mmu.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "kvm.h"
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <asm/page.h>
  27. #include <asm/cmpxchg.h>
  28. #undef MMU_DEBUG
  29. #undef AUDIT
  30. #ifdef AUDIT
  31. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  32. #else
  33. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  34. #endif
  35. #ifdef MMU_DEBUG
  36. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  37. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  38. #else
  39. #define pgprintk(x...) do { } while (0)
  40. #define rmap_printk(x...) do { } while (0)
  41. #endif
  42. #if defined(MMU_DEBUG) || defined(AUDIT)
  43. static int dbg = 1;
  44. #endif
  45. #ifndef MMU_DEBUG
  46. #define ASSERT(x) do { } while (0)
  47. #else
  48. #define ASSERT(x) \
  49. if (!(x)) { \
  50. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  51. __FILE__, __LINE__, #x); \
  52. }
  53. #endif
  54. #define PT64_PT_BITS 9
  55. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  56. #define PT32_PT_BITS 10
  57. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  58. #define PT_WRITABLE_SHIFT 1
  59. #define PT_PRESENT_MASK (1ULL << 0)
  60. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  61. #define PT_USER_MASK (1ULL << 2)
  62. #define PT_PWT_MASK (1ULL << 3)
  63. #define PT_PCD_MASK (1ULL << 4)
  64. #define PT_ACCESSED_MASK (1ULL << 5)
  65. #define PT_DIRTY_MASK (1ULL << 6)
  66. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  67. #define PT_PAT_MASK (1ULL << 7)
  68. #define PT_GLOBAL_MASK (1ULL << 8)
  69. #define PT64_NX_MASK (1ULL << 63)
  70. #define PT_PAT_SHIFT 7
  71. #define PT_DIR_PAT_SHIFT 12
  72. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  73. #define PT32_DIR_PSE36_SIZE 4
  74. #define PT32_DIR_PSE36_SHIFT 13
  75. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  79. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  83. #define PT64_LEVEL_MASK(level) \
  84. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  85. #define PT64_INDEX(address, level)\
  86. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  87. #define PT32_LEVEL_BITS 10
  88. #define PT32_LEVEL_SHIFT(level) \
  89. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  90. #define PT32_LEVEL_MASK(level) \
  91. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT32_BASE_ADDR_MASK PAGE_MASK
  98. #define PT32_DIR_BASE_ADDR_MASK \
  99. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  100. #define PFERR_PRESENT_MASK (1U << 0)
  101. #define PFERR_WRITE_MASK (1U << 1)
  102. #define PFERR_USER_MASK (1U << 2)
  103. #define PFERR_FETCH_MASK (1U << 4)
  104. #define PT64_ROOT_LEVEL 4
  105. #define PT32_ROOT_LEVEL 2
  106. #define PT32E_ROOT_LEVEL 3
  107. #define PT_DIRECTORY_LEVEL 2
  108. #define PT_PAGE_TABLE_LEVEL 1
  109. #define RMAP_EXT 4
  110. struct kvm_rmap_desc {
  111. u64 *shadow_ptes[RMAP_EXT];
  112. struct kvm_rmap_desc *more;
  113. };
  114. static struct kmem_cache *pte_chain_cache;
  115. static struct kmem_cache *rmap_desc_cache;
  116. static struct kmem_cache *mmu_page_header_cache;
  117. static u64 __read_mostly shadow_trap_nonpresent_pte;
  118. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  119. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  120. {
  121. shadow_trap_nonpresent_pte = trap_pte;
  122. shadow_notrap_nonpresent_pte = notrap_pte;
  123. }
  124. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  125. static int is_write_protection(struct kvm_vcpu *vcpu)
  126. {
  127. return vcpu->cr0 & X86_CR0_WP;
  128. }
  129. static int is_cpuid_PSE36(void)
  130. {
  131. return 1;
  132. }
  133. static int is_nx(struct kvm_vcpu *vcpu)
  134. {
  135. return vcpu->shadow_efer & EFER_NX;
  136. }
  137. static int is_present_pte(unsigned long pte)
  138. {
  139. return pte & PT_PRESENT_MASK;
  140. }
  141. static int is_shadow_present_pte(u64 pte)
  142. {
  143. pte &= ~PT_SHADOW_IO_MARK;
  144. return pte != shadow_trap_nonpresent_pte
  145. && pte != shadow_notrap_nonpresent_pte;
  146. }
  147. static int is_writeble_pte(unsigned long pte)
  148. {
  149. return pte & PT_WRITABLE_MASK;
  150. }
  151. static int is_io_pte(unsigned long pte)
  152. {
  153. return pte & PT_SHADOW_IO_MARK;
  154. }
  155. static int is_rmap_pte(u64 pte)
  156. {
  157. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  158. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  159. }
  160. static void set_shadow_pte(u64 *sptep, u64 spte)
  161. {
  162. #ifdef CONFIG_X86_64
  163. set_64bit((unsigned long *)sptep, spte);
  164. #else
  165. set_64bit((unsigned long long *)sptep, spte);
  166. #endif
  167. }
  168. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  169. struct kmem_cache *base_cache, int min)
  170. {
  171. void *obj;
  172. if (cache->nobjs >= min)
  173. return 0;
  174. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  175. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  176. if (!obj)
  177. return -ENOMEM;
  178. cache->objects[cache->nobjs++] = obj;
  179. }
  180. return 0;
  181. }
  182. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  183. {
  184. while (mc->nobjs)
  185. kfree(mc->objects[--mc->nobjs]);
  186. }
  187. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  188. int min)
  189. {
  190. struct page *page;
  191. if (cache->nobjs >= min)
  192. return 0;
  193. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  194. page = alloc_page(GFP_KERNEL);
  195. if (!page)
  196. return -ENOMEM;
  197. set_page_private(page, 0);
