sched.c 229 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. #endif /* CONFIG_CGROUP_SCHED */
  258. /* CFS-related fields in a runqueue */
  259. struct cfs_rq {
  260. struct load_weight load;
  261. unsigned long nr_running;
  262. u64 exec_clock;
  263. u64 min_vruntime;
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last;
  273. unsigned int nr_spread_over;
  274. #ifdef CONFIG_FAIR_GROUP_SCHED
  275. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  276. /*
  277. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  278. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  279. * (like users, containers etc.)
  280. *
  281. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  282. * list is used during load balance.
  283. */
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * this cpu's part of tg->shares
  300. */
  301. unsigned long shares;
  302. /*
  303. * load.weight at the time we set shares
  304. */
  305. unsigned long rq_weight;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. struct cpupri cpupri;
  359. };
  360. /*
  361. * By default the system creates a single root-domain with all cpus as
  362. * members (mimicking the global state we have today).
  363. */
  364. static struct root_domain def_root_domain;
  365. #endif /* CONFIG_SMP */
  366. /*
  367. * This is the main, per-CPU runqueue data structure.
  368. *
  369. * Locking rule: those places that want to lock multiple runqueues
  370. * (such as the load balancing or the thread migration code), lock
  371. * acquire operations must be ordered by ascending &runqueue.
  372. */
  373. struct rq {
  374. /* runqueue lock: */
  375. raw_spinlock_t lock;
  376. /*
  377. * nr_running and cpu_load should be in the same cacheline because
  378. * remote CPUs use both these fields when doing load calculation.
  379. */
  380. unsigned long nr_running;
  381. #define CPU_LOAD_IDX_MAX 5
  382. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  383. unsigned long last_load_update_tick;
  384. #ifdef CONFIG_NO_HZ
  385. u64 nohz_stamp;
  386. unsigned char nohz_balance_kick;
  387. #endif
  388. unsigned int skip_clock_update;
  389. /* capture load from *all* tasks on this cpu: */
  390. struct load_weight load;
  391. unsigned long nr_load_updates;
  392. u64 nr_switches;
  393. struct cfs_rq cfs;
  394. struct rt_rq rt;
  395. #ifdef CONFIG_FAIR_GROUP_SCHED
  396. /* list of leaf cfs_rq on this cpu: */
  397. struct list_head leaf_cfs_rq_list;
  398. #endif
  399. #ifdef CONFIG_RT_GROUP_SCHED
  400. struct list_head leaf_rt_rq_list;
  401. #endif
  402. /*
  403. * This is part of a global counter where only the total sum
  404. * over all CPUs matters. A task can increase this counter on
  405. * one CPU and if it got migrated afterwards it may decrease
  406. * it on another CPU. Always updated under the runqueue lock:
  407. */
  408. unsigned long nr_uninterruptible;
  409. struct task_struct *curr, *idle, *stop;
  410. unsigned long next_balance;
  411. struct mm_struct *prev_mm;
  412. u64 clock;
  413. u64 clock_task;
  414. atomic_t nr_iowait;
  415. #ifdef CONFIG_SMP
  416. struct root_domain *rd;
  417. struct sched_domain *sd;
  418. unsigned long cpu_power;
  419. unsigned char idle_at_tick;
  420. /* For active balancing */
  421. int post_schedule;
  422. int active_balance;
  423. int push_cpu;
  424. struct cpu_stop_work active_balance_work;
  425. /* cpu of this runqueue: */
  426. int cpu;
  427. int online;
  428. unsigned long avg_load_per_task;
  429. u64 rt_avg;
  430. u64 age_stamp;
  431. u64 idle_stamp;
  432. u64 avg_idle;
  433. #endif
  434. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  435. u64 prev_irq_time;
  436. #endif
  437. /* calc_load related fields */
  438. unsigned long calc_load_update;
  439. long calc_load_active;
  440. #ifdef CONFIG_SCHED_HRTICK
  441. #ifdef CONFIG_SMP
  442. int hrtick_csd_pending;
  443. struct call_single_data hrtick_csd;
  444. #endif
  445. struct hrtimer hrtick_timer;
  446. #endif
  447. #ifdef CONFIG_SCHEDSTATS
  448. /* latency stats */
  449. struct sched_info rq_sched_info;
  450. unsigned long long rq_cpu_time;
  451. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  452. /* sys_sched_yield() stats */
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. /* BKL stats */
  462. unsigned int bkl_count;
  463. #endif
  464. };
  465. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  466. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  467. static inline int cpu_of(struct rq *rq)
  468. {
  469. #ifdef CONFIG_SMP
  470. return rq->cpu;
  471. #else
  472. return 0;
  473. #endif
  474. }
  475. #define rcu_dereference_check_sched_domain(p) \
  476. rcu_dereference_check((p), \
  477. rcu_read_lock_sched_held() || \
  478. lockdep_is_held(&sched_domains_mutex))
  479. /*
  480. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  481. * See detach_destroy_domains: synchronize_sched for details.
  482. *
  483. * The domain tree of any CPU may only be accessed from within
  484. * preempt-disabled sections.
  485. */
  486. #define for_each_domain(cpu, __sd) \
  487. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  488. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  489. #define this_rq() (&__get_cpu_var(runqueues))
  490. #define task_rq(p) cpu_rq(task_cpu(p))
  491. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  492. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  493. #ifdef CONFIG_CGROUP_SCHED
  494. /*
  495. * Return the group to which this tasks belongs.
  496. *
  497. * We use task_subsys_state_check() and extend the RCU verification
  498. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  499. * holds that lock for each task it moves into the cgroup. Therefore
  500. * by holding that lock, we pin the task to the current cgroup.
  501. */
  502. static inline struct task_group *task_group(struct task_struct *p)
  503. {
  504. struct cgroup_subsys_state *css;
  505. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  506. lockdep_is_held(&task_rq(p)->lock));
  507. return container_of(css, struct task_group, css);
  508. }
  509. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  510. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  511. {
  512. #ifdef CONFIG_FAIR_GROUP_SCHED
  513. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  514. p->se.parent = task_group(p)->se[cpu];
  515. #endif
  516. #ifdef CONFIG_RT_GROUP_SCHED
  517. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  518. p->rt.parent = task_group(p)->rt_se[cpu];
  519. #endif
  520. }
  521. #else /* CONFIG_CGROUP_SCHED */
  522. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  523. static inline struct task_group *task_group(struct task_struct *p)
  524. {
  525. return NULL;
  526. }
  527. #endif /* CONFIG_CGROUP_SCHED */
  528. static void update_rq_clock_task(struct rq *rq, s64 delta);
  529. static void update_rq_clock(struct rq *rq)
  530. {
  531. s64 delta;
  532. if (rq->skip_clock_update)
  533. return;
  534. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  535. rq->clock += delta;
  536. update_rq_clock_task(rq, delta);
  537. }
  538. /*
  539. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  540. */
  541. #ifdef CONFIG_SCHED_DEBUG
  542. # define const_debug __read_mostly
  543. #else
  544. # define const_debug static const
  545. #endif
  546. /**
  547. * runqueue_is_locked
  548. * @cpu: the processor in question.
  549. *
  550. * Returns true if the current cpu runqueue is locked.
  551. * This interface allows printk to be called with the runqueue lock
  552. * held and know whether or not it is OK to wake up the klogd.
  553. */
  554. int runqueue_is_locked(int cpu)
  555. {
  556. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  557. }
  558. /*
  559. * Debugging: various feature bits
  560. */
  561. #define SCHED_FEAT(name, enabled) \
  562. __SCHED_FEAT_##name ,
  563. enum {
  564. #include "sched_features.h"
  565. };
  566. #undef SCHED_FEAT
  567. #define SCHED_FEAT(name, enabled) \
  568. (1UL << __SCHED_FEAT_##name) * enabled |
  569. const_debug unsigned int sysctl_sched_features =
  570. #include "sched_features.h"
  571. 0;
  572. #undef SCHED_FEAT
  573. #ifdef CONFIG_SCHED_DEBUG
  574. #define SCHED_FEAT(name, enabled) \
  575. #name ,
  576. static __read_mostly char *sched_feat_names[] = {
  577. #include "sched_features.h"
  578. NULL
  579. };
  580. #undef SCHED_FEAT
  581. static int sched_feat_show(struct seq_file *m, void *v)
  582. {
  583. int i;
  584. for (i = 0; sched_feat_names[i]; i++) {
  585. if (!(sysctl_sched_features & (1UL << i)))
  586. seq_puts(m, "NO_");
  587. seq_printf(m, "%s ", sched_feat_names[i]);
  588. }
  589. seq_puts(m, "\n");
  590. return 0;
  591. }
  592. static ssize_t
  593. sched_feat_write(struct file *filp, const char __user *ubuf,
  594. size_t cnt, loff_t *ppos)
  595. {
  596. char buf[64];
  597. char *cmp;
  598. int neg = 0;
  599. int i;
  600. if (cnt > 63)
  601. cnt = 63;
  602. if (copy_from_user(&buf, ubuf, cnt))
  603. return -EFAULT;
  604. buf[cnt] = 0;
  605. cmp = strstrip(buf);
  606. if (strncmp(buf, "NO_", 3) == 0) {
  607. neg = 1;
  608. cmp += 3;
  609. }
  610. for (i = 0; sched_feat_names[i]; i++) {
  611. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  612. if (neg)
  613. sysctl_sched_features &= ~(1UL << i);
  614. else
  615. sysctl_sched_features |= (1UL << i);
  616. break;
  617. }
  618. }
  619. if (!sched_feat_names[i])
  620. return -EINVAL;
  621. *ppos += cnt;
  622. return cnt;
  623. }
  624. static int sched_feat_open(struct inode *inode, struct file *filp)
  625. {
  626. return single_open(filp, sched_feat_show, NULL);
  627. }
  628. static const struct file_operations sched_feat_fops = {
  629. .open = sched_feat_open,
  630. .write = sched_feat_write,
  631. .read = seq_read,
  632. .llseek = seq_lseek,
  633. .release = single_release,
  634. };
  635. static __init int sched_init_debug(void)
  636. {
  637. debugfs_create_file("sched_features", 0644, NULL, NULL,
  638. &sched_feat_fops);
  639. return 0;
  640. }
  641. late_initcall(sched_init_debug);
  642. #endif
  643. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  644. /*
  645. * Number of tasks to iterate in a single balance run.
  646. * Limited because this is done with IRQs disabled.
  647. */
  648. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  649. /*
  650. * ratelimit for updating the group shares.
  651. * default: 0.25ms
  652. */
  653. unsigned int sysctl_sched_shares_ratelimit = 250000;
  654. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  655. /*
  656. * Inject some fuzzyness into changing the per-cpu group shares
  657. * this avoids remote rq-locks at the expense of fairness.
  658. * default: 4
  659. */
  660. unsigned int sysctl_sched_shares_thresh = 4;
  661. /*
  662. * period over which we average the RT time consumption, measured
  663. * in ms.
  664. *
  665. * default: 1s
  666. */
  667. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  668. /*
  669. * period over which we measure -rt task cpu usage in us.
  670. * default: 1s
  671. */
  672. unsigned int sysctl_sched_rt_period = 1000000;
  673. static __read_mostly int scheduler_running;
  674. /*
  675. * part of the period that we allow rt tasks to run in us.
  676. * default: 0.95s
  677. */
  678. int sysctl_sched_rt_runtime = 950000;
  679. static inline u64 global_rt_period(void)
  680. {
  681. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  682. }
  683. static inline u64 global_rt_runtime(void)
  684. {
  685. if (sysctl_sched_rt_runtime < 0)
  686. return RUNTIME_INF;
  687. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  688. }
  689. #ifndef prepare_arch_switch
  690. # define prepare_arch_switch(next) do { } while (0)
  691. #endif
  692. #ifndef finish_arch_switch
  693. # define finish_arch_switch(prev) do { } while (0)
  694. #endif
  695. static inline int task_current(struct rq *rq, struct task_struct *p)
  696. {
  697. return rq->curr == p;
  698. }
  699. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  700. static inline int task_running(struct rq *rq, struct task_struct *p)
  701. {
  702. return task_current(rq, p);
  703. }
  704. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  705. {
  706. }
  707. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  708. {
  709. #ifdef CONFIG_DEBUG_SPINLOCK
  710. /* this is a valid case when another task releases the spinlock */
  711. rq->lock.owner = current;
  712. #endif
  713. /*
  714. * If we are tracking spinlock dependencies then we have to
  715. * fix up the runqueue lock - which gets 'carried over' from
  716. * prev into current:
  717. */
  718. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  719. raw_spin_unlock_irq(&rq->lock);
  720. }
  721. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  722. static inline int task_running(struct rq *rq, struct task_struct *p)
  723. {
  724. #ifdef CONFIG_SMP
  725. return p->oncpu;
  726. #else
  727. return task_current(rq, p);
  728. #endif
  729. }
  730. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  731. {
  732. #ifdef CONFIG_SMP
  733. /*
  734. * We can optimise this out completely for !SMP, because the
  735. * SMP rebalancing from interrupt is the only thing that cares
  736. * here.
  737. */
  738. next->oncpu = 1;
  739. #endif
  740. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  741. raw_spin_unlock_irq(&rq->lock);
  742. #else
  743. raw_spin_unlock(&rq->lock);
  744. #endif
  745. }
  746. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  747. {
  748. #ifdef CONFIG_SMP
  749. /*
  750. * After ->oncpu is cleared, the task can be moved to a different CPU.
  751. * We must ensure this doesn't happen until the switch is completely
  752. * finished.
  753. */
  754. smp_wmb();
  755. prev->oncpu = 0;
  756. #endif
  757. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  758. local_irq_enable();
  759. #endif
  760. }
  761. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  762. /*
  763. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  764. * against ttwu().
  765. */
  766. static inline int task_is_waking(struct task_struct *p)
  767. {
  768. return unlikely(p->state == TASK_WAKING);
  769. }
  770. /*
  771. * __task_rq_lock - lock the runqueue a given task resides on.
  772. * Must be called interrupts disabled.
  773. */
  774. static inline struct rq *__task_rq_lock(struct task_struct *p)
  775. __acquires(rq->lock)
  776. {
  777. struct rq *rq;
  778. for (;;) {
  779. rq = task_rq(p);
  780. raw_spin_lock(&rq->lock);
  781. if (likely(rq == task_rq(p)))
  782. return rq;
  783. raw_spin_unlock(&rq->lock);
  784. }
  785. }
  786. /*
  787. * task_rq_lock - lock the runqueue a given task resides on and disable
  788. * interrupts. Note the ordering: we can safely lookup the task_rq without
  789. * explicitly disabling preemption.
  790. */
  791. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  792. __acquires(rq->lock)
  793. {
  794. struct rq *rq;
  795. for (;;) {
  796. local_irq_save(*flags);
  797. rq = task_rq(p);
  798. raw_spin_lock(&rq->lock);
  799. if (likely(rq == task_rq(p)))
  800. return rq;
  801. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  802. }
  803. }
  804. static void __task_rq_unlock(struct rq *rq)
  805. __releases(rq->lock)
  806. {
  807. raw_spin_unlock(&rq->lock);
  808. }
  809. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  810. __releases(rq->lock)
  811. {
  812. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  813. }
  814. /*
  815. * this_rq_lock - lock this runqueue and disable interrupts.
  816. */
  817. static struct rq *this_rq_lock(void)
  818. __acquires(rq->lock)
  819. {
  820. struct rq *rq;
  821. local_irq_disable();
  822. rq = this_rq();
  823. raw_spin_lock(&rq->lock);
  824. return rq;
  825. }
  826. #ifdef CONFIG_SCHED_HRTICK
  827. /*
  828. * Use HR-timers to deliver accurate preemption points.
  829. *
  830. * Its all a bit involved since we cannot program an hrt while holding the
  831. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  832. * reschedule event.
  833. *
  834. * When we get rescheduled we reprogram the hrtick_timer outside of the
  835. * rq->lock.
  836. */
  837. /*
  838. * Use hrtick when:
  839. * - enabled by features
  840. * - hrtimer is actually high res
  841. */
  842. static inline int hrtick_enabled(struct rq *rq)
  843. {
  844. if (!sched_feat(HRTICK))
  845. return 0;
  846. if (!cpu_active(cpu_of(rq)))
  847. return 0;
  848. return hrtimer_is_hres_active(&rq->hrtick_timer);
  849. }
  850. static void hrtick_clear(struct rq *rq)
  851. {
  852. if (hrtimer_active(&rq->hrtick_timer))
  853. hrtimer_cancel(&rq->hrtick_timer);
  854. }
  855. /*
  856. * High-resolution timer tick.
  857. * Runs from hardirq context with interrupts disabled.
  858. */
  859. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  860. {
  861. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  862. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  863. raw_spin_lock(&rq->lock);
  864. update_rq_clock(rq);
  865. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  866. raw_spin_unlock(&rq->lock);
  867. return HRTIMER_NORESTART;
  868. }
  869. #ifdef CONFIG_SMP
  870. /*
  871. * called from hardirq (IPI) context
  872. */
  873. static void __hrtick_start(void *arg)
  874. {
  875. struct rq *rq = arg;
  876. raw_spin_lock(&rq->lock);
  877. hrtimer_restart(&rq->hrtick_timer);
  878. rq->hrtick_csd_pending = 0;
  879. raw_spin_unlock(&rq->lock);
  880. }
  881. /*
  882. * Called to set the hrtick timer state.
  883. *
  884. * called with rq->lock held and irqs disabled
  885. */
  886. static void hrtick_start(struct rq *rq, u64 delay)
  887. {
  888. struct hrtimer *timer = &rq->hrtick_timer;
  889. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  890. hrtimer_set_expires(timer, time);
  891. if (rq == this_rq()) {
  892. hrtimer_restart(timer);
  893. } else if (!rq->hrtick_csd_pending) {
  894. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  895. rq->hrtick_csd_pending = 1;
  896. }
  897. }
  898. static int
  899. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  900. {
  901. int cpu = (int)(long)hcpu;
  902. switch (action) {
  903. case CPU_UP_CANCELED:
  904. case CPU_UP_CANCELED_FROZEN:
  905. case CPU_DOWN_PREPARE:
  906. case CPU_DOWN_PREPARE_FROZEN:
  907. case CPU_DEAD:
  908. case CPU_DEAD_FROZEN:
  909. hrtick_clear(cpu_rq(cpu));
  910. return NOTIFY_OK;
  911. }
  912. return NOTIFY_DONE;
  913. }
  914. static __init void init_hrtick(void)
  915. {
  916. hotcpu_notifier(hotplug_hrtick, 0);
  917. }
  918. #else
  919. /*
  920. * Called to set the hrtick timer state.
  921. *
  922. * called with rq->lock held and irqs disabled
  923. */
  924. static void hrtick_start(struct rq *rq, u64 delay)
  925. {
  926. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  927. HRTIMER_MODE_REL_PINNED, 0);
  928. }
  929. static inline void init_hrtick(void)
  930. {
  931. }
  932. #endif /* CONFIG_SMP */
  933. static void init_rq_hrtick(struct rq *rq)
  934. {
  935. #ifdef CONFIG_SMP
  936. rq->hrtick_csd_pending = 0;
  937. rq->hrtick_csd.flags = 0;
  938. rq->hrtick_csd.func = __hrtick_start;
  939. rq->hrtick_csd.info = rq;
  940. #endif
  941. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  942. rq->hrtick_timer.function = hrtick;
  943. }
  944. #else /* CONFIG_SCHED_HRTICK */
  945. static inline void hrtick_clear(struct rq *rq)
  946. {
  947. }
  948. static inline void init_rq_hrtick(struct rq *rq)
  949. {
  950. }
  951. static inline void init_hrtick(void)
  952. {
  953. }
  954. #endif /* CONFIG_SCHED_HRTICK */
  955. /*
  956. * resched_task - mark a task 'to be rescheduled now'.
  957. *
  958. * On UP this means the setting of the need_resched flag, on SMP it
  959. * might also involve a cross-CPU call to trigger the scheduler on
  960. * the target CPU.
  961. */
  962. #ifdef CONFIG_SMP
  963. #ifndef tsk_is_polling
  964. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  965. #endif
  966. static void resched_task(struct task_struct *p)
  967. {
  968. int cpu;
  969. assert_raw_spin_locked(&task_rq(p)->lock);
  970. if (test_tsk_need_resched(p))
  971. return;
  972. set_tsk_need_resched(p);
  973. cpu = task_cpu(p);
  974. if (cpu == smp_processor_id())
  975. return;
  976. /* NEED_RESCHED must be visible before we test polling */
  977. smp_mb();
  978. if (!tsk_is_polling(p))
  979. smp_send_reschedule(cpu);
  980. }
  981. static void resched_cpu(int cpu)
  982. {
  983. struct rq *rq = cpu_rq(cpu);
  984. unsigned long flags;
  985. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  986. return;
  987. resched_task(cpu_curr(cpu));
  988. raw_spin_unlock_irqrestore(&rq->lock, flags);
  989. }
  990. #ifdef CONFIG_NO_HZ
  991. /*
  992. * In the semi idle case, use the nearest busy cpu for migrating timers
  993. * from an idle cpu. This is good for power-savings.
  994. *
  995. * We don't do similar optimization for completely idle system, as
  996. * selecting an idle cpu will add more delays to the timers than intended
  997. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  998. */
  999. int get_nohz_timer_target(void)
  1000. {
  1001. int cpu = smp_processor_id();
  1002. int i;
  1003. struct sched_domain *sd;
  1004. for_each_domain(cpu, sd) {
  1005. for_each_cpu(i, sched_domain_span(sd))
  1006. if (!idle_cpu(i))
  1007. return i;
  1008. }
  1009. return cpu;
  1010. }
  1011. /*
  1012. * When add_timer_on() enqueues a timer into the timer wheel of an
  1013. * idle CPU then this timer might expire before the next timer event
  1014. * which is scheduled to wake up that CPU. In case of a completely
  1015. * idle system the next event might even be infinite time into the
  1016. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1017. * leaves the inner idle loop so the newly added timer is taken into
  1018. * account when the CPU goes back to idle and evaluates the timer
  1019. * wheel for the next timer event.
  1020. */
  1021. void wake_up_idle_cpu(int cpu)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. if (cpu == smp_processor_id())
  1025. return;
  1026. /*
  1027. * This is safe, as this function is called with the timer
  1028. * wheel base lock of (cpu) held. When the CPU is on the way
  1029. * to idle and has not yet set rq->curr to idle then it will
  1030. * be serialized on the timer wheel base lock and take the new
  1031. * timer into account automatically.
  1032. */
  1033. if (rq->curr != rq->idle)
  1034. return;
  1035. /*
  1036. * We can set TIF_RESCHED on the idle task of the other CPU
  1037. * lockless. The worst case is that the other CPU runs the
  1038. * idle task through an additional NOOP schedule()
  1039. */
  1040. set_tsk_need_resched(rq->idle);
  1041. /* NEED_RESCHED must be visible before we test polling */
  1042. smp_mb();
  1043. if (!tsk_is_polling(rq->idle))
  1044. smp_send_reschedule(cpu);
  1045. }
  1046. #endif /* CONFIG_NO_HZ */
  1047. static u64 sched_avg_period(void)
  1048. {
  1049. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1050. }
  1051. static void sched_avg_update(struct rq *rq)
  1052. {
  1053. s64 period = sched_avg_period();
  1054. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1055. /*
  1056. * Inline assembly required to prevent the compiler
  1057. * optimising this loop into a divmod call.
  1058. * See __iter_div_u64_rem() for another example of this.
  1059. */
  1060. asm("" : "+rm" (rq->age_stamp));
  1061. rq->age_stamp += period;
  1062. rq->rt_avg /= 2;
  1063. }
  1064. }
  1065. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1066. {
  1067. rq->rt_avg += rt_delta;
  1068. sched_avg_update(rq);
  1069. }
  1070. #else /* !CONFIG_SMP */
  1071. static void resched_task(struct task_struct *p)
  1072. {
  1073. assert_raw_spin_locked(&task_rq(p)->lock);
  1074. set_tsk_need_resched(p);
  1075. }
  1076. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1077. {
  1078. }
  1079. static void sched_avg_update(struct rq *rq)
  1080. {
  1081. }
  1082. #endif /* CONFIG_SMP */
  1083. #if BITS_PER_LONG == 32
  1084. # define WMULT_CONST (~0UL)
  1085. #else
  1086. # define WMULT_CONST (1UL << 32)
  1087. #endif
  1088. #define WMULT_SHIFT 32
  1089. /*
  1090. * Shift right and round:
  1091. */
  1092. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1093. /*
  1094. * delta *= weight / lw
  1095. */
  1096. static unsigned long
  1097. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1098. struct load_weight *lw)
  1099. {
  1100. u64 tmp;
  1101. if (!lw->inv_weight) {
  1102. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1103. lw->inv_weight = 1;
  1104. else
  1105. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1106. / (lw->weight+1);
  1107. }
  1108. tmp = (u64)delta_exec * weight;
  1109. /*
  1110. * Check whether we'd overflow the 64-bit multiplication:
  1111. */
  1112. if (unlikely(tmp > WMULT_CONST))
  1113. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1114. WMULT_SHIFT/2);
  1115. else
  1116. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1117. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1118. }
  1119. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1120. {
  1121. lw->weight += inc;
  1122. lw->inv_weight = 0;
  1123. }
  1124. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1125. {
  1126. lw->weight -= dec;
  1127. lw->inv_weight = 0;
  1128. }
  1129. /*
  1130. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1131. * of tasks with abnormal "nice" values across CPUs the contribution that
  1132. * each task makes to its run queue's load is weighted according to its
  1133. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1134. * scaled version of the new time slice allocation that they receive on time
  1135. * slice expiry etc.
  1136. */
  1137. #define WEIGHT_IDLEPRIO 3
  1138. #define WMULT_IDLEPRIO 1431655765
  1139. /*
  1140. * Nice levels are multiplicative, with a gentle 10% change for every
  1141. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1142. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1143. * that remained on nice 0.
  1144. *
  1145. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1146. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1147. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1148. * If a task goes up by ~10% and another task goes down by ~10% then
  1149. * the relative distance between them is ~25%.)
  1150. */
  1151. static const int prio_to_weight[40] = {
  1152. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1153. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1154. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1155. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1156. /* 0 */ 1024, 820, 655, 526, 423,
  1157. /* 5 */ 335, 272, 215, 172, 137,
  1158. /* 10 */ 110, 87, 70, 56, 45,
  1159. /* 15 */ 36, 29, 23, 18, 15,
  1160. };
  1161. /*
  1162. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1163. *
  1164. * In cases where the weight does not change often, we can use the
  1165. * precalculated inverse to speed up arithmetics by turning divisions
  1166. * into multiplications:
  1167. */
  1168. static const u32 prio_to_wmult[40] = {
  1169. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1170. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1171. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1172. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1173. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1174. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1175. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1176. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1177. };
  1178. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1179. enum cpuacct_stat_index {
  1180. CPUACCT_STAT_USER, /* ... user mode */
  1181. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1182. CPUACCT_STAT_NSTATS,
  1183. };
  1184. #ifdef CONFIG_CGROUP_CPUACCT
  1185. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1186. static void cpuacct_update_stats(struct task_struct *tsk,
  1187. enum cpuacct_stat_index idx, cputime_t val);
  1188. #else
  1189. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1190. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1191. enum cpuacct_stat_index idx, cputime_t val) {}
  1192. #endif
  1193. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1194. {
  1195. update_load_add(&rq->load, load);
  1196. }
  1197. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1198. {
  1199. update_load_sub(&rq->load, load);
  1200. }
  1201. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1202. typedef int (*tg_visitor)(struct task_group *, void *);
  1203. /*
  1204. * Iterate the full tree, calling @down when first entering a node and @up when
  1205. * leaving it for the final time.
  1206. */
  1207. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1208. {
  1209. struct task_group *parent, *child;
  1210. int ret;
  1211. rcu_read_lock();
  1212. parent = &root_task_group;
  1213. down:
  1214. ret = (*down)(parent, data);
  1215. if (ret)
  1216. goto out_unlock;
  1217. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1218. parent = child;
  1219. goto down;
  1220. up:
  1221. continue;
  1222. }
  1223. ret = (*up)(parent, data);
  1224. if (ret)
  1225. goto out_unlock;
  1226. child = parent;
  1227. parent = parent->parent;
  1228. if (parent)
  1229. goto up;
  1230. out_unlock:
  1231. rcu_read_unlock();
  1232. return ret;
  1233. }
  1234. static int tg_nop(struct task_group *tg, void *data)
  1235. {
  1236. return 0;
  1237. }
  1238. #endif
  1239. #ifdef CONFIG_SMP
  1240. /* Used instead of source_load when we know the type == 0 */
  1241. static unsigned long weighted_cpuload(const int cpu)
  1242. {
  1243. return cpu_rq(cpu)->load.weight;
  1244. }
  1245. /*
  1246. * Return a low guess at the load of a migration-source cpu weighted
  1247. * according to the scheduling class and "nice" value.
  1248. *
  1249. * We want to under-estimate the load of migration sources, to
  1250. * balance conservatively.
  1251. */
  1252. static unsigned long source_load(int cpu, int type)
  1253. {
  1254. struct rq *rq = cpu_rq(cpu);
  1255. unsigned long total = weighted_cpuload(cpu);
  1256. if (type == 0 || !sched_feat(LB_BIAS))
  1257. return total;
  1258. return min(rq->cpu_load[type-1], total);
  1259. }
  1260. /*
  1261. * Return a high guess at the load of a migration-target cpu weighted
  1262. * according to the scheduling class and "nice" value.
  1263. */
  1264. static unsigned long target_load(int cpu, int type)
  1265. {
  1266. struct rq *rq = cpu_rq(cpu);
  1267. unsigned long total = weighted_cpuload(cpu);
  1268. if (type == 0 || !sched_feat(LB_BIAS))
  1269. return total;
  1270. return max(rq->cpu_load[type-1], total);
  1271. }
  1272. static unsigned long power_of(int cpu)
  1273. {
  1274. return cpu_rq(cpu)->cpu_power;
  1275. }
  1276. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1277. static unsigned long cpu_avg_load_per_task(int cpu)
  1278. {
  1279. struct rq *rq = cpu_rq(cpu);
  1280. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1281. if (nr_running)
  1282. rq->avg_load_per_task = rq->load.weight / nr_running;
  1283. else
  1284. rq->avg_load_per_task = 0;
  1285. return rq->avg_load_per_task;
  1286. }
  1287. #ifdef CONFIG_FAIR_GROUP_SCHED
  1288. static __read_mostly unsigned long __percpu *update_shares_data;
  1289. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1290. /*
  1291. * Calculate and set the cpu's group shares.
  1292. */
  1293. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1294. unsigned long sd_shares,
  1295. unsigned long sd_rq_weight,
  1296. unsigned long *usd_rq_weight)
  1297. {
  1298. unsigned long shares, rq_weight;
  1299. int boost = 0;
  1300. rq_weight = usd_rq_weight[cpu];
  1301. if (!rq_weight) {
  1302. boost = 1;
  1303. rq_weight = NICE_0_LOAD;
  1304. }
  1305. /*
  1306. * \Sum_j shares_j * rq_weight_i
  1307. * shares_i = -----------------------------
  1308. * \Sum_j rq_weight_j
  1309. */
  1310. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1311. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1312. if (abs(shares - tg->se[cpu]->load.weight) >
  1313. sysctl_sched_shares_thresh) {
  1314. struct rq *rq = cpu_rq(cpu);
  1315. unsigned long flags;
  1316. raw_spin_lock_irqsave(&rq->lock, flags);
  1317. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1318. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1319. __set_se_shares(tg->se[cpu], shares);
  1320. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1321. }
  1322. }
  1323. /*
  1324. * Re-compute the task group their per cpu shares over the given domain.
  1325. * This needs to be done in a bottom-up fashion because the rq weight of a
  1326. * parent group depends on the shares of its child groups.
  1327. */
  1328. static int tg_shares_up(struct task_group *tg, void *data)
  1329. {
  1330. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1331. unsigned long *usd_rq_weight;
  1332. struct sched_domain *sd = data;
  1333. unsigned long flags;
  1334. int i;
  1335. if (!tg->se[0])
  1336. return 0;
  1337. local_irq_save(flags);
  1338. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1339. for_each_cpu(i, sched_domain_span(sd)) {
  1340. weight = tg->cfs_rq[i]->load.weight;
  1341. usd_rq_weight[i] = weight;
  1342. rq_weight += weight;
  1343. /*
  1344. * If there are currently no tasks on the cpu pretend there
  1345. * is one of average load so that when a new task gets to
  1346. * run here it will not get delayed by group starvation.
