speakers.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832
  1. /*
  2. * OXFW970-based speakers driver
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. * Licensed under the terms of the GNU General Public License, version 2.
  6. */
  7. #include <linux/device.h>
  8. #include <linux/firewire.h>
  9. #include <linux/firewire-constants.h>
  10. #include <linux/module.h>
  11. #include <linux/mod_devicetable.h>
  12. #include <linux/mutex.h>
  13. #include <linux/slab.h>
  14. #include <sound/control.h>
  15. #include <sound/core.h>
  16. #include <sound/initval.h>
  17. #include <sound/pcm.h>
  18. #include <sound/pcm_params.h>
  19. #include "cmp.h"
  20. #include "fcp.h"
  21. #include "amdtp.h"
  22. #include "lib.h"
  23. #define OXFORD_FIRMWARE_ID_ADDRESS (CSR_REGISTER_BASE + 0x50000)
  24. /* 0x970?vvvv or 0x971?vvvv, where vvvv = firmware version */
  25. #define OXFORD_HARDWARE_ID_ADDRESS (CSR_REGISTER_BASE + 0x90020)
  26. #define OXFORD_HARDWARE_ID_OXFW970 0x39443841
  27. #define OXFORD_HARDWARE_ID_OXFW971 0x39373100
  28. #define VENDOR_GRIFFIN 0x001292
  29. #define VENDOR_LACIE 0x00d04b
  30. #define SPECIFIER_1394TA 0x00a02d
  31. #define VERSION_AVC 0x010001
  32. struct device_info {
  33. const char *driver_name;
  34. const char *short_name;
  35. const char *long_name;
  36. int (*pcm_constraints)(struct snd_pcm_runtime *runtime);
  37. unsigned int mixer_channels;
  38. u8 mute_fb_id;
  39. u8 volume_fb_id;
  40. };
  41. struct fwspk {
  42. struct snd_card *card;
  43. struct fw_unit *unit;
  44. const struct device_info *device_info;
  45. struct mutex mutex;
  46. struct cmp_connection connection;
  47. struct amdtp_out_stream stream;
  48. bool stream_running;
  49. bool mute;
  50. s16 volume[6];
  51. s16 volume_min;
  52. s16 volume_max;
  53. };
  54. MODULE_DESCRIPTION("FireWire speakers driver");
  55. MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
  56. MODULE_LICENSE("GPL v2");
  57. static int firewave_rate_constraint(struct snd_pcm_hw_params *params,
  58. struct snd_pcm_hw_rule *rule)
  59. {
  60. static unsigned int stereo_rates[] = { 48000, 96000 };
  61. struct snd_interval *channels =
  62. hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
  63. struct snd_interval *rate =
  64. hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
  65. /* two channels work only at 48/96 kHz */
  66. if (snd_interval_max(channels) < 6)
  67. return snd_interval_list(rate, 2, stereo_rates, 0);
  68. return 0;
  69. }
  70. static int firewave_channels_constraint(struct snd_pcm_hw_params *params,
  71. struct snd_pcm_hw_rule *rule)
  72. {
  73. static const struct snd_interval all_channels = { .min = 6, .max = 6 };
  74. struct snd_interval *rate =
  75. hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
  76. struct snd_interval *channels =
  77. hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
  78. /* 32/44.1 kHz work only with all six channels */
  79. if (snd_interval_max(rate) < 48000)
  80. return snd_interval_refine(channels, &all_channels);
  81. return 0;
  82. }
  83. static int firewave_constraints(struct snd_pcm_runtime *runtime)
  84. {
  85. static unsigned int channels_list[] = { 2, 6 };
  86. static struct snd_pcm_hw_constraint_list channels_list_constraint = {
  87. .count = 2,
  88. .list = channels_list,
  89. };
  90. int err;
