list_del(&obj->mm_list);
  2030. list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  2031. /* Avoid an unnecessary call to unbind on rebind. */
  2032. obj->map_and_fenceable = true;
  2033. drm_mm_put_block(obj->gtt_space);
  2034. obj->gtt_space = NULL;
  2035. obj->gtt_offset = 0;
  2036. return 0;
  2037. }
  2038. static int i915_ring_idle(struct intel_ring_buffer *ring)
  2039. {
  2040. if (list_empty(&ring->active_list))
  2041. return 0;
  2042. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  2043. }
  2044. int i915_gpu_idle(struct drm_device *dev)
  2045. {
  2046. drm_i915_private_t *dev_priv = dev->dev_private;
  2047. struct intel_ring_buffer *ring;
  2048. int ret, i;
  2049. /* Flush everything onto the inactive list. */
  2050. for_each_ring(ring, dev_priv, i) {
  2051. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2052. if (ret)
  2053. return ret;
  2054. ret = i915_ring_idle(ring);
  2055. if (ret)
  2056. return ret;
  2057. }
  2058. return 0;
  2059. }
  2060. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  2061. struct drm_i915_gem_object *obj)
  2062. {
  2063. drm_i915_private_t *dev_priv = dev->dev_private;
  2064. uint64_t val;
  2065. if (obj) {
  2066. u32 size = obj->gtt_space->size;
  2067. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2068. 0xfffff000) << 32;
  2069. val |= obj->gtt_offset & 0xfffff000;
  2070. val |= (uint64_t)((obj->stride / 128) - 1) <<
  2071. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2072. if (obj->tiling_mode == I915_TILING_Y)
  2073. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2074. val |= I965_FENCE_REG_VALID;
  2075. } else
  2076. val = 0;
  2077. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  2078. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  2079. }
  2080. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2081. struct drm_i915_gem_object *obj)
  2082. {
  2083. drm_i915_private_t *dev_priv = dev->dev_private;
  2084. uint64_t val;
  2085. if (obj) {
  2086. u32 size = obj->gtt_space->size;
  2087. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2088. 0xfffff000) << 32;
  2089. val |= obj->gtt_offset & 0xfffff000;
  2090. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2091. if (obj->tiling_mode == I915_TILING_Y)
  2092. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2093. val |= I965_FENCE_REG_VALID;
  2094. } else
  2095. val = 0;
  2096. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  2097. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  2098. }
  2099. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2100. struct drm_i915_gem_object *obj)
  2101. {
  2102. drm_i915_private_t *dev_priv = dev->dev_private;
  2103. u32 val;
  2104. if (obj) {
  2105. u32 size = obj->gtt_space->size;
  2106. int pitch_val;
  2107. int tile_width;
  2108. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2109. (size & -size) != size ||
  2110. (obj->gtt_offset & (size - 1)),
  2111. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2112. obj->gtt_offset, obj->map_and_fenceable, size);
  2113. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2114. tile_width = 128;
  2115. else
  2116. tile_width = 512;
  2117. /* Note: pitch better be a power of two tile widths */
  2118. pitch_val = obj->stride / tile_width;
  2119. pitch_val = ffs(pitch_val) - 1;
  2120. val = obj->gtt_offset;
  2121. if (obj->tiling_mode == I915_TILING_Y)
  2122. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2123. val |= I915_FENCE_SIZE_BITS(size);
  2124. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2125. val |= I830_FENCE_REG_VALID;
  2126. } else
  2127. val = 0;
  2128. if (reg < 8)
  2129. reg = FENCE_REG_830_0 + reg * 4;
  2130. else
  2131. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2132. I915_WRITE(reg, val);
  2133. POSTING_READ(reg);
  2134. }
  2135. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2136. struct drm_i915_gem_object *obj)
  2137. {
  2138. drm_i915_private_t *dev_priv = dev->dev_private;
  2139. uint32_t val;
  2140. if (obj) {
  2141. u32 size = obj->gtt_space->size;
  2142. uint32_t pitch_val;
  2143. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2144. (size & -size) != size ||
  2145. (obj->gtt_offset & (size - 1)),
  2146. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2147. obj->gtt_offset, size);
  2148. pitch_val = obj->stride / 128;
  2149. pitch_val = ffs(pitch_val) - 1;
  2150. val = obj->gtt_offset;
  2151. if (obj->tiling_mode == I915_TILING_Y)
  2152. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2153. val |= I830_FENCE_SIZE_BITS(size);
  2154. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2155. val |= I830_FENCE_REG_VALID;
  2156. } else
  2157. val = 0;
  2158. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2159. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2160. }
  2161. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2162. struct drm_i915_gem_object *obj)
  2163. {
  2164. switch (INTEL_INFO(dev)->gen) {
  2165. case 7:
  2166. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2167. case 5:
  2168. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2169. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2170. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2171. default: break;
  2172. }
  2173. }
  2174. static inline int fence_number(struct drm_i915_private *dev_priv,
  2175. struct drm_i915_fence_reg *fence)
  2176. {
  2177. return fence - dev_priv->fence_regs;
  2178. }
  2179. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2180. struct drm_i915_fence_reg *fence,
  2181. bool enable)
  2182. {
  2183. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2184. int reg = fence_number(dev_priv, fence);
  2185. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2186. if (enable) {
  2187. obj->fence_reg = reg;
  2188. fence->obj = obj;
  2189. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2190. } else {
  2191. obj->fence_reg = I915_FENCE_REG_NONE;
  2192. fence->obj = NULL;
  2193. list_del_init(&fence->lru_list);
  2194. }
  2195. }
  2196. static int
  2197. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2198. {
  2199. if (obj->last_fenced_seqno) {
  2200. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2201. if (ret)
  2202. return ret;
  2203. obj->last_fenced_seqno = 0;
  2204. }
  2205. /* Ensure that all CPU reads are completed before installing a fence
  2206. * and all writes before removing the fence.
  2207. */
  2208. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2209. mb();
  2210. obj->fenced_gpu_access = false;
  2211. return 0;
  2212. }
  2213. int
  2214. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2215. {
  2216. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2217. int ret;
  2218. ret = i915_gem_object_flush_fence(obj);
  2219. if (ret)
  2220. return ret;
  2221. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2222. return 0;
  2223. i915_gem_object_update_fence(obj,
  2224. &dev_priv->fence_regs[obj->fence_reg],
  2225. false);
  2226. i915_gem_object_fence_lost(obj);
  2227. return 0;
  2228. }
  2229. static struct drm_i915_fence_reg *
  2230. i915_find_fence_reg(struct drm_device *dev)
  2231. {
  2232. struct drm_i915_private *dev_priv = dev->dev_private;
  2233. struct drm_i915_fence_reg *reg, *avail;
  2234. int i;
  2235. /* First try to find a free reg */
  2236. avail = NULL;
  2237. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2238. reg = &dev_priv->fence_regs[i];
  2239. if (!reg->obj)
  2240. return reg;
  2241. if (!reg->pin_count)
  2242. avail = reg;
  2243. }
  2244. if (avail == NULL)
  2245. return NULL;
  2246. /* None available, try to steal one or wait for a user to finish */
  2247. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2248. if (reg->pin_count)
  2249. continue;
  2250. return reg;
  2251. }
  2252. return NULL;
  2253. }
  2254. /**
  2255. * i915_gem_object_get_fence - set up fencing for an object
  2256. * @obj: object to map through a fence reg
  2257. *
  2258. * When mapping objects through the GTT, userspace wants to be able to write
  2259. * to them without having to worry about swizzling if the object is tiled.