  198. cache->objects[cache->nobjs++] = page_address(page);
  199. }
  200. return 0;
  201. }
  202. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  203. {
  204. while (mc->nobjs)
  205. free_page((unsigned long)mc->objects[--mc->nobjs]);
  206. }
  207. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  208. {
  209. int r;
  210. kvm_mmu_free_some_pages(vcpu);
  211. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  212. pte_chain_cache, 4);
  213. if (r)
  214. goto out;
  215. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  216. rmap_desc_cache, 1);
  217. if (r)
  218. goto out;
  219. r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
  220. if (r)
  221. goto out;
  222. r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
  223. mmu_page_header_cache, 4);
  224. out:
  225. return r;
  226. }
  227. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  228. {
  229. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  230. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  231. mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
  232. mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
  233. }
  234. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  235. size_t size)
  236. {
  237. void *p;
  238. BUG_ON(!mc->nobjs);
  239. p = mc->objects[--mc->nobjs];
  240. memset(p, 0, size);
  241. return p;
  242. }
  243. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  244. {
  245. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  246. sizeof(struct kvm_pte_chain));
  247. }
  248. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  249. {
  250. kfree(pc);
  251. }
  252. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  253. {
  254. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  255. sizeof(struct kvm_rmap_desc));
  256. }
  257. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  258. {
  259. kfree(rd);
  260. }
  261. /*
  262. * Take gfn and return the reverse mapping to it.
  263. * Note: gfn must be unaliased before this function get called
  264. */
  265. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
  266. {
  267. struct kvm_memory_slot *slot;
  268. slot = gfn_to_memslot(kvm, gfn);
  269. return &slot->rmap[gfn - slot->base_gfn];
  270. }
  271. /*
  272. * Reverse mapping data structures:
  273. *
  274. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  275. * that points to page_address(page).
  276. *
  277. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  278. * containing more mappings.
  279. */
  280. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  281. {
  282. struct kvm_mmu_page *page;
  283. struct kvm_rmap_desc *desc;
  284. unsigned long *rmapp;
  285. int i;
  286. if (!is_rmap_pte(*spte))
  287. return;
  288. gfn = unalias_gfn(vcpu->kvm, gfn);
  289. page = page_header(__pa(spte));
  290. page->gfns[spte - page->spt] = gfn;
  291. rmapp = gfn_to_rmap(vcpu->kvm, gfn);
  292. if (!*rmapp) {
  293. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  294. *rmapp = (unsigned long)spte;
  295. } else if (!(*rmapp & 1)) {
  296. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  297. desc = mmu_alloc_rmap_desc(vcpu);
  298. desc->shadow_ptes[0] = (u64 *)*rmapp;
  299. desc->shadow_ptes[1] = spte;
  300. *rmapp = (unsigned long)desc | 1;
  301. } else {
  302. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  303. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  304. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  305. desc = desc->more;
  306. if (desc->shadow_ptes[RMAP_EXT-1]) {
  307. desc->more = mmu_alloc_rmap_desc(vcpu);
  308. desc = desc->more;
  309. }
  310. for (i = 0; desc->shadow_ptes[i]; ++i)
  311. ;
  312. desc->shadow_ptes[i] = spte;
  313. }
  314. }
  315. static void rmap_desc_remove_entry(unsigned long *rmapp,
  316. struct kvm_rmap_desc *desc,
  317. int i,
  318. struct kvm_rmap_desc *prev_desc)
  319. {
  320. int j;
  321. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  322. ;
  323. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  324. desc->shadow_ptes[j] = NULL;
  325. if (j != 0)
  326. return;
  327. if (!prev_desc && !desc->more)
  328. *rmapp = (unsigned long)desc->shadow_ptes[0];
  329. else
  330. if (prev_desc)
  331. prev_desc->more = desc->more;
  332. else
  333. *rmapp = (unsigned long)desc->more | 1;
  334. mmu_free_rmap_desc(desc);
  335. }
  336. static void rmap_remove(struct kvm *kvm, u64 *spte)
  337. {
  338. struct kvm_rmap_desc *desc;
  339. struct kvm_rmap_desc *prev_desc;
  340. struct kvm_mmu_page *page;
  341. unsigned long *rmapp;
  342. int i;
  343. if (!is_rmap_pte(*spte))
  344. return;
  345. page = page_header(__pa(spte));
  346. rmapp = gfn_to_rmap(kvm, page->gfns[spte - page->spt]);
  347. if (!*rmapp) {
  348. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  349. BUG();
  350. } else if (!(*rmapp & 1)) {
  351. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  352. if ((u64 *)*rmapp != spte) {
  353. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  354. spte, *spte);
  355. BUG();
  356. }
  357. *rmapp = 0;
  358. } else {
  359. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  360. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  361. prev_desc = NULL;
  362. while (desc) {
  363. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  364. if (desc->shadow_ptes[i] == spte) {
  365. rmap_desc_remove_entry(rmapp,
  366. desc, i,
  367. prev_desc);
  368. return;
  369. }
  370. prev_desc = desc;
  371. desc = desc->more;
  372. }