  1347. */
  1348. if (!weight)
  1349. weight = NICE_0_LOAD;
  1350. sum_weight += weight;
  1351. shares += tg->cfs_rq[i]->shares;
  1352. }
  1353. if (!rq_weight)
  1354. rq_weight = sum_weight;
  1355. if ((!shares && rq_weight) || shares > tg->shares)
  1356. shares = tg->shares;
  1357. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1358. shares = tg->shares;
  1359. for_each_cpu(i, sched_domain_span(sd))
  1360. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1361. local_irq_restore(flags);
  1362. return 0;
  1363. }
  1364. /*
  1365. * Compute the cpu's hierarchical load factor for each task group.
  1366. * This needs to be done in a top-down fashion because the load of a child
  1367. * group is a fraction of its parents load.
  1368. */
  1369. static int tg_load_down(struct task_group *tg, void *data)
  1370. {
  1371. unsigned long load;
  1372. long cpu = (long)data;
  1373. if (!tg->parent) {
  1374. load = cpu_rq(cpu)->load.weight;
  1375. } else {
  1376. load = tg->parent->cfs_rq[cpu]->h_load;
  1377. load *= tg->cfs_rq[cpu]->shares;
  1378. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1379. }
  1380. tg->cfs_rq[cpu]->h_load = load;
  1381. return 0;
  1382. }
  1383. static void update_shares(struct sched_domain *sd)
  1384. {
  1385. s64 elapsed;
  1386. u64 now;
  1387. if (root_task_group_empty())
  1388. return;
  1389. now = local_clock();
  1390. elapsed = now - sd->last_update;
  1391. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1392. sd->last_update = now;
  1393. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1394. }
  1395. }
  1396. static void update_h_load(long cpu)
  1397. {
  1398. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1399. }
  1400. #else
  1401. static inline void update_shares(struct sched_domain *sd)
  1402. {
  1403. }
  1404. #endif
  1405. #ifdef CONFIG_PREEMPT
  1406. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1407. /*
  1408. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1409. * way at the expense of forcing extra atomic operations in all
  1410. * invocations. This assures that the double_lock is acquired using the
  1411. * same underlying policy as the spinlock_t on this architecture, which
  1412. * reduces latency compared to the unfair variant below. However, it
  1413. * also adds more overhead and therefore may reduce throughput.
  1414. */
  1415. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1416. __releases(this_rq->lock)
  1417. __acquires(busiest->lock)
  1418. __acquires(this_rq->lock)
  1419. {
  1420. raw_spin_unlock(&this_rq->lock);
  1421. double_rq_lock(this_rq, busiest);
  1422. return 1;
  1423. }
  1424. #else
  1425. /*
  1426. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1427. * latency by eliminating extra atomic operations when the locks are
  1428. * already in proper order on entry. This favors lower cpu-ids and will
  1429. * grant the double lock to lower cpus over higher ids under contention,
  1430. * regardless of entry order into the function.
  1431. */
  1432. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1433. __releases(this_rq->lock)
  1434. __acquires(busiest->lock)
  1435. __acquires(this_rq->lock)
  1436. {
  1437. int ret = 0;
  1438. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1439. if (busiest < this_rq) {
  1440. raw_spin_unlock(&this_rq->lock);
  1441. raw_spin_lock(&busiest->lock);
  1442. raw_spin_lock_nested(&this_rq->lock,
  1443. SINGLE_DEPTH_NESTING);
  1444. ret = 1;
  1445. } else
  1446. raw_spin_lock_nested(&busiest->lock,
  1447. SINGLE_DEPTH_NESTING);
  1448. }
  1449. return ret;
  1450. }
  1451. #endif /* CONFIG_PREEMPT */
  1452. /*
  1453. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1454. */
  1455. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1456. {
  1457. if (unlikely(!irqs_disabled())) {
  1458. /* printk() doesn't work good under rq->lock */
  1459. raw_spin_unlock(&this_rq->lock);
  1460. BUG_ON(1);
  1461. }
  1462. return _double_lock_balance(this_rq, busiest);
  1463. }
  1464. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1465. __releases(busiest->lock)
  1466. {
  1467. raw_spin_unlock(&busiest->lock);
  1468. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1469. }
  1470. /*
  1471. * double_rq_lock - safely lock two runqueues
  1472. *
  1473. * Note this does not disable interrupts like task_rq_lock,
  1474. * you need to do so manually before calling.
  1475. */
  1476. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1477. __acquires(rq1->lock)
  1478. __acquires(rq2->lock)
  1479. {
  1480. BUG_ON(!irqs_disabled());
  1481. if (rq1 == rq2) {
  1482. raw_spin_lock(&rq1->lock);
  1483. __acquire(rq2->lock); /* Fake it out ;) */
  1484. } else {
  1485. if (rq1 < rq2) {
  1486. raw_spin_lock(&rq1->lock);
  1487. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1488. } else {
  1489. raw_spin_lock(&rq2->lock);
  1490. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1491. }
  1492. }
  1493. }
  1494. /*
  1495. * double_rq_unlock - safely unlock two runqueues
  1496. *
  1497. * Note this does not restore interrupts like task_rq_unlock,
  1498. * you need to do so manually after calling.
  1499. */
  1500. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1501. __releases(rq1->lock)
  1502. __releases(rq2->lock)
  1503. {
  1504. raw_spin_unlock(&rq1->lock);
  1505. if (rq1 != rq2)
  1506. raw_spin_unlock(&rq2->lock);
  1507. else
  1508. __release(rq2->lock);
  1509. }
  1510. #endif
  1511. #ifdef CONFIG_FAIR_GROUP_SCHED
  1512. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1513. {
  1514. #ifdef CONFIG_SMP
  1515. cfs_rq->shares = shares;
  1516. #endif
  1517. }
  1518. #endif
  1519. static void calc_load_account_idle(struct rq *this_rq);
  1520. static void update_sysctl(void);
  1521. static int get_update_sysctl_factor(void);
  1522. static void update_cpu_load(struct rq *this_rq);
  1523. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1524. {
  1525. set_task_rq(p, cpu);
  1526. #ifdef CONFIG_SMP
  1527. /*
  1528. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1529. * successfuly executed on another CPU. We must ensure that updates of
  1530. * per-task data have been completed by this moment.
  1531. */
  1532. smp_wmb();
  1533. task_thread_info(p)->cpu = cpu;
  1534. #endif
  1535. }
  1536. static const struct sched_class rt_sched_class;
  1537. #define sched_class_highest (&stop_sched_class)
  1538. #define for_each_class(class) \
  1539. for (class = sched_class_highest; class; class = class->next)
  1540. #include "sched_stats.h"
  1541. static void inc_nr_running(struct rq *rq)
  1542. {
  1543. rq->nr_running++;
  1544. }
  1545. static void dec_nr_running(struct rq *rq)
  1546. {
  1547. rq->nr_running--;
  1548. }
  1549. static void set_load_weight(struct task_struct *p)
  1550. {
  1551. /*
  1552. * SCHED_IDLE tasks get minimal weight:
  1553. */
  1554. if (p->policy == SCHED_IDLE) {
  1555. p->se.load.weight = WEIGHT_IDLEPRIO;
  1556. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1557. return;
  1558. }
  1559. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1560. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1561. }
  1562. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1563. {
  1564. update_rq_clock(rq);
  1565. sched_info_queued(p);
  1566. p->sched_class->enqueue_task(rq, p, flags);
  1567. p->se.on_rq = 1;
  1568. }
  1569. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1570. {
  1571. update_rq_clock(rq);
  1572. sched_info_dequeued(p);
  1573. p->sched_class->dequeue_task(rq, p, flags);
  1574. p->se.on_rq = 0;
  1575. }
  1576. /*
  1577. * activate_task - move a task to the runqueue.
  1578. */
  1579. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1580. {
  1581. if (task_contributes_to_load(p))
  1582. rq->nr_uninterruptible--;
  1583. enqueue_task(rq, p, flags);
  1584. inc_nr_running(rq);
  1585. }
  1586. /*
  1587. * deactivate_task - remove a task from the runqueue.
  1588. */
  1589. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1590. {
  1591. if (task_contributes_to_load(p))
  1592. rq->nr_uninterruptible++;
  1593. dequeue_task(rq, p, flags);
  1594. dec_nr_running(rq);
  1595. }
  1596. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1597. /*
  1598. * There are no locks covering percpu hardirq/softirq time.
  1599. * They are only modified in account_system_vtime, on corresponding CPU
  1600. * with interrupts disabled. So, writes are safe.
  1601. * They are read and saved off onto struct rq in update_rq_clock().
  1602. * This may result in other CPU reading this CPU's irq time and can
  1603. * race with irq/account_system_vtime on this CPU. We would either get old
  1604. * or new value with a side effect of accounting a slice of irq time to wrong
  1605. * task when irq is in progress while we read rq->clock. That is a worthy
  1606. * compromise in place of having locks on each irq in account_system_time.
  1607. */
  1608. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1609. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1610. static DEFINE_PER_CPU(u64, irq_start_time);
  1611. static int sched_clock_irqtime;
  1612. void enable_sched_clock_irqtime(void)
  1613. {
  1614. sched_clock_irqtime = 1;
  1615. }
  1616. void disable_sched_clock_irqtime(void)
  1617. {
  1618. sched_clock_irqtime = 0;
  1619. }
  1620. #ifndef CONFIG_64BIT
  1621. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1622. static inline void irq_time_write_begin(void)
  1623. {
  1624. __this_cpu_inc(irq_time_seq.sequence);
  1625. smp_wmb();
  1626. }
  1627. static inline void irq_time_write_end(void)
  1628. {
  1629. smp_wmb();
  1630. __this_cpu_inc(irq_time_seq.sequence);
  1631. }
  1632. static inline u64 irq_time_read(int cpu)
  1633. {
  1634. u64 irq_time;
  1635. unsigned seq;
  1636. do {
  1637. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1638. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1639. per_cpu(cpu_hardirq_time, cpu);
  1640. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1641. return irq_time;
  1642. }
  1643. #else /* CONFIG_64BIT */
  1644. static inline void irq_time_write_begin(void)
  1645. {
  1646. }
  1647. static inline void irq_time_write_end(void)
  1648. {
  1649. }
  1650. static inline u64 irq_time_read(int cpu)
  1651. {
  1652. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1653. }
  1654. #endif /* CONFIG_64BIT */
  1655. /*
  1656. * Called before incrementing preempt_count on {soft,}irq_enter
  1657. * and before decrementing preempt_count on {soft,}irq_exit.
  1658. */
  1659. void account_system_vtime(struct task_struct *curr)
  1660. {
  1661. unsigned long flags;
  1662. s64 delta;
  1663. int cpu;
  1664. if (!sched_clock_irqtime)
  1665. return;
  1666. local_irq_save(flags);
  1667. cpu = smp_processor_id();
  1668. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1669. __this_cpu_add(irq_start_time, delta);
  1670. irq_time_write_begin();
  1671. /*
  1672. * We do not account for softirq time from ksoftirqd here.
  1673. * We want to continue accounting softirq time to ksoftirqd thread
  1674. * in that case, so as not to confuse scheduler with a special task
  1675. * that do not consume any time, but still wants to run.
  1676. */
  1677. if (hardirq_count())
  1678. __this_cpu_add(cpu_hardirq_time, delta);
  1679. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1680. __this_cpu_add(cpu_softirq_time, delta);
  1681. irq_time_write_end();
  1682. local_irq_restore(flags);
  1683. }
  1684. EXPORT_SYMBOL_GPL(account_system_vtime);
  1685. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1686. {
  1687. s64 irq_delta;
  1688. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1689. /*
  1690. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1691. * this case when a previous update_rq_clock() happened inside a
  1692. * {soft,}irq region.
  1693. *
  1694. * When this happens, we stop ->clock_task and only update the
  1695. * prev_irq_time stamp to account for the part that fit, so that a next
  1696. * update will consume the rest. This ensures ->clock_task is
  1697. * monotonic.
  1698. *
  1699. * It does however cause some slight miss-attribution of {soft,}irq
  1700. * time, a more accurate solution would be to update the irq_time using
  1701. * the current rq->clock timestamp, except that would require using
  1702. * atomic ops.
  1703. */
  1704. if (irq_delta > delta)
  1705. irq_delta = delta;
  1706. rq->prev_irq_time += irq_delta;
  1707. delta -= irq_delta;
  1708. rq->clock_task += delta;
  1709. if (irq_delta && sched_feat(NONIRQ_POWER))
  1710. sched_rt_avg_update(rq, irq_delta);
  1711. }
  1712. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1713. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1714. {
  1715. rq->clock_task += delta;
  1716. }
  1717. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1718. #include "sched_idletask.c"
  1719. #include "sched_fair.c"
  1720. #include "sched_rt.c"
  1721. #include "sched_stoptask.c"
  1722. #ifdef CONFIG_SCHED_DEBUG
  1723. # include "sched_debug.c"
  1724. #endif
  1725. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1726. {
  1727. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1728. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1729. if (stop) {
  1730. /*
  1731. * Make it appear like a SCHED_FIFO task, its something
  1732. * userspace knows about and won't get confused about.
  1733. *
  1734. * Also, it will make PI more or less work without too
  1735. * much confusion -- but then, stop work should not
  1736. * rely on PI working anyway.
  1737. */
  1738. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1739. stop->sched_class = &stop_sched_class;
  1740. }
  1741. cpu_rq(cpu)->stop = stop;
  1742. if (old_stop) {
  1743. /*
  1744. * Reset it back to a normal scheduling class so that
  1745. * it can die in pieces.
  1746. */
  1747. old_stop->sched_class = &rt_sched_class;
  1748. }
  1749. }
  1750. /*
  1751. * __normal_prio - return the priority that is based on the static prio
  1752. */
  1753. static inline int __normal_prio(struct task_struct *p)
  1754. {
  1755. return p->static_prio;
  1756. }
  1757. /*
  1758. * Calculate the expected normal priority: i.e. priority
  1759. * without taking RT-inheritance into account. Might be
  1760. * boosted by interactivity modifiers. Changes upon fork,
  1761. * setprio syscalls, and whenever the interactivity
  1762. * estimator recalculates.
  1763. */
  1764. static inline int normal_prio(struct task_struct *p)
  1765. {
  1766. int prio;
  1767. if (task_has_rt_policy(p))
  1768. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1769. else
  1770. prio = __normal_prio(p);
  1771. return prio;
  1772. }
  1773. /*
  1774. * Calculate the current priority, i.e. the priority
  1775. * taken into account by the scheduler. This value might
  1776. * be boosted by RT tasks, or might be boosted by
  1777. * interactivity modifiers. Will be RT if the task got
  1778. * RT-boosted. If not then it returns p->normal_prio.
  1779. */
  1780. static int effective_prio(struct task_struct *p)
  1781. {
  1782. p->normal_prio = normal_prio(p);
  1783. /*
  1784. * If we are RT tasks or we were boosted to RT priority,
  1785. * keep the priority unchanged. Otherwise, update priority
  1786. * to the normal priority:
  1787. */
  1788. if (!rt_prio(p->prio))
  1789. return p->normal_prio;
  1790. return p->prio;
  1791. }
  1792. /**
  1793. * task_curr - is this task currently executing on a CPU?
  1794. * @p: the task in question.
  1795. */
  1796. inline int task_curr(const struct task_struct *p)
  1797. {
  1798. return cpu_curr(task_cpu(p)) == p;
  1799. }
  1800. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1801. const struct sched_class *prev_class,
  1802. int oldprio, int running)
  1803. {
  1804. if (prev_class != p->sched_class) {
  1805. if (prev_class->switched_from)
  1806. prev_class->switched_from(rq, p, running);
  1807. p->sched_class->switched_to(rq, p, running);
  1808. } else
  1809. p->sched_class->prio_changed(rq, p, oldprio, running);
  1810. }
  1811. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1812. {
  1813. const struct sched_class *class;
  1814. if (p->sched_class == rq->curr->sched_class) {
  1815. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1816. } else {
  1817. for_each_class(class) {
  1818. if (class == rq->curr->sched_class)
  1819. break;
  1820. if (class == p->sched_class) {
  1821. resched_task(rq->curr);
  1822. break;
  1823. }
  1824. }
  1825. }
  1826. /*
  1827. * A queue event has occurred, and we're going to schedule. In
  1828. * this case, we can save a useless back to back clock update.
  1829. */
  1830. if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
  1831. rq->skip_clock_update = 1;
  1832. }
  1833. #ifdef CONFIG_SMP
  1834. /*
  1835. * Is this task likely cache-hot:
  1836. */
  1837. static int
  1838. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1839. {
  1840. s64 delta;
  1841. if (p->sched_class != &fair_sched_class)
  1842. return 0;
  1843. if (unlikely(p->policy == SCHED_IDLE))
  1844. return 0;
  1845. /*
  1846. * Buddy candidates are cache hot:
  1847. */
  1848. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1849. (&p->se == cfs_rq_of(&p->se)->next ||
  1850. &p->se == cfs_rq_of(&p->se)->last))
  1851. return 1;
  1852. if (sysctl_sched_migration_cost == -1)
  1853. return 1;
  1854. if (sysctl_sched_migration_cost == 0)
  1855. return 0;
  1856. delta = now - p->se.exec_start;
  1857. return delta < (s64)sysctl_sched_migration_cost;
  1858. }
  1859. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1860. {
  1861. #ifdef CONFIG_SCHED_DEBUG
  1862. /*
  1863. * We should never call set_task_cpu() on a blocked task,
  1864. * ttwu() will sort out the placement.
  1865. */
  1866. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1867. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1868. #endif
  1869. trace_sched_migrate_task(p, new_cpu);
  1870. if (task_cpu(p) != new_cpu) {
  1871. p->se.nr_migrations++;
  1872. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1873. }
  1874. __set_task_cpu(p, new_cpu);
  1875. }
  1876. struct migration_arg {
  1877. struct task_struct *task;
  1878. int dest_cpu;
  1879. };
  1880. static int migration_cpu_stop(void *data);
  1881. /*
  1882. * The task's runqueue lock must be held.
  1883. * Returns true if you have to wait for migration thread.
  1884. */
  1885. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1886. {
  1887. struct rq *rq = task_rq(p);
  1888. /*
  1889. * If the task is not on a runqueue (and not running), then
  1890. * the next wake-up will properly place the task.
  1891. */
  1892. return p->se.on_rq || task_running(rq, p);
  1893. }
  1894. /*
  1895. * wait_task_inactive - wait for a thread to unschedule.
  1896. *
  1897. * If @match_state is nonzero, it's the @p->state value just checked and
  1898. * not expected to change. If it changes, i.e. @p might have woken up,
  1899. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1900. * we return a positive number (its total switch count). If a second call
  1901. * a short while later returns the same number, the caller can be sure that
  1902. * @p has remained unscheduled the whole time.
  1903. *
  1904. * The caller must ensure that the task *will* unschedule sometime soon,
  1905. * else this function might spin for a *long* time. This function can't
  1906. * be called with interrupts off, or it may introduce deadlock with
  1907. * smp_call_function() if an IPI is sent by the same process we are
  1908. * waiting to become inactive.
  1909. */
  1910. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1911. {
  1912. unsigned long flags;
  1913. int running, on_rq;
  1914. unsigned long ncsw;
  1915. struct rq *rq;
  1916. for (;;) {
  1917. /*
  1918. * We do the initial early heuristics without holding
  1919. * any task-queue locks at all. We'll only try to get
  1920. * the runqueue lock when things look like they will
  1921. * work out!
  1922. */
  1923. rq = task_rq(p);
  1924. /*
  1925. * If the task is actively running on another CPU
  1926. * still, just relax and busy-wait without holding
  1927. * any locks.
  1928. *
  1929. * NOTE! Since we don't hold any locks, it's not
  1930. * even sure that "rq" stays as the right runqueue!
  1931. * But we don't care, since "task_running()" will
  1932. * return false if the runqueue has changed and p
  1933. * is actually now running somewhere else!
  1934. */
  1935. while (task_running(rq, p)) {
  1936. if (match_state && unlikely(p->state != match_state))
  1937. return 0;
  1938. cpu_relax();
  1939. }
  1940. /*
  1941. * Ok, time to look more closely! We need the rq
  1942. * lock now, to be *sure*. If we're wrong, we'll
  1943. * just go back and repeat.
  1944. */
  1945. rq = task_rq_lock(p, &flags);
  1946. trace_sched_wait_task(p);
  1947. running = task_running(rq, p);
  1948. on_rq = p->se.on_rq;
  1949. ncsw = 0;
  1950. if (!match_state || p->state == match_state)
  1951. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1952. task_rq_unlock(rq, &flags);
  1953. /*
  1954. * If it changed from the expected state, bail out now.
  1955. */
  1956. if (unlikely(!ncsw))
  1957. break;
  1958. /*
  1959. * Was it really running after all now that we
  1960. * checked with the proper locks actually held?
  1961. *
  1962. * Oops. Go back and try again..
  1963. */
  1964. if (unlikely(running)) {
  1965. cpu_relax();
  1966. continue;
  1967. }
  1968. /*
  1969. * It's not enough that it's not actively running,
  1970. * it must be off the runqueue _entirely_, and not
  1971. * preempted!
  1972. *
  1973. * So if it was still runnable (but just not actively
  1974. * running right now), it's preempted, and we should
  1975. * yield - it could be a while.
  1976. */
  1977. if (unlikely(on_rq)) {
  1978. schedule_timeout_uninterruptible(1);
  1979. continue;
  1980. }
  1981. /*
  1982. * Ahh, all good. It wasn't running, and it wasn't
  1983. * runnable, which means that it will never become
  1984. * running in the future either. We're all done!
  1985. */
  1986. break;
  1987. }
  1988. return ncsw;
  1989. }
  1990. /***
  1991. * kick_process - kick a running thread to enter/exit the kernel
  1992. * @p: the to-be-kicked thread
  1993. *
  1994. * Cause a process which is running on another CPU to enter
  1995. * kernel-mode, without any delay. (to get signals handled.)
  1996. *
  1997. * NOTE: this function doesnt have to take the runqueue lock,
  1998. * because all it wants to ensure is that the remote task enters
  1999. * the kernel. If the IPI races and the task has been migrated
  2000. * to another CPU then no harm is done and the purpose has been
  2001. * achieved as well.
  2002. */
  2003. void kick_process(struct task_struct *p)
  2004. {
  2005. int cpu;
  2006. preempt_disable();
  2007. cpu = task_cpu(p);
  2008. if ((cpu != smp_processor_id()) && task_curr(p))
  2009. smp_send_reschedule(cpu);
  2010. preempt_enable();
  2011. }
  2012. EXPORT_SYMBOL_GPL(kick_process);
  2013. #endif /* CONFIG_SMP */
  2014. /**
  2015. * task_oncpu_function_call - call a function on the cpu on which a task runs
  2016. * @p: the task to evaluate
  2017. * @func: the function to be called
  2018. * @info: the function call argument
  2019. *
  2020. * Calls the function @func when the task is currently running. This might
  2021. * be on the current CPU, which just calls the function directly
  2022. */
  2023. void task_oncpu_function_call(struct task_struct *p,
  2024. void (*func) (void *info), void *info)
  2025. {
  2026. int cpu;
  2027. preempt_disable();
  2028. cpu = task_cpu(p);
  2029. if (task_curr(p))
  2030. smp_call_function_single(cpu, func, info, 1);
  2031. preempt_enable();
  2032. }
  2033. #ifdef CONFIG_SMP
  2034. /*
  2035. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  2036. */
  2037. static int select_fallback_rq(int cpu, struct task_struct *p)
  2038. {
  2039. int dest_cpu;
  2040. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  2041. /* Look for allowed, online CPU in same node. */
  2042. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  2043. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  2044. return dest_cpu;
  2045. /* Any allowed, online CPU? */
  2046. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2047. if (dest_cpu < nr_cpu_ids)
  2048. return dest_cpu;
  2049. /* No more Mr. Nice Guy. */
  2050. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  2051. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2052. /*
  2053. * Don't tell them about moving exiting tasks or
  2054. * kernel threads (both mm NULL), since they never
  2055. * leave kernel.
  2056. */
  2057. if (p->mm && printk_ratelimit()) {
  2058. printk(KERN_INFO "process %d (%s) no "
  2059. "longer affine to cpu%d\n",
  2060. task_pid_nr(p), p->comm, cpu);
  2061. }
  2062. }
  2063. return dest_cpu;
  2064. }
  2065. /*
  2066. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  2067. */
  2068. static inline
  2069. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  2070. {
  2071. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  2072. /*
  2073. * In order not to call set_task_cpu() on a blocking task we need
  2074. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2075. * cpu.
  2076. *
  2077. * Since this is common to all placement strategies, this lives here.
  2078. *
  2079. * [ this allows ->select_task() to simply return task_cpu(p) and
  2080. * not worry about this generic constraint ]
  2081. */
  2082. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2083. !cpu_online(cpu)))
  2084. cpu = select_fallback_rq(task_cpu(p), p);
  2085. return cpu;
  2086. }
  2087. static void update_avg(u64 *avg, u64 sample)
  2088. {
  2089. s64 diff = sample - *avg;
  2090. *avg += diff >> 3;
  2091. }
  2092. #endif
  2093. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  2094. bool is_sync, bool is_migrate, bool is_local,
  2095. unsigned long en_flags)
  2096. {
  2097. schedstat_inc(p, se.statistics.nr_wakeups);
  2098. if (is_sync)
  2099. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2100. if (is_migrate)
  2101. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2102. if (is_local)
  2103. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2104. else
  2105. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2106. activate_task(rq, p, en_flags);
  2107. }
  2108. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  2109. int wake_flags, bool success)
  2110. {
  2111. trace_sched_wakeup(p, success);
  2112. check_preempt_curr(rq, p, wake_flags);
  2113. p->state = TASK_RUNNING;
  2114. #ifdef CONFIG_SMP
  2115. if (p->sched_class->task_woken)
  2116. p->sched_class->task_woken(rq, p);
  2117. if (unlikely(rq->idle_stamp)) {
  2118. u64 delta = rq->clock - rq->idle_stamp;
  2119. u64 max = 2*sysctl_sched_migration_cost;
  2120. if (delta > max)
  2121. rq->avg_idle = max;
  2122. else
  2123. update_avg(&rq->avg_idle, delta);
  2124. rq->idle_stamp = 0;
  2125. }
  2126. #endif
  2127. /* if a worker is waking up, notify workqueue */
  2128. if ((p->flags & PF_WQ_WORKER) && success)
  2129. wq_worker_waking_up(p, cpu_of(rq));
  2130. }
  2131. /**
  2132. * try_to_wake_up - wake up a thread
  2133. * @p: the thread to be awakened
  2134. * @state: the mask of task states that can be woken
  2135. * @wake_flags: wake modifier flags (WF_*)
  2136. *
  2137. * Put it on the run-queue if it's not already there. The "current"
  2138. * thread is always on the run-queue (except when the actual
  2139. * re-schedule is in progress), and as such you're allowed to do
  2140. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2141. * runnable without the overhead of this.
  2142. *
  2143. * Returns %true if @p was woken up, %false if it was already running
  2144. * or @state didn't match @p's state.
  2145. */
  2146. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2147. int wake_flags)
  2148. {
  2149. int cpu, orig_cpu, this_cpu, success = 0;
  2150. unsigned long flags;
  2151. unsigned long en_flags = ENQUEUE_WAKEUP;
  2152. struct rq *rq;
  2153. this_cpu = get_cpu();
  2154. smp_wmb();
  2155. rq = task_rq_lock(p, &flags);
  2156. if (!(p->state & state))
  2157. goto out;
  2158. if (p->se.on_rq)
  2159. goto out_running;
  2160. cpu = task_cpu(p);
  2161. orig_cpu = cpu;
  2162. #ifdef CONFIG_SMP
  2163. if (unlikely(task_running(rq, p)))
  2164. goto out_activate;
  2165. /*
  2166. * In order to handle concurrent wakeups and release the rq->lock
  2167. * we put the task in TASK_WAKING state.
  2168. *
  2169. * First fix up the nr_uninterruptible count:
  2170. */
  2171. if (task_contributes_to_load(p)) {
  2172. if (likely(cpu_online(orig_cpu)))
  2173. rq->nr_uninterruptible--;
  2174. else
  2175. this_rq()->nr_uninterruptible--;
  2176. }
  2177. p->state = TASK_WAKING;
  2178. if (p->sched_class->task_waking) {
  2179. p->sched_class->task_waking(rq, p);
  2180. en_flags |= ENQUEUE_WAKING;
  2181. }
  2182. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2183. if (cpu != orig_cpu)
  2184. set_task_cpu(p, cpu);
  2185. __task_rq_unlock(rq);
  2186. rq = cpu_rq(cpu);
  2187. raw_spin_lock(&rq->lock);
  2188. /*
  2189. * We migrated the task without holding either rq->lock, however
  2190. * since the task is not on the task list itself, nobody else
  2191. * will try and migrate the task, hence the rq should match the
  2192. * cpu we just moved it to.
  2193. */
  2194. WARN_ON(task_cpu(p) != cpu);
  2195. WARN_ON(p->state != TASK_WAKING);
  2196. #ifdef CONFIG_SCHEDSTATS
  2197. schedstat_inc(rq, ttwu_count);
  2198. if (cpu == this_cpu)
  2199. schedstat_inc(rq, ttwu_local);
  2200. else {
  2201. struct sched_domain *sd;
  2202. for_each_domain(this_cpu, sd) {
  2203. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2204. schedstat_inc(sd, ttwu_wake_remote);
  2205. break;
  2206. }
  2207. }
  2208. }
  2209. #endif /* CONFIG_SCHEDSTATS */
  2210. out_activate:
  2211. #endif /* CONFIG_SMP */
  2212. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2213. cpu == this_cpu, en_flags);
  2214. success = 1;
  2215. out_running:
  2216. ttwu_post_activation(p, rq, wake_flags, success);
  2217. out:
  2218. task_rq_unlock(rq, &flags);
  2219. put_cpu();
  2220. return success;
  2221. }
  2222. /**
  2223. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2224. * @p: the thread to be awakened
  2225. *
  2226. * Put @p on the run-queue if it's not alredy there. The caller must
  2227. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2228. * the current task. this_rq() stays locked over invocation.
  2229. */
  2230. static void try_to_wake_up_local(struct task_struct *p)
  2231. {
  2232. struct rq *rq = task_rq(p);
  2233. bool success = false;
  2234. BUG_ON(rq != this_rq());
  2235. BUG_ON(p == current);
  2236. lockdep_assert_held(&rq->lock);
  2237. if (!(p->state & TASK_NORMAL))
  2238. return;
  2239. if (!p->se.on_rq) {
  2240. if (likely(!task_running(rq, p))) {
  2241. schedstat_inc(rq, ttwu_count);
  2242. schedstat_inc(rq, ttwu_local);
  2243. }
  2244. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2245. success = true;
  2246. }
  2247. ttwu_post_activation(p, rq, 0, success);
  2248. }
  2249. /**
  2250. * wake_up_process - Wake up a specific process
  2251. * @p: The process to be woken up.
  2252. *
  2253. * Attempt to wake up the nominated process and move it to the set of runnable
  2254. * processes. Returns 1 if the process was woken up, 0 if it was already
  2255. * running.
  2256. *
  2257. * It may be assumed that this function implies a write memory barrier before
  2258. * changing the task state if and only if any tasks are woken up.
  2259. */
  2260. int wake_up_process(struct task_struct *p)
  2261. {
  2262. return try_to_wake_up(p, TASK_ALL, 0);
  2263. }
  2264. EXPORT_SYMBOL(wake_up_process);
  2265. int wake_up_state(struct task_struct *p, unsigned int state)
  2266. {
  2267. return try_to_wake_up(p, state, 0);
  2268. }
  2269. /*
  2270. * Perform scheduler related setup for a newly forked process p.
  2271. * p is forked by current.
  2272. *
  2273. * __sched_fork() is basic setup used by init_idle() too:
  2274. */
  2275. static void __sched_fork(struct task_struct *p)
  2276. {
  2277. p->se.exec_start = 0;
  2278. p->se.sum_exec_runtime = 0;
  2279. p->se.prev_sum_exec_runtime = 0;
  2280. p->se.nr_migrations = 0;
  2281. #ifdef CONFIG_SCHEDSTATS
  2282. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2283. #endif
  2284. INIT_LIST_HEAD(&p->rt.run_list);
  2285. p->se.on_rq = 0;
  2286. INIT_LIST_HEAD(&p->se.group_node);
  2287. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2288. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2289. #endif
  2290. }
  2291. /*
  2292. * fork()/clone()-time setup:
  2293. */
  2294. void sched_fork(struct task_struct *p, int clone_flags)
  2295. {
  2296. int cpu = get_cpu();
  2297. __sched_fork(p);
  2298. /*
  2299. * We mark the process as running here. This guarantees that
  2300. * nobody will actually run it, and a signal or other external
  2301. * event cannot wake it up and insert it on the runqueue either.