  91. runtime->hw.rates = SNDRV_PCM_RATE_32000 |
  92. SNDRV_PCM_RATE_44100 |
  93. SNDRV_PCM_RATE_48000 |
  94. SNDRV_PCM_RATE_96000;
  95. runtime->hw.channels_max = 6;
  96. err = snd_pcm_hw_constraint_list(runtime, 0,
  97. SNDRV_PCM_HW_PARAM_CHANNELS,
  98. &channels_list_constraint);
  99. if (err < 0)
  100. return err;
  101. err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
  102. firewave_rate_constraint, NULL,
  103. SNDRV_PCM_HW_PARAM_CHANNELS, -1);
  104. if (err < 0)
  105. return err;
  106. err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
  107. firewave_channels_constraint, NULL,
  108. SNDRV_PCM_HW_PARAM_RATE, -1);
  109. if (err < 0)
  110. return err;
  111. return 0;
  112. }
  113. static int lacie_speakers_constraints(struct snd_pcm_runtime *runtime)
  114. {
  115. runtime->hw.rates = SNDRV_PCM_RATE_32000 |
  116. SNDRV_PCM_RATE_44100 |
  117. SNDRV_PCM_RATE_48000 |
  118. SNDRV_PCM_RATE_88200 |
  119. SNDRV_PCM_RATE_96000;
  120. return 0;
  121. }
  122. static int fwspk_open(struct snd_pcm_substream *substream)
  123. {
  124. static const struct snd_pcm_hardware hardware = {
  125. .info = SNDRV_PCM_INFO_MMAP |
  126. SNDRV_PCM_INFO_MMAP_VALID |
  127. SNDRV_PCM_INFO_BATCH |
  128. SNDRV_PCM_INFO_INTERLEAVED |
  129. SNDRV_PCM_INFO_BLOCK_TRANSFER,
  130. .formats = AMDTP_OUT_PCM_FORMAT_BITS,
  131. .channels_min = 2,
  132. .channels_max = 2,
  133. .buffer_bytes_max = 4 * 1024 * 1024,
  134. .period_bytes_min = 1,
  135. .period_bytes_max = UINT_MAX,
  136. .periods_min = 1,
  137. .periods_max = UINT_MAX,
  138. };
  139. struct fwspk *fwspk = substream->private_data;
  140. struct snd_pcm_runtime *runtime = substream->runtime;
  141. int err;
  142. runtime->hw = hardware;
  143. err = fwspk->device_info->pcm_constraints(runtime);
  144. if (err < 0)
  145. return err;
  146. err = snd_pcm_limit_hw_rates(runtime);
  147. if (err < 0)
  148. return err;
  149. err = snd_pcm_hw_constraint_minmax(runtime,
  150. SNDRV_PCM_HW_PARAM_PERIOD_TIME,
  151. 5000, UINT_MAX);
  152. if (err < 0)
  153. return err;
  154. err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
  155. if (err < 0)
  156. return err;
  157. return 0;
  158. }
  159. static int fwspk_close(struct snd_pcm_substream *substream)
  160. {
  161. return 0;
  162. }
  163. static void fwspk_stop_stream(struct fwspk *fwspk)
  164. {
  165. if (fwspk->stream_running) {
  166. amdtp_out_stream_stop(&fwspk->stream);
  167. cmp_connection_break(&fwspk->connection);
  168. fwspk->stream_running = false;
  169. }
  170. }
  171. static int fwspk_set_rate(struct fwspk *fwspk, unsigned int sfc)
  172. {
  173. u8 *buf;
  174. int err;
  175. buf = kmalloc(8, GFP_KERNEL);
  176. if (!buf)
  177. return -ENOMEM;
  178. buf[0] = 0x00; /* AV/C, CONTROL */
  179. buf[1] = 0xff; /* unit */
  180. buf[2] = 0x19; /* INPUT PLUG SIGNAL FORMAT */
  181. buf[3] = 0x00; /* plug 0 */
  182. buf[4] = 0x90; /* format: audio */
  183. buf[5] = 0x00 | sfc; /* AM824, frequency */
  184. buf[6] = 0xff; /* SYT (not used) */
  185. buf[7] = 0xff;
  186. err = fcp_avc_transaction(fwspk->unit, buf, 8, buf, 8,
  187. BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5));
  188. if (err < 0)
  189. goto error;
  190. if (err < 6 || buf[0] != 0x09 /* ACCEPTED */) {
  191. dev_err(&fwspk->unit->device, "failed to set sample rate\n");
  192. err = -EIO;
  193. goto error;
