elevator.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
  1. /*
  2. * linux/drivers/block/elevator.c
  3. *
  4. * Block device elevator/IO-scheduler.
  5. *
  6. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  7. *
  8. * 30042000 Jens Axboe <axboe@suse.de> :
  9. *
  10. * Split the elevator a bit so that it is possible to choose a different
  11. * one or even write a new "plug in". There are three pieces:
  12. * - elevator_fn, inserts a new request in the queue list
  13. * - elevator_merge_fn, decides whether a new buffer can be merged with
  14. * an existing request
  15. * - elevator_dequeue_fn, called when a request is taken off the active list
  16. *
  17. * 20082000 Dave Jones <davej@suse.de> :
  18. * Removed tests for max-bomb-segments, which was breaking elvtune
  19. * when run without -bN
  20. *
  21. * Jens:
  22. * - Rework again to work with bio instead of buffer_heads
  23. * - loose bi_dev comparisons, partition handling is right now
  24. * - completely modularize elevator setup and teardown
  25. *
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/fs.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/elevator.h>
  31. #include <linux/bio.h>
  32. #include <linux/config.h>
  33. #include <linux/module.h>
  34. #include <linux/slab.h>
  35. #include <linux/init.h>
  36. #include <linux/compiler.h>
  37. #include <asm/uaccess.h>
  38. static DEFINE_SPINLOCK(elv_list_lock);
  39. static LIST_HEAD(elv_list);
  40. /*
  41. * can we safely merge with this request?
  42. */
  43. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  44. {
  45. if (!rq_mergeable(rq))
  46. return 0;
  47. /*
  48. * different data direction or already started, don't merge
  49. */
  50. if (bio_data_dir(bio) != rq_data_dir(rq))
  51. return 0;
  52. /*
  53. * same device and no special stuff set, merge is ok
  54. */
  55. if (rq->rq_disk == bio->bi_bdev->bd_disk &&
  56. !rq->waiting && !rq->special)
  57. return 1;
  58. return 0;
  59. }
  60. EXPORT_SYMBOL(elv_rq_merge_ok);
  61. inline int elv_try_merge(struct request *__rq, struct bio *bio)
  62. {
  63. int ret = ELEVATOR_NO_MERGE;
  64. /*
  65. * we can merge and sequence is ok, check if it's possible
  66. */
  67. if (elv_rq_merge_ok(__rq, bio)) {
  68. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  69. ret = ELEVATOR_BACK_MERGE;
  70. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  71. ret = ELEVATOR_FRONT_MERGE;
  72. }
  73. return ret;
  74. }
  75. EXPORT_SYMBOL(elv_try_merge);
  76. static struct elevator_type *elevator_find(const char *name)
  77. {
  78. struct elevator_type *e = NULL;
  79. struct list_head *entry;
  80. list_for_each(entry, &elv_list) {
  81. struct elevator_type *__e;
  82. __e = list_entry(entry, struct elevator_type, list);
  83. if (!strcmp(__e->elevator_name, name)) {
  84. e = __e;
  85. break;
  86. }
  87. }
  88. return e;
  89. }
  90. static void elevator_put(struct elevator_type *e)
  91. {
  92. module_put(e->elevator_owner);
  93. }
  94. static struct elevator_type *elevator_get(const char *name)
  95. {
  96. struct elevator_type *e;
  97. spin_lock_irq(&elv_list_lock);
  98. e = elevator_find(name);
  99. if (e && !try_module_get(e->elevator_owner))
  100. e = NULL;
  101. spin_unlock_irq(&elv_list_lock);