  373. BUG();
  374. }
  375. }
  376. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  377. {
  378. struct kvm_rmap_desc *desc;
  379. unsigned long *rmapp;
  380. u64 *spte;
  381. gfn = unalias_gfn(vcpu->kvm, gfn);
  382. rmapp = gfn_to_rmap(vcpu->kvm, gfn);
  383. while (*rmapp) {
  384. if (!(*rmapp & 1))
  385. spte = (u64 *)*rmapp;
  386. else {
  387. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  388. spte = desc->shadow_ptes[0];
  389. }
  390. BUG_ON(!spte);
  391. BUG_ON(!(*spte & PT_PRESENT_MASK));
  392. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  393. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  394. rmap_remove(vcpu->kvm, spte);
  395. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  396. kvm_flush_remote_tlbs(vcpu->kvm);
  397. }
  398. }
  399. #ifdef MMU_DEBUG
  400. static int is_empty_shadow_page(u64 *spt)
  401. {
  402. u64 *pos;
  403. u64 *end;
  404. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  405. if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
  406. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  407. pos, *pos);
  408. return 0;
  409. }
  410. return 1;
  411. }
  412. #endif
  413. static void kvm_mmu_free_page(struct kvm *kvm,
  414. struct kvm_mmu_page *page_head)
  415. {
  416. ASSERT(is_empty_shadow_page(page_head->spt));
  417. list_del(&page_head->link);
  418. __free_page(virt_to_page(page_head->spt));
  419. __free_page(virt_to_page(page_head->gfns));
  420. kfree(page_head);
  421. ++kvm->n_free_mmu_pages;
  422. }
  423. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  424. {
  425. return gfn;
  426. }
  427. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  428. u64 *parent_pte)
  429. {
  430. struct kvm_mmu_page *page;
  431. if (!vcpu->kvm->n_free_mmu_pages)
  432. return NULL;
  433. page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
  434. sizeof *page);
  435. page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  436. page->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  437. set_page_private(virt_to_page(page->spt), (unsigned long)page);
  438. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  439. ASSERT(is_empty_shadow_page(page->spt));
  440. page->slot_bitmap = 0;
  441. page->multimapped = 0;
  442. page->parent_pte = parent_pte;
  443. --vcpu->kvm->n_free_mmu_pages;
  444. return page;
  445. }
  446. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  447. struct kvm_mmu_page *page, u64 *parent_pte)
  448. {
  449. struct kvm_pte_chain *pte_chain;
  450. struct hlist_node *node;
  451. int i;
  452. if (!parent_pte)
  453. return;
  454. if (!page->multimapped) {
  455. u64 *old = page->parent_pte;
  456. if (!old) {
  457. page->parent_pte = parent_pte;
  458. return;
  459. }
  460. page->multimapped = 1;
  461. pte_chain = mmu_alloc_pte_chain(vcpu);
  462. INIT_HLIST_HEAD(&page->parent_ptes);
  463. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  464. pte_chain->parent_ptes[0] = old;
  465. }
  466. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  467. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  468. continue;
  469. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  470. if (!pte_chain->parent_ptes[i]) {
  471. pte_chain->parent_ptes[i] = parent_pte;
  472. return;
  473. }
  474. }
  475. pte_chain = mmu_alloc_pte_chain(vcpu);
  476. BUG_ON(!pte_chain);
  477. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  478. pte_chain->parent_ptes[0] = parent_pte;
  479. }
  480. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  481. u64 *parent_pte)
  482. {
  483. struct kvm_pte_chain *pte_chain;
  484. struct hlist_node *node;
  485. int i;
  486. if (!page->multimapped) {
  487. BUG_ON(page->parent_pte != parent_pte);
  488. page->parent_pte = NULL;
  489. return;
  490. }
  491. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  492. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  493. if (!pte_chain->parent_ptes[i])
  494. break;
  495. if (pte_chain->parent_ptes[i] != parent_pte)
  496. continue;
  497. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  498. && pte_chain->parent_ptes[i + 1]) {
  499. pte_chain->parent_ptes[i]
  500. = pte_chain->parent_ptes[i + 1];
  501. ++i;
  502. }
  503. pte_chain->parent_ptes[i] = NULL;
  504. if (i == 0) {
  505. hlist_del(&pte_chain->link);
  506. mmu_free_pte_chain(pte_chain);
  507. if (hlist_empty(&page->parent_ptes)) {
  508. page->multimapped = 0;
  509. page->parent_pte = NULL;
  510. }
  511. }
  512. return;
  513. }
  514. BUG();
  515. }
  516. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  517. gfn_t gfn)
  518. {
  519. unsigned index;
  520. struct hlist_head *bucket;
  521. struct kvm_mmu_page *page;
  522. struct hlist_node *node;
  523. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  524. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  525. bucket = &vcpu->kvm->mmu_page_hash[index];
  526. hlist_for_each_entry(page, node, bucket, hash_link)
  527. if (page->gfn == gfn && !page->role.metaphysical) {
  528. pgprintk("%s: found role %x\n",
  529. __FUNCTION__, page->role.word);
  530. return page;
  531. }
  532. return NULL;
  533. }
  534. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  535. gfn_t gfn,
  536. gva_t gaddr,
  537. unsigned level,
  538. int metaphysical,
  539. unsigned hugepage_access,
  540. u64 *parent_pte)
  541. {
  542. union kvm_mmu_page_role role;
  543. unsigned index;
  544. unsigned quadrant;
  545. struct hlist_head *bucket;
  546. struct kvm_mmu_page *page;