  194. }
  195. err = 0;
  196. error:
  197. kfree(buf);
  198. return err;
  199. }
  200. static int fwspk_hw_params(struct snd_pcm_substream *substream,
  201. struct snd_pcm_hw_params *hw_params)
  202. {
  203. struct fwspk *fwspk = substream->private_data;
  204. int err;
  205. mutex_lock(&fwspk->mutex);
  206. fwspk_stop_stream(fwspk);
  207. mutex_unlock(&fwspk->mutex);
  208. err = snd_pcm_lib_alloc_vmalloc_buffer(substream,
  209. params_buffer_bytes(hw_params));
  210. if (err < 0)
  211. goto error;
  212. amdtp_out_stream_set_rate(&fwspk->stream, params_rate(hw_params));
  213. amdtp_out_stream_set_pcm(&fwspk->stream, params_channels(hw_params));
  214. amdtp_out_stream_set_pcm_format(&fwspk->stream,
  215. params_format(hw_params));
  216. err = fwspk_set_rate(fwspk, fwspk->stream.sfc);
  217. if (err < 0)
  218. goto err_buffer;
  219. return 0;
  220. err_buffer:
  221. snd_pcm_lib_free_vmalloc_buffer(substream);
  222. error:
  223. return err;
  224. }
  225. static int fwspk_hw_free(struct snd_pcm_substream *substream)
  226. {
  227. struct fwspk *fwspk = substream->private_data;
  228. mutex_lock(&fwspk->mutex);
  229. fwspk_stop_stream(fwspk);
  230. mutex_unlock(&fwspk->mutex);
  231. return snd_pcm_lib_free_vmalloc_buffer(substream);
  232. }
  233. static int fwspk_prepare(struct snd_pcm_substream *substream)
  234. {
  235. struct fwspk *fwspk = substream->private_data;
  236. int err;
  237. mutex_lock(&fwspk->mutex);
  238. if (amdtp_out_streaming_error(&fwspk->stream))
  239. fwspk_stop_stream(fwspk);
  240. if (!fwspk->stream_running) {
  241. err = cmp_connection_establish(&fwspk->connection,
  242. amdtp_out_stream_get_max_payload(&fwspk->stream));
  243. if (err < 0)
  244. goto err_mutex;
  245. err = amdtp_out_stream_start(&fwspk->stream,
  246. fwspk->connection.resources.channel,
  247. fwspk->connection.speed);
  248. if (err < 0)
  249. goto err_connection;
  250. fwspk->stream_running = true;
  251. }
  252. mutex_unlock(&fwspk->mutex);
  253. amdtp_out_stream_pcm_prepare(&fwspk->stream);
  254. return 0;
  255. err_connection:
  256. cmp_connection_break(&fwspk->connection);
  257. err_mutex:
  258. mutex_unlock(&fwspk->mutex);
  259. return err;
  260. }
  261. static int fwspk_trigger(struct snd_pcm_substream *substream, int cmd)
  262. {
  263. struct fwspk *fwspk = substream->private_data;
  264. struct snd_pcm_substream *pcm;
  265. switch (cmd) {
  266. case SNDRV_PCM_TRIGGER_START:
  267. pcm = substream;
  268. break;
  269. case SNDRV_PCM_TRIGGER_STOP:
  270. pcm = NULL;
  271. break;
  272. default:
  273. return -EINVAL;
  274. }
  275. amdtp_out_stream_pcm_trigger(&fwspk->stream, pcm);
  276. return 0;
  277. }
  278. static snd_pcm_uframes_t fwspk_pointer(struct snd_pcm_substream *substream)
  279. {
  280. struct fwspk *fwspk = substream->private_data;
  281. return amdtp_out_stream_pcm_pointer(&fwspk->stream);
  282. }
  283. static int fwspk_create_pcm(struct fwspk *fwspk)
  284. {
  285. static struct snd_pcm_ops ops = {
  286. .open = fwspk_open,
  287. .close = fwspk_close,
  288. .ioctl = snd_pcm_lib_ioctl,
  289. .hw_params = fwspk_hw_params,
  290. .hw_free = fwspk_hw_free,
  291. .prepare = fwspk_prepare,
  292. .trigger = fwspk_trigger,
  293. .pointer = fwspk_pointer,
  294. .page = snd_pcm_lib_get_vmalloc_page,
  295. .mmap = snd_pcm_lib_mmap_vmalloc,
  296. };