  2260. * This function walks the fence regs looking for a free one for @obj,
  2261. * stealing one if it can't find any.
  2262. *
  2263. * It then sets up the reg based on the object's properties: address, pitch
  2264. * and tiling format.
  2265. *
  2266. * For an untiled surface, this removes any existing fence.
  2267. */
  2268. int
  2269. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2270. {
  2271. struct drm_device *dev = obj->base.dev;
  2272. struct drm_i915_private *dev_priv = dev->dev_private;
  2273. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2274. struct drm_i915_fence_reg *reg;
  2275. int ret;
  2276. /* Have we updated the tiling parameters upon the object and so
  2277. * will need to serialise the write to the associated fence register?
  2278. */
  2279. if (obj->fence_dirty) {
  2280. ret = i915_gem_object_flush_fence(obj);
  2281. if (ret)
  2282. return ret;
  2283. }
  2284. /* Just update our place in the LRU if our fence is getting reused. */
  2285. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2286. reg = &dev_priv->fence_regs[obj->fence_reg];
  2287. if (!obj->fence_dirty) {
  2288. list_move_tail(&reg->lru_list,
  2289. &dev_priv->mm.fence_list);
  2290. return 0;
  2291. }
  2292. } else if (enable) {
  2293. reg = i915_find_fence_reg(dev);
  2294. if (reg == NULL)
  2295. return -EDEADLK;
  2296. if (reg->obj) {
  2297. struct drm_i915_gem_object *old = reg->obj;
  2298. ret = i915_gem_object_flush_fence(old);
  2299. if (ret)
  2300. return ret;
  2301. i915_gem_object_fence_lost(old);
  2302. }
  2303. } else
  2304. return 0;
  2305. i915_gem_object_update_fence(obj, reg, enable);
  2306. obj->fence_dirty = false;
  2307. return 0;
  2308. }
  2309. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2310. struct drm_mm_node *gtt_space,
  2311. unsigned long cache_level)
  2312. {
  2313. struct drm_mm_node *other;
  2314. /* On non-LLC machines we have to be careful when putting differing
  2315. * types of snoopable memory together to avoid the prefetcher
  2316. * crossing memory domains and dieing.
  2317. */
  2318. if (HAS_LLC(dev))
  2319. return true;
  2320. if (gtt_space == NULL)
  2321. return true;
  2322. if (list_empty(&gtt_space->node_list))
  2323. return true;
  2324. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2325. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2326. return false;
  2327. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2328. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2329. return false;
  2330. return true;
  2331. }
  2332. static void i915_gem_verify_gtt(struct drm_device *dev)
  2333. {
  2334. #if WATCH_GTT
  2335. struct drm_i915_private *dev_priv = dev->dev_private;
  2336. struct drm_i915_gem_object *obj;
  2337. int err = 0;
  2338. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2339. if (obj->gtt_space == NULL) {
  2340. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2341. err++;
  2342. continue;
  2343. }
  2344. if (obj->cache_level != obj->gtt_space->color) {
  2345. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2346. obj->gtt_space->start,
  2347. obj->gtt_space->start + obj->gtt_space->size,
  2348. obj->cache_level,
  2349. obj->gtt_space->color);
  2350. err++;
  2351. continue;
  2352. }
  2353. if (!i915_gem_valid_gtt_space(dev,
  2354. obj->gtt_space,
  2355. obj->cache_level)) {
  2356. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2357. obj->gtt_space->start,
  2358. obj->gtt_space->start + obj->gtt_space->size,
  2359. obj->cache_level);
  2360. err++;
  2361. continue;
  2362. }
  2363. }
  2364. WARN_ON(err);
  2365. #endif
  2366. }
  2367. /**
  2368. * Finds free space in the GTT aperture and binds the object there.
  2369. */
  2370. static int
  2371. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2372. unsigned alignment,
  2373. bool map_and_fenceable,
  2374. bool nonblocking)
  2375. {
  2376. struct drm_device *dev = obj->base.dev;
  2377. drm_i915_private_t *dev_priv = dev->dev_private;
  2378. struct drm_mm_node *free_space;
  2379. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2380. bool mappable, fenceable;
  2381. int ret;
  2382. if (obj->madv != I915_MADV_WILLNEED) {
  2383. DRM_ERROR("Attempting to bind a purgeable object\n");
  2384. return -EINVAL;
  2385. }
  2386. fence_size = i915_gem_get_gtt_size(dev,
  2387. obj->base.size,
  2388. obj->tiling_mode);
  2389. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2390. obj->base.size,
  2391. obj->tiling_mode);
  2392. unfenced_alignment =
  2393. i915_gem_get_unfenced_gtt_alignment(dev,
  2394. obj->base.size,
  2395. obj->tiling_mode);
  2396. if (alignment == 0)
  2397. alignment = map_and_fenceable ? fence_alignment :
  2398. unfenced_alignment;
  2399. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2400. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2401. return -EINVAL;
  2402. }
  2403. size = map_and_fenceable ? fence_size : obj->base.size;
  2404. /* If the object is bigger than the entire aperture, reject it early
  2405. * before evicting everything in a vain attempt to find space.
  2406. */
  2407. if (obj->base.size >
  2408. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2409. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2410. return -E2BIG;
  2411. }
  2412. ret = i915_gem_object_get_pages(obj);
  2413. if (ret)
  2414. return ret;
  2415. search_free:
  2416. if (map_and_fenceable)
  2417. free_space =
  2418. drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
  2419. size, alignment, obj->cache_level,
  2420. 0, dev_priv->mm.gtt_mappable_end,
  2421. false);
  2422. else
  2423. free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
  2424. size, alignment, obj->cache_level,
  2425. false);
  2426. if (free_space != NULL) {
  2427. if (map_and_fenceable)
  2428. obj->gtt_space =
  2429. drm_mm_get_block_range_generic(free_space,
  2430. size, alignment, obj->cache_level,
  2431. 0, dev_priv->mm.gtt_mappable_end,
  2432. false);
  2433. else
  2434. obj->gtt_space =
  2435. drm_mm_get_block_generic(free_space,
  2436. size, alignment, obj->cache_level,
  2437. false);
  2438. }
  2439. if (obj->gtt_space == NULL) {
  2440. ret = i915_gem_evict_something(dev, size, alignment,
  2441. obj->cache_level,
  2442. map_and_fenceable,
  2443. nonblocking);
  2444. if (ret)
  2445. return ret;
  2446. goto search_free;
  2447. }
  2448. if (WARN_ON(!i915_gem_valid_gtt_space(dev,
  2449. obj->gtt_space,
  2450. obj->cache_level))) {
  2451. drm_mm_put_block(obj->gtt_space);
  2452. obj->gtt_space = NULL;
  2453. return -EINVAL;
  2454. }
  2455. ret = i915_gem_gtt_prepare_object(obj);
  2456. if (ret) {
  2457. drm_mm_put_block(obj->gtt_space);
  2458. obj->gtt_space = NULL;
  2459. return ret;
  2460. }
  2461. if (!dev_priv->mm.aliasing_ppgtt)
  2462. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2463. list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
  2464. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2465. obj->gtt_offset = obj->gtt_space->start;
  2466. fenceable =
  2467. obj->gtt_space->size == fence_size &&
  2468. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2469. mappable =
  2470. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2471. obj->map_and_fenceable = mappable && fenceable;
  2472. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2473. i915_gem_verify_gtt(dev);
  2474. return 0;
  2475. }
  2476. void
  2477. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2478. {
  2479. /* If we don't have a page list set up, then we're not pinned
  2480. * to GPU, and we can ignore the cache flush because it'll happen
  2481. * again at bind time.