  547. struct hlist_node *node;
  548. role.word = 0;
  549. role.glevels = vcpu->mmu.root_level;
  550. role.level = level;
  551. role.metaphysical = metaphysical;
  552. role.hugepage_access = hugepage_access;
  553. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  554. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  555. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  556. role.quadrant = quadrant;
  557. }
  558. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  559. gfn, role.word);
  560. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  561. bucket = &vcpu->kvm->mmu_page_hash[index];
  562. hlist_for_each_entry(page, node, bucket, hash_link)
  563. if (page->gfn == gfn && page->role.word == role.word) {
  564. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  565. pgprintk("%s: found\n", __FUNCTION__);
  566. return page;
  567. }
  568. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  569. if (!page)
  570. return page;
  571. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  572. page->gfn = gfn;
  573. page->role = role;
  574. hlist_add_head(&page->hash_link, bucket);
  575. vcpu->mmu.prefetch_page(vcpu, page);
  576. if (!metaphysical)
  577. rmap_write_protect(vcpu, gfn);
  578. return page;
  579. }
  580. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  581. struct kvm_mmu_page *page)
  582. {
  583. unsigned i;
  584. u64 *pt;
  585. u64 ent;
  586. pt = page->spt;
  587. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  588. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  589. if (is_shadow_present_pte(pt[i]))
  590. rmap_remove(kvm, &pt[i]);
  591. pt[i] = shadow_trap_nonpresent_pte;
  592. }
  593. kvm_flush_remote_tlbs(kvm);
  594. return;
  595. }
  596. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  597. ent = pt[i];
  598. pt[i] = shadow_trap_nonpresent_pte;
  599. if (!is_shadow_present_pte(ent))
  600. continue;
  601. ent &= PT64_BASE_ADDR_MASK;
  602. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  603. }
  604. kvm_flush_remote_tlbs(kvm);
  605. }
  606. static void kvm_mmu_put_page(struct kvm_mmu_page *page,
  607. u64 *parent_pte)
  608. {
  609. mmu_page_remove_parent_pte(page, parent_pte);
  610. }
  611. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  612. {
  613. int i;
  614. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  615. if (kvm->vcpus[i])
  616. kvm->vcpus[i]->last_pte_updated = NULL;
  617. }
  618. static void kvm_mmu_zap_page(struct kvm *kvm,
  619. struct kvm_mmu_page *page)
  620. {
  621. u64 *parent_pte;
  622. while (page->multimapped || page->parent_pte) {
  623. if (!page->multimapped)
  624. parent_pte = page->parent_pte;
  625. else {
  626. struct kvm_pte_chain *chain;
  627. chain = container_of(page->parent_ptes.first,
  628. struct kvm_pte_chain, link);
  629. parent_pte = chain->parent_ptes[0];
  630. }
  631. BUG_ON(!parent_pte);
  632. kvm_mmu_put_page(page, parent_pte);
  633. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  634. }
  635. kvm_mmu_page_unlink_children(kvm, page);
  636. if (!page->root_count) {
  637. hlist_del(&page->hash_link);
  638. kvm_mmu_free_page(kvm, page);
  639. } else
  640. list_move(&page->link, &kvm->active_mmu_pages);
  641. kvm_mmu_reset_last_pte_updated(kvm);
  642. }
  643. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  644. {
  645. unsigned index;
  646. struct hlist_head *bucket;
  647. struct kvm_mmu_page *page;
  648. struct hlist_node *node, *n;
  649. int r;
  650. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  651. r = 0;
  652. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  653. bucket = &vcpu->kvm->mmu_page_hash[index];
  654. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  655. if (page->gfn == gfn && !page->role.metaphysical) {
  656. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  657. page->role.word);
  658. kvm_mmu_zap_page(vcpu->kvm, page);
  659. r = 1;
  660. }
  661. return r;
  662. }
  663. static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
  664. {
  665. struct kvm_mmu_page *page;
  666. while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
  667. pgprintk("%s: zap %lx %x\n",
  668. __FUNCTION__, gfn, page->role.word);
  669. kvm_mmu_zap_page(vcpu->kvm, page);
  670. }
  671. }
  672. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  673. {
  674. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  675. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  676. __set_bit(slot, &page_head->slot_bitmap);
  677. }
  678. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  679. {
  680. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  681. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  682. }
  683. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  684. {
  685. struct page *page;
  686. ASSERT((gpa & HPA_ERR_MASK) == 0);
  687. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  688. if (!page)
  689. return gpa | HPA_ERR_MASK;
  690. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  691. | (gpa & (PAGE_SIZE-1));
  692. }
  693. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  694. {
  695. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  696. if (gpa == UNMAPPED_GVA)
  697. return UNMAPPED_GVA;
  698. return gpa_to_hpa(vcpu, gpa);
  699. }
  700. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  701. {
  702. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  703. if (gpa == UNMAPPED_GVA)
  704. return NULL;
  705. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  706. }