  2302. */
  2303. p->state = TASK_RUNNING;
  2304. /*
  2305. * Revert to default priority/policy on fork if requested.
  2306. */
  2307. if (unlikely(p->sched_reset_on_fork)) {
  2308. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2309. p->policy = SCHED_NORMAL;
  2310. p->normal_prio = p->static_prio;
  2311. }
  2312. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2313. p->static_prio = NICE_TO_PRIO(0);
  2314. p->normal_prio = p->static_prio;
  2315. set_load_weight(p);
  2316. }
  2317. /*
  2318. * We don't need the reset flag anymore after the fork. It has
  2319. * fulfilled its duty:
  2320. */
  2321. p->sched_reset_on_fork = 0;
  2322. }
  2323. /*
  2324. * Make sure we do not leak PI boosting priority to the child.
  2325. */
  2326. p->prio = current->normal_prio;
  2327. if (!rt_prio(p->prio))
  2328. p->sched_class = &fair_sched_class;
  2329. if (p->sched_class->task_fork)
  2330. p->sched_class->task_fork(p);
  2331. /*
  2332. * The child is not yet in the pid-hash so no cgroup attach races,
  2333. * and the cgroup is pinned to this child due to cgroup_fork()
  2334. * is ran before sched_fork().
  2335. *
  2336. * Silence PROVE_RCU.
  2337. */
  2338. rcu_read_lock();
  2339. set_task_cpu(p, cpu);
  2340. rcu_read_unlock();
  2341. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2342. if (likely(sched_info_on()))
  2343. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2344. #endif
  2345. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2346. p->oncpu = 0;
  2347. #endif
  2348. #ifdef CONFIG_PREEMPT
  2349. /* Want to start with kernel preemption disabled. */
  2350. task_thread_info(p)->preempt_count = 1;
  2351. #endif
  2352. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2353. put_cpu();
  2354. }
  2355. /*
  2356. * wake_up_new_task - wake up a newly created task for the first time.
  2357. *
  2358. * This function will do some initial scheduler statistics housekeeping
  2359. * that must be done for every newly created context, then puts the task
  2360. * on the runqueue and wakes it.
  2361. */
  2362. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2363. {
  2364. unsigned long flags;
  2365. struct rq *rq;
  2366. int cpu __maybe_unused = get_cpu();
  2367. #ifdef CONFIG_SMP
  2368. rq = task_rq_lock(p, &flags);
  2369. p->state = TASK_WAKING;
  2370. /*
  2371. * Fork balancing, do it here and not earlier because:
  2372. * - cpus_allowed can change in the fork path
  2373. * - any previously selected cpu might disappear through hotplug
  2374. *
  2375. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2376. * without people poking at ->cpus_allowed.
  2377. */
  2378. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2379. set_task_cpu(p, cpu);
  2380. p->state = TASK_RUNNING;
  2381. task_rq_unlock(rq, &flags);
  2382. #endif
  2383. rq = task_rq_lock(p, &flags);
  2384. activate_task(rq, p, 0);
  2385. trace_sched_wakeup_new(p, 1);
  2386. check_preempt_curr(rq, p, WF_FORK);
  2387. #ifdef CONFIG_SMP
  2388. if (p->sched_class->task_woken)
  2389. p->sched_class->task_woken(rq, p);
  2390. #endif
  2391. task_rq_unlock(rq, &flags);
  2392. put_cpu();
  2393. }
  2394. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2395. /**
  2396. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2397. * @notifier: notifier struct to register
  2398. */
  2399. void preempt_notifier_register(struct preempt_notifier *notifier)
  2400. {
  2401. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2402. }
  2403. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2404. /**
  2405. * preempt_notifier_unregister - no longer interested in preemption notifications
  2406. * @notifier: notifier struct to unregister
  2407. *
  2408. * This is safe to call from within a preemption notifier.
  2409. */
  2410. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2411. {
  2412. hlist_del(&notifier->link);
  2413. }
  2414. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2415. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2416. {
  2417. struct preempt_notifier *notifier;
  2418. struct hlist_node *node;
  2419. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2420. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2421. }
  2422. static void
  2423. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2424. struct task_struct *next)
  2425. {
  2426. struct preempt_notifier *notifier;
  2427. struct hlist_node *node;
  2428. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2429. notifier->ops->sched_out(notifier, next);
  2430. }
  2431. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2432. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2433. {
  2434. }
  2435. static void
  2436. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2437. struct task_struct *next)
  2438. {
  2439. }
  2440. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2441. /**
  2442. * prepare_task_switch - prepare to switch tasks
  2443. * @rq: the runqueue preparing to switch
  2444. * @prev: the current task that is being switched out
  2445. * @next: the task we are going to switch to.
  2446. *
  2447. * This is called with the rq lock held and interrupts off. It must
  2448. * be paired with a subsequent finish_task_switch after the context
  2449. * switch.
  2450. *
  2451. * prepare_task_switch sets up locking and calls architecture specific
  2452. * hooks.
  2453. */
  2454. static inline void
  2455. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2456. struct task_struct *next)
  2457. {
  2458. fire_sched_out_preempt_notifiers(prev, next);
  2459. prepare_lock_switch(rq, next);
  2460. prepare_arch_switch(next);
  2461. }
  2462. /**
  2463. * finish_task_switch - clean up after a task-switch
  2464. * @rq: runqueue associated with task-switch
  2465. * @prev: the thread we just switched away from.
  2466. *
  2467. * finish_task_switch must be called after the context switch, paired
  2468. * with a prepare_task_switch call before the context switch.
  2469. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2470. * and do any other architecture-specific cleanup actions.
  2471. *
  2472. * Note that we may have delayed dropping an mm in context_switch(). If
  2473. * so, we finish that here outside of the runqueue lock. (Doing it
  2474. * with the lock held can cause deadlocks; see schedule() for
  2475. * details.)
  2476. */
  2477. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2478. __releases(rq->lock)
  2479. {
  2480. struct mm_struct *mm = rq->prev_mm;
  2481. long prev_state;
  2482. rq->prev_mm = NULL;
  2483. /*
  2484. * A task struct has one reference for the use as "current".
  2485. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2486. * schedule one last time. The schedule call will never return, and
  2487. * the scheduled task must drop that reference.
  2488. * The test for TASK_DEAD must occur while the runqueue locks are
  2489. * still held, otherwise prev could be scheduled on another cpu, die
  2490. * there before we look at prev->state, and then the reference would
  2491. * be dropped twice.
  2492. * Manfred Spraul <manfred@colorfullife.com>
  2493. */
  2494. prev_state = prev->state;
  2495. finish_arch_switch(prev);
  2496. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2497. local_irq_disable();
  2498. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2499. perf_event_task_sched_in(current);
  2500. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2501. local_irq_enable();
  2502. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2503. finish_lock_switch(rq, prev);
  2504. fire_sched_in_preempt_notifiers(current);
  2505. if (mm)
  2506. mmdrop(mm);
  2507. if (unlikely(prev_state == TASK_DEAD)) {
  2508. /*
  2509. * Remove function-return probe instances associated with this
  2510. * task and put them back on the free list.
  2511. */
  2512. kprobe_flush_task(prev);
  2513. put_task_struct(prev);
  2514. }
  2515. }
  2516. #ifdef CONFIG_SMP
  2517. /* assumes rq->lock is held */
  2518. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2519. {
  2520. if (prev->sched_class->pre_schedule)
  2521. prev->sched_class->pre_schedule(rq, prev);
  2522. }
  2523. /* rq->lock is NOT held, but preemption is disabled */
  2524. static inline void post_schedule(struct rq *rq)
  2525. {
  2526. if (rq->post_schedule) {
  2527. unsigned long flags;
  2528. raw_spin_lock_irqsave(&rq->lock, flags);
  2529. if (rq->curr->sched_class->post_schedule)
  2530. rq->curr->sched_class->post_schedule(rq);
  2531. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2532. rq->post_schedule = 0;
  2533. }
  2534. }
  2535. #else
  2536. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2537. {
  2538. }
  2539. static inline void post_schedule(struct rq *rq)
  2540. {
  2541. }
  2542. #endif
  2543. /**
  2544. * schedule_tail - first thing a freshly forked thread must call.
  2545. * @prev: the thread we just switched away from.
  2546. */
  2547. asmlinkage void schedule_tail(struct task_struct *prev)
  2548. __releases(rq->lock)
  2549. {
  2550. struct rq *rq = this_rq();
  2551. finish_task_switch(rq, prev);
  2552. /*
  2553. * FIXME: do we need to worry about rq being invalidated by the
  2554. * task_switch?
  2555. */
  2556. post_schedule(rq);
  2557. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2558. /* In this case, finish_task_switch does not reenable preemption */
  2559. preempt_enable();
  2560. #endif
  2561. if (current->set_child_tid)
  2562. put_user(task_pid_vnr(current), current->set_child_tid);
  2563. }
  2564. /*
  2565. * context_switch - switch to the new MM and the new
  2566. * thread's register state.
  2567. */
  2568. static inline void
  2569. context_switch(struct rq *rq, struct task_struct *prev,
  2570. struct task_struct *next)
  2571. {
  2572. struct mm_struct *mm, *oldmm;
  2573. prepare_task_switch(rq, prev, next);
  2574. trace_sched_switch(prev, next);
  2575. mm = next->mm;
  2576. oldmm = prev->active_mm;
  2577. /*
  2578. * For paravirt, this is coupled with an exit in switch_to to
  2579. * combine the page table reload and the switch backend into
  2580. * one hypercall.
  2581. */
  2582. arch_start_context_switch(prev);
  2583. if (!mm) {
  2584. next->active_mm = oldmm;
  2585. atomic_inc(&oldmm->mm_count);
  2586. enter_lazy_tlb(oldmm, next);
  2587. } else
  2588. switch_mm(oldmm, mm, next);
  2589. if (!prev->mm) {
  2590. prev->active_mm = NULL;
  2591. rq->prev_mm = oldmm;
  2592. }
  2593. /*
  2594. * Since the runqueue lock will be released by the next
  2595. * task (which is an invalid locking op but in the case
  2596. * of the scheduler it's an obvious special-case), so we
  2597. * do an early lockdep release here:
  2598. */
  2599. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2600. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2601. #endif
  2602. /* Here we just switch the register state and the stack. */
  2603. switch_to(prev, next, prev);
  2604. barrier();
  2605. /*
  2606. * this_rq must be evaluated again because prev may have moved
  2607. * CPUs since it called schedule(), thus the 'rq' on its stack
  2608. * frame will be invalid.
  2609. */
  2610. finish_task_switch(this_rq(), prev);
  2611. }
  2612. /*
  2613. * nr_running, nr_uninterruptible and nr_context_switches:
  2614. *
  2615. * externally visible scheduler statistics: current number of runnable
  2616. * threads, current number of uninterruptible-sleeping threads, total
  2617. * number of context switches performed since bootup.
  2618. */
  2619. unsigned long nr_running(void)
  2620. {
  2621. unsigned long i, sum = 0;
  2622. for_each_online_cpu(i)
  2623. sum += cpu_rq(i)->nr_running;
  2624. return sum;
  2625. }
  2626. unsigned long nr_uninterruptible(void)
  2627. {
  2628. unsigned long i, sum = 0;
  2629. for_each_possible_cpu(i)
  2630. sum += cpu_rq(i)->nr_uninterruptible;
  2631. /*
  2632. * Since we read the counters lockless, it might be slightly
  2633. * inaccurate. Do not allow it to go below zero though:
  2634. */
  2635. if (unlikely((long)sum < 0))
  2636. sum = 0;
  2637. return sum;
  2638. }
  2639. unsigned long long nr_context_switches(void)
  2640. {
  2641. int i;
  2642. unsigned long long sum = 0;
  2643. for_each_possible_cpu(i)
  2644. sum += cpu_rq(i)->nr_switches;
  2645. return sum;
  2646. }
  2647. unsigned long nr_iowait(void)
  2648. {
  2649. unsigned long i, sum = 0;
  2650. for_each_possible_cpu(i)
  2651. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2652. return sum;
  2653. }
  2654. unsigned long nr_iowait_cpu(int cpu)
  2655. {
  2656. struct rq *this = cpu_rq(cpu);
  2657. return atomic_read(&this->nr_iowait);
  2658. }
  2659. unsigned long this_cpu_load(void)
  2660. {
  2661. struct rq *this = this_rq();
  2662. return this->cpu_load[0];
  2663. }
  2664. /* Variables and functions for calc_load */
  2665. static atomic_long_t calc_load_tasks;
  2666. static unsigned long calc_load_update;
  2667. unsigned long avenrun[3];
  2668. EXPORT_SYMBOL(avenrun);
  2669. static long calc_load_fold_active(struct rq *this_rq)
  2670. {
  2671. long nr_active, delta = 0;
  2672. nr_active = this_rq->nr_running;
  2673. nr_active += (long) this_rq->nr_uninterruptible;
  2674. if (nr_active != this_rq->calc_load_active) {
  2675. delta = nr_active - this_rq->calc_load_active;
  2676. this_rq->calc_load_active = nr_active;
  2677. }
  2678. return delta;
  2679. }
  2680. static unsigned long
  2681. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2682. {
  2683. load *= exp;
  2684. load += active * (FIXED_1 - exp);
  2685. load += 1UL << (FSHIFT - 1);
  2686. return load >> FSHIFT;
  2687. }
  2688. #ifdef CONFIG_NO_HZ
  2689. /*
  2690. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2691. *
  2692. * When making the ILB scale, we should try to pull this in as well.
  2693. */
  2694. static atomic_long_t calc_load_tasks_idle;
  2695. static void calc_load_account_idle(struct rq *this_rq)
  2696. {
  2697. long delta;
  2698. delta = calc_load_fold_active(this_rq);
  2699. if (delta)
  2700. atomic_long_add(delta, &calc_load_tasks_idle);
  2701. }
  2702. static long calc_load_fold_idle(void)
  2703. {
  2704. long delta = 0;
  2705. /*
  2706. * Its got a race, we don't care...
  2707. */
  2708. if (atomic_long_read(&calc_load_tasks_idle))
  2709. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2710. return delta;
  2711. }
  2712. /**
  2713. * fixed_power_int - compute: x^n, in O(log n) time
  2714. *
  2715. * @x: base of the power
  2716. * @frac_bits: fractional bits of @x
  2717. * @n: power to raise @x to.
  2718. *
  2719. * By exploiting the relation between the definition of the natural power
  2720. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2721. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2722. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2723. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2724. * of course trivially computable in O(log_2 n), the length of our binary
  2725. * vector.
  2726. */
  2727. static unsigned long
  2728. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2729. {
  2730. unsigned long result = 1UL << frac_bits;
  2731. if (n) for (;;) {
  2732. if (n & 1) {
  2733. result *= x;
  2734. result += 1UL << (frac_bits - 1);
  2735. result >>= frac_bits;
  2736. }
  2737. n >>= 1;
  2738. if (!n)
  2739. break;
  2740. x *= x;
  2741. x += 1UL << (frac_bits - 1);
  2742. x >>= frac_bits;
  2743. }
  2744. return result;
  2745. }
  2746. /*
  2747. * a1 = a0 * e + a * (1 - e)
  2748. *
  2749. * a2 = a1 * e + a * (1 - e)
  2750. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2751. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2752. *
  2753. * a3 = a2 * e + a * (1 - e)
  2754. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2755. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2756. *
  2757. * ...
  2758. *
  2759. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2760. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2761. * = a0 * e^n + a * (1 - e^n)
  2762. *
  2763. * [1] application of the geometric series:
  2764. *
  2765. * n 1 - x^(n+1)
  2766. * S_n := \Sum x^i = -------------
  2767. * i=0 1 - x
  2768. */
  2769. static unsigned long
  2770. calc_load_n(unsigned long load, unsigned long exp,
  2771. unsigned long active, unsigned int n)
  2772. {
  2773. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2774. }
  2775. /*
  2776. * NO_HZ can leave us missing all per-cpu ticks calling
  2777. * calc_load_account_active(), but since an idle CPU folds its delta into
  2778. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2779. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2780. *
  2781. * Once we've updated the global active value, we need to apply the exponential
  2782. * weights adjusted to the number of cycles missed.
  2783. */
  2784. static void calc_global_nohz(unsigned long ticks)
  2785. {
  2786. long delta, active, n;
  2787. if (time_before(jiffies, calc_load_update))
  2788. return;
  2789. /*
  2790. * If we crossed a calc_load_update boundary, make sure to fold
  2791. * any pending idle changes, the respective CPUs might have
  2792. * missed the tick driven calc_load_account_active() update
  2793. * due to NO_HZ.
  2794. */
  2795. delta = calc_load_fold_idle();
  2796. if (delta)
  2797. atomic_long_add(delta, &calc_load_tasks);
  2798. /*
  2799. * If we were idle for multiple load cycles, apply them.
  2800. */
  2801. if (ticks >= LOAD_FREQ) {
  2802. n = ticks / LOAD_FREQ;
  2803. active = atomic_long_read(&calc_load_tasks);
  2804. active = active > 0 ? active * FIXED_1 : 0;
  2805. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2806. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2807. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2808. calc_load_update += n * LOAD_FREQ;
  2809. }
  2810. /*
  2811. * Its possible the remainder of the above division also crosses
  2812. * a LOAD_FREQ period, the regular check in calc_global_load()
  2813. * which comes after this will take care of that.
  2814. *
  2815. * Consider us being 11 ticks before a cycle completion, and us
  2816. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2817. * age us 4 cycles, and the test in calc_global_load() will
  2818. * pick up the final one.
  2819. */
  2820. }
  2821. #else
  2822. static void calc_load_account_idle(struct rq *this_rq)
  2823. {
  2824. }
  2825. static inline long calc_load_fold_idle(void)
  2826. {
  2827. return 0;
  2828. }
  2829. static void calc_global_nohz(unsigned long ticks)
  2830. {
  2831. }
  2832. #endif
  2833. /**
  2834. * get_avenrun - get the load average array
  2835. * @loads: pointer to dest load array
  2836. * @offset: offset to add
  2837. * @shift: shift count to shift the result left
  2838. *
  2839. * These values are estimates at best, so no need for locking.
  2840. */
  2841. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2842. {
  2843. loads[0] = (avenrun[0] + offset) << shift;
  2844. loads[1] = (avenrun[1] + offset) << shift;
  2845. loads[2] = (avenrun[2] + offset) << shift;
  2846. }
  2847. /*
  2848. * calc_load - update the avenrun load estimates 10 ticks after the
  2849. * CPUs have updated calc_load_tasks.
  2850. */
  2851. void calc_global_load(unsigned long ticks)
  2852. {
  2853. long active;
  2854. calc_global_nohz(ticks);
  2855. if (time_before(jiffies, calc_load_update + 10))
  2856. return;
  2857. active = atomic_long_read(&calc_load_tasks);
  2858. active = active > 0 ? active * FIXED_1 : 0;
  2859. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2860. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2861. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2862. calc_load_update += LOAD_FREQ;
  2863. }
  2864. /*
  2865. * Called from update_cpu_load() to periodically update this CPU's
  2866. * active count.
  2867. */
  2868. static void calc_load_account_active(struct rq *this_rq)
  2869. {
  2870. long delta;
  2871. if (time_before(jiffies, this_rq->calc_load_update))
  2872. return;
  2873. delta = calc_load_fold_active(this_rq);
  2874. delta += calc_load_fold_idle();
  2875. if (delta)
  2876. atomic_long_add(delta, &calc_load_tasks);
  2877. this_rq->calc_load_update += LOAD_FREQ;
  2878. }
  2879. /*
  2880. * The exact cpuload at various idx values, calculated at every tick would be
  2881. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2882. *
  2883. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2884. * on nth tick when cpu may be busy, then we have:
  2885. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2886. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2887. *
  2888. * decay_load_missed() below does efficient calculation of
  2889. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2890. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2891. *
  2892. * The calculation is approximated on a 128 point scale.
  2893. * degrade_zero_ticks is the number of ticks after which load at any
  2894. * particular idx is approximated to be zero.
  2895. * degrade_factor is a precomputed table, a row for each load idx.
  2896. * Each column corresponds to degradation factor for a power of two ticks,
  2897. * based on 128 point scale.
  2898. * Example:
  2899. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2900. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2901. *
  2902. * With this power of 2 load factors, we can degrade the load n times
  2903. * by looking at 1 bits in n and doing as many mult/shift instead of
  2904. * n mult/shifts needed by the exact degradation.
  2905. */
  2906. #define DEGRADE_SHIFT 7
  2907. static const unsigned char
  2908. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2909. static const unsigned char
  2910. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2911. {0, 0, 0, 0, 0, 0, 0, 0},
  2912. {64, 32, 8, 0, 0, 0, 0, 0},
  2913. {96, 72, 40, 12, 1, 0, 0},
  2914. {112, 98, 75, 43, 15, 1, 0},
  2915. {120, 112, 98, 76, 45, 16, 2} };
  2916. /*
  2917. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2918. * would be when CPU is idle and so we just decay the old load without
  2919. * adding any new load.
  2920. */
  2921. static unsigned long
  2922. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2923. {
  2924. int j = 0;
  2925. if (!missed_updates)
  2926. return load;
  2927. if (missed_updates >= degrade_zero_ticks[idx])
  2928. return 0;
  2929. if (idx == 1)
  2930. return load >> missed_updates;
  2931. while (missed_updates) {
  2932. if (missed_updates % 2)
  2933. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2934. missed_updates >>= 1;
  2935. j++;
  2936. }
  2937. return load;
  2938. }
  2939. /*
  2940. * Update rq->cpu_load[] statistics. This function is usually called every
  2941. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2942. * every tick. We fix it up based on jiffies.
  2943. */
  2944. static void update_cpu_load(struct rq *this_rq)
  2945. {
  2946. unsigned long this_load = this_rq->load.weight;
  2947. unsigned long curr_jiffies = jiffies;
  2948. unsigned long pending_updates;
  2949. int i, scale;
  2950. this_rq->nr_load_updates++;
  2951. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2952. if (curr_jiffies == this_rq->last_load_update_tick)
  2953. return;
  2954. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2955. this_rq->last_load_update_tick = curr_jiffies;
  2956. /* Update our load: */
  2957. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2958. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2959. unsigned long old_load, new_load;
  2960. /* scale is effectively 1 << i now, and >> i divides by scale */
  2961. old_load = this_rq->cpu_load[i];
  2962. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2963. new_load = this_load;
  2964. /*
  2965. * Round up the averaging division if load is increasing. This
  2966. * prevents us from getting stuck on 9 if the load is 10, for
  2967. * example.
  2968. */
  2969. if (new_load > old_load)
  2970. new_load += scale - 1;
  2971. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2972. }
  2973. sched_avg_update(this_rq);
  2974. }
  2975. static void update_cpu_load_active(struct rq *this_rq)
  2976. {
  2977. update_cpu_load(this_rq);
  2978. calc_load_account_active(this_rq);
  2979. }
  2980. #ifdef CONFIG_SMP
  2981. /*
  2982. * sched_exec - execve() is a valuable balancing opportunity, because at
  2983. * this point the task has the smallest effective memory and cache footprint.
  2984. */
  2985. void sched_exec(void)
  2986. {
  2987. struct task_struct *p = current;
  2988. unsigned long flags;
  2989. struct rq *rq;
  2990. int dest_cpu;
  2991. rq = task_rq_lock(p, &flags);
  2992. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2993. if (dest_cpu == smp_processor_id())
  2994. goto unlock;
  2995. /*
  2996. * select_task_rq() can race against ->cpus_allowed
  2997. */
  2998. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2999. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  3000. struct migration_arg arg = { p, dest_cpu };
  3001. task_rq_unlock(rq, &flags);
  3002. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3003. return;
  3004. }
  3005. unlock:
  3006. task_rq_unlock(rq, &flags);
  3007. }
  3008. #endif
  3009. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3010. EXPORT_PER_CPU_SYMBOL(kstat);
  3011. /*
  3012. * Return any ns on the sched_clock that have not yet been accounted in
  3013. * @p in case that task is currently running.
  3014. *
  3015. * Called with task_rq_lock() held on @rq.
  3016. */
  3017. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3018. {
  3019. u64 ns = 0;
  3020. if (task_current(rq, p)) {
  3021. update_rq_clock(rq);
  3022. ns = rq->clock_task - p->se.exec_start;
  3023. if ((s64)ns < 0)
  3024. ns = 0;
  3025. }
  3026. return ns;
  3027. }
  3028. unsigned long long task_delta_exec(struct task_struct *p)
  3029. {
  3030. unsigned long flags;
  3031. struct rq *rq;
  3032. u64 ns = 0;
  3033. rq = task_rq_lock(p, &flags);
  3034. ns = do_task_delta_exec(p, rq);
  3035. task_rq_unlock(rq, &flags);
  3036. return ns;
  3037. }
  3038. /*
  3039. * Return accounted runtime for the task.
  3040. * In case the task is currently running, return the runtime plus current's
  3041. * pending runtime that have not been accounted yet.
  3042. */
  3043. unsigned long long task_sched_runtime(struct task_struct *p)
  3044. {
  3045. unsigned long flags;
  3046. struct rq *rq;
  3047. u64 ns = 0;
  3048. rq = task_rq_lock(p, &flags);
  3049. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3050. task_rq_unlock(rq, &flags);
  3051. return ns;
  3052. }
  3053. /*
  3054. * Return sum_exec_runtime for the thread group.
  3055. * In case the task is currently running, return the sum plus current's
  3056. * pending runtime that have not been accounted yet.
  3057. *
  3058. * Note that the thread group might have other running tasks as well,
  3059. * so the return value not includes other pending runtime that other
  3060. * running tasks might have.
  3061. */
  3062. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3063. {
  3064. struct task_cputime totals;
  3065. unsigned long flags;
  3066. struct rq *rq;
  3067. u64 ns;
  3068. rq = task_rq_lock(p, &flags);
  3069. thread_group_cputime(p, &totals);
  3070. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3071. task_rq_unlock(rq, &flags);
  3072. return ns;
  3073. }
  3074. /*
  3075. * Account user cpu time to a process.
  3076. * @p: the process that the cpu time gets accounted to
  3077. * @cputime: the cpu time spent in user space since the last update
  3078. * @cputime_scaled: cputime scaled by cpu frequency
  3079. */
  3080. void account_user_time(struct task_struct *p, cputime_t cputime,
  3081. cputime_t cputime_scaled)
  3082. {
  3083. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3084. cputime64_t tmp;
  3085. /* Add user time to process. */
  3086. p->utime = cputime_add(p->utime, cputime);
  3087. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3088. account_group_user_time(p, cputime);
  3089. /* Add user time to cpustat. */
  3090. tmp = cputime_to_cputime64(cputime);
  3091. if (TASK_NICE(p) > 0)
  3092. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3093. else
  3094. cpustat->user = cputime64_add(cpustat->user, tmp);
  3095. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3096. /* Account for user time used */
  3097. acct_update_integrals(p);
  3098. }
  3099. /*
  3100. * Account guest cpu time to a process.
  3101. * @p: the process that the cpu time gets accounted to
  3102. * @cputime: the cpu time spent in virtual machine since the last update
  3103. * @cputime_scaled: cputime scaled by cpu frequency
  3104. */
  3105. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3106. cputime_t cputime_scaled)
  3107. {
  3108. cputime64_t tmp;
  3109. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3110. tmp = cputime_to_cputime64(cputime);
  3111. /* Add guest time to process. */
  3112. p->utime = cputime_add(p->utime, cputime);
  3113. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3114. account_group_user_time(p, cputime);
  3115. p->gtime = cputime_add(p->gtime, cputime);
  3116. /* Add guest time to cpustat. */
  3117. if (TASK_NICE(p) > 0) {
  3118. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3119. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3120. } else {
  3121. cpustat->user = cputime64_add(cpustat->user, tmp);
  3122. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3123. }
  3124. }
  3125. /*
  3126. * Account system cpu time to a process.
  3127. * @p: the process that the cpu time gets accounted to
  3128. * @hardirq_offset: the offset to subtract from hardirq_count()
  3129. * @cputime: the cpu time spent in kernel space since the last update
  3130. * @cputime_scaled: cputime scaled by cpu frequency
  3131. */
  3132. void account_system_time(struct task_struct *p, int hardirq_offset,
  3133. cputime_t cputime, cputime_t cputime_scaled)
  3134. {
  3135. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3136. cputime64_t tmp;
  3137. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3138. account_guest_time(p, cputime, cputime_scaled);
  3139. return;
  3140. }
  3141. /* Add system time to process. */
  3142. p->stime = cputime_add(p->stime, cputime);
  3143. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3144. account_group_system_time(p, cputime);
  3145. /* Add system time to cpustat. */
  3146. tmp = cputime_to_cputime64(cputime);
  3147. if (hardirq_count() - hardirq_offset)
  3148. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3149. else if (in_serving_softirq())
  3150. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3151. else
  3152. cpustat->system = cputime64_add(cpustat->system, tmp);
  3153. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3154. /* Account for system time used */
  3155. acct_update_integrals(p);
  3156. }
  3157. /*
  3158. * Account for involuntary wait time.
  3159. * @steal: the cpu time spent in involuntary wait
  3160. */
  3161. void account_steal_time(cputime_t cputime)
  3162. {
  3163. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3164. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3165. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3166. }
  3167. /*
  3168. * Account for idle time.
  3169. * @cputime: the cpu time spent in idle wait
  3170. */
  3171. void account_idle_time(cputime_t cputime)
  3172. {
  3173. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3174. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3175. struct rq *rq = this_rq();
  3176. if (atomic_read(&rq->nr_iowait) > 0)
  3177. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3178. else
  3179. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3180. }
  3181. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3182. /*
  3183. * Account a single tick of cpu time.
  3184. * @p: the process that the cpu time gets accounted to
  3185. * @user_tick: indicates if the tick is a user or a system tick
  3186. */
  3187. void account_process_tick(struct task_struct *p, int user_tick)
  3188. {
  3189. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3190. struct rq *rq = this_rq();
  3191. if (user_tick)
  3192. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3193. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3194. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3195. one_jiffy_scaled);
  3196. else
  3197. account_idle_time(cputime_one_jiffy);
  3198. }
  3199. /*
  3200. * Account multiple ticks of steal time.
  3201. * @p: the process from which the cpu time has been stolen
  3202. * @ticks: number of stolen ticks
  3203. */
  3204. void account_steal_ticks(unsigned long ticks)
  3205. {
  3206. account_steal_time(jiffies_to_cputime(ticks));
  3207. }
  3208. /*
  3209. * Account multiple ticks of idle time.
  3210. * @ticks: number of stolen ticks
  3211. */
  3212. void account_idle_ticks(unsigned long ticks)
  3213. {
  3214. account_idle_time(jiffies_to_cputime(ticks));
  3215. }
  3216. #endif
  3217. /*
  3218. * Use precise platform statistics if available:
  3219. */
  3220. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3221. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3222. {
  3223. *ut = p->utime;
  3224. *st = p->stime;
  3225. }
  3226. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3227. {
  3228. struct task_cputime cputime;
  3229. thread_group_cputime(p, &cputime);
  3230. *ut = cputime.utime;
  3231. *st = cputime.stime;
  3232. }
  3233. #else
  3234. #ifndef nsecs_to_cputime
  3235. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3236. #endif
  3237. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3238. {
  3239. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3240. /*
  3241. * Use CFS's precise accounting:
  3242. */
  3243. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3244. if (total) {
  3245. u64 temp = rtime;
  3246. temp *= utime;
  3247. do_div(temp, total);
  3248. utime = (cputime_t)temp;
  3249. } else
  3250. utime = rtime;
  3251. /*
  3252. * Compare with previous values, to keep monotonicity:
  3253. */
  3254. p->prev_utime = max(p->prev_utime, utime);
  3255. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3256. *ut = p->prev_utime;
  3257. *st = p->prev_stime;
  3258. }
  3259. /*
  3260. * Must be called with siglock held.