  2482. */
  2483. if (obj->pages == NULL)
  2484. return;
  2485. /* If the GPU is snooping the contents of the CPU cache,
  2486. * we do not need to manually clear the CPU cache lines. However,
  2487. * the caches are only snooped when the render cache is
  2488. * flushed/invalidated. As we always have to emit invalidations
  2489. * and flushes when moving into and out of the RENDER domain, correct
  2490. * snooping behaviour occurs naturally as the result of our domain
  2491. * tracking.
  2492. */
  2493. if (obj->cache_level != I915_CACHE_NONE)
  2494. return;
  2495. trace_i915_gem_object_clflush(obj);
  2496. drm_clflush_sg(obj->pages);
  2497. }
  2498. /** Flushes the GTT write domain for the object if it's dirty. */
  2499. static void
  2500. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2501. {
  2502. uint32_t old_write_domain;
  2503. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2504. return;
  2505. /* No actual flushing is required for the GTT write domain. Writes
  2506. * to it immediately go to main memory as far as we know, so there's
  2507. * no chipset flush. It also doesn't land in render cache.
  2508. *
  2509. * However, we do have to enforce the order so that all writes through
  2510. * the GTT land before any writes to the device, such as updates to
  2511. * the GATT itself.
  2512. */
  2513. wmb();
  2514. old_write_domain = obj->base.write_domain;
  2515. obj->base.write_domain = 0;
  2516. trace_i915_gem_object_change_domain(obj,
  2517. obj->base.read_domains,
  2518. old_write_domain);
  2519. }
  2520. /** Flushes the CPU write domain for the object if it's dirty. */
  2521. static void
  2522. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2523. {
  2524. uint32_t old_write_domain;
  2525. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2526. return;
  2527. i915_gem_clflush_object(obj);
  2528. intel_gtt_chipset_flush();
  2529. old_write_domain = obj->base.write_domain;
  2530. obj->base.write_domain = 0;
  2531. trace_i915_gem_object_change_domain(obj,
  2532. obj->base.read_domains,
  2533. old_write_domain);
  2534. }
  2535. /**
  2536. * Moves a single object to the GTT read, and possibly write domain.
  2537. *
  2538. * This function returns when the move is complete, including waiting on
  2539. * flushes to occur.
  2540. */
  2541. int
  2542. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2543. {
  2544. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2545. uint32_t old_write_domain, old_read_domains;
  2546. int ret;
  2547. /* Not valid to be called on unbound objects. */
  2548. if (obj->gtt_space == NULL)
  2549. return -EINVAL;
  2550. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2551. return 0;
  2552. ret = i915_gem_object_wait_rendering(obj, !write);
  2553. if (ret)
  2554. return ret;
  2555. i915_gem_object_flush_cpu_write_domain(obj);
  2556. old_write_domain = obj->base.write_domain;
  2557. old_read_domains = obj->base.read_domains;
  2558. /* It should now be out of any other write domains, and we can update
  2559. * the domain values for our changes.
  2560. */
  2561. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2562. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2563. if (write) {
  2564. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2565. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2566. obj->dirty = 1;
  2567. }
  2568. trace_i915_gem_object_change_domain(obj,
  2569. old_read_domains,
  2570. old_write_domain);
  2571. /* And bump the LRU for this access */
  2572. if (i915_gem_object_is_inactive(obj))
  2573. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2574. return 0;
  2575. }
  2576. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2577. enum i915_cache_level cache_level)
  2578. {
  2579. struct drm_device *dev = obj->base.dev;
  2580. drm_i915_private_t *dev_priv = dev->dev_private;
  2581. int ret;
  2582. if (obj->cache_level == cache_level)
  2583. return 0;
  2584. if (obj->pin_count) {
  2585. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2586. return -EBUSY;
  2587. }
  2588. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2589. ret = i915_gem_object_unbind(obj);
  2590. if (ret)
  2591. return ret;
  2592. }
  2593. if (obj->gtt_space) {
  2594. ret = i915_gem_object_finish_gpu(obj);
  2595. if (ret)
  2596. return ret;
  2597. i915_gem_object_finish_gtt(obj);
  2598. /* Before SandyBridge, you could not use tiling or fence
  2599. * registers with snooped memory, so relinquish any fences
  2600. * currently pointing to our region in the aperture.
  2601. */
  2602. if (INTEL_INFO(dev)->gen < 6) {
  2603. ret = i915_gem_object_put_fence(obj);
  2604. if (ret)
  2605. return ret;
  2606. }
  2607. if (obj->has_global_gtt_mapping)
  2608. i915_gem_gtt_bind_object(obj, cache_level);
  2609. if (obj->has_aliasing_ppgtt_mapping)
  2610. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2611. obj, cache_level);
  2612. obj->gtt_space->color = cache_level;
  2613. }
  2614. if (cache_level == I915_CACHE_NONE) {
  2615. u32 old_read_domains, old_write_domain;
  2616. /* If we're coming from LLC cached, then we haven't
  2617. * actually been tracking whether the data is in the
  2618. * CPU cache or not, since we only allow one bit set
  2619. * in obj->write_domain and have been skipping the clflushes.
  2620. * Just set it to the CPU cache for now.