  707. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  708. {
  709. }
  710. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  711. {
  712. int level = PT32E_ROOT_LEVEL;
  713. hpa_t table_addr = vcpu->mmu.root_hpa;
  714. for (; ; level--) {
  715. u32 index = PT64_INDEX(v, level);
  716. u64 *table;
  717. u64 pte;
  718. ASSERT(VALID_PAGE(table_addr));
  719. table = __va(table_addr);
  720. if (level == 1) {
  721. pte = table[index];
  722. if (is_shadow_present_pte(pte) && is_writeble_pte(pte))
  723. return 0;
  724. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  725. page_header_update_slot(vcpu->kvm, table, v);
  726. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  727. PT_USER_MASK;
  728. rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
  729. return 0;
  730. }
  731. if (table[index] == shadow_trap_nonpresent_pte) {
  732. struct kvm_mmu_page *new_table;
  733. gfn_t pseudo_gfn;
  734. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  735. >> PAGE_SHIFT;
  736. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  737. v, level - 1,
  738. 1, 0, &table[index]);
  739. if (!new_table) {
  740. pgprintk("nonpaging_map: ENOMEM\n");
  741. return -ENOMEM;
  742. }
  743. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  744. | PT_WRITABLE_MASK | PT_USER_MASK;
  745. }
  746. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  747. }
  748. }
  749. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  750. struct kvm_mmu_page *sp)
  751. {
  752. int i;
  753. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  754. sp->spt[i] = shadow_trap_nonpresent_pte;
  755. }
  756. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  757. {
  758. int i;
  759. struct kvm_mmu_page *page;
  760. if (!VALID_PAGE(vcpu->mmu.root_hpa))
  761. return;
  762. #ifdef CONFIG_X86_64
  763. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  764. hpa_t root = vcpu->mmu.root_hpa;
  765. page = page_header(root);
  766. --page->root_count;
  767. vcpu->mmu.root_hpa = INVALID_PAGE;
  768. return;
  769. }
  770. #endif
  771. for (i = 0; i < 4; ++i) {
  772. hpa_t root = vcpu->mmu.pae_root[i];
  773. if (root) {
  774. root &= PT64_BASE_ADDR_MASK;
  775. page = page_header(root);
  776. --page->root_count;
  777. }
  778. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  779. }
  780. vcpu->mmu.root_hpa = INVALID_PAGE;
  781. }
  782. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  783. {
  784. int i;
  785. gfn_t root_gfn;
  786. struct kvm_mmu_page *page;
  787. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  788. #ifdef CONFIG_X86_64
  789. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  790. hpa_t root = vcpu->mmu.root_hpa;
  791. ASSERT(!VALID_PAGE(root));
  792. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  793. PT64_ROOT_LEVEL, 0, 0, NULL);
  794. root = __pa(page->spt);
  795. ++page->root_count;
  796. vcpu->mmu.root_hpa = root;
  797. return;
  798. }
  799. #endif
  800. for (i = 0; i < 4; ++i) {
  801. hpa_t root = vcpu->mmu.pae_root[i];
  802. ASSERT(!VALID_PAGE(root));
  803. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  804. if (!is_present_pte(vcpu->pdptrs[i])) {
  805. vcpu->mmu.pae_root[i] = 0;
  806. continue;
  807. }
  808. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  809. } else if (vcpu->mmu.root_level == 0)
  810. root_gfn = 0;
  811. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  812. PT32_ROOT_LEVEL, !is_paging(vcpu),
  813. 0, NULL);
  814. root = __pa(page->spt);
  815. ++page->root_count;
  816. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  817. }
  818. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  819. }
  820. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  821. {
  822. return vaddr;
  823. }
  824. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  825. u32 error_code)
  826. {
  827. gpa_t addr = gva;
  828. hpa_t paddr;
  829. int r;
  830. r = mmu_topup_memory_caches(vcpu);
  831. if (r)
  832. return r;
  833. ASSERT(vcpu);
  834. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  835. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  836. if (is_error_hpa(paddr))
  837. return 1;
  838. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  839. }
  840. static void nonpaging_free(struct kvm_vcpu *vcpu)
  841. {
  842. mmu_free_roots(vcpu);
  843. }
  844. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  845. {
  846. struct kvm_mmu *context = &vcpu->mmu;
  847. context->new_cr3 = nonpaging_new_cr3;
  848. context->page_fault = nonpaging_page_fault;
  849. context->gva_to_gpa = nonpaging_gva_to_gpa;
  850. context->free = nonpaging_free;
  851. context->prefetch_page = nonpaging_prefetch_page;
  852. context->root_level = 0;
  853. context->shadow_root_level = PT32E_ROOT_LEVEL;
  854. context->root_hpa = INVALID_PAGE;
  855. return 0;
  856. }
  857. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  858. {
  859. ++vcpu->stat.tlb_flush;
  860. kvm_x86_ops->tlb_flush(vcpu);
  861. }
  862. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  863. {
  864. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  865. mmu_free_roots(vcpu);
  866. }
  867. static void inject_page_fault(struct kvm_vcpu *vcpu,
  868. u64 addr,
  869. u32 err_code)
  870. {
  871. kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
  872. }
  873. static void paging_free(struct kvm_vcpu *vcpu)
  874. {
  875. nonpaging_free(vcpu);
  876. }
  877. #define PTTYPE 64
  878. #include "paging_tmpl.h"
  879. #undef PTTYPE
  880. #define PTTYPE 32