  102. return e;
  103. }
  104. static int elevator_attach(request_queue_t *q, struct elevator_type *e,
  105. struct elevator_queue *eq)
  106. {
  107. int ret = 0;
  108. memset(eq, 0, sizeof(*eq));
  109. eq->ops = &e->ops;
  110. eq->elevator_type = e;
  111. INIT_LIST_HEAD(&q->queue_head);
  112. q->last_merge = NULL;
  113. q->elevator = eq;
  114. q->end_sector = 0;
  115. q->boundary_rq = NULL;
  116. if (eq->ops->elevator_init_fn)
  117. ret = eq->ops->elevator_init_fn(q, eq);
  118. return ret;
  119. }
  120. static char chosen_elevator[16];
  121. static void elevator_setup_default(void)
  122. {
  123. struct elevator_type *e;
  124. /*
  125. * check if default is set and exists
  126. */
  127. if (chosen_elevator[0] && (e = elevator_get(chosen_elevator))) {
  128. elevator_put(e);
  129. return;
  130. }
  131. #if defined(CONFIG_IOSCHED_AS)
  132. strcpy(chosen_elevator, "anticipatory");
  133. #elif defined(CONFIG_IOSCHED_DEADLINE)
  134. strcpy(chosen_elevator, "deadline");
  135. #elif defined(CONFIG_IOSCHED_CFQ)
  136. strcpy(chosen_elevator, "cfq");
  137. #elif defined(CONFIG_IOSCHED_NOOP)
  138. strcpy(chosen_elevator, "noop");
  139. #else
  140. #error "You must build at least 1 IO scheduler into the kernel"
  141. #endif
  142. }
  143. static int __init elevator_setup(char *str)
  144. {
  145. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  146. return 0;
  147. }
  148. __setup("elevator=", elevator_setup);
  149. int elevator_init(request_queue_t *q, char *name)
  150. {
  151. struct elevator_type *e = NULL;
  152. struct elevator_queue *eq;
  153. int ret = 0;
  154. elevator_setup_default();
  155. if (!name)
  156. name = chosen_elevator;
  157. e = elevator_get(name);
  158. if (!e)
  159. return -EINVAL;
  160. eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL);
  161. if (!eq) {
  162. elevator_put(e->elevator_type);
  163. return -ENOMEM;
  164. }
  165. ret = elevator_attach(q, e, eq);
  166. if (ret) {
  167. kfree(eq);
  168. elevator_put(e->elevator_type);
  169. }
  170. return ret;
  171. }
  172. void elevator_exit(elevator_t *e)
  173. {
  174. if (e->ops->elevator_exit_fn)
  175. e->ops->elevator_exit_fn(e);
  176. elevator_put(e->elevator_type);
  177. e->elevator_type = NULL;
  178. kfree(e);
  179. }
  180. /*
  181. * Insert rq into dispatch queue of q. Queue lock must be held on
  182. * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be
  183. * appended to the dispatch queue. To be used by specific elevators.
  184. */
  185. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  186. {
  187. sector_t boundary;
  188. struct list_head *entry;
  189. if (q->last_merge == rq)
  190. q->last_merge = NULL;
  191. boundary = q->end_sector;
  192. list_for_each_prev(entry, &q->queue_head) {
  193. struct request *pos = list_entry_rq(entry);
  194. if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  195. break;
  196. if (rq->sector >= boundary) {
  197. if (pos->sector < boundary)
  198. continue;
  199. } else {
  200. if (pos->sector >= boundary)
  201. break;
  202. }
  203. if (rq->sector >= pos->sector)
  204. break;
  205. }
  206. list_add(&rq->queuelist, entry);
  207. }
  208. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  209. {