  2621. */
  2622. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2623. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2624. old_read_domains = obj->base.read_domains;
  2625. old_write_domain = obj->base.write_domain;
  2626. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2627. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2628. trace_i915_gem_object_change_domain(obj,
  2629. old_read_domains,
  2630. old_write_domain);
  2631. }
  2632. obj->cache_level = cache_level;
  2633. i915_gem_verify_gtt(dev);
  2634. return 0;
  2635. }
  2636. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2637. struct drm_file *file)
  2638. {
  2639. struct drm_i915_gem_caching *args = data;
  2640. struct drm_i915_gem_object *obj;
  2641. int ret;
  2642. ret = i915_mutex_lock_interruptible(dev);
  2643. if (ret)
  2644. return ret;
  2645. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2646. if (&obj->base == NULL) {
  2647. ret = -ENOENT;
  2648. goto unlock;
  2649. }
  2650. args->caching = obj->cache_level != I915_CACHE_NONE;
  2651. drm_gem_object_unreference(&obj->base);
  2652. unlock:
  2653. mutex_unlock(&dev->struct_mutex);
  2654. return ret;
  2655. }
  2656. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2657. struct drm_file *file)
  2658. {
  2659. struct drm_i915_gem_caching *args = data;
  2660. struct drm_i915_gem_object *obj;
  2661. enum i915_cache_level level;
  2662. int ret;
  2663. ret = i915_mutex_lock_interruptible(dev);
  2664. if (ret)
  2665. return ret;
  2666. switch (args->caching) {
  2667. case I915_CACHING_NONE:
  2668. level = I915_CACHE_NONE;
  2669. break;
  2670. case I915_CACHING_CACHED:
  2671. level = I915_CACHE_LLC;
  2672. break;
  2673. default:
  2674. return -EINVAL;
  2675. }
  2676. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2677. if (&obj->base == NULL) {
  2678. ret = -ENOENT;
  2679. goto unlock;
  2680. }
  2681. ret = i915_gem_object_set_cache_level(obj, level);
  2682. drm_gem_object_unreference(&obj->base);
  2683. unlock:
  2684. mutex_unlock(&dev->struct_mutex);
  2685. return ret;
  2686. }
  2687. /*
  2688. * Prepare buffer for display plane (scanout, cursors, etc).
  2689. * Can be called from an uninterruptible phase (modesetting) and allows
  2690. * any flushes to be pipelined (for pageflips).
  2691. */
  2692. int
  2693. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2694. u32 alignment,
  2695. struct intel_ring_buffer *pipelined)
  2696. {
  2697. u32 old_read_domains, old_write_domain;
  2698. int ret;
  2699. if (pipelined != obj->ring) {
  2700. ret = i915_gem_object_sync(obj, pipelined);
  2701. if (ret)
  2702. return ret;
  2703. }
  2704. /* The display engine is not coherent with the LLC cache on gen6. As
  2705. * a result, we make sure that the pinning that is about to occur is
  2706. * done with uncached PTEs. This is lowest common denominator for all
  2707. * chipsets.
  2708. *
  2709. * However for gen6+, we could do better by using the GFDT bit instead
  2710. * of uncaching, which would allow us to flush all the LLC-cached data
  2711. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2712. */
  2713. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2714. if (ret)
  2715. return ret;
  2716. /* As the user may map the buffer once pinned in the display plane
  2717. * (e.g. libkms for the bootup splash), we have to ensure that we
  2718. * always use map_and_fenceable for all scanout buffers.
  2719. */
  2720. ret = i915_gem_object_pin(obj, alignment, true, false);
  2721. if (ret)
  2722. return ret;
  2723. i915_gem_object_flush_cpu_write_domain(obj);
  2724. old_write_domain = obj->base.write_domain;
  2725. old_read_domains = obj->base.read_domains;
  2726. /* It should now be out of any other write domains, and we can update
  2727. * the domain values for our changes.
  2728. */
  2729. obj->base.write_domain = 0;
  2730. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2731. trace_i915_gem_object_change_domain(obj,
  2732. old_read_domains,
  2733. old_write_domain);
  2734. return 0;
  2735. }
  2736. int
  2737. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2738. {
  2739. int ret;
  2740. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2741. return 0;
  2742. ret = i915_gem_object_wait_rendering(obj, false);
  2743. if (ret)
  2744. return ret;
  2745. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2746. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2747. return 0;
  2748. }
  2749. /**
  2750. * Moves a single object to the CPU read, and possibly write domain.
  2751. *
  2752. * This function returns when the move is complete, including waiting on
  2753. * flushes to occur.
  2754. */
  2755. int
  2756. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2757. {
  2758. uint32_t old_write_domain, old_read_domains;
  2759. int ret;
  2760. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2761. return 0;
  2762. ret = i915_gem_object_wait_rendering(obj, !write);
  2763. if (ret)
  2764. return ret;
  2765. i915_gem_object_flush_gtt_write_domain(obj);
  2766. old_write_domain = obj->base.write_domain;
  2767. old_read_domains = obj->base.read_domains;
  2768. /* Flush the CPU cache if it's still invalid. */
  2769. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2770. i915_gem_clflush_object(obj);
  2771. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2772. }
  2773. /* It should now be out of any other write domains, and we can update
  2774. * the domain values for our changes.
  2775. */
  2776. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2777. /* If we're writing through the CPU, then the GPU read domains will
  2778. * need to be invalidated at next use.
  2779. */
  2780. if (write) {
  2781. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2782. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2783. }
  2784. trace_i915_gem_object_change_domain(obj,
  2785. old_read_domains,
  2786. old_write_domain);
  2787. return 0;
  2788. }
  2789. /* Throttle our rendering by waiting until the ring has completed our requests
  2790. * emitted over 20 msec ago.
  2791. *
  2792. * Note that if we were to use the current jiffies each time around the loop,
  2793. * we wouldn't escape the function with any frames outstanding if the time to
  2794. * render a frame was over 20ms.
  2795. *
  2796. * This should get us reasonable parallelism between CPU and GPU but also
  2797. * relatively low latency when blocking on a particular request to finish.