  297. struct snd_pcm *pcm;
  298. int err;
  299. err = snd_pcm_new(fwspk->card, "OXFW970", 0, 1, 0, &pcm);
  300. if (err < 0)
  301. return err;
  302. pcm->private_data = fwspk;
  303. strcpy(pcm->name, fwspk->device_info->short_name);
  304. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &ops);
  305. return 0;
  306. }
  307. enum control_action { CTL_READ, CTL_WRITE };
  308. enum control_attribute {
  309. CTL_MIN = 0x02,
  310. CTL_MAX = 0x03,
  311. CTL_CURRENT = 0x10,
  312. };
  313. static int fwspk_mute_command(struct fwspk *fwspk, bool *value,
  314. enum control_action action)
  315. {
  316. u8 *buf;
  317. u8 response_ok;
  318. int err;
  319. buf = kmalloc(11, GFP_KERNEL);
  320. if (!buf)
  321. return -ENOMEM;
  322. if (action == CTL_READ) {
  323. buf[0] = 0x01; /* AV/C, STATUS */
  324. response_ok = 0x0c; /* STABLE */
  325. } else {
  326. buf[0] = 0x00; /* AV/C, CONTROL */
  327. response_ok = 0x09; /* ACCEPTED */
  328. }
  329. buf[1] = 0x08; /* audio unit 0 */
  330. buf[2] = 0xb8; /* FUNCTION BLOCK */
  331. buf[3] = 0x81; /* function block type: feature */
  332. buf[4] = fwspk->device_info->mute_fb_id; /* function block ID */
  333. buf[5] = 0x10; /* control attribute: current */
  334. buf[6] = 0x02; /* selector length */
  335. buf[7] = 0x00; /* audio channel number */
  336. buf[8] = 0x01; /* control selector: mute */
  337. buf[9] = 0x01; /* control data length */
  338. if (action == CTL_READ)
  339. buf[10] = 0xff;
  340. else
  341. buf[10] = *value ? 0x70 : 0x60;
  342. err = fcp_avc_transaction(fwspk->unit, buf, 11, buf, 11, 0x3fe);
  343. if (err < 0)
  344. goto error;
  345. if (err < 11) {
  346. dev_err(&fwspk->unit->device, "short FCP response\n");
  347. err = -EIO;
  348. goto error;
  349. }
  350. if (buf[0] != response_ok) {
  351. dev_err(&fwspk->unit->device, "mute command failed\n");
  352. err = -EIO;
  353. goto error;
  354. }
  355. if (action == CTL_READ)
  356. *value = buf[10] == 0x70;
  357. err = 0;
  358. error:
  359. kfree(buf);
  360. return err;
  361. }
  362. static int fwspk_volume_command(struct fwspk *fwspk, s16 *value,
  363. unsigned int channel,
  364. enum control_attribute attribute,
  365. enum control_action action)
  366. {
  367. u8 *buf;
  368. u8 response_ok;
  369. int err;
  370. buf = kmalloc(12, GFP_KERNEL);
  371. if (!buf)
  372. return -ENOMEM;
  373. if (action == CTL_READ) {
  374. buf[0] = 0x01; /* AV/C, STATUS */
  375. response_ok = 0x0c; /* STABLE */
  376. } else {
  377. buf[0] = 0x00; /* AV/C, CONTROL */
  378. response_ok = 0x09; /* ACCEPTED */
  379. }
  380. buf[1] = 0x08; /* audio unit 0 */
  381. buf[2] = 0xb8; /* FUNCTION BLOCK */
  382. buf[3] = 0x81; /* function block type: feature */
  383. buf[4] = fwspk->device_info->volume_fb_id; /* function block ID */
  384. buf[5] = attribute; /* control attribute */
  385. buf[6] = 0x02; /* selector length */
  386. buf[7] = channel; /* audio channel number */
  387. buf[8] = 0x02; /* control selector: volume */
  388. buf[9] = 0x02; /* control data length */
  389. if (action == CTL_READ) {
  390. buf[10] = 0xff;
  391. buf[11] = 0xff;
  392. } else {
  393. buf[10] = *value >> 8;
  394. buf[11] = *value;
  395. }
  396. err = fcp_avc_transaction(fwspk->unit, buf, 12, buf, 12, 0x3fe);
  397. if (err < 0)
  398. goto error;
  399. if (err < 12) {
  400. dev_err(&fwspk->unit->device, "short FCP response\n");