  3261. */
  3262. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3263. {
  3264. struct signal_struct *sig = p->signal;
  3265. struct task_cputime cputime;
  3266. cputime_t rtime, utime, total;
  3267. thread_group_cputime(p, &cputime);
  3268. total = cputime_add(cputime.utime, cputime.stime);
  3269. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3270. if (total) {
  3271. u64 temp = rtime;
  3272. temp *= cputime.utime;
  3273. do_div(temp, total);
  3274. utime = (cputime_t)temp;
  3275. } else
  3276. utime = rtime;
  3277. sig->prev_utime = max(sig->prev_utime, utime);
  3278. sig->prev_stime = max(sig->prev_stime,
  3279. cputime_sub(rtime, sig->prev_utime));
  3280. *ut = sig->prev_utime;
  3281. *st = sig->prev_stime;
  3282. }
  3283. #endif
  3284. /*
  3285. * This function gets called by the timer code, with HZ frequency.
  3286. * We call it with interrupts disabled.
  3287. *
  3288. * It also gets called by the fork code, when changing the parent's
  3289. * timeslices.
  3290. */
  3291. void scheduler_tick(void)
  3292. {
  3293. int cpu = smp_processor_id();
  3294. struct rq *rq = cpu_rq(cpu);
  3295. struct task_struct *curr = rq->curr;
  3296. sched_clock_tick();
  3297. raw_spin_lock(&rq->lock);
  3298. update_rq_clock(rq);
  3299. update_cpu_load_active(rq);
  3300. curr->sched_class->task_tick(rq, curr, 0);
  3301. raw_spin_unlock(&rq->lock);
  3302. perf_event_task_tick();
  3303. #ifdef CONFIG_SMP
  3304. rq->idle_at_tick = idle_cpu(cpu);
  3305. trigger_load_balance(rq, cpu);
  3306. #endif
  3307. }
  3308. notrace unsigned long get_parent_ip(unsigned long addr)
  3309. {
  3310. if (in_lock_functions(addr)) {
  3311. addr = CALLER_ADDR2;
  3312. if (in_lock_functions(addr))
  3313. addr = CALLER_ADDR3;
  3314. }
  3315. return addr;
  3316. }
  3317. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3318. defined(CONFIG_PREEMPT_TRACER))
  3319. void __kprobes add_preempt_count(int val)
  3320. {
  3321. #ifdef CONFIG_DEBUG_PREEMPT
  3322. /*
  3323. * Underflow?
  3324. */
  3325. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3326. return;
  3327. #endif
  3328. preempt_count() += val;
  3329. #ifdef CONFIG_DEBUG_PREEMPT
  3330. /*
  3331. * Spinlock count overflowing soon?
  3332. */
  3333. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3334. PREEMPT_MASK - 10);
  3335. #endif
  3336. if (preempt_count() == val)
  3337. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3338. }
  3339. EXPORT_SYMBOL(add_preempt_count);
  3340. void __kprobes sub_preempt_count(int val)
  3341. {
  3342. #ifdef CONFIG_DEBUG_PREEMPT
  3343. /*
  3344. * Underflow?
  3345. */
  3346. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3347. return;
  3348. /*
  3349. * Is the spinlock portion underflowing?
  3350. */
  3351. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3352. !(preempt_count() & PREEMPT_MASK)))
  3353. return;
  3354. #endif
  3355. if (preempt_count() == val)
  3356. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3357. preempt_count() -= val;
  3358. }
  3359. EXPORT_SYMBOL(sub_preempt_count);
  3360. #endif
  3361. /*
  3362. * Print scheduling while atomic bug:
  3363. */
  3364. static noinline void __schedule_bug(struct task_struct *prev)
  3365. {
  3366. struct pt_regs *regs = get_irq_regs();
  3367. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3368. prev->comm, prev->pid, preempt_count());
  3369. debug_show_held_locks(prev);
  3370. print_modules();
  3371. if (irqs_disabled())
  3372. print_irqtrace_events(prev);
  3373. if (regs)
  3374. show_regs(regs);
  3375. else
  3376. dump_stack();
  3377. }
  3378. /*
  3379. * Various schedule()-time debugging checks and statistics:
  3380. */
  3381. static inline void schedule_debug(struct task_struct *prev)
  3382. {
  3383. /*
  3384. * Test if we are atomic. Since do_exit() needs to call into
  3385. * schedule() atomically, we ignore that path for now.
  3386. * Otherwise, whine if we are scheduling when we should not be.
  3387. */
  3388. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3389. __schedule_bug(prev);
  3390. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3391. schedstat_inc(this_rq(), sched_count);
  3392. #ifdef CONFIG_SCHEDSTATS
  3393. if (unlikely(prev->lock_depth >= 0)) {
  3394. schedstat_inc(this_rq(), bkl_count);
  3395. schedstat_inc(prev, sched_info.bkl_count);
  3396. }
  3397. #endif
  3398. }
  3399. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3400. {
  3401. if (prev->se.on_rq)
  3402. update_rq_clock(rq);
  3403. prev->sched_class->put_prev_task(rq, prev);
  3404. }
  3405. /*
  3406. * Pick up the highest-prio task:
  3407. */
  3408. static inline struct task_struct *
  3409. pick_next_task(struct rq *rq)
  3410. {
  3411. const struct sched_class *class;
  3412. struct task_struct *p;
  3413. /*
  3414. * Optimization: we know that if all tasks are in
  3415. * the fair class we can call that function directly:
  3416. */
  3417. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3418. p = fair_sched_class.pick_next_task(rq);
  3419. if (likely(p))
  3420. return p;
  3421. }
  3422. for_each_class(class) {
  3423. p = class->pick_next_task(rq);
  3424. if (p)
  3425. return p;
  3426. }
  3427. BUG(); /* the idle class will always have a runnable task */
  3428. }
  3429. /*
  3430. * schedule() is the main scheduler function.
  3431. */
  3432. asmlinkage void __sched schedule(void)
  3433. {
  3434. struct task_struct *prev, *next;
  3435. unsigned long *switch_count;
  3436. struct rq *rq;
  3437. int cpu;
  3438. need_resched:
  3439. preempt_disable();
  3440. cpu = smp_processor_id();
  3441. rq = cpu_rq(cpu);
  3442. rcu_note_context_switch(cpu);
  3443. prev = rq->curr;
  3444. release_kernel_lock(prev);
  3445. need_resched_nonpreemptible:
  3446. schedule_debug(prev);
  3447. if (sched_feat(HRTICK))
  3448. hrtick_clear(rq);
  3449. raw_spin_lock_irq(&rq->lock);
  3450. switch_count = &prev->nivcsw;
  3451. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3452. if (unlikely(signal_pending_state(prev->state, prev))) {
  3453. prev->state = TASK_RUNNING;
  3454. } else {
  3455. /*
  3456. * If a worker is going to sleep, notify and
  3457. * ask workqueue whether it wants to wake up a
  3458. * task to maintain concurrency. If so, wake
  3459. * up the task.
  3460. */
  3461. if (prev->flags & PF_WQ_WORKER) {
  3462. struct task_struct *to_wakeup;
  3463. to_wakeup = wq_worker_sleeping(prev, cpu);
  3464. if (to_wakeup)
  3465. try_to_wake_up_local(to_wakeup);
  3466. }
  3467. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3468. }
  3469. switch_count = &prev->nvcsw;
  3470. }
  3471. pre_schedule(rq, prev);
  3472. if (unlikely(!rq->nr_running))
  3473. idle_balance(cpu, rq);
  3474. put_prev_task(rq, prev);
  3475. next = pick_next_task(rq);
  3476. clear_tsk_need_resched(prev);
  3477. rq->skip_clock_update = 0;
  3478. if (likely(prev != next)) {
  3479. sched_info_switch(prev, next);
  3480. perf_event_task_sched_out(prev, next);
  3481. rq->nr_switches++;
  3482. rq->curr = next;
  3483. ++*switch_count;
  3484. context_switch(rq, prev, next); /* unlocks the rq */
  3485. /*
  3486. * The context switch have flipped the stack from under us
  3487. * and restored the local variables which were saved when
  3488. * this task called schedule() in the past. prev == current
  3489. * is still correct, but it can be moved to another cpu/rq.
  3490. */
  3491. cpu = smp_processor_id();
  3492. rq = cpu_rq(cpu);
  3493. } else
  3494. raw_spin_unlock_irq(&rq->lock);
  3495. post_schedule(rq);
  3496. if (unlikely(reacquire_kernel_lock(prev)))
  3497. goto need_resched_nonpreemptible;
  3498. preempt_enable_no_resched();
  3499. if (need_resched())
  3500. goto need_resched;
  3501. }
  3502. EXPORT_SYMBOL(schedule);
  3503. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3504. /*
  3505. * Look out! "owner" is an entirely speculative pointer
  3506. * access and not reliable.
  3507. */
  3508. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3509. {
  3510. unsigned int cpu;
  3511. struct rq *rq;
  3512. if (!sched_feat(OWNER_SPIN))
  3513. return 0;
  3514. #ifdef CONFIG_DEBUG_PAGEALLOC
  3515. /*
  3516. * Need to access the cpu field knowing that
  3517. * DEBUG_PAGEALLOC could have unmapped it if
  3518. * the mutex owner just released it and exited.
  3519. */
  3520. if (probe_kernel_address(&owner->cpu, cpu))
  3521. return 0;
  3522. #else
  3523. cpu = owner->cpu;
  3524. #endif
  3525. /*
  3526. * Even if the access succeeded (likely case),
  3527. * the cpu field may no longer be valid.
  3528. */
  3529. if (cpu >= nr_cpumask_bits)
  3530. return 0;
  3531. /*
  3532. * We need to validate that we can do a
  3533. * get_cpu() and that we have the percpu area.
  3534. */
  3535. if (!cpu_online(cpu))
  3536. return 0;
  3537. rq = cpu_rq(cpu);
  3538. for (;;) {
  3539. /*
  3540. * Owner changed, break to re-assess state.
  3541. */
  3542. if (lock->owner != owner) {
  3543. /*
  3544. * If the lock has switched to a different owner,
  3545. * we likely have heavy contention. Return 0 to quit
  3546. * optimistic spinning and not contend further:
  3547. */
  3548. if (lock->owner)
  3549. return 0;
  3550. break;
  3551. }
  3552. /*
  3553. * Is that owner really running on that cpu?
  3554. */
  3555. if (task_thread_info(rq->curr) != owner || need_resched())
  3556. return 0;
  3557. cpu_relax();
  3558. }
  3559. return 1;
  3560. }
  3561. #endif
  3562. #ifdef CONFIG_PREEMPT
  3563. /*
  3564. * this is the entry point to schedule() from in-kernel preemption
  3565. * off of preempt_enable. Kernel preemptions off return from interrupt
  3566. * occur there and call schedule directly.
  3567. */
  3568. asmlinkage void __sched notrace preempt_schedule(void)
  3569. {
  3570. struct thread_info *ti = current_thread_info();
  3571. /*
  3572. * If there is a non-zero preempt_count or interrupts are disabled,
  3573. * we do not want to preempt the current task. Just return..
  3574. */
  3575. if (likely(ti->preempt_count || irqs_disabled()))
  3576. return;
  3577. do {
  3578. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3579. schedule();
  3580. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3581. /*
  3582. * Check again in case we missed a preemption opportunity
  3583. * between schedule and now.
  3584. */
  3585. barrier();
  3586. } while (need_resched());
  3587. }
  3588. EXPORT_SYMBOL(preempt_schedule);
  3589. /*
  3590. * this is the entry point to schedule() from kernel preemption
  3591. * off of irq context.
  3592. * Note, that this is called and return with irqs disabled. This will
  3593. * protect us against recursive calling from irq.
  3594. */
  3595. asmlinkage void __sched preempt_schedule_irq(void)
  3596. {
  3597. struct thread_info *ti = current_thread_info();
  3598. /* Catch callers which need to be fixed */
  3599. BUG_ON(ti->preempt_count || !irqs_disabled());
  3600. do {
  3601. add_preempt_count(PREEMPT_ACTIVE);
  3602. local_irq_enable();
  3603. schedule();
  3604. local_irq_disable();
  3605. sub_preempt_count(PREEMPT_ACTIVE);
  3606. /*
  3607. * Check again in case we missed a preemption opportunity
  3608. * between schedule and now.
  3609. */
  3610. barrier();
  3611. } while (need_resched());
  3612. }
  3613. #endif /* CONFIG_PREEMPT */
  3614. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3615. void *key)
  3616. {
  3617. return try_to_wake_up(curr->private, mode, wake_flags);
  3618. }
  3619. EXPORT_SYMBOL(default_wake_function);
  3620. /*
  3621. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3622. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3623. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3624. *
  3625. * There are circumstances in which we can try to wake a task which has already
  3626. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3627. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3628. */
  3629. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3630. int nr_exclusive, int wake_flags, void *key)
  3631. {
  3632. wait_queue_t *curr, *next;
  3633. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3634. unsigned flags = curr->flags;
  3635. if (curr->func(curr, mode, wake_flags, key) &&
  3636. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3637. break;
  3638. }
  3639. }
  3640. /**
  3641. * __wake_up - wake up threads blocked on a waitqueue.
  3642. * @q: the waitqueue
  3643. * @mode: which threads
  3644. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3645. * @key: is directly passed to the wakeup function
  3646. *
  3647. * It may be assumed that this function implies a write memory barrier before
  3648. * changing the task state if and only if any tasks are woken up.
  3649. */
  3650. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3651. int nr_exclusive, void *key)
  3652. {
  3653. unsigned long flags;
  3654. spin_lock_irqsave(&q->lock, flags);
  3655. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3656. spin_unlock_irqrestore(&q->lock, flags);
  3657. }
  3658. EXPORT_SYMBOL(__wake_up);
  3659. /*
  3660. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3661. */
  3662. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3663. {
  3664. __wake_up_common(q, mode, 1, 0, NULL);
  3665. }
  3666. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3667. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3668. {
  3669. __wake_up_common(q, mode, 1, 0, key);
  3670. }
  3671. /**
  3672. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3673. * @q: the waitqueue
  3674. * @mode: which threads
  3675. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3676. * @key: opaque value to be passed to wakeup targets
  3677. *
  3678. * The sync wakeup differs that the waker knows that it will schedule
  3679. * away soon, so while the target thread will be woken up, it will not
  3680. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3681. * with each other. This can prevent needless bouncing between CPUs.
  3682. *
  3683. * On UP it can prevent extra preemption.
  3684. *
  3685. * It may be assumed that this function implies a write memory barrier before
  3686. * changing the task state if and only if any tasks are woken up.
  3687. */
  3688. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3689. int nr_exclusive, void *key)
  3690. {
  3691. unsigned long flags;
  3692. int wake_flags = WF_SYNC;
  3693. if (unlikely(!q))
  3694. return;
  3695. if (unlikely(!nr_exclusive))
  3696. wake_flags = 0;
  3697. spin_lock_irqsave(&q->lock, flags);
  3698. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3699. spin_unlock_irqrestore(&q->lock, flags);
  3700. }
  3701. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3702. /*
  3703. * __wake_up_sync - see __wake_up_sync_key()
  3704. */
  3705. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3706. {
  3707. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3708. }
  3709. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3710. /**
  3711. * complete: - signals a single thread waiting on this completion
  3712. * @x: holds the state of this particular completion
  3713. *
  3714. * This will wake up a single thread waiting on this completion. Threads will be
  3715. * awakened in the same order in which they were queued.
  3716. *
  3717. * See also complete_all(), wait_for_completion() and related routines.
  3718. *
  3719. * It may be assumed that this function implies a write memory barrier before
  3720. * changing the task state if and only if any tasks are woken up.
  3721. */
  3722. void complete(struct completion *x)
  3723. {
  3724. unsigned long flags;
  3725. spin_lock_irqsave(&x->wait.lock, flags);
  3726. x->done++;
  3727. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3728. spin_unlock_irqrestore(&x->wait.lock, flags);
  3729. }
  3730. EXPORT_SYMBOL(complete);
  3731. /**
  3732. * complete_all: - signals all threads waiting on this completion
  3733. * @x: holds the state of this particular completion
  3734. *
  3735. * This will wake up all threads waiting on this particular completion event.
  3736. *
  3737. * It may be assumed that this function implies a write memory barrier before
  3738. * changing the task state if and only if any tasks are woken up.
  3739. */
  3740. void complete_all(struct completion *x)
  3741. {
  3742. unsigned long flags;
  3743. spin_lock_irqsave(&x->wait.lock, flags);
  3744. x->done += UINT_MAX/2;
  3745. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3746. spin_unlock_irqrestore(&x->wait.lock, flags);
  3747. }
  3748. EXPORT_SYMBOL(complete_all);
  3749. static inline long __sched
  3750. do_wait_for_common(struct completion *x, long timeout, int state)
  3751. {
  3752. if (!x->done) {
  3753. DECLARE_WAITQUEUE(wait, current);
  3754. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3755. do {
  3756. if (signal_pending_state(state, current)) {
  3757. timeout = -ERESTARTSYS;
  3758. break;
  3759. }
  3760. __set_current_state(state);
  3761. spin_unlock_irq(&x->wait.lock);
  3762. timeout = schedule_timeout(timeout);
  3763. spin_lock_irq(&x->wait.lock);
  3764. } while (!x->done && timeout);
  3765. __remove_wait_queue(&x->wait, &wait);
  3766. if (!x->done)
  3767. return timeout;
  3768. }
  3769. x->done--;
  3770. return timeout ?: 1;
  3771. }
  3772. static long __sched
  3773. wait_for_common(struct completion *x, long timeout, int state)
  3774. {
  3775. might_sleep();
  3776. spin_lock_irq(&x->wait.lock);
  3777. timeout = do_wait_for_common(x, timeout, state);
  3778. spin_unlock_irq(&x->wait.lock);
  3779. return timeout;
  3780. }
  3781. /**
  3782. * wait_for_completion: - waits for completion of a task
  3783. * @x: holds the state of this particular completion
  3784. *
  3785. * This waits to be signaled for completion of a specific task. It is NOT
  3786. * interruptible and there is no timeout.
  3787. *
  3788. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3789. * and interrupt capability. Also see complete().
  3790. */
  3791. void __sched wait_for_completion(struct completion *x)
  3792. {
  3793. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3794. }
  3795. EXPORT_SYMBOL(wait_for_completion);
  3796. /**
  3797. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3798. * @x: holds the state of this particular completion
  3799. * @timeout: timeout value in jiffies
  3800. *
  3801. * This waits for either a completion of a specific task to be signaled or for a
  3802. * specified timeout to expire. The timeout is in jiffies. It is not
  3803. * interruptible.
  3804. */
  3805. unsigned long __sched
  3806. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3807. {
  3808. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3809. }
  3810. EXPORT_SYMBOL(wait_for_completion_timeout);
  3811. /**
  3812. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3813. * @x: holds the state of this particular completion
  3814. *
  3815. * This waits for completion of a specific task to be signaled. It is
  3816. * interruptible.
  3817. */
  3818. int __sched wait_for_completion_interruptible(struct completion *x)
  3819. {
  3820. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3821. if (t == -ERESTARTSYS)
  3822. return t;
  3823. return 0;
  3824. }
  3825. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3826. /**
  3827. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3828. * @x: holds the state of this particular completion
  3829. * @timeout: timeout value in jiffies
  3830. *
  3831. * This waits for either a completion of a specific task to be signaled or for a
  3832. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3833. */
  3834. unsigned long __sched
  3835. wait_for_completion_interruptible_timeout(struct completion *x,
  3836. unsigned long timeout)
  3837. {
  3838. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3839. }
  3840. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3841. /**
  3842. * wait_for_completion_killable: - waits for completion of a task (killable)
  3843. * @x: holds the state of this particular completion
  3844. *
  3845. * This waits to be signaled for completion of a specific task. It can be
  3846. * interrupted by a kill signal.
  3847. */
  3848. int __sched wait_for_completion_killable(struct completion *x)
  3849. {
  3850. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3851. if (t == -ERESTARTSYS)
  3852. return t;
  3853. return 0;
  3854. }
  3855. EXPORT_SYMBOL(wait_for_completion_killable);
  3856. /**
  3857. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3858. * @x: holds the state of this particular completion
  3859. * @timeout: timeout value in jiffies
  3860. *
  3861. * This waits for either a completion of a specific task to be
  3862. * signaled or for a specified timeout to expire. It can be
  3863. * interrupted by a kill signal. The timeout is in jiffies.
  3864. */
  3865. unsigned long __sched
  3866. wait_for_completion_killable_timeout(struct completion *x,
  3867. unsigned long timeout)
  3868. {
  3869. return wait_for_common(x, timeout, TASK_KILLABLE);
  3870. }
  3871. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3872. /**
  3873. * try_wait_for_completion - try to decrement a completion without blocking
  3874. * @x: completion structure
  3875. *
  3876. * Returns: 0 if a decrement cannot be done without blocking
  3877. * 1 if a decrement succeeded.
  3878. *
  3879. * If a completion is being used as a counting completion,
  3880. * attempt to decrement the counter without blocking. This
  3881. * enables us to avoid waiting if the resource the completion
  3882. * is protecting is not available.
  3883. */
  3884. bool try_wait_for_completion(struct completion *x)
  3885. {
  3886. unsigned long flags;
  3887. int ret = 1;
  3888. spin_lock_irqsave(&x->wait.lock, flags);
  3889. if (!x->done)
  3890. ret = 0;
  3891. else
  3892. x->done--;
  3893. spin_unlock_irqrestore(&x->wait.lock, flags);
  3894. return ret;
  3895. }
  3896. EXPORT_SYMBOL(try_wait_for_completion);
  3897. /**
  3898. * completion_done - Test to see if a completion has any waiters
  3899. * @x: completion structure
  3900. *
  3901. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3902. * 1 if there are no waiters.
  3903. *
  3904. */
  3905. bool completion_done(struct completion *x)
  3906. {
  3907. unsigned long flags;
  3908. int ret = 1;
  3909. spin_lock_irqsave(&x->wait.lock, flags);
  3910. if (!x->done)
  3911. ret = 0;
  3912. spin_unlock_irqrestore(&x->wait.lock, flags);
  3913. return ret;
  3914. }
  3915. EXPORT_SYMBOL(completion_done);
  3916. static long __sched
  3917. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3918. {
  3919. unsigned long flags;
  3920. wait_queue_t wait;
  3921. init_waitqueue_entry(&wait, current);
  3922. __set_current_state(state);
  3923. spin_lock_irqsave(&q->lock, flags);
  3924. __add_wait_queue(q, &wait);
  3925. spin_unlock(&q->lock);
  3926. timeout = schedule_timeout(timeout);
  3927. spin_lock_irq(&q->lock);
  3928. __remove_wait_queue(q, &wait);
  3929. spin_unlock_irqrestore(&q->lock, flags);
  3930. return timeout;
  3931. }
  3932. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3933. {
  3934. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3935. }
  3936. EXPORT_SYMBOL(interruptible_sleep_on);
  3937. long __sched
  3938. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3939. {
  3940. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3941. }
  3942. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3943. void __sched sleep_on(wait_queue_head_t *q)
  3944. {
  3945. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3946. }
  3947. EXPORT_SYMBOL(sleep_on);
  3948. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3949. {
  3950. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3951. }
  3952. EXPORT_SYMBOL(sleep_on_timeout);
  3953. #ifdef CONFIG_RT_MUTEXES
  3954. /*
  3955. * rt_mutex_setprio - set the current priority of a task
  3956. * @p: task
  3957. * @prio: prio value (kernel-internal form)
  3958. *
  3959. * This function changes the 'effective' priority of a task. It does
  3960. * not touch ->normal_prio like __setscheduler().
  3961. *
  3962. * Used by the rt_mutex code to implement priority inheritance logic.
  3963. */
  3964. void rt_mutex_setprio(struct task_struct *p, int prio)
  3965. {
  3966. unsigned long flags;
  3967. int oldprio, on_rq, running;
  3968. struct rq *rq;
  3969. const struct sched_class *prev_class;
  3970. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3971. rq = task_rq_lock(p, &flags);
  3972. trace_sched_pi_setprio(p, prio);
  3973. oldprio = p->prio;
  3974. prev_class = p->sched_class;
  3975. on_rq = p->se.on_rq;
  3976. running = task_current(rq, p);
  3977. if (on_rq)
  3978. dequeue_task(rq, p, 0);
  3979. if (running)
  3980. p->sched_class->put_prev_task(rq, p);
  3981. if (rt_prio(prio))
  3982. p->sched_class = &rt_sched_class;
  3983. else
  3984. p->sched_class = &fair_sched_class;
  3985. p->prio = prio;
  3986. if (running)
  3987. p->sched_class->set_curr_task(rq);
  3988. if (on_rq) {
  3989. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3990. check_class_changed(rq, p, prev_class, oldprio, running);
  3991. }
  3992. task_rq_unlock(rq, &flags);
  3993. }
  3994. #endif
  3995. void set_user_nice(struct task_struct *p, long nice)
  3996. {
  3997. int old_prio, delta, on_rq;
  3998. unsigned long flags;
  3999. struct rq *rq;
  4000. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4001. return;
  4002. /*
  4003. * We have to be careful, if called from sys_setpriority(),
  4004. * the task might be in the middle of scheduling on another CPU.
  4005. */
  4006. rq = task_rq_lock(p, &flags);
  4007. /*
  4008. * The RT priorities are set via sched_setscheduler(), but we still
  4009. * allow the 'normal' nice value to be set - but as expected
  4010. * it wont have any effect on scheduling until the task is
  4011. * SCHED_FIFO/SCHED_RR:
  4012. */
  4013. if (task_has_rt_policy(p)) {
  4014. p->static_prio = NICE_TO_PRIO(nice);
  4015. goto out_unlock;
  4016. }
  4017. on_rq = p->se.on_rq;
  4018. if (on_rq)
  4019. dequeue_task(rq, p, 0);
  4020. p->static_prio = NICE_TO_PRIO(nice);
  4021. set_load_weight(p);
  4022. old_prio = p->prio;
  4023. p->prio = effective_prio(p);
  4024. delta = p->prio - old_prio;
  4025. if (on_rq) {
  4026. enqueue_task(rq, p, 0);
  4027. /*
  4028. * If the task increased its priority or is running and
  4029. * lowered its priority, then reschedule its CPU:
  4030. */
  4031. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4032. resched_task(rq->curr);
  4033. }
  4034. out_unlock:
  4035. task_rq_unlock(rq, &flags);
  4036. }
  4037. EXPORT_SYMBOL(set_user_nice);
  4038. /*
  4039. * can_nice - check if a task can reduce its nice value
  4040. * @p: task
  4041. * @nice: nice value
  4042. */
  4043. int can_nice(const struct task_struct *p, const int nice)
  4044. {
  4045. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4046. int nice_rlim = 20 - nice;
  4047. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4048. capable(CAP_SYS_NICE));
  4049. }
  4050. #ifdef __ARCH_WANT_SYS_NICE
  4051. /*
  4052. * sys_nice - change the priority of the current process.
  4053. * @increment: priority increment
  4054. *
  4055. * sys_setpriority is a more generic, but much slower function that
  4056. * does similar things.
  4057. */
  4058. SYSCALL_DEFINE1(nice, int, increment)
  4059. {
  4060. long nice, retval;
  4061. /*
  4062. * Setpriority might change our priority at the same moment.
  4063. * We don't have to worry. Conceptually one call occurs first
  4064. * and we have a single winner.
  4065. */
  4066. if (increment < -40)
  4067. increment = -40;
  4068. if (increment > 40)
  4069. increment = 40;
  4070. nice = TASK_NICE(current) + increment;
  4071. if (nice < -20)
  4072. nice = -20;
  4073. if (nice > 19)
  4074. nice = 19;
  4075. if (increment < 0 && !can_nice(current, nice))
  4076. return -EPERM;
  4077. retval = security_task_setnice(current, nice);
  4078. if (retval)
  4079. return retval;
  4080. set_user_nice(current, nice);
  4081. return 0;
  4082. }
  4083. #endif
  4084. /**
  4085. * task_prio - return the priority value of a given task.
  4086. * @p: the task in question.
  4087. *
  4088. * This is the priority value as seen by users in /proc.
  4089. * RT tasks are offset by -200. Normal tasks are centered
  4090. * around 0, value goes from -16 to +15.
  4091. */
  4092. int task_prio(const struct task_struct *p)
  4093. {
  4094. return p->prio - MAX_RT_PRIO;
  4095. }
  4096. /**
  4097. * task_nice - return the nice value of a given task.
  4098. * @p: the task in question.
  4099. */
  4100. int task_nice(const struct task_struct *p)
  4101. {
  4102. return TASK_NICE(p);
  4103. }
  4104. EXPORT_SYMBOL(task_nice);
  4105. /**
  4106. * idle_cpu - is a given cpu idle currently?
  4107. * @cpu: the processor in question.
  4108. */
  4109. int idle_cpu(int cpu)
  4110. {
  4111. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4112. }
  4113. /**
  4114. * idle_task - return the idle task for a given cpu.
  4115. * @cpu: the processor in question.
  4116. */
  4117. struct task_struct *idle_task(int cpu)
  4118. {
  4119. return cpu_rq(cpu)->idle;
  4120. }
  4121. /**
  4122. * find_process_by_pid - find a process with a matching PID value.
  4123. * @pid: the pid in question.
  4124. */
  4125. static struct task_struct *find_process_by_pid(pid_t pid)
  4126. {
  4127. return pid ? find_task_by_vpid(pid) : current;
  4128. }
  4129. /* Actually do priority change: must hold rq lock. */
  4130. static void
  4131. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4132. {
  4133. BUG_ON(p->se.on_rq);
  4134. p->policy = policy;
  4135. p->rt_priority = prio;
  4136. p->normal_prio = normal_prio(p);
  4137. /* we are holding p->pi_lock already */
  4138. p->prio = rt_mutex_getprio(p);
  4139. if (rt_prio(p->prio))
  4140. p->sched_class = &rt_sched_class;
  4141. else
  4142. p->sched_class = &fair_sched_class;
  4143. set_load_weight(p);
  4144. }
  4145. /*
  4146. * check the target process has a UID that matches the current process's
  4147. */
  4148. static bool check_same_owner(struct task_struct *p)
  4149. {
  4150. const struct cred *cred = current_cred(), *pcred;
  4151. bool match;
  4152. rcu_read_lock();
  4153. pcred = __task_cred(p);
  4154. match = (cred->euid == pcred->euid ||
  4155. cred->euid == pcred->uid);
  4156. rcu_read_unlock();
  4157. return match;
  4158. }
  4159. static int __sched_setscheduler(struct task_struct *p, int policy,
  4160. struct sched_param *param, bool user)
  4161. {
  4162. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4163. unsigned long flags;
  4164. const struct sched_class *prev_class;
  4165. struct rq *rq;
  4166. int reset_on_fork;
  4167. /* may grab non-irq protected spin_locks */
  4168. BUG_ON(in_interrupt());
  4169. recheck:
  4170. /* double check policy once rq lock held */
  4171. if (policy < 0) {
  4172. reset_on_fork = p->sched_reset_on_fork;
  4173. policy = oldpolicy = p->policy;
  4174. } else {
  4175. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4176. policy &= ~SCHED_RESET_ON_FORK;
  4177. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4178. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4179. policy != SCHED_IDLE)
  4180. return -EINVAL;
  4181. }
  4182. /*
  4183. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4184. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4185. * SCHED_BATCH and SCHED_IDLE is 0.
  4186. */
  4187. if (param->sched_priority < 0 ||
  4188. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4189. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4190. return -EINVAL;
  4191. if (rt_policy(policy) != (param->sched_priority != 0))
  4192. return -EINVAL;
  4193. /*
  4194. * Allow unprivileged RT tasks to decrease priority:
  4195. */
  4196. if (user && !capable(CAP_SYS_NICE)) {
  4197. if (rt_policy(policy)) {
  4198. unsigned long rlim_rtprio =
  4199. task_rlimit(p, RLIMIT_RTPRIO);
  4200. /* can't set/change the rt policy */
  4201. if (policy != p->policy && !rlim_rtprio)
  4202. return -EPERM;
  4203. /* can't increase priority */
  4204. if (param->sched_priority > p->rt_priority &&
  4205. param->sched_priority > rlim_rtprio)
  4206. return -EPERM;
  4207. }
  4208. /*
  4209. * Like positive nice levels, dont allow tasks to
  4210. * move out of SCHED_IDLE either:
  4211. */
  4212. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4213. return -EPERM;
  4214. /* can't change other user's priorities */
  4215. if (!check_same_owner(p))
  4216. return -EPERM;
  4217. /* Normal users shall not reset the sched_reset_on_fork flag */
  4218. if (p->sched_reset_on_fork && !reset_on_fork)
  4219. return -EPERM;
  4220. }
  4221. if (user) {
  4222. retval = security_task_setscheduler(p);
  4223. if (retval)
  4224. return retval;
  4225. }
  4226. /*
  4227. * make sure no PI-waiters arrive (or leave) while we are
  4228. * changing the priority of the task:
  4229. */
  4230. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4231. /*
  4232. * To be able to change p->policy safely, the apropriate
  4233. * runqueue lock must be held.