  210. elevator_t *e = q->elevator;
  211. int ret;
  212. if (q->last_merge) {
  213. ret = elv_try_merge(q->last_merge, bio);
  214. if (ret != ELEVATOR_NO_MERGE) {
  215. *req = q->last_merge;
  216. return ret;
  217. }
  218. }
  219. if (e->ops->elevator_merge_fn)
  220. return e->ops->elevator_merge_fn(q, req, bio);
  221. return ELEVATOR_NO_MERGE;
  222. }
  223. void elv_merged_request(request_queue_t *q, struct request *rq)
  224. {
  225. elevator_t *e = q->elevator;
  226. if (e->ops->elevator_merged_fn)
  227. e->ops->elevator_merged_fn(q, rq);
  228. q->last_merge = rq;
  229. }
  230. void elv_merge_requests(request_queue_t *q, struct request *rq,
  231. struct request *next)
  232. {
  233. elevator_t *e = q->elevator;
  234. if (e->ops->elevator_merge_req_fn)
  235. e->ops->elevator_merge_req_fn(q, rq, next);
  236. q->last_merge = rq;
  237. }
  238. void elv_requeue_request(request_queue_t *q, struct request *rq)
  239. {
  240. elevator_t *e = q->elevator;
  241. /*
  242. * it already went through dequeue, we need to decrement the
  243. * in_flight count again
  244. */
  245. if (blk_account_rq(rq)) {
  246. q->in_flight--;
  247. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  248. e->ops->elevator_deactivate_req_fn(q, rq);
  249. }
  250. rq->flags &= ~REQ_STARTED;
  251. /*
  252. * if this is the flush, requeue the original instead and drop the flush
  253. */
  254. if (rq->flags & REQ_BAR_FLUSH) {
  255. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  256. rq = rq->end_io_data;
  257. }
  258. __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
  259. }
  260. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  261. int plug)
  262. {
  263. if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  264. /*
  265. * barriers implicitly indicate back insertion
  266. */
  267. if (where == ELEVATOR_INSERT_SORT)
  268. where = ELEVATOR_INSERT_BACK;
  269. /*
  270. * this request is scheduling boundary, update end_sector
  271. */
  272. if (blk_fs_request(rq)) {
  273. q->end_sector = rq_end_sector(rq);
  274. q->boundary_rq = rq;
  275. }
  276. }
  277. if (plug)
  278. blk_plug_device(q);
  279. rq->q = q;
  280. if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
  281. /*
  282. * if drain is set, store the request "locally". when the drain
  283. * is finished, the requests will be handed ordered to the io
  284. * scheduler
  285. */
  286. list_add_tail(&rq->queuelist, &q->drain_list);
  287. return;
  288. }
  289. switch (where) {
  290. case ELEVATOR_INSERT_FRONT:
  291. rq->flags |= REQ_SOFTBARRIER;
  292. list_add(&rq->queuelist, &q->queue_head);
  293. break;
  294. case ELEVATOR_INSERT_BACK:
  295. rq->flags |= REQ_SOFTBARRIER;
  296. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  297. ;
  298. list_add_tail(&rq->queuelist, &q->queue_head);
  299. /*
  300. * We kick the queue here for the following reasons.
  301. * - The elevator might have returned NULL previously
  302. * to delay requests and returned them now. As the
  303. * queue wasn't empty before this request, ll_rw_blk
  304. * won't run the queue on return, resulting in hang.
  305. * - Usually, back inserted requests won't be merged
  306. * with anything. There's no point in delaying queue
  307. * processing.