  401. err = -EIO;
  402. goto error;
  403. }
  404. if (buf[0] != response_ok) {
  405. dev_err(&fwspk->unit->device, "volume command failed\n");
  406. err = -EIO;
  407. goto error;
  408. }
  409. if (action == CTL_READ)
  410. *value = (buf[10] << 8) | buf[11];
  411. err = 0;
  412. error:
  413. kfree(buf);
  414. return err;
  415. }
  416. static int fwspk_mute_get(struct snd_kcontrol *control,
  417. struct snd_ctl_elem_value *value)
  418. {
  419. struct fwspk *fwspk = control->private_data;
  420. value->value.integer.value[0] = !fwspk->mute;
  421. return 0;
  422. }
  423. static int fwspk_mute_put(struct snd_kcontrol *control,
  424. struct snd_ctl_elem_value *value)
  425. {
  426. struct fwspk *fwspk = control->private_data;
  427. bool mute;
  428. int err;
  429. mute = !value->value.integer.value[0];
  430. if (mute == fwspk->mute)
  431. return 0;
  432. err = fwspk_mute_command(fwspk, &mute, CTL_WRITE);
  433. if (err < 0)
  434. return err;
  435. fwspk->mute = mute;
  436. return 1;
  437. }
  438. static int fwspk_volume_info(struct snd_kcontrol *control,
  439. struct snd_ctl_elem_info *info)
  440. {
  441. struct fwspk *fwspk = control->private_data;
  442. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  443. info->count = fwspk->device_info->mixer_channels;
  444. info->value.integer.min = fwspk->volume_min;
  445. info->value.integer.max = fwspk->volume_max;
  446. return 0;
  447. }
  448. static const u8 channel_map[6] = { 0, 1, 4, 5, 2, 3 };
  449. static int fwspk_volume_get(struct snd_kcontrol *control,
  450. struct snd_ctl_elem_value *value)
  451. {
  452. struct fwspk *fwspk = control->private_data;
  453. unsigned int i;
  454. for (i = 0; i < fwspk->device_info->mixer_channels; ++i)
  455. value->value.integer.value[channel_map[i]] = fwspk->volume[i];
  456. return 0;
  457. }
  458. static int fwspk_volume_put(struct snd_kcontrol *control,
  459. struct snd_ctl_elem_value *value)
  460. {
  461. struct fwspk *fwspk = control->private_data;
  462. unsigned int i, changed_channels;
  463. bool equal_values = true;
  464. s16 volume;
  465. int err;
  466. for (i = 0; i < fwspk->device_info->mixer_channels; ++i) {
  467. if (value->value.integer.value[i] < fwspk->volume_min ||
  468. value->value.integer.value[i] > fwspk->volume_max)
  469. return -EINVAL;
  470. if (value->value.integer.value[i] !=
  471. value->value.integer.value[0])
  472. equal_values = false;
  473. }
  474. changed_channels = 0;
  475. for (i = 0; i < fwspk->device_info->mixer_channels; ++i)
  476. if (value->value.integer.value[channel_map[i]] !=
  477. fwspk->volume[i])
  478. changed_channels |= 1 << (i + 1);
  479. if (equal_values && changed_channels != 0)
  480. changed_channels = 1 << 0;
  481. for (i = 0; i <= fwspk->device_info->mixer_channels; ++i) {
  482. volume = value->value.integer.value[channel_map[i ? i - 1 : 0]];
  483. if (changed_channels & (1 << i)) {
  484. err = fwspk_volume_command(fwspk, &volume, i,
  485. CTL_CURRENT, CTL_WRITE);
  486. if (err < 0)
  487. return err;
  488. }
  489. if (i > 0)
  490. fwspk->volume[i - 1] = volume;
  491. }
  492. return changed_channels != 0;
  493. }
  494. static int fwspk_create_mixer(struct fwspk *fwspk)
  495. {
  496. static const struct snd_kcontrol_new controls[] = {
  497. {