  881. #include "paging_tmpl.h"
  882. #undef PTTYPE
  883. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  884. {
  885. struct kvm_mmu *context = &vcpu->mmu;
  886. ASSERT(is_pae(vcpu));
  887. context->new_cr3 = paging_new_cr3;
  888. context->page_fault = paging64_page_fault;
  889. context->gva_to_gpa = paging64_gva_to_gpa;
  890. context->prefetch_page = paging64_prefetch_page;
  891. context->free = paging_free;
  892. context->root_level = level;
  893. context->shadow_root_level = level;
  894. context->root_hpa = INVALID_PAGE;
  895. return 0;
  896. }
  897. static int paging64_init_context(struct kvm_vcpu *vcpu)
  898. {
  899. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  900. }
  901. static int paging32_init_context(struct kvm_vcpu *vcpu)
  902. {
  903. struct kvm_mmu *context = &vcpu->mmu;
  904. context->new_cr3 = paging_new_cr3;
  905. context->page_fault = paging32_page_fault;
  906. context->gva_to_gpa = paging32_gva_to_gpa;
  907. context->free = paging_free;
  908. context->prefetch_page = paging32_prefetch_page;
  909. context->root_level = PT32_ROOT_LEVEL;
  910. context->shadow_root_level = PT32E_ROOT_LEVEL;
  911. context->root_hpa = INVALID_PAGE;
  912. return 0;
  913. }
  914. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  915. {
  916. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  917. }
  918. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  919. {
  920. ASSERT(vcpu);
  921. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  922. if (!is_paging(vcpu))
  923. return nonpaging_init_context(vcpu);
  924. else if (is_long_mode(vcpu))
  925. return paging64_init_context(vcpu);
  926. else if (is_pae(vcpu))
  927. return paging32E_init_context(vcpu);
  928. else
  929. return paging32_init_context(vcpu);
  930. }
  931. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  932. {
  933. ASSERT(vcpu);
  934. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  935. vcpu->mmu.free(vcpu);
  936. vcpu->mmu.root_hpa = INVALID_PAGE;
  937. }
  938. }
  939. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  940. {
  941. destroy_kvm_mmu(vcpu);
  942. return init_kvm_mmu(vcpu);
  943. }
  944. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  945. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  946. {
  947. int r;
  948. mutex_lock(&vcpu->kvm->lock);
  949. r = mmu_topup_memory_caches(vcpu);
  950. if (r)
  951. goto out;
  952. mmu_alloc_roots(vcpu);
  953. kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  954. kvm_mmu_flush_tlb(vcpu);
  955. out:
  956. mutex_unlock(&vcpu->kvm->lock);
  957. return r;
  958. }
  959. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  960. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  961. {
  962. mmu_free_roots(vcpu);
  963. }
  964. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  965. struct kvm_mmu_page *page,
  966. u64 *spte)
  967. {
  968. u64 pte;
  969. struct kvm_mmu_page *child;
  970. pte = *spte;
  971. if (is_shadow_present_pte(pte)) {
  972. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  973. rmap_remove(vcpu->kvm, spte);
  974. else {
  975. child = page_header(pte & PT64_BASE_ADDR_MASK);
  976. mmu_page_remove_parent_pte(child, spte);
  977. }
  978. }
  979. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  980. kvm_flush_remote_tlbs(vcpu->kvm);
  981. }
  982. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  983. struct kvm_mmu_page *page,
  984. u64 *spte,
  985. const void *new, int bytes,
  986. int offset_in_pte)
  987. {
  988. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  989. return;
  990. if (page->role.glevels == PT32_ROOT_LEVEL)
  991. paging32_update_pte(vcpu, page, spte, new, bytes,
  992. offset_in_pte);
  993. else
  994. paging64_update_pte(vcpu, page, spte, new, bytes,
  995. offset_in_pte);
  996. }
  997. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  998. {
  999. u64 *spte = vcpu->last_pte_updated;
  1000. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1001. }
  1002. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1003. const u8 *new, int bytes)
  1004. {
  1005. gfn_t gfn = gpa >> PAGE_SHIFT;
  1006. struct kvm_mmu_page *page;
  1007. struct hlist_node *node, *n;
  1008. struct hlist_head *bucket;
  1009. unsigned index;
  1010. u64 *spte;
  1011. unsigned offset = offset_in_page(gpa);
  1012. unsigned pte_size;
  1013. unsigned page_offset;
  1014. unsigned misaligned;
  1015. unsigned quadrant;
  1016. int level;
  1017. int flooded = 0;
  1018. int npte;
  1019. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  1020. kvm_mmu_audit(vcpu, "pre pte write");
  1021. if (gfn == vcpu->last_pt_write_gfn
  1022. && !last_updated_pte_accessed(vcpu)) {
  1023. ++vcpu->last_pt_write_count;
  1024. if (vcpu->last_pt_write_count >= 3)
  1025. flooded = 1;
  1026. } else {
  1027. vcpu->last_pt_write_gfn = gfn;
  1028. vcpu->last_pt_write_count = 1;
  1029. vcpu->last_pte_updated = NULL;
  1030. }
  1031. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  1032. bucket = &vcpu->kvm->mmu_page_hash[index];
  1033. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  1034. if (page->gfn != gfn || page->role.metaphysical)
  1035. continue;
  1036. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1037. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1038. misaligned |= bytes < 4;
  1039. if (misaligned || flooded) {
  1040. /*
  1041. * Misaligned accesses are too much trouble to fix
  1042. * up; also, they usually indicate a page is not used
  1043. * as a page table.