  4234. */
  4235. rq = __task_rq_lock(p);
  4236. /*
  4237. * Changing the policy of the stop threads its a very bad idea
  4238. */
  4239. if (p == rq->stop) {
  4240. __task_rq_unlock(rq);
  4241. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4242. return -EINVAL;
  4243. }
  4244. #ifdef CONFIG_RT_GROUP_SCHED
  4245. if (user) {
  4246. /*
  4247. * Do not allow realtime tasks into groups that have no runtime
  4248. * assigned.
  4249. */
  4250. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4251. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  4252. __task_rq_unlock(rq);
  4253. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4254. return -EPERM;
  4255. }
  4256. }
  4257. #endif
  4258. /* recheck policy now with rq lock held */
  4259. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4260. policy = oldpolicy = -1;
  4261. __task_rq_unlock(rq);
  4262. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4263. goto recheck;
  4264. }
  4265. on_rq = p->se.on_rq;
  4266. running = task_current(rq, p);
  4267. if (on_rq)
  4268. deactivate_task(rq, p, 0);
  4269. if (running)
  4270. p->sched_class->put_prev_task(rq, p);
  4271. p->sched_reset_on_fork = reset_on_fork;
  4272. oldprio = p->prio;
  4273. prev_class = p->sched_class;
  4274. __setscheduler(rq, p, policy, param->sched_priority);
  4275. if (running)
  4276. p->sched_class->set_curr_task(rq);
  4277. if (on_rq) {
  4278. activate_task(rq, p, 0);
  4279. check_class_changed(rq, p, prev_class, oldprio, running);
  4280. }
  4281. __task_rq_unlock(rq);
  4282. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4283. rt_mutex_adjust_pi(p);
  4284. return 0;
  4285. }
  4286. /**
  4287. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4288. * @p: the task in question.
  4289. * @policy: new policy.
  4290. * @param: structure containing the new RT priority.
  4291. *
  4292. * NOTE that the task may be already dead.
  4293. */
  4294. int sched_setscheduler(struct task_struct *p, int policy,
  4295. struct sched_param *param)
  4296. {
  4297. return __sched_setscheduler(p, policy, param, true);
  4298. }
  4299. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4300. /**
  4301. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4302. * @p: the task in question.
  4303. * @policy: new policy.
  4304. * @param: structure containing the new RT priority.
  4305. *
  4306. * Just like sched_setscheduler, only don't bother checking if the
  4307. * current context has permission. For example, this is needed in
  4308. * stop_machine(): we create temporary high priority worker threads,
  4309. * but our caller might not have that capability.
  4310. */
  4311. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4312. struct sched_param *param)
  4313. {
  4314. return __sched_setscheduler(p, policy, param, false);
  4315. }
  4316. static int
  4317. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4318. {
  4319. struct sched_param lparam;
  4320. struct task_struct *p;
  4321. int retval;
  4322. if (!param || pid < 0)
  4323. return -EINVAL;
  4324. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4325. return -EFAULT;
  4326. rcu_read_lock();
  4327. retval = -ESRCH;
  4328. p = find_process_by_pid(pid);
  4329. if (p != NULL)
  4330. retval = sched_setscheduler(p, policy, &lparam);
  4331. rcu_read_unlock();
  4332. return retval;
  4333. }
  4334. /**
  4335. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4336. * @pid: the pid in question.
  4337. * @policy: new policy.
  4338. * @param: structure containing the new RT priority.
  4339. */
  4340. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4341. struct sched_param __user *, param)
  4342. {
  4343. /* negative values for policy are not valid */
  4344. if (policy < 0)
  4345. return -EINVAL;
  4346. return do_sched_setscheduler(pid, policy, param);
  4347. }
  4348. /**
  4349. * sys_sched_setparam - set/change the RT priority of a thread
  4350. * @pid: the pid in question.
  4351. * @param: structure containing the new RT priority.
  4352. */
  4353. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4354. {
  4355. return do_sched_setscheduler(pid, -1, param);
  4356. }
  4357. /**
  4358. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4359. * @pid: the pid in question.
  4360. */
  4361. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4362. {
  4363. struct task_struct *p;
  4364. int retval;
  4365. if (pid < 0)
  4366. return -EINVAL;
  4367. retval = -ESRCH;
  4368. rcu_read_lock();
  4369. p = find_process_by_pid(pid);
  4370. if (p) {
  4371. retval = security_task_getscheduler(p);
  4372. if (!retval)
  4373. retval = p->policy
  4374. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4375. }
  4376. rcu_read_unlock();
  4377. return retval;
  4378. }
  4379. /**
  4380. * sys_sched_getparam - get the RT priority of a thread
  4381. * @pid: the pid in question.
  4382. * @param: structure containing the RT priority.
  4383. */
  4384. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4385. {
  4386. struct sched_param lp;
  4387. struct task_struct *p;
  4388. int retval;
  4389. if (!param || pid < 0)
  4390. return -EINVAL;
  4391. rcu_read_lock();
  4392. p = find_process_by_pid(pid);
  4393. retval = -ESRCH;
  4394. if (!p)
  4395. goto out_unlock;
  4396. retval = security_task_getscheduler(p);
  4397. if (retval)
  4398. goto out_unlock;
  4399. lp.sched_priority = p->rt_priority;
  4400. rcu_read_unlock();
  4401. /*
  4402. * This one might sleep, we cannot do it with a spinlock held ...
  4403. */
  4404. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4405. return retval;
  4406. out_unlock:
  4407. rcu_read_unlock();
  4408. return retval;
  4409. }
  4410. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4411. {
  4412. cpumask_var_t cpus_allowed, new_mask;
  4413. struct task_struct *p;
  4414. int retval;
  4415. get_online_cpus();
  4416. rcu_read_lock();
  4417. p = find_process_by_pid(pid);
  4418. if (!p) {
  4419. rcu_read_unlock();
  4420. put_online_cpus();
  4421. return -ESRCH;
  4422. }
  4423. /* Prevent p going away */
  4424. get_task_struct(p);
  4425. rcu_read_unlock();
  4426. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4427. retval = -ENOMEM;
  4428. goto out_put_task;
  4429. }
  4430. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4431. retval = -ENOMEM;
  4432. goto out_free_cpus_allowed;
  4433. }
  4434. retval = -EPERM;
  4435. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4436. goto out_unlock;
  4437. retval = security_task_setscheduler(p);
  4438. if (retval)
  4439. goto out_unlock;
  4440. cpuset_cpus_allowed(p, cpus_allowed);
  4441. cpumask_and(new_mask, in_mask, cpus_allowed);
  4442. again:
  4443. retval = set_cpus_allowed_ptr(p, new_mask);
  4444. if (!retval) {
  4445. cpuset_cpus_allowed(p, cpus_allowed);
  4446. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4447. /*
  4448. * We must have raced with a concurrent cpuset
  4449. * update. Just reset the cpus_allowed to the
  4450. * cpuset's cpus_allowed
  4451. */
  4452. cpumask_copy(new_mask, cpus_allowed);
  4453. goto again;
  4454. }
  4455. }
  4456. out_unlock:
  4457. free_cpumask_var(new_mask);
  4458. out_free_cpus_allowed:
  4459. free_cpumask_var(cpus_allowed);
  4460. out_put_task:
  4461. put_task_struct(p);
  4462. put_online_cpus();
  4463. return retval;
  4464. }
  4465. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4466. struct cpumask *new_mask)
  4467. {
  4468. if (len < cpumask_size())
  4469. cpumask_clear(new_mask);
  4470. else if (len > cpumask_size())
  4471. len = cpumask_size();
  4472. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4473. }
  4474. /**
  4475. * sys_sched_setaffinity - set the cpu affinity of a process
  4476. * @pid: pid of the process
  4477. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4478. * @user_mask_ptr: user-space pointer to the new cpu mask
  4479. */
  4480. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4481. unsigned long __user *, user_mask_ptr)
  4482. {
  4483. cpumask_var_t new_mask;
  4484. int retval;
  4485. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4486. return -ENOMEM;
  4487. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4488. if (retval == 0)
  4489. retval = sched_setaffinity(pid, new_mask);
  4490. free_cpumask_var(new_mask);
  4491. return retval;
  4492. }
  4493. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4494. {
  4495. struct task_struct *p;
  4496. unsigned long flags;
  4497. struct rq *rq;
  4498. int retval;
  4499. get_online_cpus();
  4500. rcu_read_lock();
  4501. retval = -ESRCH;
  4502. p = find_process_by_pid(pid);
  4503. if (!p)
  4504. goto out_unlock;
  4505. retval = security_task_getscheduler(p);
  4506. if (retval)
  4507. goto out_unlock;
  4508. rq = task_rq_lock(p, &flags);
  4509. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4510. task_rq_unlock(rq, &flags);
  4511. out_unlock:
  4512. rcu_read_unlock();
  4513. put_online_cpus();
  4514. return retval;
  4515. }
  4516. /**
  4517. * sys_sched_getaffinity - get the cpu affinity of a process
  4518. * @pid: pid of the process
  4519. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4520. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4521. */
  4522. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4523. unsigned long __user *, user_mask_ptr)
  4524. {
  4525. int ret;
  4526. cpumask_var_t mask;
  4527. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4528. return -EINVAL;
  4529. if (len & (sizeof(unsigned long)-1))
  4530. return -EINVAL;
  4531. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4532. return -ENOMEM;
  4533. ret = sched_getaffinity(pid, mask);
  4534. if (ret == 0) {
  4535. size_t retlen = min_t(size_t, len, cpumask_size());
  4536. if (copy_to_user(user_mask_ptr, mask, retlen))
  4537. ret = -EFAULT;
  4538. else
  4539. ret = retlen;
  4540. }
  4541. free_cpumask_var(mask);
  4542. return ret;
  4543. }
  4544. /**
  4545. * sys_sched_yield - yield the current processor to other threads.
  4546. *
  4547. * This function yields the current CPU to other tasks. If there are no
  4548. * other threads running on this CPU then this function will return.
  4549. */
  4550. SYSCALL_DEFINE0(sched_yield)
  4551. {
  4552. struct rq *rq = this_rq_lock();
  4553. schedstat_inc(rq, yld_count);
  4554. current->sched_class->yield_task(rq);
  4555. /*
  4556. * Since we are going to call schedule() anyway, there's
  4557. * no need to preempt or enable interrupts:
  4558. */
  4559. __release(rq->lock);
  4560. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4561. do_raw_spin_unlock(&rq->lock);
  4562. preempt_enable_no_resched();
  4563. schedule();
  4564. return 0;
  4565. }
  4566. static inline int should_resched(void)
  4567. {
  4568. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4569. }
  4570. static void __cond_resched(void)
  4571. {
  4572. add_preempt_count(PREEMPT_ACTIVE);
  4573. schedule();
  4574. sub_preempt_count(PREEMPT_ACTIVE);
  4575. }
  4576. int __sched _cond_resched(void)
  4577. {
  4578. if (should_resched()) {
  4579. __cond_resched();
  4580. return 1;
  4581. }
  4582. return 0;
  4583. }
  4584. EXPORT_SYMBOL(_cond_resched);
  4585. /*
  4586. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4587. * call schedule, and on return reacquire the lock.
  4588. *
  4589. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4590. * operations here to prevent schedule() from being called twice (once via
  4591. * spin_unlock(), once by hand).
  4592. */
  4593. int __cond_resched_lock(spinlock_t *lock)
  4594. {
  4595. int resched = should_resched();
  4596. int ret = 0;
  4597. lockdep_assert_held(lock);
  4598. if (spin_needbreak(lock) || resched) {
  4599. spin_unlock(lock);
  4600. if (resched)
  4601. __cond_resched();
  4602. else
  4603. cpu_relax();
  4604. ret = 1;
  4605. spin_lock(lock);
  4606. }
  4607. return ret;
  4608. }
  4609. EXPORT_SYMBOL(__cond_resched_lock);
  4610. int __sched __cond_resched_softirq(void)
  4611. {
  4612. BUG_ON(!in_softirq());
  4613. if (should_resched()) {
  4614. local_bh_enable();
  4615. __cond_resched();
  4616. local_bh_disable();
  4617. return 1;
  4618. }
  4619. return 0;
  4620. }
  4621. EXPORT_SYMBOL(__cond_resched_softirq);
  4622. /**
  4623. * yield - yield the current processor to other threads.
  4624. *
  4625. * This is a shortcut for kernel-space yielding - it marks the
  4626. * thread runnable and calls sys_sched_yield().
  4627. */
  4628. void __sched yield(void)
  4629. {
  4630. set_current_state(TASK_RUNNING);
  4631. sys_sched_yield();
  4632. }
  4633. EXPORT_SYMBOL(yield);
  4634. /*
  4635. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4636. * that process accounting knows that this is a task in IO wait state.
  4637. */
  4638. void __sched io_schedule(void)
  4639. {
  4640. struct rq *rq = raw_rq();
  4641. delayacct_blkio_start();
  4642. atomic_inc(&rq->nr_iowait);
  4643. current->in_iowait = 1;
  4644. schedule();
  4645. current->in_iowait = 0;
  4646. atomic_dec(&rq->nr_iowait);
  4647. delayacct_blkio_end();
  4648. }
  4649. EXPORT_SYMBOL(io_schedule);
  4650. long __sched io_schedule_timeout(long timeout)
  4651. {
  4652. struct rq *rq = raw_rq();
  4653. long ret;
  4654. delayacct_blkio_start();
  4655. atomic_inc(&rq->nr_iowait);
  4656. current->in_iowait = 1;
  4657. ret = schedule_timeout(timeout);
  4658. current->in_iowait = 0;
  4659. atomic_dec(&rq->nr_iowait);
  4660. delayacct_blkio_end();
  4661. return ret;
  4662. }
  4663. /**
  4664. * sys_sched_get_priority_max - return maximum RT priority.
  4665. * @policy: scheduling class.
  4666. *
  4667. * this syscall returns the maximum rt_priority that can be used
  4668. * by a given scheduling class.
  4669. */
  4670. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4671. {
  4672. int ret = -EINVAL;
  4673. switch (policy) {
  4674. case SCHED_FIFO:
  4675. case SCHED_RR:
  4676. ret = MAX_USER_RT_PRIO-1;
  4677. break;
  4678. case SCHED_NORMAL:
  4679. case SCHED_BATCH:
  4680. case SCHED_IDLE:
  4681. ret = 0;
  4682. break;
  4683. }
  4684. return ret;
  4685. }
  4686. /**
  4687. * sys_sched_get_priority_min - return minimum RT priority.
  4688. * @policy: scheduling class.
  4689. *
  4690. * this syscall returns the minimum rt_priority that can be used
  4691. * by a given scheduling class.
  4692. */
  4693. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4694. {
  4695. int ret = -EINVAL;
  4696. switch (policy) {
  4697. case SCHED_FIFO:
  4698. case SCHED_RR:
  4699. ret = 1;
  4700. break;
  4701. case SCHED_NORMAL:
  4702. case SCHED_BATCH:
  4703. case SCHED_IDLE:
  4704. ret = 0;
  4705. }
  4706. return ret;
  4707. }
  4708. /**
  4709. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4710. * @pid: pid of the process.
  4711. * @interval: userspace pointer to the timeslice value.
  4712. *
  4713. * this syscall writes the default timeslice value of a given process
  4714. * into the user-space timespec buffer. A value of '0' means infinity.
  4715. */
  4716. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4717. struct timespec __user *, interval)
  4718. {
  4719. struct task_struct *p;
  4720. unsigned int time_slice;
  4721. unsigned long flags;
  4722. struct rq *rq;
  4723. int retval;
  4724. struct timespec t;
  4725. if (pid < 0)
  4726. return -EINVAL;
  4727. retval = -ESRCH;
  4728. rcu_read_lock();
  4729. p = find_process_by_pid(pid);
  4730. if (!p)
  4731. goto out_unlock;
  4732. retval = security_task_getscheduler(p);
  4733. if (retval)
  4734. goto out_unlock;
  4735. rq = task_rq_lock(p, &flags);
  4736. time_slice = p->sched_class->get_rr_interval(rq, p);
  4737. task_rq_unlock(rq, &flags);
  4738. rcu_read_unlock();
  4739. jiffies_to_timespec(time_slice, &t);
  4740. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4741. return retval;
  4742. out_unlock:
  4743. rcu_read_unlock();
  4744. return retval;
  4745. }
  4746. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4747. void sched_show_task(struct task_struct *p)
  4748. {
  4749. unsigned long free = 0;
  4750. unsigned state;
  4751. state = p->state ? __ffs(p->state) + 1 : 0;
  4752. printk(KERN_INFO "%-13.13s %c", p->comm,
  4753. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4754. #if BITS_PER_LONG == 32
  4755. if (state == TASK_RUNNING)
  4756. printk(KERN_CONT " running ");
  4757. else
  4758. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4759. #else
  4760. if (state == TASK_RUNNING)
  4761. printk(KERN_CONT " running task ");
  4762. else
  4763. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4764. #endif
  4765. #ifdef CONFIG_DEBUG_STACK_USAGE
  4766. free = stack_not_used(p);
  4767. #endif
  4768. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4769. task_pid_nr(p), task_pid_nr(p->real_parent),
  4770. (unsigned long)task_thread_info(p)->flags);
  4771. show_stack(p, NULL);
  4772. }
  4773. void show_state_filter(unsigned long state_filter)
  4774. {
  4775. struct task_struct *g, *p;
  4776. #if BITS_PER_LONG == 32
  4777. printk(KERN_INFO
  4778. " task PC stack pid father\n");
  4779. #else
  4780. printk(KERN_INFO
  4781. " task PC stack pid father\n");
  4782. #endif
  4783. read_lock(&tasklist_lock);
  4784. do_each_thread(g, p) {
  4785. /*
  4786. * reset the NMI-timeout, listing all files on a slow
  4787. * console might take alot of time:
  4788. */
  4789. touch_nmi_watchdog();
  4790. if (!state_filter || (p->state & state_filter))
  4791. sched_show_task(p);
  4792. } while_each_thread(g, p);
  4793. touch_all_softlockup_watchdogs();
  4794. #ifdef CONFIG_SCHED_DEBUG
  4795. sysrq_sched_debug_show();
  4796. #endif
  4797. read_unlock(&tasklist_lock);
  4798. /*
  4799. * Only show locks if all tasks are dumped:
  4800. */
  4801. if (!state_filter)
  4802. debug_show_all_locks();
  4803. }
  4804. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4805. {
  4806. idle->sched_class = &idle_sched_class;
  4807. }
  4808. /**
  4809. * init_idle - set up an idle thread for a given CPU
  4810. * @idle: task in question
  4811. * @cpu: cpu the idle task belongs to
  4812. *
  4813. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4814. * flag, to make booting more robust.
  4815. */
  4816. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4817. {
  4818. struct rq *rq = cpu_rq(cpu);
  4819. unsigned long flags;
  4820. raw_spin_lock_irqsave(&rq->lock, flags);
  4821. __sched_fork(idle);
  4822. idle->state = TASK_RUNNING;
  4823. idle->se.exec_start = sched_clock();
  4824. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4825. /*
  4826. * We're having a chicken and egg problem, even though we are
  4827. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4828. * lockdep check in task_group() will fail.
  4829. *
  4830. * Similar case to sched_fork(). / Alternatively we could
  4831. * use task_rq_lock() here and obtain the other rq->lock.
  4832. *
  4833. * Silence PROVE_RCU
  4834. */
  4835. rcu_read_lock();
  4836. __set_task_cpu(idle, cpu);
  4837. rcu_read_unlock();
  4838. rq->curr = rq->idle = idle;
  4839. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4840. idle->oncpu = 1;
  4841. #endif
  4842. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4843. /* Set the preempt count _outside_ the spinlocks! */
  4844. #if defined(CONFIG_PREEMPT)
  4845. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4846. #else
  4847. task_thread_info(idle)->preempt_count = 0;
  4848. #endif
  4849. /*
  4850. * The idle tasks have their own, simple scheduling class:
  4851. */
  4852. idle->sched_class = &idle_sched_class;
  4853. ftrace_graph_init_task(idle);
  4854. }
  4855. /*
  4856. * In a system that switches off the HZ timer nohz_cpu_mask
  4857. * indicates which cpus entered this state. This is used
  4858. * in the rcu update to wait only for active cpus. For system
  4859. * which do not switch off the HZ timer nohz_cpu_mask should
  4860. * always be CPU_BITS_NONE.
  4861. */
  4862. cpumask_var_t nohz_cpu_mask;
  4863. /*
  4864. * Increase the granularity value when there are more CPUs,
  4865. * because with more CPUs the 'effective latency' as visible
  4866. * to users decreases. But the relationship is not linear,
  4867. * so pick a second-best guess by going with the log2 of the
  4868. * number of CPUs.
  4869. *
  4870. * This idea comes from the SD scheduler of Con Kolivas:
  4871. */
  4872. static int get_update_sysctl_factor(void)
  4873. {
  4874. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4875. unsigned int factor;
  4876. switch (sysctl_sched_tunable_scaling) {
  4877. case SCHED_TUNABLESCALING_NONE:
  4878. factor = 1;
  4879. break;
  4880. case SCHED_TUNABLESCALING_LINEAR:
  4881. factor = cpus;
  4882. break;
  4883. case SCHED_TUNABLESCALING_LOG:
  4884. default:
  4885. factor = 1 + ilog2(cpus);
  4886. break;
  4887. }
  4888. return factor;
  4889. }
  4890. static void update_sysctl(void)
  4891. {
  4892. unsigned int factor = get_update_sysctl_factor();
  4893. #define SET_SYSCTL(name) \
  4894. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4895. SET_SYSCTL(sched_min_granularity);
  4896. SET_SYSCTL(sched_latency);
  4897. SET_SYSCTL(sched_wakeup_granularity);
  4898. SET_SYSCTL(sched_shares_ratelimit);
  4899. #undef SET_SYSCTL
  4900. }
  4901. static inline void sched_init_granularity(void)
  4902. {
  4903. update_sysctl();
  4904. }
  4905. #ifdef CONFIG_SMP
  4906. /*
  4907. * This is how migration works:
  4908. *
  4909. * 1) we invoke migration_cpu_stop() on the target CPU using
  4910. * stop_one_cpu().
  4911. * 2) stopper starts to run (implicitly forcing the migrated thread
  4912. * off the CPU)
  4913. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4914. * 4) if it's in the wrong runqueue then the migration thread removes
  4915. * it and puts it into the right queue.
  4916. * 5) stopper completes and stop_one_cpu() returns and the migration
  4917. * is done.
  4918. */
  4919. /*
  4920. * Change a given task's CPU affinity. Migrate the thread to a
  4921. * proper CPU and schedule it away if the CPU it's executing on
  4922. * is removed from the allowed bitmask.
  4923. *
  4924. * NOTE: the caller must have a valid reference to the task, the
  4925. * task must not exit() & deallocate itself prematurely. The
  4926. * call is not atomic; no spinlocks may be held.
  4927. */
  4928. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4929. {
  4930. unsigned long flags;
  4931. struct rq *rq;
  4932. unsigned int dest_cpu;
  4933. int ret = 0;
  4934. /*
  4935. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4936. * drop the rq->lock and still rely on ->cpus_allowed.
  4937. */
  4938. again:
  4939. while (task_is_waking(p))
  4940. cpu_relax();
  4941. rq = task_rq_lock(p, &flags);
  4942. if (task_is_waking(p)) {
  4943. task_rq_unlock(rq, &flags);
  4944. goto again;
  4945. }
  4946. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4947. ret = -EINVAL;
  4948. goto out;
  4949. }
  4950. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4951. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4952. ret = -EINVAL;
  4953. goto out;
  4954. }
  4955. if (p->sched_class->set_cpus_allowed)
  4956. p->sched_class->set_cpus_allowed(p, new_mask);
  4957. else {
  4958. cpumask_copy(&p->cpus_allowed, new_mask);
  4959. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4960. }
  4961. /* Can the task run on the task's current CPU? If so, we're done */
  4962. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4963. goto out;
  4964. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4965. if (migrate_task(p, dest_cpu)) {
  4966. struct migration_arg arg = { p, dest_cpu };
  4967. /* Need help from migration thread: drop lock and wait. */
  4968. task_rq_unlock(rq, &flags);
  4969. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4970. tlb_migrate_finish(p->mm);
  4971. return 0;
  4972. }
  4973. out:
  4974. task_rq_unlock(rq, &flags);
  4975. return ret;
  4976. }
  4977. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4978. /*
  4979. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4980. * this because either it can't run here any more (set_cpus_allowed()
  4981. * away from this CPU, or CPU going down), or because we're
  4982. * attempting to rebalance this task on exec (sched_exec).
  4983. *
  4984. * So we race with normal scheduler movements, but that's OK, as long
  4985. * as the task is no longer on this CPU.
  4986. *
  4987. * Returns non-zero if task was successfully migrated.
  4988. */
  4989. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4990. {
  4991. struct rq *rq_dest, *rq_src;
  4992. int ret = 0;
  4993. if (unlikely(!cpu_active(dest_cpu)))
  4994. return ret;
  4995. rq_src = cpu_rq(src_cpu);
  4996. rq_dest = cpu_rq(dest_cpu);
  4997. double_rq_lock(rq_src, rq_dest);
  4998. /* Already moved. */
  4999. if (task_cpu(p) != src_cpu)
  5000. goto done;
  5001. /* Affinity changed (again). */
  5002. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5003. goto fail;
  5004. /*
  5005. * If we're not on a rq, the next wake-up will ensure we're
  5006. * placed properly.
  5007. */
  5008. if (p->se.on_rq) {
  5009. deactivate_task(rq_src, p, 0);
  5010. set_task_cpu(p, dest_cpu);
  5011. activate_task(rq_dest, p, 0);
  5012. check_preempt_curr(rq_dest, p, 0);
  5013. }
  5014. done:
  5015. ret = 1;
  5016. fail:
  5017. double_rq_unlock(rq_src, rq_dest);
  5018. return ret;
  5019. }
  5020. /*
  5021. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5022. * and performs thread migration by bumping thread off CPU then
  5023. * 'pushing' onto another runqueue.
  5024. */
  5025. static int migration_cpu_stop(void *data)
  5026. {
  5027. struct migration_arg *arg = data;
  5028. /*
  5029. * The original target cpu might have gone down and we might
  5030. * be on another cpu but it doesn't matter.
  5031. */
  5032. local_irq_disable();
  5033. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5034. local_irq_enable();
  5035. return 0;
  5036. }
  5037. #ifdef CONFIG_HOTPLUG_CPU
  5038. /*
  5039. * Figure out where task on dead CPU should go, use force if necessary.
  5040. */
  5041. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5042. {
  5043. struct rq *rq = cpu_rq(dead_cpu);
  5044. int needs_cpu, uninitialized_var(dest_cpu);
  5045. unsigned long flags;
  5046. local_irq_save(flags);
  5047. raw_spin_lock(&rq->lock);
  5048. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  5049. if (needs_cpu)
  5050. dest_cpu = select_fallback_rq(dead_cpu, p);
  5051. raw_spin_unlock(&rq->lock);
  5052. /*
  5053. * It can only fail if we race with set_cpus_allowed(),
  5054. * in the racer should migrate the task anyway.
  5055. */
  5056. if (needs_cpu)
  5057. __migrate_task(p, dead_cpu, dest_cpu);
  5058. local_irq_restore(flags);
  5059. }
  5060. /*
  5061. * While a dead CPU has no uninterruptible tasks queued at this point,
  5062. * it might still have a nonzero ->nr_uninterruptible counter, because
  5063. * for performance reasons the counter is not stricly tracking tasks to
  5064. * their home CPUs. So we just add the counter to another CPU's counter,
  5065. * to keep the global sum constant after CPU-down:
  5066. */
  5067. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5068. {
  5069. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5070. unsigned long flags;
  5071. local_irq_save(flags);
  5072. double_rq_lock(rq_src, rq_dest);
  5073. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5074. rq_src->nr_uninterruptible = 0;
  5075. double_rq_unlock(rq_src, rq_dest);
  5076. local_irq_restore(flags);
  5077. }
  5078. /* Run through task list and migrate tasks from the dead cpu. */
  5079. static void migrate_live_tasks(int src_cpu)
  5080. {
  5081. struct task_struct *p, *t;
  5082. read_lock(&tasklist_lock);
  5083. do_each_thread(t, p) {
  5084. if (p == current)
  5085. continue;
  5086. if (task_cpu(p) == src_cpu)
  5087. move_task_off_dead_cpu(src_cpu, p);
  5088. } while_each_thread(t, p);
  5089. read_unlock(&tasklist_lock);
  5090. }
  5091. /*
  5092. * Schedules idle task to be the next runnable task on current CPU.
  5093. * It does so by boosting its priority to highest possible.
  5094. * Used by CPU offline code.
  5095. */
  5096. void sched_idle_next(void)
  5097. {
  5098. int this_cpu = smp_processor_id();
  5099. struct rq *rq = cpu_rq(this_cpu);
  5100. struct task_struct *p = rq->idle;
  5101. unsigned long flags;
  5102. /* cpu has to be offline */
  5103. BUG_ON(cpu_online(this_cpu));
  5104. /*
  5105. * Strictly not necessary since rest of the CPUs are stopped by now
  5106. * and interrupts disabled on the current cpu.
  5107. */
  5108. raw_spin_lock_irqsave(&rq->lock, flags);
  5109. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5110. activate_task(rq, p, 0);
  5111. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5112. }
  5113. /*
  5114. * Ensures that the idle task is using init_mm right before its cpu goes
  5115. * offline.
  5116. */
  5117. void idle_task_exit(void)
  5118. {
  5119. struct mm_struct *mm = current->active_mm;
  5120. BUG_ON(cpu_online(smp_processor_id()));
  5121. if (mm != &init_mm)
  5122. switch_mm(mm, &init_mm, current);
  5123. mmdrop(mm);
  5124. }
  5125. /* called under rq->lock with disabled interrupts */
  5126. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5127. {
  5128. struct rq *rq = cpu_rq(dead_cpu);
  5129. /* Must be exiting, otherwise would be on tasklist. */
  5130. BUG_ON(!p->exit_state);
  5131. /* Cannot have done final schedule yet: would have vanished. */
  5132. BUG_ON(p->state == TASK_DEAD);
  5133. get_task_struct(p);
  5134. /*
  5135. * Drop lock around migration; if someone else moves it,
  5136. * that's OK. No task can be added to this CPU, so iteration is
  5137. * fine.
  5138. */
  5139. raw_spin_unlock_irq(&rq->lock);
  5140. move_task_off_dead_cpu(dead_cpu, p);
  5141. raw_spin_lock_irq(&rq->lock);
  5142. put_task_struct(p);
  5143. }
  5144. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5145. static void migrate_dead_tasks(unsigned int dead_cpu)
  5146. {
  5147. struct rq *rq = cpu_rq(dead_cpu);
  5148. struct task_struct *next;
  5149. for ( ; ; ) {
  5150. if (!rq->nr_running)
  5151. break;
  5152. next = pick_next_task(rq);
  5153. if (!next)
  5154. break;
  5155. next->sched_class->put_prev_task(rq, next);
  5156. migrate_dead(dead_cpu, next);
  5157. }
  5158. }
  5159. /*
  5160. * remove the tasks which were accounted by rq from calc_load_tasks.
  5161. */
  5162. static void calc_global_load_remove(struct rq *rq)
  5163. {
  5164. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5165. rq->calc_load_active = 0;
  5166. }
  5167. #endif /* CONFIG_HOTPLUG_CPU */
  5168. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5169. static struct ctl_table sd_ctl_dir[] = {
  5170. {
  5171. .procname = "sched_domain",
  5172. .mode = 0555,
  5173. },
  5174. {}
  5175. };
  5176. static struct ctl_table sd_ctl_root[] = {
  5177. {
  5178. .procname = "kernel",
  5179. .mode = 0555,
  5180. .child = sd_ctl_dir,
  5181. },
  5182. {}
  5183. };
  5184. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5185. {
  5186. struct ctl_table *entry =
  5187. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5188. return entry;
  5189. }
  5190. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5191. {
  5192. struct ctl_table *entry;
  5193. /*
  5194. * In the intermediate directories, both the child directory and
  5195. * procname are dynamically allocated and could fail but the mode
  5196. * will always be set. In the lowest directory the names are
  5197. * static strings and all have proc handlers.