  2798. */
  2799. static int
  2800. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2801. {
  2802. struct drm_i915_private *dev_priv = dev->dev_private;
  2803. struct drm_i915_file_private *file_priv = file->driver_priv;
  2804. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2805. struct drm_i915_gem_request *request;
  2806. struct intel_ring_buffer *ring = NULL;
  2807. u32 seqno = 0;
  2808. int ret;
  2809. if (atomic_read(&dev_priv->mm.wedged))
  2810. return -EIO;
  2811. spin_lock(&file_priv->mm.lock);
  2812. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2813. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2814. break;
  2815. ring = request->ring;
  2816. seqno = request->seqno;
  2817. }
  2818. spin_unlock(&file_priv->mm.lock);
  2819. if (seqno == 0)
  2820. return 0;
  2821. ret = __wait_seqno(ring, seqno, true, NULL);
  2822. if (ret == 0)
  2823. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2824. return ret;
  2825. }
  2826. int
  2827. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2828. uint32_t alignment,
  2829. bool map_and_fenceable,
  2830. bool nonblocking)
  2831. {
  2832. int ret;
  2833. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  2834. return -EBUSY;
  2835. if (obj->gtt_space != NULL) {
  2836. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2837. (map_and_fenceable && !obj->map_and_fenceable)) {
  2838. WARN(obj->pin_count,
  2839. "bo is already pinned with incorrect alignment:"
  2840. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2841. " obj->map_and_fenceable=%d\n",
  2842. obj->gtt_offset, alignment,
  2843. map_and_fenceable,
  2844. obj->map_and_fenceable);
  2845. ret = i915_gem_object_unbind(obj);
  2846. if (ret)
  2847. return ret;
  2848. }
  2849. }
  2850. if (obj->gtt_space == NULL) {
  2851. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2852. map_and_fenceable,
  2853. nonblocking);
  2854. if (ret)
  2855. return ret;
  2856. }
  2857. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2858. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2859. obj->pin_count++;
  2860. obj->pin_mappable |= map_and_fenceable;
  2861. return 0;
  2862. }
  2863. void
  2864. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2865. {
  2866. BUG_ON(obj->pin_count == 0);
  2867. BUG_ON(obj->gtt_space == NULL);
  2868. if (--obj->pin_count == 0)
  2869. obj->pin_mappable = false;
  2870. }
  2871. int
  2872. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2873. struct drm_file *file)
  2874. {
  2875. struct drm_i915_gem_pin *args = data;
  2876. struct drm_i915_gem_object *obj;
  2877. int ret;
  2878. ret = i915_mutex_lock_interruptible(dev);
  2879. if (ret)
  2880. return ret;
  2881. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2882. if (&obj->base == NULL) {
  2883. ret = -ENOENT;
  2884. goto unlock;
  2885. }
  2886. if (obj->madv != I915_MADV_WILLNEED) {
  2887. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2888. ret = -EINVAL;
  2889. goto out;
  2890. }
  2891. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2892. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2893. args->handle);
  2894. ret = -EINVAL;
  2895. goto out;
  2896. }
  2897. obj->user_pin_count++;
  2898. obj->pin_filp = file;
  2899. if (obj->user_pin_count == 1) {
  2900. ret = i915_gem_object_pin(obj, args->alignment, true, false);
  2901. if (ret)
  2902. goto out;
  2903. }
  2904. /* XXX - flush the CPU caches for pinned objects
  2905. * as the X server doesn't manage domains yet
  2906. */
  2907. i915_gem_object_flush_cpu_write_domain(obj);
  2908. args->offset = obj->gtt_offset;
  2909. out:
  2910. drm_gem_object_unreference(&obj->base);
  2911. unlock:
  2912. mutex_unlock(&dev->struct_mutex);
  2913. return ret;
  2914. }
  2915. int
  2916. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2917. struct drm_file *file)
  2918. {
  2919. struct drm_i915_gem_pin *args = data;
  2920. struct drm_i915_gem_object *obj;
  2921. int ret;
  2922. ret = i915_mutex_lock_interruptible(dev);
  2923. if (ret)
  2924. return ret;
  2925. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2926. if (&obj->base == NULL) {
  2927. ret = -ENOENT;
  2928. goto unlock;
  2929. }
  2930. if (obj->pin_filp != file) {
  2931. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2932. args->handle);
  2933. ret = -EINVAL;
  2934. goto out;
  2935. }
  2936. obj->user_pin_count--;
  2937. if (obj->user_pin_count == 0) {
  2938. obj->pin_filp = NULL;
  2939. i915_gem_object_unpin(obj);
  2940. }
  2941. out:
  2942. drm_gem_object_unreference(&obj->base);
  2943. unlock:
  2944. mutex_unlock(&dev->struct_mutex);
  2945. return ret;
  2946. }
  2947. int
  2948. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2949. struct drm_file *file)
  2950. {
  2951. struct drm_i915_gem_busy *args = data;
  2952. struct drm_i915_gem_object *obj;
  2953. int ret;
  2954. ret = i915_mutex_lock_interruptible(dev);
  2955. if (ret)
  2956. return ret;
  2957. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2958. if (&obj->base == NULL) {
  2959. ret = -ENOENT;
  2960. goto unlock;
  2961. }
  2962. /* Count all active objects as busy, even if they are currently not used
  2963. * by the gpu. Users of this interface expect objects to eventually
  2964. * become non-busy without any further actions, therefore emit any
  2965. * necessary flushes here.
  2966. */
  2967. ret = i915_gem_object_flush_active(obj);
  2968. args->busy = obj->active;
  2969. if (obj->ring) {
  2970. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  2971. args->busy |= intel_ring_flag(obj->ring) << 16;
  2972. }
  2973. drm_gem_object_unreference(&obj->base);
  2974. unlock:
  2975. mutex_unlock(&dev->struct_mutex);
  2976. return ret;
  2977. }
  2978. int
  2979. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2980. struct drm_file *file_priv)
  2981. {
  2982. return i915_gem_ring_throttle(dev, file_priv);
  2983. }
  2984. int
  2985. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2986. struct drm_file *file_priv)
  2987. {
  2988. struct drm_i915_gem_madvise *args = data;
  2989. struct drm_i915_gem_object *obj;
  2990. int ret;
  2991. switch (args->madv) {
  2992. case I915_MADV_DONTNEED:
  2993. case I915_MADV_WILLNEED:
  2994. break;
  2995. default:
  2996. return -EINVAL;
  2997. }
  2998. ret = i915_mutex_lock_interruptible(dev);
  2999. if (ret)
  3000. return ret;
  3001. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3002. if (&obj->base == NULL) {
  3003. ret = -ENOENT;
  3004. goto unlock;
  3005. }
  3006. if (obj->pin_count) {
  3007. ret = -EINVAL;
  3008. goto out;
  3009. }
  3010. if (obj->madv != __I915_MADV_PURGED)
  3011. obj->madv = args->madv;
  3012. /* if the object is no longer attached, discard its backing storage */
  3013. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3014. i915_gem_object_truncate(obj);
  3015. args->retained = obj->madv != __I915_MADV_PURGED;
  3016. out:
  3017. drm_gem_object_unreference(&obj->base);
  3018. unlock:
  3019. mutex_unlock(&dev->struct_mutex);
  3020. return ret;
  3021. }
  3022. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3023. const struct drm_i915_gem_object_ops *ops)
  3024. {
  3025. INIT_LIST_HEAD(&obj->mm_list);
  3026. INIT_LIST_HEAD(&obj->gtt_list);
  3027. INIT_LIST_HEAD(&obj->ring_list);
  3028. INIT_LIST_HEAD(&obj->exec_list);
  3029. obj->ops = ops;
  3030. obj->fence_reg = I915_FENCE_REG_NONE;
  3031. obj->madv = I915_MADV_WILLNEED;
  3032. /* Avoid an unnecessary call to unbind on the first bind. */
  3033. obj->map_and_fenceable = true;
  3034. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3035. }
  3036. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3037. .get_pages = i915_gem_object_get_pages_gtt,
  3038. .put_pages = i915_gem_object_put_pages_gtt,
  3039. };
  3040. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3041. size_t size)
  3042. {
  3043. struct drm_i915_gem_object *obj;
  3044. struct address_space *mapping;
  3045. u32 mask;
  3046. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3047. if (obj == NULL)
  3048. return NULL;
  3049. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3050. kfree(obj);
  3051. return NULL;
  3052. }
  3053. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3054. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3055. /* 965gm cannot relocate objects above 4GiB. */
  3056. mask &= ~__GFP_HIGHMEM;
  3057. mask |= __GFP_DMA32;
  3058. }
  3059. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3060. mapping_set_gfp_mask(mapping, mask);
  3061. i915_gem_object_init(obj, &i915_gem_object_ops);
  3062. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3063. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3064. if (HAS_LLC(dev)) {
  3065. /* On some devices, we can have the GPU use the LLC (the CPU
  3066. * cache) for about a 10% performance improvement
  3067. * compared to uncached. Graphics requests other than
  3068. * display scanout are coherent with the CPU in
  3069. * accessing this cache. This means in this mode we
  3070. * don't need to clflush on the CPU side, and on the
  3071. * GPU side we only need to flush internal caches to
  3072. * get data visible to the CPU.