  1044. *
  1045. * If we're seeing too many writes to a page,
  1046. * it may no longer be a page table, or we may be
  1047. * forking, in which case it is better to unmap the
  1048. * page.
  1049. */
  1050. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1051. gpa, bytes, page->role.word);
  1052. kvm_mmu_zap_page(vcpu->kvm, page);
  1053. continue;
  1054. }
  1055. page_offset = offset;
  1056. level = page->role.level;
  1057. npte = 1;
  1058. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1059. page_offset <<= 1; /* 32->64 */
  1060. /*
  1061. * A 32-bit pde maps 4MB while the shadow pdes map
  1062. * only 2MB. So we need to double the offset again
  1063. * and zap two pdes instead of one.
  1064. */
  1065. if (level == PT32_ROOT_LEVEL) {
  1066. page_offset &= ~7; /* kill rounding error */
  1067. page_offset <<= 1;
  1068. npte = 2;
  1069. }
  1070. quadrant = page_offset >> PAGE_SHIFT;
  1071. page_offset &= ~PAGE_MASK;
  1072. if (quadrant != page->role.quadrant)
  1073. continue;
  1074. }
  1075. spte = &page->spt[page_offset / sizeof(*spte)];
  1076. while (npte--) {
  1077. mmu_pte_write_zap_pte(vcpu, page, spte);
  1078. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
  1079. page_offset & (pte_size - 1));
  1080. ++spte;
  1081. }
  1082. }
  1083. kvm_mmu_audit(vcpu, "post pte write");
  1084. }
  1085. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1086. {
  1087. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1088. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  1089. }
  1090. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1091. {
  1092. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1093. struct kvm_mmu_page *page;
  1094. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1095. struct kvm_mmu_page, link);
  1096. kvm_mmu_zap_page(vcpu->kvm, page);
  1097. }
  1098. }
  1099. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1100. {
  1101. struct kvm_mmu_page *page;
  1102. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1103. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1104. struct kvm_mmu_page, link);
  1105. kvm_mmu_zap_page(vcpu->kvm, page);
  1106. }
  1107. free_page((unsigned long)vcpu->mmu.pae_root);
  1108. }
  1109. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1110. {
  1111. struct page *page;
  1112. int i;
  1113. ASSERT(vcpu);
  1114. vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
  1115. /*
  1116. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1117. * Therefore we need to allocate shadow page tables in the first
  1118. * 4GB of memory, which happens to fit the DMA32 zone.
  1119. */
  1120. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1121. if (!page)
  1122. goto error_1;
  1123. vcpu->mmu.pae_root = page_address(page);
  1124. for (i = 0; i < 4; ++i)
  1125. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1126. return 0;
  1127. error_1:
  1128. free_mmu_pages(vcpu);
  1129. return -ENOMEM;
  1130. }
  1131. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1132. {
  1133. ASSERT(vcpu);
  1134. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1135. return alloc_mmu_pages(vcpu);
  1136. }
  1137. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1138. {
  1139. ASSERT(vcpu);
  1140. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1141. return init_kvm_mmu(vcpu);
  1142. }
  1143. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1144. {
  1145. ASSERT(vcpu);
  1146. destroy_kvm_mmu(vcpu);
  1147. free_mmu_pages(vcpu);
  1148. mmu_free_memory_caches(vcpu);
  1149. }
  1150. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1151. {
  1152. struct kvm_mmu_page *page;
  1153. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1154. int i;
  1155. u64 *pt;
  1156. if (!test_bit(slot, &page->slot_bitmap))
  1157. continue;
  1158. pt = page->spt;
  1159. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1160. /* avoid RMW */
  1161. if (pt[i] & PT_WRITABLE_MASK) {
  1162. rmap_remove(kvm, &pt[i]);
  1163. pt[i] &= ~PT_WRITABLE_MASK;
  1164. }
  1165. }
  1166. }
  1167. void kvm_mmu_zap_all(struct kvm *kvm)
  1168. {
  1169. struct kvm_mmu_page *page, *node;
  1170. list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
  1171. kvm_mmu_zap_page(kvm, page);
  1172. kvm_flush_remote_tlbs(kvm);
  1173. }
  1174. void kvm_mmu_module_exit(void)
  1175. {
  1176. if (pte_chain_cache)
  1177. kmem_cache_destroy(pte_chain_cache);
  1178. if (rmap_desc_cache)
  1179. kmem_cache_destroy(rmap_desc_cache);
  1180. if (mmu_page_header_cache)
  1181. kmem_cache_destroy(mmu_page_header_cache);
  1182. }
  1183. int kvm_mmu_module_init(void)
  1184. {
  1185. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1186. sizeof(struct kvm_pte_chain),
  1187. 0, 0, NULL);
  1188. if (!pte_chain_cache)
  1189. goto nomem;
  1190. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1191. sizeof(struct kvm_rmap_desc),