  498. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  499. .name = "PCM Playback Switch",
  500. .info = snd_ctl_boolean_mono_info,
  501. .get = fwspk_mute_get,
  502. .put = fwspk_mute_put,
  503. },
  504. {
  505. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  506. .name = "PCM Playback Volume",
  507. .info = fwspk_volume_info,
  508. .get = fwspk_volume_get,
  509. .put = fwspk_volume_put,
  510. },
  511. };
  512. unsigned int i, first_ch;
  513. int err;
  514. err = fwspk_volume_command(fwspk, &fwspk->volume_min,
  515. 0, CTL_MIN, CTL_READ);
  516. if (err < 0)
  517. return err;
  518. err = fwspk_volume_command(fwspk, &fwspk->volume_max,
  519. 0, CTL_MAX, CTL_READ);
  520. if (err < 0)
  521. return err;
  522. err = fwspk_mute_command(fwspk, &fwspk->mute, CTL_READ);
  523. if (err < 0)
  524. return err;
  525. first_ch = fwspk->device_info->mixer_channels == 1 ? 0 : 1;
  526. for (i = 0; i < fwspk->device_info->mixer_channels; ++i) {
  527. err = fwspk_volume_command(fwspk, &fwspk->volume[i],
  528. first_ch + i, CTL_CURRENT, CTL_READ);
  529. if (err < 0)
  530. return err;
  531. }
  532. for (i = 0; i < ARRAY_SIZE(controls); ++i) {
  533. err = snd_ctl_add(fwspk->card,
  534. snd_ctl_new1(&controls[i], fwspk));
  535. if (err < 0)
  536. return err;
  537. }
  538. return 0;
  539. }
  540. static u32 fwspk_read_firmware_version(struct fw_unit *unit)
  541. {
  542. __be32 data;
  543. int err;
  544. err = snd_fw_transaction(unit, TCODE_READ_QUADLET_REQUEST,
  545. OXFORD_FIRMWARE_ID_ADDRESS, &data, 4);
  546. return err >= 0 ? be32_to_cpu(data) : 0;
  547. }
  548. static void fwspk_card_free(struct snd_card *card)
  549. {
  550. struct fwspk *fwspk = card->private_data;
  551. amdtp_out_stream_destroy(&fwspk->stream);
  552. cmp_connection_destroy(&fwspk->connection);
  553. fw_unit_put(fwspk->unit);
  554. mutex_destroy(&fwspk->mutex);
  555. }
  556. static int fwspk_probe(struct fw_unit *unit,
  557. const struct ieee1394_device_id *id)
  558. {
  559. struct fw_device *fw_dev = fw_parent_device(unit);
  560. struct snd_card *card;
  561. struct fwspk *fwspk;
  562. u32 firmware;
  563. int err;
  564. err = snd_card_create(-1, NULL, THIS_MODULE, sizeof(*fwspk), &card);
  565. if (err < 0)
  566. return err;
  567. snd_card_set_dev(card, &unit->device);
  568. fwspk = card->private_data;
  569. fwspk->card = card;
  570. mutex_init(&fwspk->mutex);
  571. fwspk->unit = fw_unit_get(unit);
  572. fwspk->device_info = (const struct device_info *)id->driver_data;
  573. err = cmp_connection_init(&fwspk->connection, unit, 0);
  574. if (err < 0)
  575. goto err_unit;
  576. err = amdtp_out_stream_init(&fwspk->stream, unit, CIP_NONBLOCKING);
  577. if (err < 0)
  578. goto err_connection;
  579. card->private_free = fwspk_card_free;
  580. strcpy(card->driver, fwspk->device_info->driver_name);
  581. strcpy(card->shortname, fwspk->device_info->short_name);
  582. firmware = fwspk_read_firmware_version(unit);
  583. snprintf(card->longname, sizeof(card->longname),
  584. "%s (OXFW%x %04x), GUID %08x%08x at %s, S%d",
  585. fwspk->device_info->long_name,
  586. firmware >> 20, firmware & 0xffff,
  587. fw_dev->config_rom[3], fw_dev->config_rom[4],
  588. dev_name(&unit->device), 100 << fw_dev->max_speed);
  589. strcpy(card->mixername, "OXFW970");
  590. err = fwspk_create_pcm(fwspk);
  591. if (err < 0)
  592. goto error;