  3073. *
  3074. * However, we maintain the display planes as UC, and so
  3075. * need to rebind when first used as such.
  3076. */
  3077. obj->cache_level = I915_CACHE_LLC;
  3078. } else
  3079. obj->cache_level = I915_CACHE_NONE;
  3080. return obj;
  3081. }
  3082. int i915_gem_init_object(struct drm_gem_object *obj)
  3083. {
  3084. BUG();
  3085. return 0;
  3086. }
  3087. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3088. {
  3089. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3090. struct drm_device *dev = obj->base.dev;
  3091. drm_i915_private_t *dev_priv = dev->dev_private;
  3092. trace_i915_gem_object_destroy(obj);
  3093. if (obj->phys_obj)
  3094. i915_gem_detach_phys_object(dev, obj);
  3095. obj->pin_count = 0;
  3096. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3097. bool was_interruptible;
  3098. was_interruptible = dev_priv->mm.interruptible;
  3099. dev_priv->mm.interruptible = false;
  3100. WARN_ON(i915_gem_object_unbind(obj));
  3101. dev_priv->mm.interruptible = was_interruptible;
  3102. }
  3103. obj->pages_pin_count = 0;
  3104. i915_gem_object_put_pages(obj);
  3105. i915_gem_object_free_mmap_offset(obj);
  3106. BUG_ON(obj->pages);
  3107. if (obj->base.import_attach)
  3108. drm_prime_gem_destroy(&obj->base, NULL);
  3109. drm_gem_object_release(&obj->base);
  3110. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3111. kfree(obj->bit_17);
  3112. kfree(obj);
  3113. }
  3114. int
  3115. i915_gem_idle(struct drm_device *dev)
  3116. {
  3117. drm_i915_private_t *dev_priv = dev->dev_private;
  3118. int ret;
  3119. mutex_lock(&dev->struct_mutex);
  3120. if (dev_priv->mm.suspended) {
  3121. mutex_unlock(&dev->struct_mutex);
  3122. return 0;
  3123. }
  3124. ret = i915_gpu_idle(dev);
  3125. if (ret) {
  3126. mutex_unlock(&dev->struct_mutex);
  3127. return ret;
  3128. }
  3129. i915_gem_retire_requests(dev);
  3130. /* Under UMS, be paranoid and evict. */
  3131. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3132. i915_gem_evict_everything(dev);
  3133. i915_gem_reset_fences(dev);
  3134. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3135. * We need to replace this with a semaphore, or something.
  3136. * And not confound mm.suspended!
  3137. */
  3138. dev_priv->mm.suspended = 1;
  3139. del_timer_sync(&dev_priv->hangcheck_timer);
  3140. i915_kernel_lost_context(dev);
  3141. i915_gem_cleanup_ringbuffer(dev);
  3142. mutex_unlock(&dev->struct_mutex);
  3143. /* Cancel the retire work handler, which should be idle now. */
  3144. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3145. return 0;
  3146. }
  3147. void i915_gem_l3_remap(struct drm_device *dev)
  3148. {
  3149. drm_i915_private_t *dev_priv = dev->dev_private;
  3150. u32 misccpctl;
  3151. int i;
  3152. if (!IS_IVYBRIDGE(dev))
  3153. return;
  3154. if (!dev_priv->mm.l3_remap_info)
  3155. return;
  3156. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3157. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3158. POSTING_READ(GEN7_MISCCPCTL);
  3159. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3160. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3161. if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
  3162. DRM_DEBUG("0x%x was already programmed to %x\n",
  3163. GEN7_L3LOG_BASE + i, remap);
  3164. if (remap && !dev_priv->mm.l3_remap_info[i/4])
  3165. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3166. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
  3167. }
  3168. /* Make sure all the writes land before disabling dop clock gating */
  3169. POSTING_READ(GEN7_L3LOG_BASE);
  3170. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3171. }
  3172. void i915_gem_init_swizzling(struct drm_device *dev)
  3173. {
  3174. drm_i915_private_t *dev_priv = dev->dev_private;
  3175. if (INTEL_INFO(dev)->gen < 5 ||
  3176. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3177. return;
  3178. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3179. DISP_TILE_SURFACE_SWIZZLING);
  3180. if (IS_GEN5(dev))
  3181. return;
  3182. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3183. if (IS_GEN6(dev))
  3184. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3185. else
  3186. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3187. }
  3188. void i915_gem_init_ppgtt(struct drm_device *dev)
  3189. {
  3190. drm_i915_private_t *dev_priv = dev->dev_private;
  3191. uint32_t pd_offset;
  3192. struct intel_ring_buffer *ring;
  3193. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3194. uint32_t __iomem *pd_addr;
  3195. uint32_t pd_entry;
  3196. int i;
  3197. if (!dev_priv->mm.aliasing_ppgtt)
  3198. return;
  3199. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3200. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3201. dma_addr_t pt_addr;
  3202. if (dev_priv->mm.gtt->needs_dmar)
  3203. pt_addr = ppgtt->pt_dma_addr[i];
  3204. else
  3205. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3206. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3207. pd_entry |= GEN6_PDE_VALID;
  3208. writel(pd_entry, pd_addr + i);
  3209. }
  3210. readl(pd_addr);
  3211. pd_offset = ppgtt->pd_offset;
  3212. pd_offset /= 64; /* in cachelines, */
  3213. pd_offset <<= 16;
  3214. if (INTEL_INFO(dev)->gen == 6) {
  3215. uint32_t ecochk, gab_ctl, ecobits;
  3216. ecobits = I915_READ(GAC_ECO_BITS);
  3217. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  3218. gab_ctl = I915_READ(GAB_CTL);
  3219. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  3220. ecochk = I915_READ(GAM_ECOCHK);
  3221. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3222. ECOCHK_PPGTT_CACHE64B);
  3223. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3224. } else if (INTEL_INFO(dev)->gen >= 7) {
  3225. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3226. /* GFX_MODE is per-ring on gen7+ */
  3227. }
  3228. for_each_ring(ring, dev_priv, i) {
  3229. if (INTEL_INFO(dev)->gen >= 7)
  3230. I915_WRITE(RING_MODE_GEN7(ring),
  3231. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3232. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3233. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3234. }
  3235. }
  3236. static bool
  3237. intel_enable_blt(struct drm_device *dev)
  3238. {
  3239. if (!HAS_BLT(dev))
  3240. return false;
  3241. /* The blitter was dysfunctional on early prototypes */
  3242. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3243. DRM_INFO("BLT not supported on this pre-production hardware;"
  3244. " graphics performance will be degraded.\n");
  3245. return false;
  3246. }
  3247. return true;
  3248. }
  3249. int
  3250. i915_gem_init_hw(struct drm_device *dev)
  3251. {
  3252. drm_i915_private_t *dev_priv = dev->dev_private;
  3253. int ret;
  3254. if (!intel_enable_gtt())
  3255. return -EIO;
  3256. i915_gem_l3_remap(dev);
  3257. i915_gem_init_swizzling(dev);
  3258. ret = intel_init_render_ring_buffer(dev);
  3259. if (ret)
  3260. return ret;
  3261. if (HAS_BSD(dev)) {
  3262. ret = intel_init_bsd_ring_buffer(dev);
  3263. if (ret)
  3264. goto cleanup_render_ring;
  3265. }
  3266. if (intel_enable_blt(dev)) {
  3267. ret = intel_init_blt_ring_buffer(dev);
  3268. if (ret)
  3269. goto cleanup_bsd_ring;
  3270. }
  3271. dev_priv->next_seqno = 1;
  3272. /*
  3273. * XXX: There was some w/a described somewhere suggesting loading
  3274. * contexts before PPGTT.