  5198. */
  5199. for (entry = *tablep; entry->mode; entry++) {
  5200. if (entry->child)
  5201. sd_free_ctl_entry(&entry->child);
  5202. if (entry->proc_handler == NULL)
  5203. kfree(entry->procname);
  5204. }
  5205. kfree(*tablep);
  5206. *tablep = NULL;
  5207. }
  5208. static void
  5209. set_table_entry(struct ctl_table *entry,
  5210. const char *procname, void *data, int maxlen,
  5211. mode_t mode, proc_handler *proc_handler)
  5212. {
  5213. entry->procname = procname;
  5214. entry->data = data;
  5215. entry->maxlen = maxlen;
  5216. entry->mode = mode;
  5217. entry->proc_handler = proc_handler;
  5218. }
  5219. static struct ctl_table *
  5220. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5221. {
  5222. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5223. if (table == NULL)
  5224. return NULL;
  5225. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5226. sizeof(long), 0644, proc_doulongvec_minmax);
  5227. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5228. sizeof(long), 0644, proc_doulongvec_minmax);
  5229. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5230. sizeof(int), 0644, proc_dointvec_minmax);
  5231. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5232. sizeof(int), 0644, proc_dointvec_minmax);
  5233. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5234. sizeof(int), 0644, proc_dointvec_minmax);
  5235. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5236. sizeof(int), 0644, proc_dointvec_minmax);
  5237. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5238. sizeof(int), 0644, proc_dointvec_minmax);
  5239. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5240. sizeof(int), 0644, proc_dointvec_minmax);
  5241. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5242. sizeof(int), 0644, proc_dointvec_minmax);
  5243. set_table_entry(&table[9], "cache_nice_tries",
  5244. &sd->cache_nice_tries,
  5245. sizeof(int), 0644, proc_dointvec_minmax);
  5246. set_table_entry(&table[10], "flags", &sd->flags,
  5247. sizeof(int), 0644, proc_dointvec_minmax);
  5248. set_table_entry(&table[11], "name", sd->name,
  5249. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5250. /* &table[12] is terminator */
  5251. return table;
  5252. }
  5253. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5254. {
  5255. struct ctl_table *entry, *table;
  5256. struct sched_domain *sd;
  5257. int domain_num = 0, i;
  5258. char buf[32];
  5259. for_each_domain(cpu, sd)
  5260. domain_num++;
  5261. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5262. if (table == NULL)
  5263. return NULL;
  5264. i = 0;
  5265. for_each_domain(cpu, sd) {
  5266. snprintf(buf, 32, "domain%d", i);
  5267. entry->procname = kstrdup(buf, GFP_KERNEL);
  5268. entry->mode = 0555;
  5269. entry->child = sd_alloc_ctl_domain_table(sd);
  5270. entry++;
  5271. i++;
  5272. }
  5273. return table;
  5274. }
  5275. static struct ctl_table_header *sd_sysctl_header;
  5276. static void register_sched_domain_sysctl(void)
  5277. {
  5278. int i, cpu_num = num_possible_cpus();
  5279. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5280. char buf[32];
  5281. WARN_ON(sd_ctl_dir[0].child);
  5282. sd_ctl_dir[0].child = entry;
  5283. if (entry == NULL)
  5284. return;
  5285. for_each_possible_cpu(i) {
  5286. snprintf(buf, 32, "cpu%d", i);
  5287. entry->procname = kstrdup(buf, GFP_KERNEL);
  5288. entry->mode = 0555;
  5289. entry->child = sd_alloc_ctl_cpu_table(i);
  5290. entry++;
  5291. }
  5292. WARN_ON(sd_sysctl_header);
  5293. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5294. }
  5295. /* may be called multiple times per register */
  5296. static void unregister_sched_domain_sysctl(void)
  5297. {
  5298. if (sd_sysctl_header)
  5299. unregister_sysctl_table(sd_sysctl_header);
  5300. sd_sysctl_header = NULL;
  5301. if (sd_ctl_dir[0].child)
  5302. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5303. }
  5304. #else
  5305. static void register_sched_domain_sysctl(void)
  5306. {
  5307. }
  5308. static void unregister_sched_domain_sysctl(void)
  5309. {
  5310. }
  5311. #endif
  5312. static void set_rq_online(struct rq *rq)
  5313. {
  5314. if (!rq->online) {
  5315. const struct sched_class *class;
  5316. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5317. rq->online = 1;
  5318. for_each_class(class) {
  5319. if (class->rq_online)
  5320. class->rq_online(rq);
  5321. }
  5322. }
  5323. }
  5324. static void set_rq_offline(struct rq *rq)
  5325. {
  5326. if (rq->online) {
  5327. const struct sched_class *class;
  5328. for_each_class(class) {
  5329. if (class->rq_offline)
  5330. class->rq_offline(rq);
  5331. }
  5332. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5333. rq->online = 0;
  5334. }
  5335. }
  5336. /*
  5337. * migration_call - callback that gets triggered when a CPU is added.
  5338. * Here we can start up the necessary migration thread for the new CPU.
  5339. */
  5340. static int __cpuinit
  5341. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5342. {
  5343. int cpu = (long)hcpu;
  5344. unsigned long flags;
  5345. struct rq *rq = cpu_rq(cpu);
  5346. switch (action) {
  5347. case CPU_UP_PREPARE:
  5348. case CPU_UP_PREPARE_FROZEN:
  5349. rq->calc_load_update = calc_load_update;
  5350. break;
  5351. case CPU_ONLINE:
  5352. case CPU_ONLINE_FROZEN:
  5353. /* Update our root-domain */
  5354. raw_spin_lock_irqsave(&rq->lock, flags);
  5355. if (rq->rd) {
  5356. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5357. set_rq_online(rq);
  5358. }
  5359. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5360. break;
  5361. #ifdef CONFIG_HOTPLUG_CPU
  5362. case CPU_DEAD:
  5363. case CPU_DEAD_FROZEN:
  5364. migrate_live_tasks(cpu);
  5365. /* Idle task back to normal (off runqueue, low prio) */
  5366. raw_spin_lock_irq(&rq->lock);
  5367. deactivate_task(rq, rq->idle, 0);
  5368. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5369. rq->idle->sched_class = &idle_sched_class;
  5370. migrate_dead_tasks(cpu);
  5371. raw_spin_unlock_irq(&rq->lock);
  5372. migrate_nr_uninterruptible(rq);
  5373. BUG_ON(rq->nr_running != 0);
  5374. calc_global_load_remove(rq);
  5375. break;
  5376. case CPU_DYING:
  5377. case CPU_DYING_FROZEN:
  5378. /* Update our root-domain */
  5379. raw_spin_lock_irqsave(&rq->lock, flags);
  5380. if (rq->rd) {
  5381. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5382. set_rq_offline(rq);
  5383. }
  5384. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5385. break;
  5386. #endif
  5387. }
  5388. return NOTIFY_OK;
  5389. }
  5390. /*
  5391. * Register at high priority so that task migration (migrate_all_tasks)
  5392. * happens before everything else. This has to be lower priority than
  5393. * the notifier in the perf_event subsystem, though.
  5394. */
  5395. static struct notifier_block __cpuinitdata migration_notifier = {
  5396. .notifier_call = migration_call,
  5397. .priority = CPU_PRI_MIGRATION,
  5398. };
  5399. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5400. unsigned long action, void *hcpu)
  5401. {
  5402. switch (action & ~CPU_TASKS_FROZEN) {
  5403. case CPU_ONLINE:
  5404. case CPU_DOWN_FAILED:
  5405. set_cpu_active((long)hcpu, true);
  5406. return NOTIFY_OK;
  5407. default:
  5408. return NOTIFY_DONE;
  5409. }
  5410. }
  5411. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5412. unsigned long action, void *hcpu)
  5413. {
  5414. switch (action & ~CPU_TASKS_FROZEN) {
  5415. case CPU_DOWN_PREPARE:
  5416. set_cpu_active((long)hcpu, false);
  5417. return NOTIFY_OK;
  5418. default:
  5419. return NOTIFY_DONE;
  5420. }
  5421. }
  5422. static int __init migration_init(void)
  5423. {
  5424. void *cpu = (void *)(long)smp_processor_id();
  5425. int err;
  5426. /* Initialize migration for the boot CPU */
  5427. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5428. BUG_ON(err == NOTIFY_BAD);
  5429. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5430. register_cpu_notifier(&migration_notifier);
  5431. /* Register cpu active notifiers */
  5432. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5433. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5434. return 0;
  5435. }
  5436. early_initcall(migration_init);
  5437. #endif
  5438. #ifdef CONFIG_SMP
  5439. #ifdef CONFIG_SCHED_DEBUG
  5440. static __read_mostly int sched_domain_debug_enabled;
  5441. static int __init sched_domain_debug_setup(char *str)
  5442. {
  5443. sched_domain_debug_enabled = 1;
  5444. return 0;
  5445. }
  5446. early_param("sched_debug", sched_domain_debug_setup);
  5447. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5448. struct cpumask *groupmask)
  5449. {
  5450. struct sched_group *group = sd->groups;
  5451. char str[256];
  5452. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5453. cpumask_clear(groupmask);
  5454. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5455. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5456. printk("does not load-balance\n");
  5457. if (sd->parent)
  5458. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5459. " has parent");
  5460. return -1;
  5461. }
  5462. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5463. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5464. printk(KERN_ERR "ERROR: domain->span does not contain "
  5465. "CPU%d\n", cpu);
  5466. }
  5467. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5468. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5469. " CPU%d\n", cpu);
  5470. }
  5471. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5472. do {
  5473. if (!group) {
  5474. printk("\n");
  5475. printk(KERN_ERR "ERROR: group is NULL\n");
  5476. break;
  5477. }
  5478. if (!group->cpu_power) {
  5479. printk(KERN_CONT "\n");
  5480. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5481. "set\n");
  5482. break;
  5483. }
  5484. if (!cpumask_weight(sched_group_cpus(group))) {
  5485. printk(KERN_CONT "\n");
  5486. printk(KERN_ERR "ERROR: empty group\n");
  5487. break;
  5488. }
  5489. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5490. printk(KERN_CONT "\n");
  5491. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5492. break;
  5493. }
  5494. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5495. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5496. printk(KERN_CONT " %s", str);
  5497. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5498. printk(KERN_CONT " (cpu_power = %d)",
  5499. group->cpu_power);
  5500. }
  5501. group = group->next;
  5502. } while (group != sd->groups);
  5503. printk(KERN_CONT "\n");
  5504. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5505. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5506. if (sd->parent &&
  5507. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5508. printk(KERN_ERR "ERROR: parent span is not a superset "
  5509. "of domain->span\n");
  5510. return 0;
  5511. }
  5512. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5513. {
  5514. cpumask_var_t groupmask;
  5515. int level = 0;
  5516. if (!sched_domain_debug_enabled)
  5517. return;
  5518. if (!sd) {
  5519. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5520. return;
  5521. }
  5522. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5523. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5524. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5525. return;
  5526. }
  5527. for (;;) {
  5528. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5529. break;
  5530. level++;
  5531. sd = sd->parent;
  5532. if (!sd)
  5533. break;
  5534. }
  5535. free_cpumask_var(groupmask);
  5536. }
  5537. #else /* !CONFIG_SCHED_DEBUG */
  5538. # define sched_domain_debug(sd, cpu) do { } while (0)
  5539. #endif /* CONFIG_SCHED_DEBUG */
  5540. static int sd_degenerate(struct sched_domain *sd)
  5541. {
  5542. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5543. return 1;
  5544. /* Following flags need at least 2 groups */
  5545. if (sd->flags & (SD_LOAD_BALANCE |
  5546. SD_BALANCE_NEWIDLE |
  5547. SD_BALANCE_FORK |
  5548. SD_BALANCE_EXEC |
  5549. SD_SHARE_CPUPOWER |
  5550. SD_SHARE_PKG_RESOURCES)) {
  5551. if (sd->groups != sd->groups->next)
  5552. return 0;
  5553. }
  5554. /* Following flags don't use groups */
  5555. if (sd->flags & (SD_WAKE_AFFINE))
  5556. return 0;
  5557. return 1;
  5558. }
  5559. static int
  5560. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5561. {
  5562. unsigned long cflags = sd->flags, pflags = parent->flags;
  5563. if (sd_degenerate(parent))
  5564. return 1;
  5565. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5566. return 0;
  5567. /* Flags needing groups don't count if only 1 group in parent */
  5568. if (parent->groups == parent->groups->next) {
  5569. pflags &= ~(SD_LOAD_BALANCE |
  5570. SD_BALANCE_NEWIDLE |
  5571. SD_BALANCE_FORK |
  5572. SD_BALANCE_EXEC |
  5573. SD_SHARE_CPUPOWER |
  5574. SD_SHARE_PKG_RESOURCES);
  5575. if (nr_node_ids == 1)
  5576. pflags &= ~SD_SERIALIZE;
  5577. }
  5578. if (~cflags & pflags)
  5579. return 0;
  5580. return 1;
  5581. }
  5582. static void free_rootdomain(struct root_domain *rd)
  5583. {
  5584. synchronize_sched();
  5585. cpupri_cleanup(&rd->cpupri);
  5586. free_cpumask_var(rd->rto_mask);
  5587. free_cpumask_var(rd->online);
  5588. free_cpumask_var(rd->span);
  5589. kfree(rd);
  5590. }
  5591. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5592. {
  5593. struct root_domain *old_rd = NULL;
  5594. unsigned long flags;
  5595. raw_spin_lock_irqsave(&rq->lock, flags);
  5596. if (rq->rd) {
  5597. old_rd = rq->rd;
  5598. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5599. set_rq_offline(rq);
  5600. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5601. /*
  5602. * If we dont want to free the old_rt yet then
  5603. * set old_rd to NULL to skip the freeing later
  5604. * in this function:
  5605. */
  5606. if (!atomic_dec_and_test(&old_rd->refcount))
  5607. old_rd = NULL;
  5608. }
  5609. atomic_inc(&rd->refcount);
  5610. rq->rd = rd;
  5611. cpumask_set_cpu(rq->cpu, rd->span);
  5612. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5613. set_rq_online(rq);
  5614. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5615. if (old_rd)
  5616. free_rootdomain(old_rd);
  5617. }
  5618. static int init_rootdomain(struct root_domain *rd)
  5619. {
  5620. memset(rd, 0, sizeof(*rd));
  5621. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5622. goto out;
  5623. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5624. goto free_span;
  5625. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5626. goto free_online;
  5627. if (cpupri_init(&rd->cpupri) != 0)
  5628. goto free_rto_mask;
  5629. return 0;
  5630. free_rto_mask:
  5631. free_cpumask_var(rd->rto_mask);
  5632. free_online:
  5633. free_cpumask_var(rd->online);
  5634. free_span:
  5635. free_cpumask_var(rd->span);
  5636. out:
  5637. return -ENOMEM;
  5638. }
  5639. static void init_defrootdomain(void)
  5640. {
  5641. init_rootdomain(&def_root_domain);
  5642. atomic_set(&def_root_domain.refcount, 1);
  5643. }
  5644. static struct root_domain *alloc_rootdomain(void)
  5645. {
  5646. struct root_domain *rd;
  5647. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5648. if (!rd)
  5649. return NULL;
  5650. if (init_rootdomain(rd) != 0) {
  5651. kfree(rd);
  5652. return NULL;
  5653. }
  5654. return rd;
  5655. }
  5656. /*
  5657. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5658. * hold the hotplug lock.
  5659. */
  5660. static void
  5661. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5662. {
  5663. struct rq *rq = cpu_rq(cpu);
  5664. struct sched_domain *tmp;
  5665. for (tmp = sd; tmp; tmp = tmp->parent)
  5666. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5667. /* Remove the sched domains which do not contribute to scheduling. */
  5668. for (tmp = sd; tmp; ) {
  5669. struct sched_domain *parent = tmp->parent;
  5670. if (!parent)
  5671. break;
  5672. if (sd_parent_degenerate(tmp, parent)) {
  5673. tmp->parent = parent->parent;
  5674. if (parent->parent)
  5675. parent->parent->child = tmp;
  5676. } else
  5677. tmp = tmp->parent;
  5678. }
  5679. if (sd && sd_degenerate(sd)) {
  5680. sd = sd->parent;
  5681. if (sd)
  5682. sd->child = NULL;
  5683. }
  5684. sched_domain_debug(sd, cpu);
  5685. rq_attach_root(rq, rd);
  5686. rcu_assign_pointer(rq->sd, sd);
  5687. }
  5688. /* cpus with isolated domains */
  5689. static cpumask_var_t cpu_isolated_map;
  5690. /* Setup the mask of cpus configured for isolated domains */
  5691. static int __init isolated_cpu_setup(char *str)
  5692. {
  5693. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5694. cpulist_parse(str, cpu_isolated_map);
  5695. return 1;
  5696. }
  5697. __setup("isolcpus=", isolated_cpu_setup);
  5698. /*
  5699. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5700. * to a function which identifies what group(along with sched group) a CPU
  5701. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5702. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5703. *
  5704. * init_sched_build_groups will build a circular linked list of the groups
  5705. * covered by the given span, and will set each group's ->cpumask correctly,
  5706. * and ->cpu_power to 0.
  5707. */
  5708. static void
  5709. init_sched_build_groups(const struct cpumask *span,
  5710. const struct cpumask *cpu_map,
  5711. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5712. struct sched_group **sg,
  5713. struct cpumask *tmpmask),
  5714. struct cpumask *covered, struct cpumask *tmpmask)
  5715. {
  5716. struct sched_group *first = NULL, *last = NULL;
  5717. int i;
  5718. cpumask_clear(covered);
  5719. for_each_cpu(i, span) {
  5720. struct sched_group *sg;
  5721. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5722. int j;
  5723. if (cpumask_test_cpu(i, covered))
  5724. continue;
  5725. cpumask_clear(sched_group_cpus(sg));
  5726. sg->cpu_power = 0;
  5727. for_each_cpu(j, span) {
  5728. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5729. continue;
  5730. cpumask_set_cpu(j, covered);
  5731. cpumask_set_cpu(j, sched_group_cpus(sg));
  5732. }
  5733. if (!first)
  5734. first = sg;
  5735. if (last)
  5736. last->next = sg;
  5737. last = sg;
  5738. }
  5739. last->next = first;
  5740. }
  5741. #define SD_NODES_PER_DOMAIN 16
  5742. #ifdef CONFIG_NUMA
  5743. /**
  5744. * find_next_best_node - find the next node to include in a sched_domain
  5745. * @node: node whose sched_domain we're building
  5746. * @used_nodes: nodes already in the sched_domain
  5747. *
  5748. * Find the next node to include in a given scheduling domain. Simply
  5749. * finds the closest node not already in the @used_nodes map.
  5750. *
  5751. * Should use nodemask_t.
  5752. */
  5753. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5754. {
  5755. int i, n, val, min_val, best_node = 0;
  5756. min_val = INT_MAX;
  5757. for (i = 0; i < nr_node_ids; i++) {
  5758. /* Start at @node */
  5759. n = (node + i) % nr_node_ids;
  5760. if (!nr_cpus_node(n))
  5761. continue;
  5762. /* Skip already used nodes */
  5763. if (node_isset(n, *used_nodes))
  5764. continue;
  5765. /* Simple min distance search */
  5766. val = node_distance(node, n);
  5767. if (val < min_val) {
  5768. min_val = val;
  5769. best_node = n;
  5770. }
  5771. }
  5772. node_set(best_node, *used_nodes);
  5773. return best_node;
  5774. }
  5775. /**
  5776. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5777. * @node: node whose cpumask we're constructing
  5778. * @span: resulting cpumask
  5779. *
  5780. * Given a node, construct a good cpumask for its sched_domain to span. It
  5781. * should be one that prevents unnecessary balancing, but also spreads tasks
  5782. * out optimally.
  5783. */
  5784. static void sched_domain_node_span(int node, struct cpumask *span)
  5785. {
  5786. nodemask_t used_nodes;
  5787. int i;
  5788. cpumask_clear(span);
  5789. nodes_clear(used_nodes);
  5790. cpumask_or(span, span, cpumask_of_node(node));
  5791. node_set(node, used_nodes);
  5792. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5793. int next_node = find_next_best_node(node, &used_nodes);
  5794. cpumask_or(span, span, cpumask_of_node(next_node));
  5795. }
  5796. }
  5797. #endif /* CONFIG_NUMA */
  5798. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5799. /*
  5800. * The cpus mask in sched_group and sched_domain hangs off the end.
  5801. *
  5802. * ( See the the comments in include/linux/sched.h:struct sched_group
  5803. * and struct sched_domain. )
  5804. */
  5805. struct static_sched_group {
  5806. struct sched_group sg;
  5807. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5808. };
  5809. struct static_sched_domain {
  5810. struct sched_domain sd;
  5811. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5812. };
  5813. struct s_data {
  5814. #ifdef CONFIG_NUMA
  5815. int sd_allnodes;
  5816. cpumask_var_t domainspan;
  5817. cpumask_var_t covered;
  5818. cpumask_var_t notcovered;
  5819. #endif
  5820. cpumask_var_t nodemask;
  5821. cpumask_var_t this_sibling_map;
  5822. cpumask_var_t this_core_map;
  5823. cpumask_var_t this_book_map;
  5824. cpumask_var_t send_covered;
  5825. cpumask_var_t tmpmask;
  5826. struct sched_group **sched_group_nodes;
  5827. struct root_domain *rd;
  5828. };
  5829. enum s_alloc {
  5830. sa_sched_groups = 0,
  5831. sa_rootdomain,
  5832. sa_tmpmask,
  5833. sa_send_covered,
  5834. sa_this_book_map,
  5835. sa_this_core_map,
  5836. sa_this_sibling_map,
  5837. sa_nodemask,
  5838. sa_sched_group_nodes,
  5839. #ifdef CONFIG_NUMA
  5840. sa_notcovered,
  5841. sa_covered,
  5842. sa_domainspan,
  5843. #endif
  5844. sa_none,
  5845. };
  5846. /*
  5847. * SMT sched-domains:
  5848. */
  5849. #ifdef CONFIG_SCHED_SMT
  5850. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5851. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5852. static int
  5853. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5854. struct sched_group **sg, struct cpumask *unused)
  5855. {
  5856. if (sg)
  5857. *sg = &per_cpu(sched_groups, cpu).sg;
  5858. return cpu;
  5859. }
  5860. #endif /* CONFIG_SCHED_SMT */
  5861. /*
  5862. * multi-core sched-domains:
  5863. */
  5864. #ifdef CONFIG_SCHED_MC
  5865. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5866. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5867. static int
  5868. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5869. struct sched_group **sg, struct cpumask *mask)
  5870. {
  5871. int group;
  5872. #ifdef CONFIG_SCHED_SMT
  5873. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5874. group = cpumask_first(mask);
  5875. #else
  5876. group = cpu;
  5877. #endif
  5878. if (sg)
  5879. *sg = &per_cpu(sched_group_core, group).sg;
  5880. return group;
  5881. }
  5882. #endif /* CONFIG_SCHED_MC */
  5883. /*
  5884. * book sched-domains:
  5885. */
  5886. #ifdef CONFIG_SCHED_BOOK
  5887. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5888. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5889. static int
  5890. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5891. struct sched_group **sg, struct cpumask *mask)
  5892. {
  5893. int group = cpu;
  5894. #ifdef CONFIG_SCHED_MC
  5895. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5896. group = cpumask_first(mask);
  5897. #elif defined(CONFIG_SCHED_SMT)
  5898. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5899. group = cpumask_first(mask);
  5900. #endif
  5901. if (sg)
  5902. *sg = &per_cpu(sched_group_book, group).sg;
  5903. return group;
  5904. }
  5905. #endif /* CONFIG_SCHED_BOOK */
  5906. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5907. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5908. static int
  5909. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5910. struct sched_group **sg, struct cpumask *mask)
  5911. {
  5912. int group;
  5913. #ifdef CONFIG_SCHED_BOOK
  5914. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5915. group = cpumask_first(mask);
  5916. #elif defined(CONFIG_SCHED_MC)
  5917. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5918. group = cpumask_first(mask);
  5919. #elif defined(CONFIG_SCHED_SMT)
  5920. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5921. group = cpumask_first(mask);
  5922. #else
  5923. group = cpu;
  5924. #endif
  5925. if (sg)
  5926. *sg = &per_cpu(sched_group_phys, group).sg;
  5927. return group;
  5928. }
  5929. #ifdef CONFIG_NUMA
  5930. /*
  5931. * The init_sched_build_groups can't handle what we want to do with node
  5932. * groups, so roll our own. Now each node has its own list of groups which
  5933. * gets dynamically allocated.
  5934. */
  5935. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5936. static struct sched_group ***sched_group_nodes_bycpu;
  5937. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5938. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5939. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5940. struct sched_group **sg,
  5941. struct cpumask *nodemask)
  5942. {
  5943. int group;
  5944. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5945. group = cpumask_first(nodemask);
  5946. if (sg)
  5947. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5948. return group;
  5949. }
  5950. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5951. {
  5952. struct sched_group *sg = group_head;
  5953. int j;
  5954. if (!sg)
  5955. return;
  5956. do {
  5957. for_each_cpu(j, sched_group_cpus(sg)) {
  5958. struct sched_domain *sd;
  5959. sd = &per_cpu(phys_domains, j).sd;
  5960. if (j != group_first_cpu(sd->groups)) {
  5961. /*
  5962. * Only add "power" once for each
  5963. * physical package.
  5964. */
  5965. continue;
  5966. }
  5967. sg->cpu_power += sd->groups->cpu_power;
  5968. }
  5969. sg = sg->next;
  5970. } while (sg != group_head);
  5971. }
  5972. static int build_numa_sched_groups(struct s_data *d,
  5973. const struct cpumask *cpu_map, int num)
  5974. {
  5975. struct sched_domain *sd;
  5976. struct sched_group *sg, *prev;
  5977. int n, j;
  5978. cpumask_clear(d->covered);
  5979. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5980. if (cpumask_empty(d->nodemask)) {
  5981. d->sched_group_nodes[num] = NULL;
  5982. goto out;
  5983. }
  5984. sched_domain_node_span(num, d->domainspan);
  5985. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5986. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5987. GFP_KERNEL, num);
  5988. if (!sg) {
  5989. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5990. num);
  5991. return -ENOMEM;
  5992. }
  5993. d->sched_group_nodes[num] = sg;
  5994. for_each_cpu(j, d->nodemask) {
  5995. sd = &per_cpu(node_domains, j).sd;
  5996. sd->groups = sg;
  5997. }
  5998. sg->cpu_power = 0;
  5999. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  6000. sg->next = sg;
  6001. cpumask_or(d->covered, d->covered, d->nodemask);
  6002. prev = sg;
  6003. for (j = 0; j < nr_node_ids; j++) {
  6004. n = (num + j) % nr_node_ids;
  6005. cpumask_complement(d->notcovered, d->covered);
  6006. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6007. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6008. if (cpumask_empty(d->tmpmask))
  6009. break;
  6010. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6011. if (cpumask_empty(d->tmpmask))
  6012. continue;
  6013. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6014. GFP_KERNEL, num);
  6015. if (!sg) {
  6016. printk(KERN_WARNING
  6017. "Can not alloc domain group for node %d\n", j);
  6018. return -ENOMEM;
  6019. }
  6020. sg->cpu_power = 0;
  6021. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6022. sg->next = prev->next;
  6023. cpumask_or(d->covered, d->covered, d->tmpmask);
  6024. prev->next = sg;
  6025. prev = sg;
  6026. }
  6027. out:
  6028. return 0;
  6029. }
  6030. #endif /* CONFIG_NUMA */
  6031. #ifdef CONFIG_NUMA
  6032. /* Free memory allocated for various sched_group structures */
  6033. static void free_sched_groups(const struct cpumask *cpu_map,
  6034. struct cpumask *nodemask)
  6035. {
  6036. int cpu, i;
  6037. for_each_cpu(cpu, cpu_map) {
  6038. struct sched_group **sched_group_nodes
  6039. = sched_group_nodes_bycpu[cpu];
  6040. if (!sched_group_nodes)
  6041. continue;
  6042. for (i = 0; i < nr_node_ids; i++) {
  6043. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6044. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6045. if (cpumask_empty(nodemask))
  6046. continue;
  6047. if (sg == NULL)
  6048. continue;
  6049. sg = sg->next;
  6050. next_sg:
  6051. oldsg = sg;
  6052. sg = sg->next;
  6053. kfree(oldsg);
  6054. if (oldsg != sched_group_nodes[i])
  6055. goto next_sg;
  6056. }
  6057. kfree(sched_group_nodes);
  6058. sched_group_nodes_bycpu[cpu] = NULL;
  6059. }
  6060. }
  6061. #else /* !CONFIG_NUMA */
  6062. static void free_sched_groups(const struct cpumask *cpu_map,
  6063. struct cpumask *nodemask)
  6064. {
  6065. }
  6066. #endif /* CONFIG_NUMA */
  6067. /*
  6068. * Initialize sched groups cpu_power.
  6069. *
  6070. * cpu_power indicates the capacity of sched group, which is used while
  6071. * distributing the load between different sched groups in a sched domain.
  6072. * Typically cpu_power for all the groups in a sched domain will be same unless
  6073. * there are asymmetries in the topology. If there are asymmetries, group
  6074. * having more cpu_power will pickup more load compared to the group having
  6075. * less cpu_power.
  6076. */
  6077. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6078. {
  6079. struct sched_domain *child;
  6080. struct sched_group *group;
  6081. long power;
  6082. int weight;
  6083. WARN_ON(!sd || !sd->groups);
  6084. if (cpu != group_first_cpu(sd->groups))
  6085. return;
  6086. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6087. child = sd->child;
  6088. sd->groups->cpu_power = 0;
  6089. if (!child) {
  6090. power = SCHED_LOAD_SCALE;
  6091. weight = cpumask_weight(sched_domain_span(sd));
  6092. /*
  6093. * SMT siblings share the power of a single core.
  6094. * Usually multiple threads get a better yield out of
  6095. * that one core than a single thread would have,
  6096. * reflect that in sd->smt_gain.
  6097. */
  6098. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6099. power *= sd->smt_gain;
  6100. power /= weight;
  6101. power >>= SCHED_LOAD_SHIFT;
  6102. }
  6103. sd->groups->cpu_power += power;
  6104. return;
  6105. }
  6106. /*
  6107. * Add cpu_power of each child group to this groups cpu_power.