  308. */
  309. blk_remove_plug(q);
  310. q->request_fn(q);
  311. break;
  312. case ELEVATOR_INSERT_SORT:
  313. BUG_ON(!blk_fs_request(rq));
  314. rq->flags |= REQ_SORTED;
  315. q->elevator->ops->elevator_add_req_fn(q, rq);
  316. if (q->last_merge == NULL && rq_mergeable(rq))
  317. q->last_merge = rq;
  318. break;
  319. default:
  320. printk(KERN_ERR "%s: bad insertion point %d\n",
  321. __FUNCTION__, where);
  322. BUG();
  323. }
  324. if (blk_queue_plugged(q)) {
  325. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  326. - q->in_flight;
  327. if (nrq >= q->unplug_thresh)
  328. __generic_unplug_device(q);
  329. }
  330. }
  331. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  332. int plug)
  333. {
  334. unsigned long flags;
  335. spin_lock_irqsave(q->queue_lock, flags);
  336. __elv_add_request(q, rq, where, plug);
  337. spin_unlock_irqrestore(q->queue_lock, flags);
  338. }
  339. static inline struct request *__elv_next_request(request_queue_t *q)
  340. {
  341. struct request *rq;
  342. if (unlikely(list_empty(&q->queue_head) &&
  343. !q->elevator->ops->elevator_dispatch_fn(q, 0)))
  344. return NULL;
  345. rq = list_entry_rq(q->queue_head.next);
  346. /*
  347. * if this is a barrier write and the device has to issue a
  348. * flush sequence to support it, check how far we are
  349. */
  350. if (blk_fs_request(rq) && blk_barrier_rq(rq)) {
  351. BUG_ON(q->ordered == QUEUE_ORDERED_NONE);
  352. if (q->ordered == QUEUE_ORDERED_FLUSH &&
  353. !blk_barrier_preflush(rq))
  354. rq = blk_start_pre_flush(q, rq);
  355. }
  356. return rq;
  357. }
  358. struct request *elv_next_request(request_queue_t *q)
  359. {
  360. struct request *rq;
  361. int ret;
  362. while ((rq = __elv_next_request(q)) != NULL) {
  363. if (!(rq->flags & REQ_STARTED)) {
  364. elevator_t *e = q->elevator;
  365. /*
  366. * This is the first time the device driver
  367. * sees this request (possibly after
  368. * requeueing). Notify IO scheduler.
  369. */
  370. if (blk_sorted_rq(rq) &&
  371. e->ops->elevator_activate_req_fn)
  372. e->ops->elevator_activate_req_fn(q, rq);
  373. /*
  374. * just mark as started even if we don't start
  375. * it, a request that has been delayed should
  376. * not be passed by new incoming requests
  377. */
  378. rq->flags |= REQ_STARTED;
  379. }
  380. if (!q->boundary_rq || q->boundary_rq == rq) {
  381. q->end_sector = rq_end_sector(rq);
  382. q->boundary_rq = NULL;
  383. }
  384. if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
  385. break;
  386. ret = q->prep_rq_fn(q, rq);
  387. if (ret == BLKPREP_OK) {
  388. break;
  389. } else if (ret == BLKPREP_DEFER) {
  390. /*
  391. * the request may have been (partially) prepped.
  392. * we need to keep this request in the front to
  393. * avoid resource deadlock. REQ_STARTED will
  394. * prevent other fs requests from passing this one.
  395. */
  396. rq = NULL;
  397. break;
  398. } else if (ret == BLKPREP_KILL) {
  399. int nr_bytes = rq->hard_nr_sectors << 9;
  400. if (!nr_bytes)
  401. nr_bytes = rq->data_len;
  402. blkdev_dequeue_request(rq);
  403. rq->flags |= REQ_QUIET;
  404. end_that_request_chunk(rq, 0, nr_bytes);
  405. end_that_request_last(rq);
  406. } else {
  407. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  408. ret);
  409. break;
  410. }
  411. }
  412. return rq;
  413. }
  414. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  415. {
  416. BUG_ON(list_empty(&rq->queuelist));
  417. list_del_init(&rq->queuelist);
  418. /*
  419. * the time frame between a request being removed from the lists
  420. * and to it is freed is accounted as io that is in progress at
  421. * the driver side.