  593. err = fwspk_create_mixer(fwspk);
  594. if (err < 0)
  595. goto error;
  596. err = snd_card_register(card);
  597. if (err < 0)
  598. goto error;
  599. dev_set_drvdata(&unit->device, fwspk);
  600. return 0;
  601. err_connection:
  602. cmp_connection_destroy(&fwspk->connection);
  603. err_unit:
  604. fw_unit_put(fwspk->unit);
  605. mutex_destroy(&fwspk->mutex);
  606. error:
  607. snd_card_free(card);
  608. return err;
  609. }
  610. static void fwspk_bus_reset(struct fw_unit *unit)
  611. {
  612. struct fwspk *fwspk = dev_get_drvdata(&unit->device);
  613. fcp_bus_reset(fwspk->unit);
  614. if (cmp_connection_update(&fwspk->connection) < 0) {
  615. amdtp_out_stream_pcm_abort(&fwspk->stream);
  616. mutex_lock(&fwspk->mutex);
  617. fwspk_stop_stream(fwspk);
  618. mutex_unlock(&fwspk->mutex);
  619. return;
  620. }
  621. amdtp_out_stream_update(&fwspk->stream);
  622. }
  623. static void fwspk_remove(struct fw_unit *unit)
  624. {
  625. struct fwspk *fwspk = dev_get_drvdata(&unit->device);
  626. amdtp_out_stream_pcm_abort(&fwspk->stream);
  627. snd_card_disconnect(fwspk->card);
  628. mutex_lock(&fwspk->mutex);
  629. fwspk_stop_stream(fwspk);
  630. mutex_unlock(&fwspk->mutex);
  631. snd_card_free_when_closed(fwspk->card);
  632. }
  633. static const struct device_info griffin_firewave = {
  634. .driver_name = "FireWave",
  635. .short_name = "FireWave",
  636. .long_name = "Griffin FireWave Surround",
  637. .pcm_constraints = firewave_constraints,
  638. .mixer_channels = 6,
  639. .mute_fb_id = 0x01,
  640. .volume_fb_id = 0x02,
  641. };
  642. static const struct device_info lacie_speakers = {
  643. .driver_name = "FWSpeakers",
  644. .short_name = "FireWire Speakers",
  645. .long_name = "LaCie FireWire Speakers",
  646. .pcm_constraints = lacie_speakers_constraints,
  647. .mixer_channels = 1,
  648. .mute_fb_id = 0x01,
  649. .volume_fb_id = 0x01,
  650. };
  651. static const struct ieee1394_device_id fwspk_id_table[] = {
  652. {
  653. .match_flags = IEEE1394_MATCH_VENDOR_ID |
  654. IEEE1394_MATCH_MODEL_ID |
  655. IEEE1394_MATCH_SPECIFIER_ID |
  656. IEEE1394_MATCH_VERSION,
  657. .vendor_id = VENDOR_GRIFFIN,
  658. .model_id = 0x00f970,
  659. .specifier_id = SPECIFIER_1394TA,
  660. .version = VERSION_AVC,
  661. .driver_data = (kernel_ulong_t)&griffin_firewave,
  662. },
  663. {
  664. .match_flags = IEEE1394_MATCH_VENDOR_ID |
  665. IEEE1394_MATCH_MODEL_ID |
  666. IEEE1394_MATCH_SPECIFIER_ID |
  667. IEEE1394_MATCH_VERSION,
  668. .vendor_id = VENDOR_LACIE,
  669. .model_id = 0x00f970,
  670. .specifier_id = SPECIFIER_1394TA,
  671. .version = VERSION_AVC,
  672. .driver_data = (kernel_ulong_t)&lacie_speakers,
  673. },
  674. { }
  675. };
  676. MODULE_DEVICE_TABLE(ieee1394, fwspk_id_table);
  677. static struct fw_driver fwspk_driver = {
  678. .driver = {
  679. .owner = THIS_MODULE,
  680. .name = KBUILD_MODNAME,
  681. .bus = &fw_bus_type,
  682. },
  683. .probe = fwspk_probe,
  684. .update = fwspk_bus_reset,
  685. .remove = fwspk_remove,
  686. .id_table = fwspk_id_table,
  687. };
  688. static int __init alsa_fwspk_init(void)
  689. {
  690. return driver_register(&fwspk_driver.driver);
  691. }
  692. static void __exit alsa_fwspk_exit(void)
  693. {
  694. driver_unregister(&fwspk_driver.driver);
  695. }
  696. module_init(alsa_fwspk_init);
  697. module_exit(alsa_fwspk_exit);