  6108. */
  6109. group = child->groups;
  6110. do {
  6111. sd->groups->cpu_power += group->cpu_power;
  6112. group = group->next;
  6113. } while (group != child->groups);
  6114. }
  6115. /*
  6116. * Initializers for schedule domains
  6117. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6118. */
  6119. #ifdef CONFIG_SCHED_DEBUG
  6120. # define SD_INIT_NAME(sd, type) sd->name = #type
  6121. #else
  6122. # define SD_INIT_NAME(sd, type) do { } while (0)
  6123. #endif
  6124. #define SD_INIT(sd, type) sd_init_##type(sd)
  6125. #define SD_INIT_FUNC(type) \
  6126. static noinline void sd_init_##type(struct sched_domain *sd) \
  6127. { \
  6128. memset(sd, 0, sizeof(*sd)); \
  6129. *sd = SD_##type##_INIT; \
  6130. sd->level = SD_LV_##type; \
  6131. SD_INIT_NAME(sd, type); \
  6132. }
  6133. SD_INIT_FUNC(CPU)
  6134. #ifdef CONFIG_NUMA
  6135. SD_INIT_FUNC(ALLNODES)
  6136. SD_INIT_FUNC(NODE)
  6137. #endif
  6138. #ifdef CONFIG_SCHED_SMT
  6139. SD_INIT_FUNC(SIBLING)
  6140. #endif
  6141. #ifdef CONFIG_SCHED_MC
  6142. SD_INIT_FUNC(MC)
  6143. #endif
  6144. #ifdef CONFIG_SCHED_BOOK
  6145. SD_INIT_FUNC(BOOK)
  6146. #endif
  6147. static int default_relax_domain_level = -1;
  6148. static int __init setup_relax_domain_level(char *str)
  6149. {
  6150. unsigned long val;
  6151. val = simple_strtoul(str, NULL, 0);
  6152. if (val < SD_LV_MAX)
  6153. default_relax_domain_level = val;
  6154. return 1;
  6155. }
  6156. __setup("relax_domain_level=", setup_relax_domain_level);
  6157. static void set_domain_attribute(struct sched_domain *sd,
  6158. struct sched_domain_attr *attr)
  6159. {
  6160. int request;
  6161. if (!attr || attr->relax_domain_level < 0) {
  6162. if (default_relax_domain_level < 0)
  6163. return;
  6164. else
  6165. request = default_relax_domain_level;
  6166. } else
  6167. request = attr->relax_domain_level;
  6168. if (request < sd->level) {
  6169. /* turn off idle balance on this domain */
  6170. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6171. } else {
  6172. /* turn on idle balance on this domain */
  6173. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6174. }
  6175. }
  6176. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6177. const struct cpumask *cpu_map)
  6178. {
  6179. switch (what) {
  6180. case sa_sched_groups:
  6181. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6182. d->sched_group_nodes = NULL;
  6183. case sa_rootdomain:
  6184. free_rootdomain(d->rd); /* fall through */
  6185. case sa_tmpmask:
  6186. free_cpumask_var(d->tmpmask); /* fall through */
  6187. case sa_send_covered:
  6188. free_cpumask_var(d->send_covered); /* fall through */
  6189. case sa_this_book_map:
  6190. free_cpumask_var(d->this_book_map); /* fall through */
  6191. case sa_this_core_map:
  6192. free_cpumask_var(d->this_core_map); /* fall through */
  6193. case sa_this_sibling_map:
  6194. free_cpumask_var(d->this_sibling_map); /* fall through */
  6195. case sa_nodemask:
  6196. free_cpumask_var(d->nodemask); /* fall through */
  6197. case sa_sched_group_nodes:
  6198. #ifdef CONFIG_NUMA
  6199. kfree(d->sched_group_nodes); /* fall through */
  6200. case sa_notcovered:
  6201. free_cpumask_var(d->notcovered); /* fall through */
  6202. case sa_covered:
  6203. free_cpumask_var(d->covered); /* fall through */
  6204. case sa_domainspan:
  6205. free_cpumask_var(d->domainspan); /* fall through */
  6206. #endif
  6207. case sa_none:
  6208. break;
  6209. }
  6210. }
  6211. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6212. const struct cpumask *cpu_map)
  6213. {
  6214. #ifdef CONFIG_NUMA
  6215. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6216. return sa_none;
  6217. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6218. return sa_domainspan;
  6219. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6220. return sa_covered;
  6221. /* Allocate the per-node list of sched groups */
  6222. d->sched_group_nodes = kcalloc(nr_node_ids,
  6223. sizeof(struct sched_group *), GFP_KERNEL);
  6224. if (!d->sched_group_nodes) {
  6225. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6226. return sa_notcovered;
  6227. }
  6228. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6229. #endif
  6230. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6231. return sa_sched_group_nodes;
  6232. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6233. return sa_nodemask;
  6234. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6235. return sa_this_sibling_map;
  6236. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6237. return sa_this_core_map;
  6238. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6239. return sa_this_book_map;
  6240. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6241. return sa_send_covered;
  6242. d->rd = alloc_rootdomain();
  6243. if (!d->rd) {
  6244. printk(KERN_WARNING "Cannot alloc root domain\n");
  6245. return sa_tmpmask;
  6246. }
  6247. return sa_rootdomain;
  6248. }
  6249. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6250. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6251. {
  6252. struct sched_domain *sd = NULL;
  6253. #ifdef CONFIG_NUMA
  6254. struct sched_domain *parent;
  6255. d->sd_allnodes = 0;
  6256. if (cpumask_weight(cpu_map) >
  6257. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6258. sd = &per_cpu(allnodes_domains, i).sd;
  6259. SD_INIT(sd, ALLNODES);
  6260. set_domain_attribute(sd, attr);
  6261. cpumask_copy(sched_domain_span(sd), cpu_map);
  6262. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6263. d->sd_allnodes = 1;
  6264. }
  6265. parent = sd;
  6266. sd = &per_cpu(node_domains, i).sd;
  6267. SD_INIT(sd, NODE);
  6268. set_domain_attribute(sd, attr);
  6269. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6270. sd->parent = parent;
  6271. if (parent)
  6272. parent->child = sd;
  6273. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6274. #endif
  6275. return sd;
  6276. }
  6277. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6278. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6279. struct sched_domain *parent, int i)
  6280. {
  6281. struct sched_domain *sd;
  6282. sd = &per_cpu(phys_domains, i).sd;
  6283. SD_INIT(sd, CPU);
  6284. set_domain_attribute(sd, attr);
  6285. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6286. sd->parent = parent;
  6287. if (parent)
  6288. parent->child = sd;
  6289. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6290. return sd;
  6291. }
  6292. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6293. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6294. struct sched_domain *parent, int i)
  6295. {
  6296. struct sched_domain *sd = parent;
  6297. #ifdef CONFIG_SCHED_BOOK
  6298. sd = &per_cpu(book_domains, i).sd;
  6299. SD_INIT(sd, BOOK);
  6300. set_domain_attribute(sd, attr);
  6301. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6302. sd->parent = parent;
  6303. parent->child = sd;
  6304. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6305. #endif
  6306. return sd;
  6307. }
  6308. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6309. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6310. struct sched_domain *parent, int i)
  6311. {
  6312. struct sched_domain *sd = parent;
  6313. #ifdef CONFIG_SCHED_MC
  6314. sd = &per_cpu(core_domains, i).sd;
  6315. SD_INIT(sd, MC);
  6316. set_domain_attribute(sd, attr);
  6317. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6318. sd->parent = parent;
  6319. parent->child = sd;
  6320. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6321. #endif
  6322. return sd;
  6323. }
  6324. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6325. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6326. struct sched_domain *parent, int i)
  6327. {
  6328. struct sched_domain *sd = parent;
  6329. #ifdef CONFIG_SCHED_SMT
  6330. sd = &per_cpu(cpu_domains, i).sd;
  6331. SD_INIT(sd, SIBLING);
  6332. set_domain_attribute(sd, attr);
  6333. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6334. sd->parent = parent;
  6335. parent->child = sd;
  6336. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6337. #endif
  6338. return sd;
  6339. }
  6340. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6341. const struct cpumask *cpu_map, int cpu)
  6342. {
  6343. switch (l) {
  6344. #ifdef CONFIG_SCHED_SMT
  6345. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6346. cpumask_and(d->this_sibling_map, cpu_map,
  6347. topology_thread_cpumask(cpu));
  6348. if (cpu == cpumask_first(d->this_sibling_map))
  6349. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6350. &cpu_to_cpu_group,
  6351. d->send_covered, d->tmpmask);
  6352. break;
  6353. #endif
  6354. #ifdef CONFIG_SCHED_MC
  6355. case SD_LV_MC: /* set up multi-core groups */
  6356. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6357. if (cpu == cpumask_first(d->this_core_map))
  6358. init_sched_build_groups(d->this_core_map, cpu_map,
  6359. &cpu_to_core_group,
  6360. d->send_covered, d->tmpmask);
  6361. break;
  6362. #endif
  6363. #ifdef CONFIG_SCHED_BOOK
  6364. case SD_LV_BOOK: /* set up book groups */
  6365. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6366. if (cpu == cpumask_first(d->this_book_map))
  6367. init_sched_build_groups(d->this_book_map, cpu_map,
  6368. &cpu_to_book_group,
  6369. d->send_covered, d->tmpmask);
  6370. break;
  6371. #endif
  6372. case SD_LV_CPU: /* set up physical groups */
  6373. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6374. if (!cpumask_empty(d->nodemask))
  6375. init_sched_build_groups(d->nodemask, cpu_map,
  6376. &cpu_to_phys_group,
  6377. d->send_covered, d->tmpmask);
  6378. break;
  6379. #ifdef CONFIG_NUMA
  6380. case SD_LV_ALLNODES:
  6381. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6382. d->send_covered, d->tmpmask);
  6383. break;
  6384. #endif
  6385. default:
  6386. break;
  6387. }
  6388. }
  6389. /*
  6390. * Build sched domains for a given set of cpus and attach the sched domains
  6391. * to the individual cpus
  6392. */
  6393. static int __build_sched_domains(const struct cpumask *cpu_map,
  6394. struct sched_domain_attr *attr)
  6395. {
  6396. enum s_alloc alloc_state = sa_none;
  6397. struct s_data d;
  6398. struct sched_domain *sd;
  6399. int i;
  6400. #ifdef CONFIG_NUMA
  6401. d.sd_allnodes = 0;
  6402. #endif
  6403. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6404. if (alloc_state != sa_rootdomain)
  6405. goto error;
  6406. alloc_state = sa_sched_groups;
  6407. /*
  6408. * Set up domains for cpus specified by the cpu_map.
  6409. */
  6410. for_each_cpu(i, cpu_map) {
  6411. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6412. cpu_map);
  6413. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6414. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6415. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6416. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6417. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6418. }
  6419. for_each_cpu(i, cpu_map) {
  6420. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6421. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6422. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6423. }
  6424. /* Set up physical groups */
  6425. for (i = 0; i < nr_node_ids; i++)
  6426. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6427. #ifdef CONFIG_NUMA
  6428. /* Set up node groups */
  6429. if (d.sd_allnodes)
  6430. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6431. for (i = 0; i < nr_node_ids; i++)
  6432. if (build_numa_sched_groups(&d, cpu_map, i))
  6433. goto error;
  6434. #endif
  6435. /* Calculate CPU power for physical packages and nodes */
  6436. #ifdef CONFIG_SCHED_SMT
  6437. for_each_cpu(i, cpu_map) {
  6438. sd = &per_cpu(cpu_domains, i).sd;
  6439. init_sched_groups_power(i, sd);
  6440. }
  6441. #endif
  6442. #ifdef CONFIG_SCHED_MC
  6443. for_each_cpu(i, cpu_map) {
  6444. sd = &per_cpu(core_domains, i).sd;
  6445. init_sched_groups_power(i, sd);
  6446. }
  6447. #endif
  6448. #ifdef CONFIG_SCHED_BOOK
  6449. for_each_cpu(i, cpu_map) {
  6450. sd = &per_cpu(book_domains, i).sd;
  6451. init_sched_groups_power(i, sd);
  6452. }
  6453. #endif
  6454. for_each_cpu(i, cpu_map) {
  6455. sd = &per_cpu(phys_domains, i).sd;
  6456. init_sched_groups_power(i, sd);
  6457. }
  6458. #ifdef CONFIG_NUMA
  6459. for (i = 0; i < nr_node_ids; i++)
  6460. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6461. if (d.sd_allnodes) {
  6462. struct sched_group *sg;
  6463. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6464. d.tmpmask);
  6465. init_numa_sched_groups_power(sg);
  6466. }
  6467. #endif
  6468. /* Attach the domains */
  6469. for_each_cpu(i, cpu_map) {
  6470. #ifdef CONFIG_SCHED_SMT
  6471. sd = &per_cpu(cpu_domains, i).sd;
  6472. #elif defined(CONFIG_SCHED_MC)
  6473. sd = &per_cpu(core_domains, i).sd;
  6474. #elif defined(CONFIG_SCHED_BOOK)
  6475. sd = &per_cpu(book_domains, i).sd;
  6476. #else
  6477. sd = &per_cpu(phys_domains, i).sd;
  6478. #endif
  6479. cpu_attach_domain(sd, d.rd, i);
  6480. }
  6481. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6482. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6483. return 0;
  6484. error:
  6485. __free_domain_allocs(&d, alloc_state, cpu_map);
  6486. return -ENOMEM;
  6487. }
  6488. static int build_sched_domains(const struct cpumask *cpu_map)
  6489. {
  6490. return __build_sched_domains(cpu_map, NULL);
  6491. }
  6492. static cpumask_var_t *doms_cur; /* current sched domains */
  6493. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6494. static struct sched_domain_attr *dattr_cur;
  6495. /* attribues of custom domains in 'doms_cur' */
  6496. /*
  6497. * Special case: If a kmalloc of a doms_cur partition (array of
  6498. * cpumask) fails, then fallback to a single sched domain,
  6499. * as determined by the single cpumask fallback_doms.
  6500. */
  6501. static cpumask_var_t fallback_doms;
  6502. /*
  6503. * arch_update_cpu_topology lets virtualized architectures update the
  6504. * cpu core maps. It is supposed to return 1 if the topology changed
  6505. * or 0 if it stayed the same.
  6506. */
  6507. int __attribute__((weak)) arch_update_cpu_topology(void)
  6508. {
  6509. return 0;
  6510. }
  6511. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6512. {
  6513. int i;
  6514. cpumask_var_t *doms;
  6515. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6516. if (!doms)
  6517. return NULL;
  6518. for (i = 0; i < ndoms; i++) {
  6519. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6520. free_sched_domains(doms, i);
  6521. return NULL;
  6522. }
  6523. }
  6524. return doms;
  6525. }
  6526. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6527. {
  6528. unsigned int i;
  6529. for (i = 0; i < ndoms; i++)
  6530. free_cpumask_var(doms[i]);
  6531. kfree(doms);
  6532. }
  6533. /*
  6534. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6535. * For now this just excludes isolated cpus, but could be used to
  6536. * exclude other special cases in the future.
  6537. */
  6538. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6539. {
  6540. int err;
  6541. arch_update_cpu_topology();
  6542. ndoms_cur = 1;
  6543. doms_cur = alloc_sched_domains(ndoms_cur);
  6544. if (!doms_cur)
  6545. doms_cur = &fallback_doms;
  6546. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6547. dattr_cur = NULL;
  6548. err = build_sched_domains(doms_cur[0]);
  6549. register_sched_domain_sysctl();
  6550. return err;
  6551. }
  6552. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6553. struct cpumask *tmpmask)
  6554. {
  6555. free_sched_groups(cpu_map, tmpmask);
  6556. }
  6557. /*
  6558. * Detach sched domains from a group of cpus specified in cpu_map
  6559. * These cpus will now be attached to the NULL domain
  6560. */
  6561. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6562. {
  6563. /* Save because hotplug lock held. */
  6564. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6565. int i;
  6566. for_each_cpu(i, cpu_map)
  6567. cpu_attach_domain(NULL, &def_root_domain, i);
  6568. synchronize_sched();
  6569. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6570. }
  6571. /* handle null as "default" */
  6572. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6573. struct sched_domain_attr *new, int idx_new)
  6574. {
  6575. struct sched_domain_attr tmp;
  6576. /* fast path */
  6577. if (!new && !cur)
  6578. return 1;
  6579. tmp = SD_ATTR_INIT;
  6580. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6581. new ? (new + idx_new) : &tmp,
  6582. sizeof(struct sched_domain_attr));
  6583. }
  6584. /*
  6585. * Partition sched domains as specified by the 'ndoms_new'
  6586. * cpumasks in the array doms_new[] of cpumasks. This compares
  6587. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6588. * It destroys each deleted domain and builds each new domain.
  6589. *
  6590. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6591. * The masks don't intersect (don't overlap.) We should setup one
  6592. * sched domain for each mask. CPUs not in any of the cpumasks will
  6593. * not be load balanced. If the same cpumask appears both in the
  6594. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6595. * it as it is.
  6596. *
  6597. * The passed in 'doms_new' should be allocated using
  6598. * alloc_sched_domains. This routine takes ownership of it and will
  6599. * free_sched_domains it when done with it. If the caller failed the
  6600. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6601. * and partition_sched_domains() will fallback to the single partition
  6602. * 'fallback_doms', it also forces the domains to be rebuilt.
  6603. *
  6604. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6605. * ndoms_new == 0 is a special case for destroying existing domains,
  6606. * and it will not create the default domain.
  6607. *
  6608. * Call with hotplug lock held
  6609. */
  6610. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6611. struct sched_domain_attr *dattr_new)
  6612. {
  6613. int i, j, n;
  6614. int new_topology;
  6615. mutex_lock(&sched_domains_mutex);
  6616. /* always unregister in case we don't destroy any domains */
  6617. unregister_sched_domain_sysctl();
  6618. /* Let architecture update cpu core mappings. */
  6619. new_topology = arch_update_cpu_topology();
  6620. n = doms_new ? ndoms_new : 0;
  6621. /* Destroy deleted domains */
  6622. for (i = 0; i < ndoms_cur; i++) {
  6623. for (j = 0; j < n && !new_topology; j++) {
  6624. if (cpumask_equal(doms_cur[i], doms_new[j])
  6625. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6626. goto match1;
  6627. }
  6628. /* no match - a current sched domain not in new doms_new[] */
  6629. detach_destroy_domains(doms_cur[i]);
  6630. match1:
  6631. ;
  6632. }
  6633. if (doms_new == NULL) {
  6634. ndoms_cur = 0;
  6635. doms_new = &fallback_doms;
  6636. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6637. WARN_ON_ONCE(dattr_new);
  6638. }
  6639. /* Build new domains */
  6640. for (i = 0; i < ndoms_new; i++) {
  6641. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6642. if (cpumask_equal(doms_new[i], doms_cur[j])
  6643. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6644. goto match2;
  6645. }
  6646. /* no match - add a new doms_new */
  6647. __build_sched_domains(doms_new[i],
  6648. dattr_new ? dattr_new + i : NULL);
  6649. match2:
  6650. ;
  6651. }
  6652. /* Remember the new sched domains */
  6653. if (doms_cur != &fallback_doms)
  6654. free_sched_domains(doms_cur, ndoms_cur);
  6655. kfree(dattr_cur); /* kfree(NULL) is safe */
  6656. doms_cur = doms_new;
  6657. dattr_cur = dattr_new;
  6658. ndoms_cur = ndoms_new;
  6659. register_sched_domain_sysctl();
  6660. mutex_unlock(&sched_domains_mutex);
  6661. }
  6662. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6663. static void arch_reinit_sched_domains(void)
  6664. {
  6665. get_online_cpus();
  6666. /* Destroy domains first to force the rebuild */
  6667. partition_sched_domains(0, NULL, NULL);
  6668. rebuild_sched_domains();
  6669. put_online_cpus();
  6670. }
  6671. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6672. {
  6673. unsigned int level = 0;
  6674. if (sscanf(buf, "%u", &level) != 1)
  6675. return -EINVAL;
  6676. /*
  6677. * level is always be positive so don't check for
  6678. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6679. * What happens on 0 or 1 byte write,
  6680. * need to check for count as well?
  6681. */
  6682. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6683. return -EINVAL;
  6684. if (smt)
  6685. sched_smt_power_savings = level;
  6686. else
  6687. sched_mc_power_savings = level;
  6688. arch_reinit_sched_domains();
  6689. return count;
  6690. }
  6691. #ifdef CONFIG_SCHED_MC
  6692. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6693. struct sysdev_class_attribute *attr,
  6694. char *page)
  6695. {
  6696. return sprintf(page, "%u\n", sched_mc_power_savings);
  6697. }
  6698. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6699. struct sysdev_class_attribute *attr,
  6700. const char *buf, size_t count)
  6701. {
  6702. return sched_power_savings_store(buf, count, 0);
  6703. }
  6704. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6705. sched_mc_power_savings_show,
  6706. sched_mc_power_savings_store);
  6707. #endif
  6708. #ifdef CONFIG_SCHED_SMT
  6709. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6710. struct sysdev_class_attribute *attr,
  6711. char *page)
  6712. {
  6713. return sprintf(page, "%u\n", sched_smt_power_savings);
  6714. }
  6715. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6716. struct sysdev_class_attribute *attr,
  6717. const char *buf, size_t count)
  6718. {
  6719. return sched_power_savings_store(buf, count, 1);
  6720. }
  6721. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6722. sched_smt_power_savings_show,
  6723. sched_smt_power_savings_store);
  6724. #endif
  6725. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6726. {
  6727. int err = 0;
  6728. #ifdef CONFIG_SCHED_SMT
  6729. if (smt_capable())
  6730. err = sysfs_create_file(&cls->kset.kobj,
  6731. &attr_sched_smt_power_savings.attr);
  6732. #endif
  6733. #ifdef CONFIG_SCHED_MC
  6734. if (!err && mc_capable())
  6735. err = sysfs_create_file(&cls->kset.kobj,
  6736. &attr_sched_mc_power_savings.attr);
  6737. #endif
  6738. return err;
  6739. }
  6740. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6741. /*
  6742. * Update cpusets according to cpu_active mask. If cpusets are
  6743. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6744. * around partition_sched_domains().
  6745. */
  6746. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6747. void *hcpu)
  6748. {
  6749. switch (action & ~CPU_TASKS_FROZEN) {
  6750. case CPU_ONLINE:
  6751. case CPU_DOWN_FAILED:
  6752. cpuset_update_active_cpus();
  6753. return NOTIFY_OK;
  6754. default:
  6755. return NOTIFY_DONE;
  6756. }
  6757. }
  6758. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6759. void *hcpu)
  6760. {
  6761. switch (action & ~CPU_TASKS_FROZEN) {
  6762. case CPU_DOWN_PREPARE:
  6763. cpuset_update_active_cpus();
  6764. return NOTIFY_OK;
  6765. default:
  6766. return NOTIFY_DONE;
  6767. }
  6768. }
  6769. static int update_runtime(struct notifier_block *nfb,
  6770. unsigned long action, void *hcpu)
  6771. {
  6772. int cpu = (int)(long)hcpu;
  6773. switch (action) {
  6774. case CPU_DOWN_PREPARE:
  6775. case CPU_DOWN_PREPARE_FROZEN:
  6776. disable_runtime(cpu_rq(cpu));
  6777. return NOTIFY_OK;
  6778. case CPU_DOWN_FAILED:
  6779. case CPU_DOWN_FAILED_FROZEN:
  6780. case CPU_ONLINE:
  6781. case CPU_ONLINE_FROZEN:
  6782. enable_runtime(cpu_rq(cpu));
  6783. return NOTIFY_OK;
  6784. default:
  6785. return NOTIFY_DONE;
  6786. }
  6787. }
  6788. void __init sched_init_smp(void)
  6789. {
  6790. cpumask_var_t non_isolated_cpus;
  6791. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6792. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6793. #if defined(CONFIG_NUMA)
  6794. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6795. GFP_KERNEL);
  6796. BUG_ON(sched_group_nodes_bycpu == NULL);
  6797. #endif
  6798. get_online_cpus();
  6799. mutex_lock(&sched_domains_mutex);
  6800. arch_init_sched_domains(cpu_active_mask);
  6801. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6802. if (cpumask_empty(non_isolated_cpus))
  6803. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6804. mutex_unlock(&sched_domains_mutex);
  6805. put_online_cpus();
  6806. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6807. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6808. /* RT runtime code needs to handle some hotplug events */
  6809. hotcpu_notifier(update_runtime, 0);
  6810. init_hrtick();
  6811. /* Move init over to a non-isolated CPU */
  6812. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6813. BUG();
  6814. sched_init_granularity();
  6815. free_cpumask_var(non_isolated_cpus);
  6816. init_sched_rt_class();
  6817. }
  6818. #else
  6819. void __init sched_init_smp(void)
  6820. {
  6821. sched_init_granularity();
  6822. }
  6823. #endif /* CONFIG_SMP */
  6824. const_debug unsigned int sysctl_timer_migration = 1;
  6825. int in_sched_functions(unsigned long addr)
  6826. {
  6827. return in_lock_functions(addr) ||
  6828. (addr >= (unsigned long)__sched_text_start
  6829. && addr < (unsigned long)__sched_text_end);
  6830. }
  6831. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6832. {
  6833. cfs_rq->tasks_timeline = RB_ROOT;
  6834. INIT_LIST_HEAD(&cfs_rq->tasks);
  6835. #ifdef CONFIG_FAIR_GROUP_SCHED
  6836. cfs_rq->rq = rq;
  6837. #endif
  6838. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6839. }
  6840. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6841. {
  6842. struct rt_prio_array *array;
  6843. int i;
  6844. array = &rt_rq->active;
  6845. for (i = 0; i < MAX_RT_PRIO; i++) {
  6846. INIT_LIST_HEAD(array->queue + i);
  6847. __clear_bit(i, array->bitmap);
  6848. }
  6849. /* delimiter for bitsearch: */
  6850. __set_bit(MAX_RT_PRIO, array->bitmap);
  6851. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6852. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6853. #ifdef CONFIG_SMP
  6854. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6855. #endif
  6856. #endif
  6857. #ifdef CONFIG_SMP
  6858. rt_rq->rt_nr_migratory = 0;
  6859. rt_rq->overloaded = 0;
  6860. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6861. #endif
  6862. rt_rq->rt_time = 0;
  6863. rt_rq->rt_throttled = 0;
  6864. rt_rq->rt_runtime = 0;
  6865. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6866. #ifdef CONFIG_RT_GROUP_SCHED
  6867. rt_rq->rt_nr_boosted = 0;
  6868. rt_rq->rq = rq;
  6869. #endif
  6870. }
  6871. #ifdef CONFIG_FAIR_GROUP_SCHED
  6872. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6873. struct sched_entity *se, int cpu, int add,
  6874. struct sched_entity *parent)
  6875. {
  6876. struct rq *rq = cpu_rq(cpu);
  6877. tg->cfs_rq[cpu] = cfs_rq;
  6878. init_cfs_rq(cfs_rq, rq);
  6879. cfs_rq->tg = tg;
  6880. if (add)
  6881. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6882. tg->se[cpu] = se;
  6883. /* se could be NULL for init_task_group */
  6884. if (!se)
  6885. return;
  6886. if (!parent)
  6887. se->cfs_rq = &rq->cfs;
  6888. else
  6889. se->cfs_rq = parent->my_q;
  6890. se->my_q = cfs_rq;
  6891. se->load.weight = tg->shares;
  6892. se->load.inv_weight = 0;
  6893. se->parent = parent;
  6894. }
  6895. #endif
  6896. #ifdef CONFIG_RT_GROUP_SCHED
  6897. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6898. struct sched_rt_entity *rt_se, int cpu, int add,
  6899. struct sched_rt_entity *parent)
  6900. {
  6901. struct rq *rq = cpu_rq(cpu);
  6902. tg->rt_rq[cpu] = rt_rq;
  6903. init_rt_rq(rt_rq, rq);
  6904. rt_rq->tg = tg;
  6905. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6906. if (add)
  6907. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6908. tg->rt_se[cpu] = rt_se;
  6909. if (!rt_se)
  6910. return;
  6911. if (!parent)
  6912. rt_se->rt_rq = &rq->rt;
  6913. else
  6914. rt_se->rt_rq = parent->my_q;
  6915. rt_se->my_q = rt_rq;
  6916. rt_se->parent = parent;
  6917. INIT_LIST_HEAD(&rt_se->run_list);
  6918. }
  6919. #endif
  6920. void __init sched_init(void)
  6921. {
  6922. int i, j;
  6923. unsigned long alloc_size = 0, ptr;
  6924. #ifdef CONFIG_FAIR_GROUP_SCHED
  6925. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6926. #endif
  6927. #ifdef CONFIG_RT_GROUP_SCHED
  6928. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6929. #endif
  6930. #ifdef CONFIG_CPUMASK_OFFSTACK
  6931. alloc_size += num_possible_cpus() * cpumask_size();
  6932. #endif
  6933. if (alloc_size) {
  6934. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6935. #ifdef CONFIG_FAIR_GROUP_SCHED
  6936. init_task_group.se = (struct sched_entity **)ptr;
  6937. ptr += nr_cpu_ids * sizeof(void **);
  6938. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6939. ptr += nr_cpu_ids * sizeof(void **);
  6940. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6941. #ifdef CONFIG_RT_GROUP_SCHED
  6942. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6943. ptr += nr_cpu_ids * sizeof(void **);
  6944. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6945. ptr += nr_cpu_ids * sizeof(void **);
  6946. #endif /* CONFIG_RT_GROUP_SCHED */
  6947. #ifdef CONFIG_CPUMASK_OFFSTACK
  6948. for_each_possible_cpu(i) {
  6949. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6950. ptr += cpumask_size();
  6951. }
  6952. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6953. }
  6954. #ifdef CONFIG_SMP
  6955. init_defrootdomain();
  6956. #endif
  6957. init_rt_bandwidth(&def_rt_bandwidth,
  6958. global_rt_period(), global_rt_runtime());
  6959. #ifdef CONFIG_RT_GROUP_SCHED
  6960. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6961. global_rt_period(), global_rt_runtime());
  6962. #endif /* CONFIG_RT_GROUP_SCHED */
  6963. #ifdef CONFIG_CGROUP_SCHED
  6964. list_add(&init_task_group.list, &task_groups);
  6965. INIT_LIST_HEAD(&init_task_group.children);
  6966. #endif /* CONFIG_CGROUP_SCHED */
  6967. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6968. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6969. __alignof__(unsigned long));
  6970. #endif
  6971. for_each_possible_cpu(i) {
  6972. struct rq *rq;
  6973. rq = cpu_rq(i);
  6974. raw_spin_lock_init(&rq->lock);
  6975. rq->nr_running = 0;
  6976. rq->calc_load_active = 0;
  6977. rq->calc_load_update = jiffies + LOAD_FREQ;
  6978. init_cfs_rq(&rq->cfs, rq);
  6979. init_rt_rq(&rq->rt, rq);
  6980. #ifdef CONFIG_FAIR_GROUP_SCHED
  6981. init_task_group.shares = init_task_group_load;
  6982. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6983. #ifdef CONFIG_CGROUP_SCHED
  6984. /*
  6985. * How much cpu bandwidth does init_task_group get?
  6986. *
  6987. * In case of task-groups formed thr' the cgroup filesystem, it
  6988. * gets 100% of the cpu resources in the system. This overall
  6989. * system cpu resource is divided among the tasks of
  6990. * init_task_group and its child task-groups in a fair manner,
  6991. * based on each entity's (task or task-group's) weight
  6992. * (se->load.weight).
  6993. *
  6994. * In other words, if init_task_group has 10 tasks of weight
  6995. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6996. * then A0's share of the cpu resource is:
  6997. *
  6998. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6999. *
  7000. * We achieve this by letting init_task_group's tasks sit
  7001. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7002. */
  7003. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7004. #endif
  7005. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7006. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7007. #ifdef CONFIG_RT_GROUP_SCHED
  7008. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7009. #ifdef CONFIG_CGROUP_SCHED
  7010. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7011. #endif
  7012. #endif
  7013. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7014. rq->cpu_load[j] = 0;
  7015. rq->last_load_update_tick = jiffies;
  7016. #ifdef CONFIG_SMP
  7017. rq->sd = NULL;
  7018. rq->rd = NULL;
  7019. rq->cpu_power = SCHED_LOAD_SCALE;
  7020. rq->post_schedule = 0;
  7021. rq->active_balance = 0;
  7022. rq->next_balance = jiffies;
  7023. rq->push_cpu = 0;
  7024. rq->cpu = i;
  7025. rq->online = 0;
  7026. rq->idle_stamp = 0;
  7027. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7028. rq_attach_root(rq, &def_root_domain);
  7029. #ifdef CONFIG_NO_HZ
  7030. rq->nohz_balance_kick = 0;
  7031. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7032. #endif
  7033. #endif
  7034. init_rq_hrtick(rq);
  7035. atomic_set(&rq->nr_iowait, 0);
  7036. }
  7037. set_load_weight(&init_task);
  7038. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7039. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7040. #endif
  7041. #ifdef CONFIG_SMP
  7042. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7043. #endif
  7044. #ifdef CONFIG_RT_MUTEXES
  7045. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7046. #endif
  7047. /*
  7048. * The boot idle thread does lazy MMU switching as well:
  7049. */
  7050. atomic_inc(&init_mm.mm_count);
  7051. enter_lazy_tlb(&init_mm, current);
  7052. /*
  7053. * Make us the idle thread. Technically, schedule() should not be
  7054. * called from this thread, however somewhere below it might be,
  7055. * but because we are the idle thread, we just pick up running again
  7056. * when this runqueue becomes "idle".