  422. */
  423. if (blk_account_rq(rq))
  424. q->in_flight++;
  425. }
  426. int elv_queue_empty(request_queue_t *q)
  427. {
  428. elevator_t *e = q->elevator;
  429. if (!list_empty(&q->queue_head))
  430. return 0;
  431. if (e->ops->elevator_queue_empty_fn)
  432. return e->ops->elevator_queue_empty_fn(q);
  433. return 1;
  434. }
  435. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  436. {
  437. struct list_head *next;
  438. elevator_t *e = q->elevator;
  439. if (e->ops->elevator_latter_req_fn)
  440. return e->ops->elevator_latter_req_fn(q, rq);
  441. next = rq->queuelist.next;
  442. if (next != &q->queue_head && next != &rq->queuelist)
  443. return list_entry_rq(next);
  444. return NULL;
  445. }
  446. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  447. {
  448. struct list_head *prev;
  449. elevator_t *e = q->elevator;
  450. if (e->ops->elevator_former_req_fn)
  451. return e->ops->elevator_former_req_fn(q, rq);
  452. prev = rq->queuelist.prev;
  453. if (prev != &q->queue_head && prev != &rq->queuelist)
  454. return list_entry_rq(prev);
  455. return NULL;
  456. }
  457. int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
  458. gfp_t gfp_mask)
  459. {
  460. elevator_t *e = q->elevator;
  461. if (e->ops->elevator_set_req_fn)
  462. return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
  463. rq->elevator_private = NULL;
  464. return 0;
  465. }
  466. void elv_put_request(request_queue_t *q, struct request *rq)
  467. {
  468. elevator_t *e = q->elevator;
  469. if (e->ops->elevator_put_req_fn)
  470. e->ops->elevator_put_req_fn(q, rq);
  471. }
  472. int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
  473. {
  474. elevator_t *e = q->elevator;
  475. if (e->ops->elevator_may_queue_fn)
  476. return e->ops->elevator_may_queue_fn(q, rw, bio);
  477. return ELV_MQUEUE_MAY;
  478. }
  479. void elv_completed_request(request_queue_t *q, struct request *rq)
  480. {
  481. elevator_t *e = q->elevator;
  482. /*
  483. * request is released from the driver, io must be done
  484. */
  485. if (blk_account_rq(rq)) {
  486. q->in_flight--;
  487. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  488. e->ops->elevator_completed_req_fn(q, rq);
  489. }
  490. }
  491. int elv_register_queue(struct request_queue *q)
  492. {
  493. elevator_t *e = q->elevator;
  494. e->kobj.parent = kobject_get(&q->kobj);
  495. if (!e->kobj.parent)
  496. return -EBUSY;
  497. snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  498. e->kobj.ktype = e->elevator_type->elevator_ktype;
  499. return kobject_register(&e->kobj);
  500. }
  501. void elv_unregister_queue(struct request_queue *q)
  502. {
  503. if (q) {
  504. elevator_t *e = q->elevator;
  505. kobject_unregister(&e->kobj);
  506. kobject_put(&q->kobj);
  507. }
  508. }
  509. int elv_register(struct elevator_type *e)
  510. {
  511. spin_lock_irq(&elv_list_lock);
  512. if (elevator_find(e->elevator_name))
  513. BUG();
  514. list_add_tail(&e->list, &elv_list);
  515. spin_unlock_irq(&elv_list_lock);
  516. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  517. if (!strcmp(e->elevator_name, chosen_elevator))
  518. printk(" (default)");
  519. printk("\n");
  520. return 0;
  521. }
  522. EXPORT_SYMBOL_GPL(elv_register);
  523. void elv_unregister(struct elevator_type *e)
  524. {
  525. spin_lock_irq(&elv_list_lock);
  526. list_del_init(&e->list);
  527. spin_unlock_irq(&elv_list_lock);
  528. }
  529. EXPORT_SYMBOL_GPL(elv_unregister);
  530. /*
  531. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  532. * we don't free the old io scheduler, before we have allocated what we
  533. * need for the new one. this way we have a chance of going back to the old
  534. * one, if the new one fails init for some reason. we also do an intermediate
  535. * switch to noop to ensure safety with stack-allocated requests, since they
  536. * don't originate from the block layer allocator. noop is safe here, because
  537. * it never needs to touch the elevator itself for completion events. DRAIN
  538. * flags will make sure we don't touch it for additions either.