  3275. */
  3276. i915_gem_context_init(dev);
  3277. i915_gem_init_ppgtt(dev);
  3278. return 0;
  3279. cleanup_bsd_ring:
  3280. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3281. cleanup_render_ring:
  3282. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3283. return ret;
  3284. }
  3285. static bool
  3286. intel_enable_ppgtt(struct drm_device *dev)
  3287. {
  3288. if (i915_enable_ppgtt >= 0)
  3289. return i915_enable_ppgtt;
  3290. #ifdef CONFIG_INTEL_IOMMU
  3291. /* Disable ppgtt on SNB if VT-d is on. */
  3292. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3293. return false;
  3294. #endif
  3295. return true;
  3296. }
  3297. int i915_gem_init(struct drm_device *dev)
  3298. {
  3299. struct drm_i915_private *dev_priv = dev->dev_private;
  3300. unsigned long gtt_size, mappable_size;
  3301. int ret;
  3302. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3303. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3304. mutex_lock(&dev->struct_mutex);
  3305. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3306. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3307. * aperture accordingly when using aliasing ppgtt. */
  3308. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3309. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3310. ret = i915_gem_init_aliasing_ppgtt(dev);
  3311. if (ret) {
  3312. mutex_unlock(&dev->struct_mutex);
  3313. return ret;
  3314. }
  3315. } else {
  3316. /* Let GEM Manage all of the aperture.
  3317. *
  3318. * However, leave one page at the end still bound to the scratch
  3319. * page. There are a number of places where the hardware
  3320. * apparently prefetches past the end of the object, and we've
  3321. * seen multiple hangs with the GPU head pointer stuck in a
  3322. * batchbuffer bound at the last page of the aperture. One page
  3323. * should be enough to keep any prefetching inside of the
  3324. * aperture.
  3325. */
  3326. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3327. gtt_size);
  3328. }
  3329. ret = i915_gem_init_hw(dev);
  3330. mutex_unlock(&dev->struct_mutex);
  3331. if (ret) {
  3332. i915_gem_cleanup_aliasing_ppgtt(dev);
  3333. return ret;
  3334. }
  3335. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3336. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3337. dev_priv->dri1.allow_batchbuffer = 1;
  3338. return 0;
  3339. }
  3340. void
  3341. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3342. {
  3343. drm_i915_private_t *dev_priv = dev->dev_private;
  3344. struct intel_ring_buffer *ring;
  3345. int i;
  3346. for_each_ring(ring, dev_priv, i)
  3347. intel_cleanup_ring_buffer(ring);
  3348. }
  3349. int
  3350. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3351. struct drm_file *file_priv)
  3352. {
  3353. drm_i915_private_t *dev_priv = dev->dev_private;
  3354. int ret;
  3355. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3356. return 0;
  3357. if (atomic_read(&dev_priv->mm.wedged)) {
  3358. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3359. atomic_set(&dev_priv->mm.wedged, 0);
  3360. }
  3361. mutex_lock(&dev->struct_mutex);
  3362. dev_priv->mm.suspended = 0;
  3363. ret = i915_gem_init_hw(dev);
  3364. if (ret != 0) {
  3365. mutex_unlock(&dev->struct_mutex);
  3366. return ret;
  3367. }
  3368. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3369. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3370. mutex_unlock(&dev->struct_mutex);
  3371. ret = drm_irq_install(dev);
  3372. if (ret)
  3373. goto cleanup_ringbuffer;
  3374. return 0;
  3375. cleanup_ringbuffer:
  3376. mutex_lock(&dev->struct_mutex);
  3377. i915_gem_cleanup_ringbuffer(dev);
  3378. dev_priv->mm.suspended = 1;
  3379. mutex_unlock(&dev->struct_mutex);
  3380. return ret;
  3381. }
  3382. int
  3383. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3384. struct drm_file *file_priv)
  3385. {
  3386. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3387. return 0;
  3388. drm_irq_uninstall(dev);
  3389. return i915_gem_idle(dev);
  3390. }
  3391. void
  3392. i915_gem_lastclose(struct drm_device *dev)
  3393. {
  3394. int ret;
  3395. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3396. return;
  3397. ret = i915_gem_idle(dev);
  3398. if (ret)
  3399. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3400. }
  3401. static void
  3402. init_ring_lists(struct intel_ring_buffer *ring)
  3403. {
  3404. INIT_LIST_HEAD(&ring->active_list);
  3405. INIT_LIST_HEAD(&ring->request_list);
  3406. }
  3407. void
  3408. i915_gem_load(struct drm_device *dev)
  3409. {
  3410. int i;
  3411. drm_i915_private_t *dev_priv = dev->dev_private;
  3412. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3413. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3414. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3415. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3416. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3417. for (i = 0; i < I915_NUM_RINGS; i++)
  3418. init_ring_lists(&dev_priv->ring[i]);
  3419. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3420. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3421. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3422. i915_gem_retire_work_handler);
  3423. init_completion(&dev_priv->error_completion);
  3424. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3425. if (IS_GEN3(dev)) {
  3426. I915_WRITE(MI_ARB_STATE,
  3427. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3428. }
  3429. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3430. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3431. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3432. dev_priv->fence_reg_start = 3;
  3433. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3434. dev_priv->num_fence_regs = 16;
  3435. else
  3436. dev_priv->num_fence_regs = 8;
  3437. /* Initialize fence registers to zero */
  3438. i915_gem_reset_fences(dev);
  3439. i915_gem_detect_bit_6_swizzle(dev);
  3440. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3441. dev_priv->mm.interruptible = true;
  3442. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3443. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3444. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3445. }
  3446. /*
  3447. * Create a physically contiguous memory object for this object
  3448. * e.g. for cursor + overlay regs
  3449. */
  3450. static int i915_gem_init_phys_object(struct drm_device *dev,
  3451. int id, int size, int align)