  7057. */
  7058. init_idle(current, smp_processor_id());
  7059. calc_load_update = jiffies + LOAD_FREQ;
  7060. /*
  7061. * During early bootup we pretend to be a normal task:
  7062. */
  7063. current->sched_class = &fair_sched_class;
  7064. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7065. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7066. #ifdef CONFIG_SMP
  7067. #ifdef CONFIG_NO_HZ
  7068. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7069. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7070. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7071. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7072. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7073. #endif
  7074. /* May be allocated at isolcpus cmdline parse time */
  7075. if (cpu_isolated_map == NULL)
  7076. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7077. #endif /* SMP */
  7078. scheduler_running = 1;
  7079. }
  7080. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7081. static inline int preempt_count_equals(int preempt_offset)
  7082. {
  7083. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7084. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  7085. }
  7086. void __might_sleep(const char *file, int line, int preempt_offset)
  7087. {
  7088. #ifdef in_atomic
  7089. static unsigned long prev_jiffy; /* ratelimiting */
  7090. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7091. system_state != SYSTEM_RUNNING || oops_in_progress)
  7092. return;
  7093. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7094. return;
  7095. prev_jiffy = jiffies;
  7096. printk(KERN_ERR
  7097. "BUG: sleeping function called from invalid context at %s:%d\n",
  7098. file, line);
  7099. printk(KERN_ERR
  7100. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7101. in_atomic(), irqs_disabled(),
  7102. current->pid, current->comm);
  7103. debug_show_held_locks(current);
  7104. if (irqs_disabled())
  7105. print_irqtrace_events(current);
  7106. dump_stack();
  7107. #endif
  7108. }
  7109. EXPORT_SYMBOL(__might_sleep);
  7110. #endif
  7111. #ifdef CONFIG_MAGIC_SYSRQ
  7112. static void normalize_task(struct rq *rq, struct task_struct *p)
  7113. {
  7114. int on_rq;
  7115. on_rq = p->se.on_rq;
  7116. if (on_rq)
  7117. deactivate_task(rq, p, 0);
  7118. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7119. if (on_rq) {
  7120. activate_task(rq, p, 0);
  7121. resched_task(rq->curr);
  7122. }
  7123. }
  7124. void normalize_rt_tasks(void)
  7125. {
  7126. struct task_struct *g, *p;
  7127. unsigned long flags;
  7128. struct rq *rq;
  7129. read_lock_irqsave(&tasklist_lock, flags);
  7130. do_each_thread(g, p) {
  7131. /*
  7132. * Only normalize user tasks:
  7133. */
  7134. if (!p->mm)
  7135. continue;
  7136. p->se.exec_start = 0;
  7137. #ifdef CONFIG_SCHEDSTATS
  7138. p->se.statistics.wait_start = 0;
  7139. p->se.statistics.sleep_start = 0;
  7140. p->se.statistics.block_start = 0;
  7141. #endif
  7142. if (!rt_task(p)) {
  7143. /*
  7144. * Renice negative nice level userspace
  7145. * tasks back to 0:
  7146. */
  7147. if (TASK_NICE(p) < 0 && p->mm)
  7148. set_user_nice(p, 0);
  7149. continue;
  7150. }
  7151. raw_spin_lock(&p->pi_lock);
  7152. rq = __task_rq_lock(p);
  7153. normalize_task(rq, p);
  7154. __task_rq_unlock(rq);
  7155. raw_spin_unlock(&p->pi_lock);
  7156. } while_each_thread(g, p);
  7157. read_unlock_irqrestore(&tasklist_lock, flags);
  7158. }
  7159. #endif /* CONFIG_MAGIC_SYSRQ */
  7160. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7161. /*
  7162. * These functions are only useful for the IA64 MCA handling, or kdb.
  7163. *
  7164. * They can only be called when the whole system has been
  7165. * stopped - every CPU needs to be quiescent, and no scheduling
  7166. * activity can take place. Using them for anything else would
  7167. * be a serious bug, and as a result, they aren't even visible
  7168. * under any other configuration.
  7169. */
  7170. /**
  7171. * curr_task - return the current task for a given cpu.
  7172. * @cpu: the processor in question.
  7173. *
  7174. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7175. */
  7176. struct task_struct *curr_task(int cpu)
  7177. {
  7178. return cpu_curr(cpu);
  7179. }
  7180. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7181. #ifdef CONFIG_IA64
  7182. /**
  7183. * set_curr_task - set the current task for a given cpu.
  7184. * @cpu: the processor in question.
  7185. * @p: the task pointer to set.
  7186. *
  7187. * Description: This function must only be used when non-maskable interrupts
  7188. * are serviced on a separate stack. It allows the architecture to switch the
  7189. * notion of the current task on a cpu in a non-blocking manner. This function
  7190. * must be called with all CPU's synchronized, and interrupts disabled, the
  7191. * and caller must save the original value of the current task (see
  7192. * curr_task() above) and restore that value before reenabling interrupts and
  7193. * re-starting the system.
  7194. *
  7195. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7196. */
  7197. void set_curr_task(int cpu, struct task_struct *p)
  7198. {
  7199. cpu_curr(cpu) = p;
  7200. }
  7201. #endif
  7202. #ifdef CONFIG_FAIR_GROUP_SCHED
  7203. static void free_fair_sched_group(struct task_group *tg)
  7204. {
  7205. int i;
  7206. for_each_possible_cpu(i) {
  7207. if (tg->cfs_rq)
  7208. kfree(tg->cfs_rq[i]);
  7209. if (tg->se)
  7210. kfree(tg->se[i]);
  7211. }
  7212. kfree(tg->cfs_rq);
  7213. kfree(tg->se);
  7214. }
  7215. static
  7216. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7217. {
  7218. struct cfs_rq *cfs_rq;
  7219. struct sched_entity *se;
  7220. struct rq *rq;
  7221. int i;
  7222. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7223. if (!tg->cfs_rq)
  7224. goto err;
  7225. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7226. if (!tg->se)
  7227. goto err;
  7228. tg->shares = NICE_0_LOAD;
  7229. for_each_possible_cpu(i) {
  7230. rq = cpu_rq(i);
  7231. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7232. GFP_KERNEL, cpu_to_node(i));
  7233. if (!cfs_rq)
  7234. goto err;
  7235. se = kzalloc_node(sizeof(struct sched_entity),
  7236. GFP_KERNEL, cpu_to_node(i));
  7237. if (!se)
  7238. goto err_free_rq;
  7239. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7240. }
  7241. return 1;
  7242. err_free_rq:
  7243. kfree(cfs_rq);
  7244. err:
  7245. return 0;
  7246. }
  7247. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7248. {
  7249. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7250. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7251. }
  7252. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7253. {
  7254. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7255. }
  7256. #else /* !CONFG_FAIR_GROUP_SCHED */
  7257. static inline void free_fair_sched_group(struct task_group *tg)
  7258. {
  7259. }
  7260. static inline
  7261. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7262. {
  7263. return 1;
  7264. }
  7265. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7266. {
  7267. }
  7268. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7269. {
  7270. }
  7271. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7272. #ifdef CONFIG_RT_GROUP_SCHED
  7273. static void free_rt_sched_group(struct task_group *tg)
  7274. {
  7275. int i;
  7276. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7277. for_each_possible_cpu(i) {
  7278. if (tg->rt_rq)
  7279. kfree(tg->rt_rq[i]);
  7280. if (tg->rt_se)
  7281. kfree(tg->rt_se[i]);
  7282. }
  7283. kfree(tg->rt_rq);
  7284. kfree(tg->rt_se);
  7285. }
  7286. static
  7287. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7288. {
  7289. struct rt_rq *rt_rq;
  7290. struct sched_rt_entity *rt_se;
  7291. struct rq *rq;
  7292. int i;
  7293. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7294. if (!tg->rt_rq)
  7295. goto err;
  7296. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7297. if (!tg->rt_se)
  7298. goto err;
  7299. init_rt_bandwidth(&tg->rt_bandwidth,
  7300. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7301. for_each_possible_cpu(i) {
  7302. rq = cpu_rq(i);
  7303. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7304. GFP_KERNEL, cpu_to_node(i));
  7305. if (!rt_rq)
  7306. goto err;
  7307. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7308. GFP_KERNEL, cpu_to_node(i));
  7309. if (!rt_se)
  7310. goto err_free_rq;
  7311. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7312. }
  7313. return 1;
  7314. err_free_rq:
  7315. kfree(rt_rq);
  7316. err:
  7317. return 0;
  7318. }
  7319. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7320. {
  7321. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7322. &cpu_rq(cpu)->leaf_rt_rq_list);
  7323. }
  7324. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7325. {
  7326. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7327. }
  7328. #else /* !CONFIG_RT_GROUP_SCHED */
  7329. static inline void free_rt_sched_group(struct task_group *tg)
  7330. {
  7331. }
  7332. static inline
  7333. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7334. {
  7335. return 1;
  7336. }
  7337. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7338. {
  7339. }
  7340. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7341. {
  7342. }
  7343. #endif /* CONFIG_RT_GROUP_SCHED */
  7344. #ifdef CONFIG_CGROUP_SCHED
  7345. static void free_sched_group(struct task_group *tg)
  7346. {
  7347. free_fair_sched_group(tg);
  7348. free_rt_sched_group(tg);
  7349. kfree(tg);
  7350. }
  7351. /* allocate runqueue etc for a new task group */
  7352. struct task_group *sched_create_group(struct task_group *parent)
  7353. {
  7354. struct task_group *tg;
  7355. unsigned long flags;
  7356. int i;
  7357. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7358. if (!tg)
  7359. return ERR_PTR(-ENOMEM);
  7360. if (!alloc_fair_sched_group(tg, parent))
  7361. goto err;
  7362. if (!alloc_rt_sched_group(tg, parent))
  7363. goto err;
  7364. spin_lock_irqsave(&task_group_lock, flags);
  7365. for_each_possible_cpu(i) {
  7366. register_fair_sched_group(tg, i);
  7367. register_rt_sched_group(tg, i);
  7368. }
  7369. list_add_rcu(&tg->list, &task_groups);
  7370. WARN_ON(!parent); /* root should already exist */
  7371. tg->parent = parent;
  7372. INIT_LIST_HEAD(&tg->children);
  7373. list_add_rcu(&tg->siblings, &parent->children);
  7374. spin_unlock_irqrestore(&task_group_lock, flags);
  7375. return tg;
  7376. err:
  7377. free_sched_group(tg);
  7378. return ERR_PTR(-ENOMEM);
  7379. }
  7380. /* rcu callback to free various structures associated with a task group */
  7381. static void free_sched_group_rcu(struct rcu_head *rhp)
  7382. {
  7383. /* now it should be safe to free those cfs_rqs */
  7384. free_sched_group(container_of(rhp, struct task_group, rcu));
  7385. }
  7386. /* Destroy runqueue etc associated with a task group */
  7387. void sched_destroy_group(struct task_group *tg)
  7388. {
  7389. unsigned long flags;
  7390. int i;
  7391. spin_lock_irqsave(&task_group_lock, flags);
  7392. for_each_possible_cpu(i) {
  7393. unregister_fair_sched_group(tg, i);
  7394. unregister_rt_sched_group(tg, i);
  7395. }
  7396. list_del_rcu(&tg->list);
  7397. list_del_rcu(&tg->siblings);
  7398. spin_unlock_irqrestore(&task_group_lock, flags);
  7399. /* wait for possible concurrent references to cfs_rqs complete */
  7400. call_rcu(&tg->rcu, free_sched_group_rcu);
  7401. }
  7402. /* change task's runqueue when it moves between groups.
  7403. * The caller of this function should have put the task in its new group
  7404. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7405. * reflect its new group.
  7406. */
  7407. void sched_move_task(struct task_struct *tsk)
  7408. {
  7409. int on_rq, running;
  7410. unsigned long flags;
  7411. struct rq *rq;
  7412. rq = task_rq_lock(tsk, &flags);
  7413. running = task_current(rq, tsk);
  7414. on_rq = tsk->se.on_rq;
  7415. if (on_rq)
  7416. dequeue_task(rq, tsk, 0);
  7417. if (unlikely(running))
  7418. tsk->sched_class->put_prev_task(rq, tsk);
  7419. #ifdef CONFIG_FAIR_GROUP_SCHED
  7420. if (tsk->sched_class->task_move_group)
  7421. tsk->sched_class->task_move_group(tsk, on_rq);
  7422. else
  7423. #endif
  7424. set_task_rq(tsk, task_cpu(tsk));
  7425. if (unlikely(running))
  7426. tsk->sched_class->set_curr_task(rq);
  7427. if (on_rq)
  7428. enqueue_task(rq, tsk, 0);
  7429. task_rq_unlock(rq, &flags);
  7430. }
  7431. #endif /* CONFIG_CGROUP_SCHED */
  7432. #ifdef CONFIG_FAIR_GROUP_SCHED
  7433. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7434. {
  7435. struct cfs_rq *cfs_rq = se->cfs_rq;
  7436. int on_rq;
  7437. on_rq = se->on_rq;
  7438. if (on_rq)
  7439. dequeue_entity(cfs_rq, se, 0);
  7440. se->load.weight = shares;
  7441. se->load.inv_weight = 0;
  7442. if (on_rq)
  7443. enqueue_entity(cfs_rq, se, 0);
  7444. }
  7445. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7446. {
  7447. struct cfs_rq *cfs_rq = se->cfs_rq;
  7448. struct rq *rq = cfs_rq->rq;
  7449. unsigned long flags;
  7450. raw_spin_lock_irqsave(&rq->lock, flags);
  7451. __set_se_shares(se, shares);
  7452. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7453. }
  7454. static DEFINE_MUTEX(shares_mutex);
  7455. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7456. {
  7457. int i;
  7458. unsigned long flags;
  7459. /*
  7460. * We can't change the weight of the root cgroup.
  7461. */
  7462. if (!tg->se[0])
  7463. return -EINVAL;
  7464. if (shares < MIN_SHARES)
  7465. shares = MIN_SHARES;
  7466. else if (shares > MAX_SHARES)
  7467. shares = MAX_SHARES;
  7468. mutex_lock(&shares_mutex);
  7469. if (tg->shares == shares)
  7470. goto done;
  7471. spin_lock_irqsave(&task_group_lock, flags);
  7472. for_each_possible_cpu(i)
  7473. unregister_fair_sched_group(tg, i);
  7474. list_del_rcu(&tg->siblings);
  7475. spin_unlock_irqrestore(&task_group_lock, flags);
  7476. /* wait for any ongoing reference to this group to finish */
  7477. synchronize_sched();
  7478. /*
  7479. * Now we are free to modify the group's share on each cpu
  7480. * w/o tripping rebalance_share or load_balance_fair.
  7481. */
  7482. tg->shares = shares;
  7483. for_each_possible_cpu(i) {
  7484. /*
  7485. * force a rebalance
  7486. */
  7487. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7488. set_se_shares(tg->se[i], shares);
  7489. }
  7490. /*
  7491. * Enable load balance activity on this group, by inserting it back on
  7492. * each cpu's rq->leaf_cfs_rq_list.
  7493. */
  7494. spin_lock_irqsave(&task_group_lock, flags);
  7495. for_each_possible_cpu(i)
  7496. register_fair_sched_group(tg, i);
  7497. list_add_rcu(&tg->siblings, &tg->parent->children);
  7498. spin_unlock_irqrestore(&task_group_lock, flags);
  7499. done:
  7500. mutex_unlock(&shares_mutex);
  7501. return 0;
  7502. }
  7503. unsigned long sched_group_shares(struct task_group *tg)
  7504. {
  7505. return tg->shares;
  7506. }
  7507. #endif
  7508. #ifdef CONFIG_RT_GROUP_SCHED
  7509. /*
  7510. * Ensure that the real time constraints are schedulable.
  7511. */
  7512. static DEFINE_MUTEX(rt_constraints_mutex);
  7513. static unsigned long to_ratio(u64 period, u64 runtime)
  7514. {
  7515. if (runtime == RUNTIME_INF)
  7516. return 1ULL << 20;
  7517. return div64_u64(runtime << 20, period);
  7518. }
  7519. /* Must be called with tasklist_lock held */
  7520. static inline int tg_has_rt_tasks(struct task_group *tg)
  7521. {
  7522. struct task_struct *g, *p;
  7523. do_each_thread(g, p) {
  7524. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7525. return 1;
  7526. } while_each_thread(g, p);
  7527. return 0;
  7528. }
  7529. struct rt_schedulable_data {
  7530. struct task_group *tg;
  7531. u64 rt_period;
  7532. u64 rt_runtime;
  7533. };
  7534. static int tg_schedulable(struct task_group *tg, void *data)
  7535. {
  7536. struct rt_schedulable_data *d = data;
  7537. struct task_group *child;
  7538. unsigned long total, sum = 0;
  7539. u64 period, runtime;
  7540. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7541. runtime = tg->rt_bandwidth.rt_runtime;
  7542. if (tg == d->tg) {
  7543. period = d->rt_period;
  7544. runtime = d->rt_runtime;
  7545. }
  7546. /*
  7547. * Cannot have more runtime than the period.
  7548. */
  7549. if (runtime > period && runtime != RUNTIME_INF)
  7550. return -EINVAL;
  7551. /*
  7552. * Ensure we don't starve existing RT tasks.
  7553. */
  7554. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7555. return -EBUSY;
  7556. total = to_ratio(period, runtime);
  7557. /*
  7558. * Nobody can have more than the global setting allows.
  7559. */
  7560. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7561. return -EINVAL;
  7562. /*
  7563. * The sum of our children's runtime should not exceed our own.
  7564. */
  7565. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7566. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7567. runtime = child->rt_bandwidth.rt_runtime;
  7568. if (child == d->tg) {
  7569. period = d->rt_period;
  7570. runtime = d->rt_runtime;
  7571. }
  7572. sum += to_ratio(period, runtime);
  7573. }
  7574. if (sum > total)
  7575. return -EINVAL;
  7576. return 0;
  7577. }
  7578. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7579. {
  7580. struct rt_schedulable_data data = {
  7581. .tg = tg,
  7582. .rt_period = period,
  7583. .rt_runtime = runtime,
  7584. };
  7585. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7586. }
  7587. static int tg_set_bandwidth(struct task_group *tg,
  7588. u64 rt_period, u64 rt_runtime)
  7589. {
  7590. int i, err = 0;
  7591. mutex_lock(&rt_constraints_mutex);
  7592. read_lock(&tasklist_lock);
  7593. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7594. if (err)
  7595. goto unlock;
  7596. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7597. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7598. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7599. for_each_possible_cpu(i) {
  7600. struct rt_rq *rt_rq = tg->rt_rq[i];
  7601. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7602. rt_rq->rt_runtime = rt_runtime;
  7603. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7604. }
  7605. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7606. unlock:
  7607. read_unlock(&tasklist_lock);
  7608. mutex_unlock(&rt_constraints_mutex);
  7609. return err;
  7610. }
  7611. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7612. {
  7613. u64 rt_runtime, rt_period;
  7614. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7615. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7616. if (rt_runtime_us < 0)
  7617. rt_runtime = RUNTIME_INF;
  7618. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7619. }
  7620. long sched_group_rt_runtime(struct task_group *tg)
  7621. {
  7622. u64 rt_runtime_us;
  7623. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7624. return -1;
  7625. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7626. do_div(rt_runtime_us, NSEC_PER_USEC);
  7627. return rt_runtime_us;
  7628. }
  7629. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7630. {
  7631. u64 rt_runtime, rt_period;
  7632. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7633. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7634. if (rt_period == 0)
  7635. return -EINVAL;
  7636. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7637. }
  7638. long sched_group_rt_period(struct task_group *tg)
  7639. {
  7640. u64 rt_period_us;
  7641. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7642. do_div(rt_period_us, NSEC_PER_USEC);
  7643. return rt_period_us;
  7644. }
  7645. static int sched_rt_global_constraints(void)
  7646. {
  7647. u64 runtime, period;
  7648. int ret = 0;
  7649. if (sysctl_sched_rt_period <= 0)
  7650. return -EINVAL;
  7651. runtime = global_rt_runtime();
  7652. period = global_rt_period();
  7653. /*
  7654. * Sanity check on the sysctl variables.
  7655. */
  7656. if (runtime > period && runtime != RUNTIME_INF)
  7657. return -EINVAL;
  7658. mutex_lock(&rt_constraints_mutex);
  7659. read_lock(&tasklist_lock);
  7660. ret = __rt_schedulable(NULL, 0, 0);
  7661. read_unlock(&tasklist_lock);
  7662. mutex_unlock(&rt_constraints_mutex);
  7663. return ret;
  7664. }
  7665. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7666. {
  7667. /* Don't accept realtime tasks when there is no way for them to run */
  7668. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7669. return 0;
  7670. return 1;
  7671. }
  7672. #else /* !CONFIG_RT_GROUP_SCHED */
  7673. static int sched_rt_global_constraints(void)
  7674. {
  7675. unsigned long flags;
  7676. int i;
  7677. if (sysctl_sched_rt_period <= 0)
  7678. return -EINVAL;
  7679. /*
  7680. * There's always some RT tasks in the root group
  7681. * -- migration, kstopmachine etc..
  7682. */
  7683. if (sysctl_sched_rt_runtime == 0)
  7684. return -EBUSY;
  7685. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7686. for_each_possible_cpu(i) {
  7687. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7688. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7689. rt_rq->rt_runtime = global_rt_runtime();
  7690. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7691. }
  7692. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7693. return 0;
  7694. }
  7695. #endif /* CONFIG_RT_GROUP_SCHED */
  7696. int sched_rt_handler(struct ctl_table *table, int write,
  7697. void __user *buffer, size_t *lenp,
  7698. loff_t *ppos)
  7699. {
  7700. int ret;
  7701. int old_period, old_runtime;
  7702. static DEFINE_MUTEX(mutex);
  7703. mutex_lock(&mutex);
  7704. old_period = sysctl_sched_rt_period;
  7705. old_runtime = sysctl_sched_rt_runtime;
  7706. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7707. if (!ret && write) {
  7708. ret = sched_rt_global_constraints();
  7709. if (ret) {
  7710. sysctl_sched_rt_period = old_period;
  7711. sysctl_sched_rt_runtime = old_runtime;
  7712. } else {
  7713. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7714. def_rt_bandwidth.rt_period =
  7715. ns_to_ktime(global_rt_period());
  7716. }
  7717. }
  7718. mutex_unlock(&mutex);
  7719. return ret;
  7720. }
  7721. #ifdef CONFIG_CGROUP_SCHED
  7722. /* return corresponding task_group object of a cgroup */
  7723. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7724. {
  7725. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7726. struct task_group, css);
  7727. }
  7728. static struct cgroup_subsys_state *
  7729. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7730. {
  7731. struct task_group *tg, *parent;
  7732. if (!cgrp->parent) {
  7733. /* This is early initialization for the top cgroup */
  7734. return &init_task_group.css;
  7735. }
  7736. parent = cgroup_tg(cgrp->parent);
  7737. tg = sched_create_group(parent);
  7738. if (IS_ERR(tg))
  7739. return ERR_PTR(-ENOMEM);
  7740. return &tg->css;
  7741. }
  7742. static void
  7743. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7744. {
  7745. struct task_group *tg = cgroup_tg(cgrp);
  7746. sched_destroy_group(tg);
  7747. }
  7748. static int
  7749. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7750. {
  7751. #ifdef CONFIG_RT_GROUP_SCHED
  7752. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7753. return -EINVAL;
  7754. #else
  7755. /* We don't support RT-tasks being in separate groups */
  7756. if (tsk->sched_class != &fair_sched_class)
  7757. return -EINVAL;
  7758. #endif
  7759. return 0;
  7760. }
  7761. static int
  7762. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7763. struct task_struct *tsk, bool threadgroup)
  7764. {
  7765. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7766. if (retval)
  7767. return retval;
  7768. if (threadgroup) {
  7769. struct task_struct *c;
  7770. rcu_read_lock();
  7771. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7772. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7773. if (retval) {
  7774. rcu_read_unlock();
  7775. return retval;
  7776. }
  7777. }
  7778. rcu_read_unlock();
  7779. }
  7780. return 0;
  7781. }
  7782. static void
  7783. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7784. struct cgroup *old_cont, struct task_struct *tsk,
  7785. bool threadgroup)
  7786. {
  7787. sched_move_task(tsk);
  7788. if (threadgroup) {
  7789. struct task_struct *c;
  7790. rcu_read_lock();
  7791. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7792. sched_move_task(c);
  7793. }
  7794. rcu_read_unlock();
  7795. }
  7796. }
  7797. #ifdef CONFIG_FAIR_GROUP_SCHED
  7798. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7799. u64 shareval)
  7800. {
  7801. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7802. }
  7803. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7804. {
  7805. struct task_group *tg = cgroup_tg(cgrp);
  7806. return (u64) tg->shares;
  7807. }
  7808. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7809. #ifdef CONFIG_RT_GROUP_SCHED
  7810. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7811. s64 val)
  7812. {
  7813. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7814. }
  7815. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7816. {
  7817. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7818. }
  7819. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7820. u64 rt_period_us)
  7821. {
  7822. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7823. }
  7824. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7825. {
  7826. return sched_group_rt_period(cgroup_tg(cgrp));
  7827. }
  7828. #endif /* CONFIG_RT_GROUP_SCHED */
  7829. static struct cftype cpu_files[] = {
  7830. #ifdef CONFIG_FAIR_GROUP_SCHED
  7831. {
  7832. .name = "shares",
  7833. .read_u64 = cpu_shares_read_u64,
  7834. .write_u64 = cpu_shares_write_u64,
  7835. },
  7836. #endif
  7837. #ifdef CONFIG_RT_GROUP_SCHED
  7838. {
  7839. .name = "rt_runtime_us",
  7840. .read_s64 = cpu_rt_runtime_read,
  7841. .write_s64 = cpu_rt_runtime_write,
  7842. },
  7843. {
  7844. .name = "rt_period_us",
  7845. .read_u64 = cpu_rt_period_read_uint,
  7846. .write_u64 = cpu_rt_period_write_uint,
  7847. },
  7848. #endif
  7849. };
  7850. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7851. {
  7852. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7853. }
  7854. struct cgroup_subsys cpu_cgroup_subsys = {
  7855. .name = "cpu",
  7856. .create = cpu_cgroup_create,
  7857. .destroy = cpu_cgroup_destroy,
  7858. .can_attach = cpu_cgroup_can_attach,
  7859. .attach = cpu_cgroup_attach,
  7860. .populate = cpu_cgroup_populate,
  7861. .subsys_id = cpu_cgroup_subsys_id,
  7862. .early_init = 1,
  7863. };
  7864. #endif /* CONFIG_CGROUP_SCHED */
  7865. #ifdef CONFIG_CGROUP_CPUACCT
  7866. /*
  7867. * CPU accounting code for task groups.
  7868. *
  7869. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7870. * (balbir@in.ibm.com).
  7871. */
  7872. /* track cpu usage of a group of tasks and its child groups */
  7873. struct cpuacct {
  7874. struct cgroup_subsys_state css;
  7875. /* cpuusage holds pointer to a u64-type object on every cpu */
  7876. u64 __percpu *cpuusage;
  7877. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7878. struct cpuacct *parent;
  7879. };
  7880. struct cgroup_subsys cpuacct_subsys;
  7881. /* return cpu accounting group corresponding to this container */
  7882. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7883. {
  7884. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7885. struct cpuacct, css);
  7886. }
  7887. /* return cpu accounting group to which this task belongs */
  7888. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7889. {
  7890. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7891. struct cpuacct, css);
  7892. }
  7893. /* create a new cpu accounting group */
  7894. static struct cgroup_subsys_state *cpuacct_create(
  7895. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7896. {
  7897. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7898. int i;
  7899. if (!ca)
  7900. goto out;
  7901. ca->cpuusage = alloc_percpu(u64);
  7902. if (!ca->cpuusage)
  7903. goto out_free_ca;
  7904. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7905. if (percpu_counter_init(&ca->cpustat[i], 0))
  7906. goto out_free_counters;
  7907. if (cgrp->parent)
  7908. ca->parent = cgroup_ca(cgrp->parent);
  7909. return &ca->css;
  7910. out_free_counters:
  7911. while (--i >= 0)
  7912. percpu_counter_destroy(&ca->cpustat[i]);
  7913. free_percpu(ca->cpuusage);
  7914. out_free_ca:
  7915. kfree(ca);
  7916. out:
  7917. return ERR_PTR(-ENOMEM);
  7918. }
  7919. /* destroy an existing cpu accounting group */
  7920. static void
  7921. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7922. {
  7923. struct cpuacct *ca = cgroup_ca(cgrp);
  7924. int i;
  7925. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7926. percpu_counter_destroy(&ca->cpustat[i]);
  7927. free_percpu(ca->cpuusage);
  7928. kfree(ca);
  7929. }
  7930. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7931. {
  7932. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7933. u64 data;
  7934. #ifndef CONFIG_64BIT
  7935. /*
  7936. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7937. */
  7938. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7939. data = *cpuusage;
  7940. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7941. #else
  7942. data = *cpuusage;
  7943. #endif
  7944. return data;
  7945. }
  7946. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7947. {
  7948. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7949. #ifndef CONFIG_64BIT
  7950. /*
  7951. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7952. */
  7953. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7954. *cpuusage = val;
  7955. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7956. #else
  7957. *cpuusage = val;
  7958. #endif
  7959. }
  7960. /* return total cpu usage (in nanoseconds) of a group */
  7961. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7962. {
  7963. struct cpuacct *ca = cgroup_ca(cgrp);
  7964. u64 totalcpuusage = 0;
  7965. int i;
  7966. for_each_present_cpu(i)
  7967. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7968. return totalcpuusage;
  7969. }
  7970. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7971. u64 reset)
  7972. {
  7973. struct cpuacct *ca = cgroup_ca(cgrp);
  7974. int err = 0;
  7975. int i;
  7976. if (reset) {
  7977. err = -EINVAL;
  7978. goto out;
  7979. }
  7980. for_each_present_cpu(i)
  7981. cpuacct_cpuusage_write(ca, i, 0);
  7982. out:
  7983. return err;
  7984. }
  7985. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7986. struct seq_file *m)
  7987. {
  7988. struct cpuacct *ca = cgroup_ca(cgroup);
  7989. u64 percpu;
  7990. int i;
  7991. for_each_present_cpu(i) {
  7992. percpu = cpuacct_cpuusage_read(ca, i);
  7993. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7994. }
  7995. seq_printf(m, "\n");
  7996. return 0;
  7997. }
  7998. static const char *cpuacct_stat_desc[] = {
  7999. [CPUACCT_STAT_USER] = "user",
  8000. [CPUACCT_STAT_SYSTEM] = "system",
  8001. };
  8002. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8003. struct cgroup_map_cb *cb)
  8004. {
  8005. struct cpuacct *ca = cgroup_ca(cgrp);
  8006. int i;
  8007. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8008. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8009. val = cputime64_to_clock_t(val);
  8010. cb->fill(cb, cpuacct_stat_desc[i], val);
  8011. }
  8012. return 0;
  8013. }
  8014. static struct cftype files[] = {
  8015. {
  8016. .name = "usage",
  8017. .read_u64 = cpuusage_read,
  8018. .write_u64 = cpuusage_write,
  8019. },
  8020. {
  8021. .name = "usage_percpu",
  8022. .read_seq_string = cpuacct_percpu_seq_read,
  8023. },
  8024. {
  8025. .name = "stat",
  8026. .read_map = cpuacct_stats_show,
  8027. },
  8028. };
  8029. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8030. {
  8031. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8032. }
  8033. /*
  8034. * charge this task's execution time to its accounting group.
  8035. *
  8036. * called with rq->lock held.
  8037. */
  8038. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8039. {
  8040. struct cpuacct *ca;
  8041. int cpu;
  8042. if (unlikely(!cpuacct_subsys.active))
  8043. return;
  8044. cpu = task_cpu(tsk);
  8045. rcu_read_lock();
  8046. ca = task_ca(tsk);
  8047. for (; ca; ca = ca->parent) {
  8048. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8049. *cpuusage += cputime;
  8050. }
  8051. rcu_read_unlock();
  8052. }
  8053. /*
  8054. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8055. * in cputime_t units. As a result, cpuacct_update_stats calls
  8056. * percpu_counter_add with values large enough to always overflow the
  8057. * per cpu batch limit causing bad SMP scalability.
  8058. *
  8059. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8060. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8061. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8062. */
  8063. #ifdef CONFIG_SMP
  8064. #define CPUACCT_BATCH \
  8065. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8066. #else
  8067. #define CPUACCT_BATCH 0
  8068. #endif
  8069. /*
  8070. * Charge the system/user time to the task's accounting group.
  8071. */
  8072. static void cpuacct_update_stats(struct task_struct *tsk,
  8073. enum cpuacct_stat_index idx, cputime_t val)
  8074. {
  8075. struct cpuacct *ca;
  8076. int batch = CPUACCT_BATCH;
  8077. if (unlikely(!cpuacct_subsys.active))
  8078. return;
  8079. rcu_read_lock();
  8080. ca = task_ca(tsk);
  8081. do {
  8082. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8083. ca = ca->parent;
  8084. } while (ca);
  8085. rcu_read_unlock();
  8086. }
  8087. struct cgroup_subsys cpuacct_subsys = {
  8088. .name = "cpuacct",
  8089. .create = cpuacct_create,
  8090. .destroy = cpuacct_destroy,
  8091. .populate = cpuacct_populate,
  8092. .subsys_id = cpuacct_subsys_id,
  8093. };
  8094. #endif /* CONFIG_CGROUP_CPUACCT */