  1192. 0, 0, NULL);
  1193. if (!rmap_desc_cache)
  1194. goto nomem;
  1195. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1196. sizeof(struct kvm_mmu_page),
  1197. 0, 0, NULL);
  1198. if (!mmu_page_header_cache)
  1199. goto nomem;
  1200. return 0;
  1201. nomem:
  1202. kvm_mmu_module_exit();
  1203. return -ENOMEM;
  1204. }
  1205. #ifdef AUDIT
  1206. static const char *audit_msg;
  1207. static gva_t canonicalize(gva_t gva)
  1208. {
  1209. #ifdef CONFIG_X86_64
  1210. gva = (long long)(gva << 16) >> 16;
  1211. #endif
  1212. return gva;
  1213. }
  1214. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1215. gva_t va, int level)
  1216. {
  1217. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1218. int i;
  1219. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1220. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1221. u64 ent = pt[i];
  1222. if (ent == shadow_trap_nonpresent_pte)
  1223. continue;
  1224. va = canonicalize(va);
  1225. if (level > 1) {
  1226. if (ent == shadow_notrap_nonpresent_pte)
  1227. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1228. " in nonleaf level: levels %d gva %lx"
  1229. " level %d pte %llx\n", audit_msg,
  1230. vcpu->mmu.root_level, va, level, ent);
  1231. audit_mappings_page(vcpu, ent, va, level - 1);
  1232. } else {
  1233. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1234. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1235. if (is_shadow_present_pte(ent)
  1236. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1237. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1238. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1239. audit_msg, vcpu->mmu.root_level,
  1240. va, gpa, hpa, ent, is_shadow_present_pte(ent));
  1241. else if (ent == shadow_notrap_nonpresent_pte
  1242. && !is_error_hpa(hpa))
  1243. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1244. " valid guest gva %lx\n", audit_msg, va);
  1245. }
  1246. }
  1247. }
  1248. static void audit_mappings(struct kvm_vcpu *vcpu)
  1249. {
  1250. unsigned i;
  1251. if (vcpu->mmu.root_level == 4)
  1252. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1253. else
  1254. for (i = 0; i < 4; ++i)
  1255. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1256. audit_mappings_page(vcpu,
  1257. vcpu->mmu.pae_root[i],
  1258. i << 30,
  1259. 2);
  1260. }
  1261. static int count_rmaps(struct kvm_vcpu *vcpu)
  1262. {
  1263. int nmaps = 0;
  1264. int i, j, k;
  1265. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1266. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1267. struct kvm_rmap_desc *d;
  1268. for (j = 0; j < m->npages; ++j) {
  1269. unsigned long *rmapp = &m->rmap[j];
  1270. if (!*rmapp)
  1271. continue;
  1272. if (!(*rmapp & 1)) {
  1273. ++nmaps;
  1274. continue;
  1275. }
  1276. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1277. while (d) {
  1278. for (k = 0; k < RMAP_EXT; ++k)
  1279. if (d->shadow_ptes[k])
  1280. ++nmaps;
  1281. else
  1282. break;
  1283. d = d->more;
  1284. }
  1285. }
  1286. }
  1287. return nmaps;
  1288. }
  1289. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1290. {
  1291. int nmaps = 0;
  1292. struct kvm_mmu_page *page;
  1293. int i;
  1294. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1295. u64 *pt = page->spt;
  1296. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1297. continue;
  1298. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1299. u64 ent = pt[i];
  1300. if (!(ent & PT_PRESENT_MASK))
  1301. continue;
  1302. if (!(ent & PT_WRITABLE_MASK))
  1303. continue;
  1304. ++nmaps;
  1305. }
  1306. }
  1307. return nmaps;
  1308. }
  1309. static void audit_rmap(struct kvm_vcpu *vcpu)
  1310. {
  1311. int n_rmap = count_rmaps(vcpu);
  1312. int n_actual = count_writable_mappings(vcpu);
  1313. if (n_rmap != n_actual)
  1314. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1315. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1316. }
  1317. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1318. {
  1319. struct kvm_mmu_page *page;
  1320. struct kvm_memory_slot *slot;
  1321. unsigned long *rmapp;
  1322. gfn_t gfn;
  1323. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1324. if (page->role.metaphysical)
  1325. continue;
  1326. slot = gfn_to_memslot(vcpu->kvm, page->gfn);
  1327. gfn = unalias_gfn(vcpu->kvm, page->gfn);
  1328. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1329. if (*rmapp)
  1330. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1331. " mappings: gfn %lx role %x\n",
  1332. __FUNCTION__, audit_msg, page->gfn,
  1333. page->role.word);
  1334. }
  1335. }
  1336. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1337. {
  1338. int olddbg = dbg;
  1339. dbg = 0;
  1340. audit_msg = msg;
  1341. audit_rmap(vcpu);
  1342. audit_write_protection(vcpu);
  1343. audit_mappings(vcpu);
  1344. dbg = olddbg;
  1345. }
  1346. #endif