  539. */
  540. static void elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  541. {
  542. elevator_t *e = kmalloc(sizeof(elevator_t), GFP_KERNEL);
  543. struct elevator_type *noop_elevator = NULL;
  544. elevator_t *old_elevator;
  545. if (!e)
  546. goto error;
  547. /*
  548. * first step, drain requests from the block freelist
  549. */
  550. blk_wait_queue_drained(q, 0);
  551. /*
  552. * unregister old elevator data
  553. */
  554. elv_unregister_queue(q);
  555. old_elevator = q->elevator;
  556. /*
  557. * next step, switch to noop since it uses no private rq structures
  558. * and doesn't allocate any memory for anything. then wait for any
  559. * non-fs requests in-flight
  560. */
  561. noop_elevator = elevator_get("noop");
  562. spin_lock_irq(q->queue_lock);
  563. elevator_attach(q, noop_elevator, e);
  564. spin_unlock_irq(q->queue_lock);
  565. blk_wait_queue_drained(q, 1);
  566. /*
  567. * attach and start new elevator
  568. */
  569. if (elevator_attach(q, new_e, e))
  570. goto fail;
  571. if (elv_register_queue(q))
  572. goto fail_register;
  573. /*
  574. * finally exit old elevator and start queue again
  575. */
  576. elevator_exit(old_elevator);
  577. blk_finish_queue_drain(q);
  578. elevator_put(noop_elevator);
  579. return;
  580. fail_register:
  581. /*
  582. * switch failed, exit the new io scheduler and reattach the old
  583. * one again (along with re-adding the sysfs dir)
  584. */
  585. elevator_exit(e);
  586. fail:
  587. q->elevator = old_elevator;
  588. elv_register_queue(q);
  589. blk_finish_queue_drain(q);
  590. error:
  591. if (noop_elevator)
  592. elevator_put(noop_elevator);
  593. elevator_put(new_e);
  594. printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name);
  595. }
  596. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  597. {
  598. char elevator_name[ELV_NAME_MAX];
  599. struct elevator_type *e;
  600. memset(elevator_name, 0, sizeof(elevator_name));
  601. strncpy(elevator_name, name, sizeof(elevator_name));
  602. if (elevator_name[strlen(elevator_name) - 1] == '\n')
  603. elevator_name[strlen(elevator_name) - 1] = '\0';
  604. e = elevator_get(elevator_name);
  605. if (!e) {
  606. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  607. return -EINVAL;
  608. }
  609. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name))
  610. return count;
  611. elevator_switch(q, e);
  612. return count;
  613. }
  614. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  615. {
  616. elevator_t *e = q->elevator;
  617. struct elevator_type *elv = e->elevator_type;
  618. struct list_head *entry;
  619. int len = 0;
  620. spin_lock_irq(q->queue_lock);
  621. list_for_each(entry, &elv_list) {
  622. struct elevator_type *__e;
  623. __e = list_entry(entry, struct elevator_type, list);
  624. if (!strcmp(elv->elevator_name, __e->elevator_name))
  625. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  626. else
  627. len += sprintf(name+len, "%s ", __e->elevator_name);
  628. }
  629. spin_unlock_irq(q->queue_lock);
  630. len += sprintf(len+name, "\n");
  631. return len;
  632. }
  633. EXPORT_SYMBOL(elv_dispatch_sort);
  634. EXPORT_SYMBOL(elv_add_request);
  635. EXPORT_SYMBOL(__elv_add_request);
  636. EXPORT_SYMBOL(elv_requeue_request);
  637. EXPORT_SYMBOL(elv_next_request);
  638. EXPORT_SYMBOL(elv_dequeue_request);
  639. EXPORT_SYMBOL(elv_queue_empty);
  640. EXPORT_SYMBOL(elv_completed_request);
  641. EXPORT_SYMBOL(elevator_exit);
  642. EXPORT_SYMBOL(elevator_init);