  3452. {
  3453. drm_i915_private_t *dev_priv = dev->dev_private;
  3454. struct drm_i915_gem_phys_object *phys_obj;
  3455. int ret;
  3456. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3457. return 0;
  3458. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3459. if (!phys_obj)
  3460. return -ENOMEM;
  3461. phys_obj->id = id;
  3462. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3463. if (!phys_obj->handle) {
  3464. ret = -ENOMEM;
  3465. goto kfree_obj;
  3466. }
  3467. #ifdef CONFIG_X86
  3468. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3469. #endif
  3470. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3471. return 0;
  3472. kfree_obj:
  3473. kfree(phys_obj);
  3474. return ret;
  3475. }
  3476. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3477. {
  3478. drm_i915_private_t *dev_priv = dev->dev_private;
  3479. struct drm_i915_gem_phys_object *phys_obj;
  3480. if (!dev_priv->mm.phys_objs[id - 1])
  3481. return;
  3482. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3483. if (phys_obj->cur_obj) {
  3484. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3485. }
  3486. #ifdef CONFIG_X86
  3487. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3488. #endif
  3489. drm_pci_free(dev, phys_obj->handle);
  3490. kfree(phys_obj);
  3491. dev_priv->mm.phys_objs[id - 1] = NULL;
  3492. }
  3493. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3494. {
  3495. int i;
  3496. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3497. i915_gem_free_phys_object(dev, i);
  3498. }
  3499. void i915_gem_detach_phys_object(struct drm_device *dev,
  3500. struct drm_i915_gem_object *obj)
  3501. {
  3502. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3503. char *vaddr;
  3504. int i;
  3505. int page_count;
  3506. if (!obj->phys_obj)
  3507. return;
  3508. vaddr = obj->phys_obj->handle->vaddr;
  3509. page_count = obj->base.size / PAGE_SIZE;
  3510. for (i = 0; i < page_count; i++) {
  3511. struct page *page = shmem_read_mapping_page(mapping, i);
  3512. if (!IS_ERR(page)) {
  3513. char *dst = kmap_atomic(page);
  3514. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3515. kunmap_atomic(dst);
  3516. drm_clflush_pages(&page, 1);
  3517. set_page_dirty(page);
  3518. mark_page_accessed(page);
  3519. page_cache_release(page);
  3520. }
  3521. }
  3522. intel_gtt_chipset_flush();
  3523. obj->phys_obj->cur_obj = NULL;
  3524. obj->phys_obj = NULL;
  3525. }
  3526. int
  3527. i915_gem_attach_phys_object(struct drm_device *dev,
  3528. struct drm_i915_gem_object *obj,
  3529. int id,
  3530. int align)
  3531. {
  3532. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3533. drm_i915_private_t *dev_priv = dev->dev_private;
  3534. int ret = 0;
  3535. int page_count;
  3536. int i;
  3537. if (id > I915_MAX_PHYS_OBJECT)
  3538. return -EINVAL;
  3539. if (obj->phys_obj) {
  3540. if (obj->phys_obj->id == id)
  3541. return 0;
  3542. i915_gem_detach_phys_object(dev, obj);
  3543. }
  3544. /* create a new object */
  3545. if (!dev_priv->mm.phys_objs[id - 1]) {
  3546. ret = i915_gem_init_phys_object(dev, id,
  3547. obj->base.size, align);
  3548. if (ret) {
  3549. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3550. id, obj->base.size);
  3551. return ret;
  3552. }
  3553. }
  3554. /* bind to the object */
  3555. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3556. obj->phys_obj->cur_obj = obj;
  3557. page_count = obj->base.size / PAGE_SIZE;
  3558. for (i = 0; i < page_count; i++) {
  3559. struct page *page;
  3560. char *dst, *src;
  3561. page = shmem_read_mapping_page(mapping, i);
  3562. if (IS_ERR(page))
  3563. return PTR_ERR(page);
  3564. src = kmap_atomic(page);
  3565. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3566. memcpy(dst, src, PAGE_SIZE);
  3567. kunmap_atomic(src);
  3568. mark_page_accessed(page);
  3569. page_cache_release(page);
  3570. }
  3571. return 0;
  3572. }
  3573. static int
  3574. i915_gem_phys_pwrite(struct drm_device *dev,
  3575. struct drm_i915_gem_object *obj,
  3576. struct drm_i915_gem_pwrite *args,
  3577. struct drm_file *file_priv)
  3578. {
  3579. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3580. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3581. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3582. unsigned long unwritten;
  3583. /* The physical object once assigned is fixed for the lifetime
  3584. * of the obj, so we can safely drop the lock and continue
  3585. * to access vaddr.
  3586. */
  3587. mutex_unlock(&dev->struct_mutex);
  3588. unwritten = copy_from_user(vaddr, user_data, args->size);
  3589. mutex_lock(&dev->struct_mutex);
  3590. if (unwritten)
  3591. return -EFAULT;
  3592. }
  3593. intel_gtt_chipset_flush();
  3594. return 0;
  3595. }
  3596. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3597. {
  3598. struct drm_i915_file_private *file_priv = file->driver_priv;
  3599. /* Clean up our request list when the client is going away, so that
  3600. * later retire_requests won't dereference our soon-to-be-gone
  3601. * file_priv.
  3602. */
  3603. spin_lock(&file_priv->mm.lock);
  3604. while (!list_empty(&file_priv->mm.request_list)) {
  3605. struct drm_i915_gem_request *request;
  3606. request = list_first_entry(&file_priv->mm.request_list,
  3607. struct drm_i915_gem_request,
  3608. client_list);
  3609. list_del(&request->client_list);
  3610. request->file_priv = NULL;
  3611. }
  3612. spin_unlock(&file_priv->mm.lock);
  3613. }
  3614. static int
  3615. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3616. {
  3617. struct drm_i915_private *dev_priv =
  3618. container_of(shrinker,
  3619. struct drm_i915_private,
  3620. mm.inactive_shrinker);
  3621. struct drm_device *dev = dev_priv->dev;
  3622. struct drm_i915_gem_object *obj;
  3623. int nr_to_scan = sc->nr_to_scan;
  3624. int cnt;
  3625. if (!mutex_trylock(&dev->struct_mutex))
  3626. return 0;
  3627. if (nr_to_scan) {
  3628. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3629. if (nr_to_scan > 0)
  3630. i915_gem_shrink_all(dev_priv);
  3631. }
  3632. cnt = 0;
  3633. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
  3634. if (obj->pages_pin_count == 0)
  3635. cnt += obj->base.size >> PAGE_SHIFT;
  3636. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  3637. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3638. cnt += obj->base.size >> PAGE_SHIFT;
  3639. mutex_unlock(&dev->struct_mutex);
  3640. return cnt;
  3641. }